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Consider the three-dimensional flow of a viscous Newtonian fluid upon an arbitrarily
curved substrate when the fluid film is thin as occurs in many draining, coating and
biological flows. We drive the lubrication model of the dynamics of the film expressed
in terms of the film thickness. The comprehensive model accurately includes the
effects of the curvature of the substrate, via a physical multiple-scale approach, and
gravity and inertia, via more rigorous centre manifold techniques. This new approach
theoretically supports the use of the model over a wide range of parameters and
provides a sound basis for further development of lubrication models. Numerical
simulations exhibit some generic features of the dynamics of such thin fluid films
on substrates with complex curvature: we here simulate a film thinning at a corner,
the flow around a torus, and draining of a film down a cylinder. The last is more
accurate than other lubrication models. The model derived here describes well thin-
film dynamics over a wide range of parameter regimes.

1. Introduction
The importance of thin-film fluid flows in countless industrial and natural processes

has led to the development of a variety of mathematical models and numerical
simulations. This has increased the understanding of the various complex processes at
play, such as the effects of generalized Newtonian and shear-thinning rheology of the
liquid (Weidner & Schwartz 1994), of geometric complexity of the substrate (Schwartz
& Weidner 1995), of multicomponent mixtures and drying processes (Cairncross,
Francis & Scriven 1996), of surface contamination (Schwartz et al. 1995, 1996) and
roughness (Sweeney et al. 1993), of advecting and diffusing contaminants, and of
moving substrates. See also, for example, Ruschak (1985), Tuck & Schwartz (1990),
Moriarty, Schwartz & Tuck (1991), Moriarty & Schwartz (1992, 1993), Chang (1994),
Weidner, Schwartz & Eley (1996) and the extensive review of thin-film flows by Oron,
Davis & Bankoff (1997). Examples of industrial applications include the coating
processes of autobodies, beverage containers, sheet goods and films, decorative coating
and gravure roll coating. Physical applications are also found in the biomedical field
such as the liquid films covering the cornea of the eye or protecting the linings of the
lungs (Grotberg 1994).

Herein, we consider the slow motion of a thin liquid layer over an arbitrarily
curved solid substrate. The fluid is assumed to be incompressible and Newtonian,
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constituted of a single component and not significantly contaminated by surfactant.
The substrate is stationary. The effects of substrate curvature on the flow of thin liquid
layers driven by surface tension were first modelled by Schwartz & Weidner (1995)
for two-dimensional geometries. Short-wavelength irregularities of the free surface of
the fluid are quickly levelled by surface tension forces, but the long-term evolution of
the flow is determined primarily by the curvature of the substrate. Their calculations
confirm qualitative observations of the thinning of coating layers at outside corners
and of the thickening at inside corners. Schwartz et al. (1995) studied the joint effect
of substrate curvature and the presence of surfactant and showed that corner defects
may be altered significantly by the presence of Marangoni forces. The other pertinent
case that has received attention is that of flow on the curved substrate of a cylinder.
This is the only case of flow on a curved substrate discussed by Oron et al. (1997).
We develop here the model for the flow of a thin film of fluid on a generally curved
substrate.

The model derived herein exploits the thinness of the fluid layer and leads to a
‘lubrication’ model of the dynamics whereby the unknown fluid fields are parameter-
ized only by the thickness of the fluid layer. Thus, a considerable simplification of the
governing equations is achieved when compared to the full Navier–Stokes equations.
Such thin-geometry or long-wave models have previously been derived in many physi-
cal contexts, such as in the mechanics of beams, plates and shells (Timoshenko &
Woinowsky-Krieger 1959; Roberts 1993), coating flows (Levich 1962; Benney 1966;
Roskes 1969; Atherton & Homsy 1976; Tuck & Schwartz 1990), shallow-water waves
(Mei 1989), viscous fluid sheets (van de Fliert, Howell & Ockenden 1995), etc. On a
flat substrate, the usual model for the evolution of a viscous fluid film’s thickness η,
driven only by surface tension, is given by the following non-dimensional equation

∂η

∂t
≈ − 1

3
∇ · [η3∇κ̃],

where κ̃ ≈ ∇2η is the curvature of the free surface of the fluid film. Based upon the
conservation of fluid and the Navier–Stokes equations, outlined in § 2.1, we derive in
§ 3 the following model for the evolution of a film on a curved substrate:

∂ζ

∂t
≈ − 1

3
∇ · [η2ζ∇κ̃− 1

2
η4(κI − K) · ∇κ], (1)

where ζ = η − 1
2
κη2 + 1

3
k1k2η

3 is proportional to the amount of fluid locally above
the substrate; K is the curvature tensor of the substrate; k1, k2 and κ = k1 + k2 are
the principal curvatures and the mean curvature of the substrate, respectively; and
the ∇-operator is expressed in a coordinate system of the substrate, as introduced in
§ 2. This model systematically accounts for the curvature of the substrate and that of
the surface of the film. It extends the model derived by Schwartz & Weidner (1995)
(i) to flows where the substrate curvature has a larger effect on the fluid dynamics;
(ii) to a two-dimensional substrate; and (iii) later in equation (51) by systematically
incorporating more physical effects into the modelling. Our model applies to a wide
range of thin fluid film flows in the lubrication approximation.

The flow of a thin fluid on the surface of a cylinder is a situation of long-standing
interest. Applications of the model (51) may be to the liquid lining of cylindrical tubes
investigated by Jensen (1997) and the formation of drops during coating as explored
by Kalliadasis & Chang (1994) and Kliakhandler, Davis & Bankoff (2001). They find
that a thin film may form into drops on the fibre, or may saturate into solitary waves
depending upon the film thickness. The version of (51) specific of axisymmetric flow
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Figure 1. Side by side comparison of the evolution of a flow predicted by (a) our model (2)
and (b) Frenkel’s model for the axisymmetric draining flow down a cylinder (for non-dimensional
parameters a = Bo = 1), periodic in x and starting from a random fluid thickness. See the significant
differences in the predicted phase speeds and amplitudes of the roll waves η(x, t).

around a circular cylinder of radius a is

∂ζ

∂t
+

1

3

∂

∂x

[
Boη3

(
1 +

η

a

)
+ η2ζ

(
1

a2(1 + η/a)2

∂η

∂x
+
∂3η

∂x3

)]
≈ 0, (2)

in our non-dimensionalization, where x measures axial distance, Bo is a Bond number
characterizing axial gravity, and here ζ = η+ η2/2a. This is approximately the model
used by Kalliadasis & Chang (1994) as derived by Frenkel (1992) (replace 1 + η/a
by 1 and ζ by η to obtain Frenkel’s model). The differences are that their model
(Kalliadasis & Chang equation (2)) does not conserve fluid, while our systematic
model, equation (2), does and additionally accounts for more physical effects and
interactions. Significant qualitative effects are seen in figure 1: the greater influence
of surface tension in (2) leads to reduced height but greater speed of the roll waves;
and the 1/(1 + η/a)2 factor in (2) is crucial in more accurately predicting a longer
wavelength. See § 5.3 for details of these comparisons and the non-axisymmetric model
on a cylinder.

The general model, equation (51), reported in § 4.2, also subsumes that of Wilson
& Duffy (1998) for the steady draining of a rivulet by generalizing the model to the
unsteady flow on general substrate variations.

In order to make such comparisons, we derive the necessary modifications to the
model (equation (1)) in § 4 by including gravity and inertia processes in the analysis.
Computer algebra, based on centre manifold theory (Roberts 1988), assures us that
all relevant dynamical effects and their interactions are incorporated into the model.
In centre manifold theory, competing small effects need not appear at leading order
in the analysis; thus, we obtain the flexibility to adapt the model to a variety of
parameter regimes without redoing the entire analysis (Roberts 1997, for example).
The need to do this has been identified not only by Frenkel & Indireshkumar (1997) in
their derivation of a generally valid model for thin fluid films flowing down an inclined
plane, but also in the review by Oron et al. (1997 p. 958) of models for free thin
fluid films. Here, the various regimes of gravitational forcing around a curved surface
are all encompassed within the one model, namely equation (51). Terms affected by
fluid inertia appear very small in generic situations, see (52), and perhaps are best
used to indicate the error in the lubrication models for moderate Reynolds number
flows – Oron et al. (1997 p. 975) indicated that such high-order terms would be useful
indicators of errors in an asymptotic model. The centre manifold approach supports
the model in equation (1) whether the substrate has constant mean curvature, such as
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spheres or cylinders (§ 5.3), when the leading-order dynamics are driven by variations
in the thickness of the film, or whether the substrate has varying mean curvature, such
as on a torus (§ 5.4) or around a corner (§ 5.2), when the leading-order dynamics are
driven by the substrate curvature, see § 5.1. In the latter cases, the leading-order model
is structurally unstable and thus it is essential to incorporate higher-order terms into
the model. That notionally higher-order terms balance notionally lower-order terms is
not necessarily ‘a failure . . . to represent a rightful limiting case’ (Oron et al. 1974) but
the natural expression that different physical interactions are dominant. The centre
manifold approach assures us that models are developed which account, up to some
order, for all physical interactions expressed in the original mathematical description
of the physical problem.† Centre manifold theory provides a more powerful basis
for modelling dynamics. Incorrect initial conditions for dynamical models have often
been assumed without comment. Instead, remarkably, in shear dispersion in a channel,
the initial condition for the Taylor model of the cross-channel average concentration
is not the cross-channel average of the initial concentration (Watt & Roberts 1995);
and the initial condition for a finite-difference numerical model is not the grid values
of the initial field (Roberts 2001). The geometry of centre manifold theory provides a
rational derivation of initial conditions for a model (Cox & Roberts 1995; Roberts
2000). For the flow of a thin film of fluid on a flat substrate, a first analysis (Suslov
& Roberts 1998) derives that the initial profile for the lubrication model is not the
initial fluid thickness but

η0 ≈ h0 − ∇ · u0y(h0 − 1
2
y), (3)

where the overbar denotes a cross-film average, h0(x) is the initial thickness and u0 the
initial lateral velocity field of the fluid. Suslov & Roberts (1998) discuss six examples
and how the projection, equation (3), matches physical intuition. Generalizing (3) to
a curved substrate is for further research. Centre manifold theory further provides
a rational derivation of the effects of forcing upon a dynamical model (Cox &
Roberts 1995) and of boundary conditions to be applied at the lateral boundaries of
a thin domain model (Roberts 1992) such as lubrication theory. Traditional modelling
approaches, such as the method of multiple scales, do not provide such a rational
treatment of initial and boundary conditions. Thus, using centre manifold theory here
is a necessary step in developing fluid dynamics modelling.

In § 5, we describe some numerical simulations of flows on curved surfaces. At-
tention is given to the quantitative differences found between our model and that
obtained by Schwartz & Weidner (1995), and the axisymmetric model on a cylinder
by Kliakhandler et al. (2001).

2. The fluid equations in the substrate coordinate system
The fluid equations are best analysed and solved in a coordinate system that

naturally fits the curving substrate. Based upon the principal directions of curvature
of the substrate, we construct an orthogonal curvilinear coordinate system in the
neighbourhood of the substrate S. The Navier–Stokes equations, introduced next,

† For a simple example, centre manifold theory guarantees ẋ = εx − x3 + O(ε4 + x4) is a good
model of the dynamical system ẋ = εx − xy, ẏ = −y + x2 irrespective of whether x = O(

√
ε), as

it is near the stable fixed point, or whether x is significantly larger, when the equation’s balance
is dominantly between ẋ and −x3 or indeed smaller, when the balance is dominated by ẋ and εx.
Analogously, Ribe (2001) uses a ‘composite’ model to describe uniformly different asymptotic
regimes of the dynamics of a thin viscous sheet.
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are analysed in this special coordinate system. This natural coordinate system has
some remarkable properties which make a systematic analysis tractable.

2.1. Equations of motion and boundary conditions

We solve the Navier–Stokes equations for an incompressible Newtonian fluid of
density ρ and viscosity µ moving with velocity field u and pressure field p. The
flow is primarily driven by pressure gradients along the substrate and caused by
capillary forces characterized by surface tension σ and varying due to variations of
the curvature of the free surface of the fluid. In § 4, we include in the analysis a
gravitational body force, g, of magnitude g in the direction of the unit vector ĝ.

Suppose the film has characteristic thickness H . We non-dimensionalize the equa-
tions by scaling variables with respect to the reference length H , the reference time
µH/σ, the reference velocity U = σ/µ, and the reference pressure σ/H . Thus, in this
non-dimensionalization, we take the view of a microscopic creature of a size compa-
rable to the thickness of the fluid; later, we require that both the substrate and the
free surface curve only gently when viewed on this microscale. The non-dimensional
fluid equations are then

∇ · u = 0, (4)

Re

[
∂u

∂t
+ u · ∇u

]
= −∇p+ ∇2u+ Boĝ, (5)

where Re = σρH/µ2 is effectively a Reynolds number characterizing the importance
of the inertial terms – it may be written as UH/ν for the above reference velocity – and
Bo = ρgH2/σ is a Bond number characterizing the importance of the gravitational
body force when compared with surface tension.

In § 3, we assume that the regime of the flow is characterized by a very small
value of the Reynolds number so that the inertia term ReDu/Dt is neglected in
comparison to the viscous forces in the fluid: Re = UH/ν � 1. This is the ‘creeping
flow’ assumption of lubrication. Later, in § 4, we reinstate inertia into the analysis and
determine its leading-order effects on the dynamics.

The boundary conditions are as follows.
(i) The fluid immediately in contact with the substrate does not slip along the

stationary substrate S, that is

u = 0 on S. (6)

(ii) The kinematic boundary condition at the free surface of the fluid states that
fluid particles must follow the free surface.

(iii) The free surface, denoted byF and assumed free of contamination, must have
zero-shear (tangential stress), namely

τ̃ · t̃1 = τ̃ · t̃2 = 0 on F, (7)

where τ̃ is the deviatoric stress acting across F, and t̃α are independent tangent
vectors to F. This condition assumes a light and inviscid medium (such as air)
external to the fluid layer.

(iv) Surface tension creates a jump in the normal stress across F proportional to
the mean curvature of F: in non-dimensional form

p = −κ̃+ τ̃ · ñ on F, (8)

where p is the fluid pressure relative to the assumed zero pressure of the external
medium, and ñ is the unit normal to F.
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Figure 2. The substrate S is parameterized by variables x1 and x2. Together with the normal
distance y, these form an orthogonal curvilinear coordinate system in space with unit vectors e1, e2

and e3.

We do not discuss boundary conditions at the lateral extremes of the substrate,
as the substrate is assumed to be so large in extent, when compared to the fluid
thickness, that the dynamics of the fluid film are largely unaffected by the edge
boundary conditions. A rational methodology for deriving boundary conditions for
slowly evolving dynamical models such as (1) is based upon constructing certain
invariant manifolds of the dynamics as explained in Roberts (1992).

2.2. The curvilinear coordinate system

The curvilinear coordinate system is taken to be an extension into space of a natural
coordinate system of the substrate. We choose, without loss of generality, a curvi-
linear parameterization (x1, x2) of S for which the parameter curves x1 = constant
and x2 = constant generate the orthogonal lines of curvature of S (Stoker 1969),
shown schematically in figure 2. In this case, the curvature tensor becomes diagonal
everywhere, with diagonal components kα.†

Conversely, we may view the surface S as being entirely specified by its metric
coefficients mα(x1, x2) and its principal curvatures kα(x1, x2) as functions of the coor-
dinate variables (x1, x2) assumed to generate the lines of curvature as the parameter
curves of S.

We also define the triad of unit orthogonal vectors (e1, e2, e3) at all points of S: eα
is tangent to curves of constant xα′; and e3 is normal to S. The metric coefficients,
mα, allow measurement of lengths on S: the arclength of curves on the substrate are
found from

ds2 = (m1dx1)
2 + (m2dx2)

2. (9)

Note that the unit vectors vary along S and that their derivatives ∂ei/∂xα are
required to express the equations of motion and boundary conditions in the curvilinear
coordinates.

† Latin indices (such as i or j) span the numbers 1, 2, 3 and are attached to spatial quantities,
whereas Greek indices (such as α or β) span the numbers 1, 2 and are attached to substrate or
surface quantities. A prime on Greek indices denotes the complementary value, that is, α′ = 3− α.
Subscripts following a comma indicate differentiation with respect to the corresponding coordinate.
Unless otherwise specified, we do not use Einstein’s summation convention for repeated indices.
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As shown in figure 2, the two-dimensional substrate S is the locus of the endpoints
of the position vector rOP = X (x1, x2), for some domain D of (x1, x2). We prescribe a
third coordinate, denoted by y, as the distance measured along the normal e3 from a
given spatial point P to the surface S. Thus, the position vector of points P of the
fluid are written

r = X (x1, x2) + ye3(x1, x2), (10)

where the endpoint of vector X belongs to the surfaceS. A large number of important
simplifications occur in using this particular orthogonal curvilinear coordinate system,
(x1, x2, y), that naturally fits the substrate. A definite example for the flow on a torus
is given in § 5.4.

We denote by η(t, x1, x2) the fluid layer’s thickness at time t and location (x1, x2).
The free surface F of the fluid is thus represented by the equation y = η(t, x1, x2),
and the fluid fills the domain 0 6 y 6 η(t, x1, x2). Note that, in general, sufficiently
far from the substrate for example, the chosen coordinate system need not lead to a
one-to-one mapping between coordinate space and physical space. We assume that
proper conditions between η, k1 and k2 are satisfied so that intersections of normals
of S do not occur within the body of the fluid.

The coordinate unit vectors are independent of y and hence are the same unit vec-
tors, (e1, e2, e3), as defined on the substrate but now defined in space neighbouring S.
The corresponding spatial metric coefficients are

hα = mα(1− kαy), h3 = 1. (11)

By relating the base unit vectors of the rectangular coordinate system to those of
the curvilinear coordinate system, see (Batchelor 1979 p. 598), or (Morse & Feshbach
1953), the spatial derivatives of the curvilinear unit vectors are

ei,j =
ei
hi
hj,i − δij

3∑
k=1

ek
hk
hi,k. (12)

However, in the special coordinate system used here, all such expressions simplify to
the equivalent expressions on the substrate and independent of y:

eα,α = −mα,α′
mα′

eα′ + kαmαe3, eα,α′ =
mα′ ,α

mα
eα′ ,

e3,α = −kαmαeα, ei,3 = 0.

}
(13)

This choice of curvilinear coordinates is required only for the derivation of an
approximation of the dynamics of coating flow on S. As seen in equation (1), for
example, the model will be expressed ultimately in coordinate-free terms.

2.3. Free-surface geometry

The shape of the free surface is critical in thin-film flows; fluid surface curvature
variations create pressure gradients to drive the fluid flow. To denote a quantity
evaluated on the fluid’s free surface we generally use a tilde (as in § 2.1).

The position of points P on the fluid’s free surface F is given by

rOP = X̃ (x1, x2) = X (x1, x2) + η(t, x1, x2)e3(x1, x2). (14)

Hence, the surface F is naturally parameterized by (x1, x2). Its tangential vectors, t̃1
and t̃2, and unit normal vector, ñ, are

t̃α =
∂X̃

∂xα
= h̃αeα + η,αe3, (15)



242 R. V. Roy, A. J. Roberts and M. E. Simpson

ñ =
t̃1 × t̃2
|̃t1 × t̃2| ∝ −h̃2η,1e1 − h̃1η,2e2 + h̃1h̃2e3, (16)

where h̃α = mα(1 − kαη) are the metric coefficients at the free surface, and where
η,α = ∂η/∂xα.

At the free surface, y = η, the kinematic boundary condition must be imposed,
namely, that fluid particles on the free surface remain on it. This leads to

∂η

∂t
= v − u1

h̃1

∂η

∂x1

− u2

h̃2

∂η

∂x2

on F. (17)

To account for surface tension effects, we must compute the free surface mean
curvature κ̃ in terms of the substrate principal curvatures and the film thickness η.
A tractable route is to recognize that the effect of surface tension arises through the
energy stored in the free surface. Thus, its contribution to the dynamical equations,
through the surface curvature κ̃, arises from the variation of the surface area with
respect to changes in the free-surface shape y = η(t, x1, x2). The free-surface area is
A =

∫
dA =

∫ A dx1dx2 where

A =
√
h̃2

1h̃
2
2 + h̃2

2η
2
,1 + h̃2

1η
2
,2,

is proportional to the free-surface area above a patch m1dx1×m2dx2 of the substrate.
The effect of curvature of the free surface, κ̃, is determined from the variation of A
with respect to η:

h̃1h̃2κ̃ = −δA
δη

=
∂

∂x1

(
∂A
∂η,1

)
+

∂

∂x2

(
∂A
∂η,2

)
− ∂A

∂η
.

That is,

κ̃ =
1

h̃1h̃2

[
∂

∂x1

(
h̃2

2η,1

A
)

+
∂

∂x2

(
h̃2

2η,2

A
)]

+
1

A
[
(h̃2

1 + η2
,1)
m2k2

h̃1

+ (h̃2
2 + η2

,2)
m1k1

h̃2

]
. (18)

An approximation is†

κ̃ = ∇2η +
k1

1− k1η
+

k2

1− k2η
+ O(κ3 + ∇3η), (19)

where it is sufficiently accurate to use the standard form of the Laplacian in the
curvilinear coordinates of the substrate,

∇2η =
1

m1m2

[
∂

∂x1

(
m2

m1

∂η

∂x1

)
+

∂

∂x2

(
m1

m2

∂η

∂x2

)]
.

The approximation (19) arises directly from the form of the variational expression
and accounts for changes in the free-surface curvature owing to the finite depth of
the film, and variations in the film thickness.

† Some may argue that it is better to write κ̃ = ∇2η+ κ+ (k2
1 + k2

2)η+O(κ3 +∇3η). It is true that
this form is just as consistent. However, the form (19) more accurately reflects the geometry of the
curved substrate and at least on a cylinder, see § 5.3, seems crucial in modelling accurately the flow
of thicker fluid films.
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Note that throughout this paper, ∇ has two distinct meanings depending upon the
context of whether it is applied to three-dimensional spatial fields, such as u and p,
or to two-dimensional substrate fields such as η and κ.

3. Lubrication flow driven by surface tension
We now derive a model for the flow dynamics when the fluid film and the substrate

vary on a large scale relative to the thickness of the film; because of the two vastly
different space scales it may be viewed as a multiple-scale analysis. Viscous dissipation
acts quickly across the fluid layer to damp out all except the slow dynamics associated
with large-scale spreading. We assume that inertia and body forces are negligible, then
by considering conservation of mass we derive an equation for the slow evolution of
the film thickness η.

3.1. Rescale the problem

We rescale the non-dimensional governing equations. There are two characteristic
lengths in the problem: a reference length L measured along the substrate and a
reference thickness H of the fluid layer covering S. The length scale L is thought
of as either the scale of the radius of curvature of the substrate, or as the scale
on which the film thickness varies. We generally expect both to be of a similar
order of magnitude as they are both inversely proportional to substrate gradients,
∇n and ∇η, respectively. We denote the ratio H/L by ε, and assume ε � 1 to be
consistent with the thin-film/large-substrate assumption. In particular, we consider
the flow to be non-dimensionally of thickness 1, and so the scale of lateral variations
is non-dimensionally of large size 1/ε.

With the above in mind, we introduce the scaled curvatures (temporarily indicated
by a superscript asterisk)

kα = εk∗α, κ̃ = εκ̃∗, (20)

to express that the substrate and free-surface curvatures are O(ε). Then scale substrate
coordinates and metric coefficients according to

mα = 1
ε
m∗α, x∗α = xα. (21)

This form is appropriate if the substrate coordinates are naturally non-dimensional,
such as the angular latitude and longitude coordinates on a sphere. (If you consider
the substrate coordinates naturally as lengths, then the alternative scaling mα = m∗α,
x∗α = εxα is appropriate; whence one would consider x∗α as a slow-space scale.) The
rescaled spatial metric coefficients then become

h∗α = m∗α(1− εk∗αy). (22)

Seeking a slow flow leads to the following rescaling of the non-dimensional variables
for pressure, velocity and stress:

p = εp∗, uα = ε2u∗α, v = ε3v∗, τ = ε2τ ∗. (23)

Now write the equations and boundary condition in the rescaled variables. In the
following, for simplicity, we drop the superscript asterisk on all rescaled variables.
First, the continuity equation, ∇ · u = 0,

∂

∂x1

(h2u1) +
∂

∂x2

(h1u2) +
∂

∂y
(h1h2v) = 0, (24)
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then, the Stokes momentum equation, ∇p = ∇2u:

e1

h1

∂p

∂x1

+
e2

h2

∂p

∂x2

+
1

ε
e3

∂p

∂y
=

1

h1h2

{
ε2 ∂

∂x1

(
h2

h1

∂

∂x1

)

+ε2 ∂

∂x2

(
h1

h2

∂

∂x2

)
+

∂

∂y

(
h1h2

∂

∂y

)}
(u1e1 + u2e2 + εve3). (25)

The boundary conditions now take the following forms.
First, the no-slip boundary condition (6) is

ui = 0 on y = 0. (26)

Now consider the zero-shear-stress boundary condition at y = η. First, from (16),
express the components of the normal unit vector ñ in terms of the scaled variables:

cñα = −ε(1− εηkα′) η,α
mα
, cñ3 = (1− εηk1)(1− εηk2), (27)

where c = |̃t1 × t̃2| is the constant of normalization. Furthermore, from Batchelor
(1979 p. 599), the components of the non-dimensional (symmetric) deviatoric stress
tensor, τ = (∇u+ ∇uT), become, upon scaling:

ταα = 2ε

[
1

mα

∂uα

∂xα
+

mα,α′

m1m2

uα′

]
+ O(ε2),

τ12 = ε

[
1

m2

∂u1

∂x2

+
1

m1

∂u2

∂x1

− m1,2

m1m2

u1 − m2,1

m1m2

u2

]
+ O(ε2),

τα3 =
∂uα

∂y
+ εkαuα + O(ε2),

τ33 = 2ε
∂v

∂y
.


(28)

Thus, correct to order ε, the only contributing terms in the boundary condition
τ̃ · t̃α = 0 is τα3η̃3, namely

∂uα

∂y
+ εkαuα + O(ε2) = 0. (29)

In order to write down the normal stress boundary condition on the free surface,
equation (8), we must first express the free surface mean curvature κ̃ correct to
order ε: from (19), we write here the scaled free-surface mean curvature as

κ̃ = κ+ εκ2η + ε∇2η + O(ε2),

where κ = k1 + k2 and κ2 = k2
1 + k2

2. Next, the normal surface stress component to
order ε2 in scaled form is (using summation)

−p+ εñiñjτij = −p+ 2ε2

(
∂v

∂y
− η,1

m1

∂u1

∂y
− η,2

m2

∂u2

∂y

)
+ O(ε3).

Hence, the normal stress condition (8) becomes

p = −κ− εκ2η − ε∇2η + O(ε2) on y = η; (30)

viscous stresses have no influence on the normal stress to this order in this scaling.

3.2. Perturbation solution

We now find a solution of these equations by assuming a perturbation expansion of
the unknown fields in terms of the small parameter ε. We write each component in
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the following expansion:

uα = u(0)
α + εu(1)

α + ε2u(2)
α + · · · ,

v = v(0) + εv(1) + ε2v(2) + · · · ,
p = p(0) + εp(1) + ε2p(2) + · · · .

 (31)

Then, at the leading order, we find the following equations governing u(0)
α , v(0) and p(0):

∂p(0)

∂y
= 0,

∂2u(0)
α

∂y2
=

1

mα

∂p(0)

∂xα
,

∂

∂x1

(m2u
(0)
1 ) +

∂

∂x2

(m1u
(0)
2 ) + m1m2

∂v(0)

∂y
= 0,

 (32)

with the boundary conditions

u(0)
α = v(0) = 0 at y = 0,

∂u(0)
α

∂y
= 0, p(0) = −κ at y = η.

 (33)

The solution of these equations is readily found to be the expected locally parabolic
flow driven by pressure gradients induced by substrate curvature variations:

p(0) = −κ,
u(0)
α = − 1

mα
κ,α(

1
2
y2 − ηy),

v(0) = ∇2κ( 1
6
y3 − 1

2
ηy2)− 1

2
∇κ · ∇η y2.

 (34)

If the substrate has constant mean curvature, such as a cylinder (§ 5.3) or a sphere,
then there is no flow at this order – flow occurs at the next order.

At the next order of perturbation:

∂p(1)

∂y
= 0,

∂2u(1)
α

∂y2
− κ∂u

(0)
α

∂y
=

1

mα

(
∂p(1)

∂xα
+ kαy

∂p(0)

∂xα

)
,

∂

∂x1

(m2u
(1)
1 ) +

∂

∂x2

(m1u
(1)
2 ) + m1m2

∂v(1)

∂y
= 0,

 (35)

with boundary conditions

u(1)
α = v(1) = 0 at y = 0,

∂u(1)
α

∂y
= −kαu(0)

α , p(1) = −(κ2η + ∇2η) at y = η.

 (36)

We solve these equations to find

p(1) = −(κ2η + ∇2η),

u(1)
α = − 1

mα
(κ2η + ∇2η),α(

1
2
y2 − ηy)− kα

6mα
κ,αy

3

− κ

mα
κ,α(

1
6
y3 − 1

2
ηy2 + 1

2
η2y),

 (37)

and v(1) which is not recorded here as it is not subsequently needed.
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3.3. Conservation of mass

The expressions in the previous subsection show how the velocity and pressure fields
respond to free-surface and substrate curvature. Such flow will thin the film in some
places and thicken it in others (see § 5). Conservation of fluid then leads us to an
expression for the evolution of the film’s thickness η by the driven flow. Initially, we
work with non-dimensional but unscaled variables and coordinates before returning
to scaled quantities.

Consider a small volume above a patch of the substrate extending across the
fluid layer from y = 0 to y = η, see figure 3. It is bounded by the substrate, the
instantaneous free surface and the coordinate surfaces x1, x1 + dx1, x2, x2 + dx2.
The rate at which fluid leaves this volume is expressed to first order of infinitesimal
quantities dx1 and dx2 as the sum of three terms: first,∫ η(x1+dx1 ,x2)

0

[u1h2dx2]x1+dx1
dy −

∫ η(x1 ,x2)

0

[u1h2dx2]x1
dy, (38)

for the surfaces x1 and x1 + dx1; secondly, a corresponding term for the surfaces x2

and x2 + dx2; and lastly, the term∫
F
u · ñ dS = {h̃1h̃2v − η,1h̃2u1 − η,2h̃1u2}dx1dx2 = h̃1h̃2

∂η

∂t
dx1dx2, (39)

for the bounding free surface F, where we have used the kinematic boundary
condition (17). Upon dividing by dx1dx2 and in the limit of dx1dx2 → 0, we deduce

m1m2(1− ηk1)(1− ηk2)
∂η

∂t
= − ∂

∂x1

(m2Q1)− ∂

∂x2

(m1Q2), (40)

where the Qα terms are the components of the total flux of fluid over a position on
the substrate, defined as

Q(t, x1, x2) = Q1e1 + Q2e2 =

∫ η

0

((1− k2y)u1e1 + (1− k1y)u2e2)dy. (41)

After division of (40) by m1m2, recognize on the right-hand side the surface divergence
of the flux vector Q expressed in the orthogonal curvilinear coordinate system of S.
This yields the divergence form of the conservation of mass equation:

(1− ηk1)(1− ηk2)
∂η

∂t
= − 1

m1m2

(
∂

∂x1

(m2Q1) +
∂

∂x2

(m1Q2)

)
= −∇ ·Q. (42)

We find an approximation of the flux vector Q by taking into account the thin-layer
characteristics of the flow over S, as determined earlier.

Returning to the rescaled quantities introduced in § 3.1, we now determine the
perturbation coefficients of the flux vector Q = ε2Q(0) + ε3Q(1) + · · · to be

Q(0) =

∫ η

0

(u(0)
1 e1 + u

(0)
2 e2)dy = 1

3
η3

(
e1

m1

κ,1 +
e2

m2

κ,2

)
= 1

3
η3∇κ, (43)

Q(1) =

∫ η

0

((u(1)
1 − k2yu

(0)
1 )e1 + (u(1)

2 − k1yu
(0)
2 )e2)dy

= 1
3
η3∇(κ2η + ∇2η) + 1

6
η4K · ∇κ− 1

3
η4κ∇κ, (44)

where K = kαδαβ(eα : eβ) is the curvature tensor (which would not be diagonal in a
general orthogonal coordinate system of the substrate S).
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Figure 3. A small control volume V bounded by the substrate, S, the free surface, F, and four
coordinate surfaces with separation m1dx1 and m2dx2.

Finally, the corresponding evolution equation for the film thickness η, the so-called
lubrication approximation, is

(1− εηk1)(1− εηk2)
∂η

∂t
= − 1

3
ε3∇ · [η3∇κ̃− εη4κ∇κ+ 1

2
εη4K · ∇κ] + O(ε5), (45)

where κ̃ = κ+ εκ2η + ε∇2η + O(ε2) or given by (19). We express this equation in the
more convenient form

∂ζ

∂t
= − 1

3
ε3∇ · [η2ζ∇κ̃− 1

2
εη4(κI − K) · ∇κ] + O(ε5), (46)

where ζ = η− 1
2
εκη2 + 1

3
ε2k1k2η

3 is proportional to the amount of fluid in the film lying
‘above’ a patch of the substrate. Rewriting this in terms of unscaled, non-dimensional
quantities gives (1) when the free-surface curvature is approximated by an expression
such as (19).

4. Systematic modelling involving gravity and inertia
The previous analysis based upon traditional scaling arguments gives a limited

model for the dynamics of the film thickness. However, it is not straightforward to
extend such an analysis for generally curved substrates in the presence of variously
competing physical effects such as gravity and inertia. In this section, we appeal to
the more powerful centre manifold theory to extend the previous model in order to
include a gravitational body force and to determine the leading influence of inertia.
Gravity is also an important effect included. Oron et al. (1997 p. 975) identify that
modelling of inertia is crucial in at least two circumstances: in film rupture and
in falling films (Chang 1994). Inertia is also significant in regions of the flow on a
spinning disk (Oron et al. 1997 p. 954). The centre manifold approach we employ here
provides strong theoretical support for the development of low-dimensional models of
fluid dynamics (Procaccia 1988, for example). The systematic nature of the approach
also lends itself well towards the computer algebra we employed. The analysis is based
upon viscously decaying shear flow being forced by large-scale physical effects. Centre
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manifold theory guarantees fidelity between model and original equations. This leads
to the correct modelling (Suslov & Roberts 1998) of initial conditions (3) and forcing;
no other method does this but we do not develop these aspects here. This section
also serves as an example of the analysis that may be undertaken if other physical
processes affect the lubrication dynamics.

4.1. Basis of the centre manifold

Centre manifold theory (Carr 1981) assures us that the long-term dynamics near a
fixed point of a dynamical system may be accurately described by a ‘low-dimensional’
model. Here, the lubrication model (1) is, of low-dimension in comparison to that of
the incompressible Navier–Stokes equations, (4) and (5). The first task is to establish
the linear basis, here due to the viscous decay of shear flow, for the application of
centre manifold theory to support the lubrication model.

Analogous to the approach developed by Roberts (1996, 1998), we retain the
small parameter ε introduced in § 3.1 and scale the curvatures and metric coefficients
according to (20) and (21). By considering ε negligible, we, in the preliminary linear
analysis, restrict attention to large-scale flows on a flat substrate. However, we do
not explicitly scale the dependent fields, p and u as in (23), because in this approach
their scaling naturally arises from the dynamical equations during the course of the
analysis rather than being imposed at the outset – this is an essential feature for
deriving a model valid over a wide range of competing physical effects. Formally,
we treat lateral derivatives and gravity as small effects by substituting, as in Roberts
(1998), the Bond number Bo = β2, then adjoining the trivial equations

∂ε

∂t
=
∂β

∂t
= 0, (47)

to the scaled versions of the fluid equations (4) and (5) and their boundary conditions.
Here, the Reynolds number is unrestricted, it is not assumed small. Then all terms
involving products of u, ε and β are perturbing nonlinear terms (as in the analysis
of the unfolding of bifurcations (Carr 1981) or in analyses using the slowly varying
approximation (Roberts 1988)).

Such nonlinear terms are discarded in the preliminary linear analysis to leave linear
equations

∇ · u = 0, Re
∂u

∂t
+ ∇p− ∇2u = 0, (48)

where, since ε = 0, in effect, these differential operators are the Cartesian operators
appropriate to a flat substrate. These equations are to be solved with boundary
conditions of u = 0 on S(y = 0) and

∂η

∂t
− v = 0,

∂uα

∂y
= p− 2

∂v

∂y
= 0 on y = η. (49)

All solutions of these linear equations are composed of the decaying lateral shear
modes, v = p = 0, uα = cα sin(lπy/(2η)) exp(λt) for odd integers l, together and
independently with η = constant, uα = v = p = 0. In these modes, the decay-
rate in time is λ = −l2π2/(4η2Re), except for the last mentioned mode which, as
a consequence of fluid conservation, has a decay rate λ = 0. So linearly, and in
the absence of any lateral variations on a flat substrate, all the lateral shear modes
decay exponentially quickly, the slowest on a non-dimensional time scale of 4Reη2/π2,
just leaving a film of constant thickness as the long-lasting mode. This spectrum, of
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all eigenvalues being strictly negative except for a few that are zero, is the classic
spectrum for the application of centre manifold theory. The existence theorem 1 in
Carr (1981) assures us that the nonlinear effects just perturb the linear picture of
the dynamics so that there exists a low-dimensional model parameterized by the film
thickness η. The relevance theorem 2 in Carr (1981) assures us that this model is
exponentially quickly attractive to all nearby fluid flows and so forms a generic model
of the long-term fluid dynamics of the film; for example, this theorem supports that
the initial condition (3) ensures long-term agreement between the lubrication model
and the fluid flow. With the caveat that strict theory has not yet been extended
sufficiently to cover this particular application, the closest being that of Gallay
(1993) and Hǎrǎguş (1996) (but also see Roberts 1988), recognise that this theory
provides the strongest support for the lubrication model of fluid flow that is currently
available.

We apply the centre manifold concepts and techniques to systematically develop
the low-dimensional lubrication model of the dynamics of the film. Having identified
the critical mode associated with the zero decay rate, the subsequent analysis is
straightforward. The approach is to write the fluid fields v(t) = (u1, u2, v, p) as a
function of the critical mode η (effectively equivalent to the ‘slaving’ principle of
synergetics, Haken 1983). Instead of seeking asymptotic expansions in the ‘amplitude’
of the critical mode (see, for example, Roberts 1988; Mercer & Roberts 1990; Roberts
1996), we apply an iterative algorithm to find the centre manifold and the evolution
there on which is based directly upon the approximation theorem 3 in Carr (1981)
and Roberts (1997) and its variants, as explained in detail by Roberts (1997). We seek
solutions for the fluid fields as

v(t) = V (η), such that
∂η

∂t
= G(η,V (η)), (50)

where dependence upon the constant parameters (ε, β) is implicit, and where G is
the right-hand side of the rescaled version of the kinematic condition (17). The
iterative scheme (see Roberts 1997) finds the physical fields v(t) that form actual
solutions of the scaled Navier–Stokes equations; this ensures fidelity between the
model and the fluid dynamics. The iteration is repeated, in computer algebra,† until
the residual of the Navier–Stokes equations and boundary conditions becomes zero
to some order of error, whence the model will be accurate to the same order of
error (by the centre manifold approximation theorem 3 in Carr 1981). Thus, the key
to the correctness of the results produced by the computer algebra is the proper
coding of the fluid dynamical equations in the curvilinear coordinate system. Upon
obtaining the code,‡ these can be seen in the computed residuals within the iterative
loop.

4.2. The general lubrication model

Based upon the scalings introduced in § 3.1, we run the reduce computer algebra
program that computes velocity and pressure fields for the flow and the evolution
equation for the film’s thickness. We find that the evolution equation may be written

† The computer algebra package reduce was used because of its flexible ‘operator’ facility. At
the time of writing, information about reduce was available from Anthony C. Hearn, RAND,
Santa Monica, CA 90407-2138, USA; e-mail: reduce@rand.org.
‡ The source code is publicly available via http://www.sci.usq.edu.au/staff/robertsa or by con-

tacting A.J.R.
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in the coordinate-free form†
∂ζ

∂t
= − 1

3
ε3∇ · [η2ζ∇κ̃− 1

2
εη4(κI − K) · ∇κ]

− 1
3
εBo∇ · [η3ĝs − εη4(κI + 1

2
K) · ĝs + εĝyη

3∇η]

+O(ε5 + Bo5/2), (51)

where ĝs and ĝy are, respectively, the components of the gravitational unit vector
tangent and normal to the substrate. Recall that ζ = η − 1

2
κη2 + 1

3
k1k2η

3 and that
the mean curvature of the fluid surface κ̃ is approximated by (19). Note that in the
special orthogonal curvilinear system used in the derivation of the model,

κI − K =

[
k2 0
0 k1

]
, κI + 1

2
K =

[
3
2
k1 + k2 0

0 k1 + 3
2
k2

]
.

Flows on examples of curved substrates are discussed in the next section.
The general model, (51), is derived solely under the assumptions that curvature

and free-surface slopes, as measured by ε, and the gravitational forcing, measured by
the Bond number Bo, are perturbing influences. The application of centre manifold
theory places no restrictions upon their relative magnitudes – we do not have to insist
on Bo ∼ ε or any other such relation between these two independent parameters.
Provided there are no ‘run away’ instabilities, the model is valid over any scaling
regime where both parameters are small. In particular, the model is valid as the
tangential and normal gravitational forcing vary widely around a curving substrate,
and is valid whether the mean substrate curvature, often the leading-order effect, is
zero or not.

Also note that the model (51) was derived without placing any overt restriction upon
the Reynolds number, it was treated as an O(1) constant. That the model actually
turns out to have no Reynolds number dependence just confirms the Stokes flow
nature of these lubrication dynamics. Higher-order analysis, as also seen in Roberts
(1998 § 4), shows that the Reynolds number first appears at O(ε6 +Bo3) for fluid films.
Thus, inertia is formally negligible. However, if the Reynolds number is large enough
to be significant, then we have determined that the following O(Reε6 + ReBo3) terms
could be included in the evolution equation, (51):

∂ζ

∂t
= · · ·

−Reε
6

5
∇ ·
[

2η6

3
(∇η · ∇κ)∇κ− η7

7
∇(∇κ · ∇κ) +

26η7

63
(∇2κ)∇κ

]
−2Reε4Bo

15
∇ ·
[
η6(ĝs · ∇η∇κ+ ĝs∇η · ∇κ)− 3η7

7
∇(ĝs · ∇κ)

+
13η7

21
ĝs∇2κ+

13η7

21
ĝyκ∇κ

]
−2Re ε2Bo2

15
∇ ·
[
η6ĝs(ĝs · ∇η) +

η7

21
(13κI − 9K) · ĝsĝy

]
. (52)

See that for a flat substrate (k1 = k2 = 0), these Reynolds number correction terms

† O(εp + Boq) is used to denote terms, z, for which z/(εp + Boq) is bounded as (ε, Bo)→ 0. The
upshot is that z = εmBon is O(εp +Boq) only if m/p+ n/q > 1. For example, an expression accurate

to O(ε5 + Bo5/2) retains all terms of the form εmBon for m+ 2n < 5.
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reduce to those derived by Benney (1966) and Atherton & Homsy (1976). We suggest,
as do Oron et al. (1997 p. 975), that these higher-order terms are most likely to be
used to estimate the error in the lubrication model, (51), when applied to moderate
Reynolds number flows. Thus, these expressions may be used to indicate when a more
sophisticated dynamical model, such as a two-mode model (Chang 1994; Roberts
1996; Li & Roberts 1999), is required in order to resolve the inertial instabilities of
fluid films at higher Reynolds numbers.

Of course, an order of magnitude argument will give a global estimate, over space
and time, of the influence of inertia. However, we may make a perfectly satisfactory
a priori order of magnitude assessment, but if in a simulation an instability grows,
then the terms in (52) will detect if it grows too large. Thus, (52) supplements order
of magnitude estimates by giving focused local estimates of inertia-induced errors in
any actual simulation.

5. Example film flows on curved substrates
In this section, we use the preceding lubrication models to demonstrate some of

the flow effects caused by substrate curvature.

5.1. Qualitative effect of substrate curvature

Equation (46) shows that, to leading order of perturbation, the flow is driven by
substrate curvature gradients, curvature caused by film thickness variations is gen-
erally smaller unless the substrate is comparatively gently curved. To appreciate
the effect of substrate curvature qualitatively, consider a two-dimensional flow on a
one-dimensional substrate with given curvature κ(x1). Denote x = x1 as substrate
arclength so that the scale factor m1 = 1 and there are no variations in x2. Then, to
leading order and in the absence of body forces, the flow is governed by the first-order
partial differential equation for η:

(1− κη)
∂η

∂t
= −1

3

∂

∂x
(η3κx). (53)

This has a characteristic solution

ẋ = κx
η2

1− κη , η̇ = − 1
3
κxx

η3

1− κη . (54)

Wherever the substrate curvature κ has a local minimum, say at x = x0, then

κx < 0 (x < x0), κx > 0 (x > x0), κxx > 0.

Thus, according to the characteristic equations, the flow is thinned in the neighbour-
hood of x = x0. Indeed, since η ∝ −κxxη3, the film thickness η typically decreases as
t−1/2 at a point of minimum curvature (κxx > 0). As shown schematically in figure 4,
this thinning applies in the neighbourhood of minimum absolute curvature for ex-
terior coating flows, and of maximum absolute curvature for exterior coating flows.

Conversely, the film thickens in the neighbourhood of a point of maximum mean
curvature, as also shown in figure 4. The characteristic solution (54) predicts a film
thickness that blows up in finite time. The role of higher-order terms in the model
equation (1) is to smooth out such singularities induced by structurally unstable,
low-order models such as (53).
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(a) (b)

(c)

Figure 4. Leading effects of substrate curvature on the evolution of a thin flow.

5.2. Corner flow

Consider here the two-dimensional fluid flow examined by Schwartz & Weidner (1995)
consisting of the flow which thins a film around an outside corner, as shown in figure 5.
The fluid is taken to have surface tension σ = 30 dyn cm−1, viscosity µ = 1 poise, and
density ρ = 1 g cm−3. Initially, the film is a uniform 0.01 cm thick, corresponding to
a Reynolds number of Re = 0.003, around the corner which has a radius of 0.1 cm.
(Dimensional units are used to facilitate comparison with Schwartz & Weidner 1995.)
As in the previous subsection, the most convenient way to parameterize the one-
dimensional substrate is in terms of the arclength x. In this case, our dynamical
model (1) reduces to

∂ζ

∂t
= (1− κη)

∂η

∂t
= −1

3

∂

∂x

[
η2ζ

∂κ̃

∂x

]
, (55)

where κ̃ ≈ κ + κ2η + (∂2η/∂x2), and κ = k1(x) is the curvature of the substrate. In
contrast, the model of Schwartz & Weidner (the SaW model) is

∂η

∂t
= −1

3

∂

∂x

[
η3 ∂

∂x

(
κ+

∂2η

∂x2

)]
. (56)

The differences between the models are that ours includes more terms in the curvature.
In particular, ours conserves fluid whereas the SaW model does not. Indeed, in the
course of the numerical simulations of the film flow shown in figure 5, the SaW model
lost about 2% of the fluid, whereas ours lost none to within computational error. For
thicker films the difference is more marked.

A numerical scheme to simulate a fluid film via these equations is straightforward.
We approximated both (55) and (56) by finite differences on a spatial grid with N = 97
points and, because the dynamics are stiff, we employed an implicit integration scheme
with time step ∆t = 0.00115 s. The numerical scheme uses second-order centred
differences in space and time, but, in the interests of speed, the nonlinear coefficients
are only computed from the earlier time. By varying the size of the space–time grid
we determined that these parameters give a numerically accurate simulation.

Shown in figures 6 and 7 are comparisons between the predictions of the SaW model
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Figure 5. Coating flow on an outside corner at 300 s. The initial film of fluid (dot-dashed) of
constant thickness around a corner (solid) evolves over a long time to thin around the corner
(dashed). (Unlike Schwartz & Weidner (1995) figure 7, the thickness of the film has not been
exaggerated.)
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Figure 6. Film thickness for the flow around the corner shown in figure 5 at time t = 3 s:
−−−, our model (55); −·−, SaW model (56).

and ours during the simulation of the thinning of the film around the corner. Observe
that the SaW model and ours are quantitatively different: the SaW model predicts
a more rapid thinning of the film around the corner, and a slower thickening of the
film away from the corner. For example, the thickness at x = 0 and t = 3 s for our
model is only reached by the SaW model at time t ≈ 300 s. For quantitative accuracy
the thin-film flows require the extra curvature terms employed in our model (55).
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Figure 7. Film thickness for the flow around the corner shown in fiugre 5 at time t = 300 s:
−−−, our model (55); −·−, SaW model (56).

5.3. Flow on a circular cylinder

One example of the application of the general model (51) is to the dynamics of thin
films on vertical cylinders or fibres as introduced briefly in § 1. The flow on a cylinder
is perhaps the most common example of a curved substrate (for example, Frenkel
1992; Kalliadasis & Chang 1994; Jensen 1997; Oron et al. 1997; Weidner, Schwartz
& Eres 1997; Kliakhandler et al. 2001). Here, we elaborate on the discussion in § 1
and provide more substantive details.

The version of the general model, (51), specific to axisymmetric flow down a
cylinder of radius a is the model (2). Now consider the flow on a cylinder of radius a
at arbitrary orientation. Let the axial coordinate be x = x1 and the angular coordinate
θ = x2 then the curvatures k1 = 0 and k2 = −1/a and the substrate scale factors
m1 = 1 and m2 = a – flow on the outside of a cylinder is described with positive a,
and that on the inside of the cylinder with negative a. The local direction cosines of
the gravity vector in the axial, angular and radial directions are denoted by ĝx, ĝθ
and ĝy , respectively – the latter two vary with angle θ. In terms of the fluid fluxes and
ζ = η + η2/2a, the general model (51) is

∂ζ

∂t
= −∇ ·Q = −∂Qx

∂x
− 1

a

∂Qθ

∂θ
, (57)

where

Qx = 1
3
η2ζ

[
1

a2(1 + η/a)2
ηx + ηxxx +

1

a2
ηxθθ

]
+
Bo

3
η3[ĝx(1 + η/a) + ĝyηx]

and

Qθ = 1
3
η2ζ

[
1

a3(1 + η/a)2
ηθ +

1

a
ηxxθ +

1

a3
ηθθθ

]
+
Bo

3
η3

[
ĝθ(1 + 3η/2a) + ĝy

1

a
ηθ

]
.

Having constant mean curvature, there is no flow of the sort discussed in § 5.1 driven
directly by the substrate curvature. As noted by others, the principal effect of the
substrate curvature on a cylinder, the first term in the above fluxes, is akin to that of a
radial gravitational field away from the substrate, as seen in the last term in the above
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Figure 8. Real part of the growth rate of disturbances to an axisymmetric, fluid film of thickness 1
draining down a cylinder of radium a = 2: for −·−, the Frenkel model (2) in Kalliadasis & Chang
(1994); · · ·, RRS model (2); and −−−, KDB model (5.5) in Kliakhandler et al. (2001). Our model
(2) agrees best with the exact numerical solutions in Kliakhandler et al. (2001) figure 3(b).

fluxes. For very thin fluid films, η/a � 1, the above model matches with earlier axi-
symmetric models on vertical cylinders (e.g. Frenkel 1992; Kalliadasis & Chang 1994),
and axially invariant models on horizontal cylinders (e.g. Oron et al. 1997 equation
(2.108)). The differences lie in the extra terms to account for the physical interactions
that take place in thicker films and the generalization to non-symmetric flows.

The model in equation (57) restricted to axisymmetric flows was reported in § 1
as (2). Differences were identified between our model and earlier models for films on
cylinders of relatively small radius; an example was shown in figure 1. Kliakhandler et
al. (2001) recently heuristically derived a lubrication model for axisymmetric films on
thin cylinders (the KDB model, Kliakhandler et al. 2001 equation (5.3)) and compared
their model predictions to those obtained numerically for the linear dynamics of
perturbations to a constant thickness film. Both their model and ours predict, for
disturbances η − 1 ∝ eikx+λt, a growth rate in the form

λ = A

[
k2

(1 + a)2
− k4

]
; (58)

but their coefficient A (Kliakhandler et al. equation (5.6)) is much more complicated
than ours:

A =
a+ 1

2

3(a+ 1)
. (59)

The growth rates, (58), are plotted in figure 8 along with that for the earlier Frenkel
model (Kalliadasis & Chang 1994 equation (2)). On a cylinder of radius twice the
fluid thickness, the KDB model and ours are very similar, with ours appearing to
be a better match to the exact numerics plotted in figure 3(b) of Kliakhandler et
al. (2001); whereas the Frenkel model is much worse, being in error by a factor
of 6 in growth rate and 2 in wavenumber. Crucial in the agreement between our
model, the KDB model and the numerical simulations is the presence of the (1 + a)2

denominator in (58) which is absent in other models such as Frenkel’s: the factor
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Figure 9. (a) Comparison of the coefficient A (Kliakhandler et al. 2001 equation (5.6)) for −−−,
the KDB model, and , our RRS model (59), showing that our coefficient leads to a much
improved match with exact numerics represented by the three crosses from digitizing the maxima
of figure 3(a) in Kliakhandler et al. (2001). (b) Shows that the phase speed of the linear roll waves
is similar in the two models.

arises precisely because we approximate the free surface mean curvature by (19) with
the denominators 1− k1η and 1− k2η intact to account more fully for the effects of
substrate curvature. Thus, the longer roll waves seen in our simulations of figure 1(b)
are almost certain to be reasonably accurate.

The small differences in linear stability of our model and the KDB model seen
above for radius a = 2 are more marked when compared to the actual experiments of
Kliakhandler et al. (2001) where the mean fluid film was two to three times as thick
as the cylinder radius. In figure 9, we plot the coefficient A of the growth rate (58)
for our model (59) and for the KDB model (their equation (5.6)) as a function of the
cylindrical substrate curvature κ = 1/a; the differences grow with curvature κ (figure 8
corresponds to κ = 0.5). Also plotted in figure 9 is a measure of the amplitude of
three exact factors obtained from the relative heights of the maximum of the three
numerical curves given in figure 3(a) of Kliakhandler et al. (2001): see that the growth
rates for our model more closely match the exact values than does the KDB model.
Our model (57) for the flow on a cylindrical substrate appears to perform the best of
any in its class.

5.4. Flow around a torus

Here we discuss the evolution of the flow over the surface of a torus with tube of
radius R2 and centreline of radius R1. We use the following parameterization:

X1 = (R1 + R2 cos θ) cosφ,

X2 = (R1 + R2 cos θ) sinφ,

X3 = R2 sin θ.

 (60)

Take R2 < R1 to avoid self-intersection, and denote the coordinates x1 = φ and
x2 = θ with 0 6 φ < 2π and 0 6 θ < 2π. Then, this parameterization generates
an orthogonal curvilinear coordinate system with corresponding orthonormal basis
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vectors:

e1 = eφ = − sinφ i + cosφj ,

e2 = eθ = − sin θ(cosφ i + sinφj) + cos θ k,

e3 = e1 × e2 = cos θ(cosφ i + sinφj) + sin θ k,

 (61)

in terms of the unit vectors of the conventional Cartesian coordinate system, and
with the corresponding surface metrics

m1 = mφ = R1 + R2 cos θ, m2 = mθ = R2. (62)

The chosen coordinate system also generates lines of principal curvature as the par-
ameter curves. We then obtain the following principal curvatures and mean curvature:

k1 = − cos θ

R1 + R2 cos θ
, k2 = − 1

R2

, κ = − 1

R2

R1 + 2R2 cos θ

R1 + R2 cos θ
. (63)

The mean curvature of the substrate is maximum at the inner rim of the torus
(θ = π), and minimum at the outer rim (θ = 0). Hence, we expect the fluid layer
to thicken around the inner rim, and to thin around the outer, solely due to surface
tension effects.

We solve the model (46) numerically. For simplicity, we seek axisymmetric solutions,
that is, solutions independent of the angle φ around the rim of the torus, and so the
film thickness depends only upon θ, the angle around the tube, and time t. We try
the following form for

η(t, θ) =

N−1∑
n=0

an(t) cos(nθ), (64)

which guarantees the periodicity of the solution and imposes symmetry across the
plane z = 0. The ordinary differential equations for the coefficients an are found by
a Galerkin method where they are determined by making the corresponding residual
error orthogonal to the N basis functions, cos(nθ), in the usual L2 norm. As a check,
we confirm that the total volume enclosed between the free surface of the fluid and the
toroidal substrate remains constant in time. Two numerical simulations were carried
out.

First, we start with an initially uniform layer of thickness η0 = 0.1 on a torus with
R1 = 2 and R2 = 1. The corresponding flow towards the inner rim of the torus is
shown by the evolution of the film thickness in figure 10.

Secondly, we simulated the flow evolving from a strip of fluid placed around the
outer rim of the torus. Again, as shown in figure 11, the fluid flows around to the
inner rim.

On the torus, the effects of inertia on this lubrication flow are estimated by the ratio
between typical values of the right-hand side of (46) and that of (52); dominantly,

inertia : lubrication ≈ Re η4

6R1R
2
2

.

As may be expected, a thicker film or a more sharply curved torus are more likely
to be affected by such higher-order influences. Note that for flows inside a toroidal
tube, the thinning of the liquid layer occurs around the inner rim (θ = π).
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Figure 10. Evolution of flow on the surface of a torus with N = 15 terms in Galerkin approximation.
R1 = 2, R2 = 1, η0 = 0.1: (a) η(t, θ) shown at t = 0, 100, 300, 1000, 3000, 10 000; (b) initial,
intermediate (t = 1000) and late (t = 10 000) stages of the film on a cross-section of the torus.
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Figure 11. Same as figure 10 with a step-like initial layer (dotted).
N = 15 and t = 0, 1000, 2000, 3000, 4000, 6000, 8000, 10 000.
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6. Conclusion
The model, (1), applies to a wide range of thin fluid film flows in the lubrication

approximation on curved substrates, and its generalization, (51), includes gravitational
effects. The models are derived by faithfully satisfying the Navier–Stokes equations
for a Newtonian fluid expressed in a coordinate system fitted to the curved substrate
(§ 2). The first derivation is based upon fluid conservation (§ 3), whereas the second
more general derivation is based upon the centre manifold approach (§ 4). We have
commented on the issues resolved by using the centre manifold approach rather
than traditional approaches such as multiple scales or indeed simple heuristics: the
assurance of exponential quick applicability of the model (e.g. Carr 1981) and its order
of error; the novel and proper projection of initial conditions, (3), from (Suslov &
Roberts 1998), the possible provision of correct boundary conditions (Roberts 1992);
and the more sophisticated modelling of thin fluid films involving the dynamics of
momentum (Roberts 1996, 1998). Such a theoretically sound approach is essential for
further developments of fluid modelling.

Models for the flow on some specific substrates (§ 5) are obtained directly from (1)
or (51), with both constant and varying mean substrate curvature. For example,
the model, (57), for flow on a circular cylinder appears to perform better than any
earlier model (e.g. Frenkel 1992; Kliakhandler et al. 2001). All models have errors.
In particular, we have derived a quantitative estimate of the error, (52), incurred
in neglecting inertia in thin fluid film flow. Such quantitative estimates will better
determine when more sophisticated models of the fluid flow are necessary.
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