High protein dietary patterns and Type 2 diabetes

A thesis submitted by

Karma Louise Pearce

For the degree of Doctor of Philosophy

June 2008

Department of Physiology Faculty of Health Sciences, School of Molecular and Biomedical Science University of Adelaide

Table of Contents

LIST OF FIGURES	iv
LIST OF TABLES	v
ABBREVIATIONS	vi
DECLARATION OF ORIGINALITY	X
ACKNOWLEDGEMENTS	xi
ABSTRACT	1
INTRODUCTION	4
CHAPTER 1: General introduction	9
1.1 Diabetes Mellitus	10
1.1.1 The diabetes 'epidemic' and impact on society	10
1.1.2 Defining Type 2 diabetes	11
1.1.2.1 Risk factors for the development of Diabetes Mellitus	12
1.1.3 Diagnostic criteria for diabetes	14
1.1.4 Measurement of blood glucose	15
1.1.4.1 Management of diabetes – normalizing glycemia	17
1.1.4.1.1 The impact of hyperglycemia on macrovascular complications	17
1.1.4.1.2 The impact of hyperglycemia on microvascular complications	20
1.1.4.1.3 Biochemical consequences of hyperglycemia	26
1.2 Weight loss	27
1.2.1 BMI the risk of type 2 diabetes	27
1.2.2 Prevalence: obesity and type 2 diabetes	29
1.2.3 Epidemiology, weight gain and risk of type 2 diabetes	29
1.2.4 Intervention studies, IGT and progression to type 2 diabetes	30
1.2.5 Intervention studies and type 2 diabetes	32
1.2.6 Physical activity	33
1.2.6.1 Observational and prospective studies	35
1.2.6.2 Intervention studies, IGT and progression to type 2 diabetes	34
1.2.6.3 Intervention studies and type 2 diabetes	35
1.2.6.4 Surgery, IGT and type 2 diabetes	35
1.3 Diet and type 2 diabetes	36
1.3.1 Overview	36
1.3.2 Diet composition	37
1.3.3 Dietary Protein	38
1.3.3.1 Definition of a high protein diet	38
1.3.3.2 Satiety	38
1.3.3.3 Epidemiological studies and the risk of diabetes	40
1.3.3.4 Energy balance and type 2 diabetes	41
1.3.3.5 Weight loss	42
1.3.3.5.1 Ad libitum studies in obese and insulin resistant individuals	42
1.3.3.5.2 Energy restriction	45
1.3.3.5.3 Body composition	45
1.3.3.5.4 Glycemic control in insulin resistance or type 2 diabetes	46
1.3.3.5.5 Blood lipids in insulin resistance or type 2 diabetes	51
1.3.3.5.6 Limitations to study comparison	52
1.3.3.6 Hypertension	52
1.3.3.7 Potential adverse effects of protein diets	52

1.3.3.7.1 Diabetic nephropathy	52		
1.3.3.7.1.1 Defining diabetic nephropathy			
1.3.3.7.1.2 Prevalence			
1.3.3.7.1.2 Optimum targets for diabetic nephropathy	55		
1.3.3.7.2 Calcium loss	58		
1.3.4 Dietary Fat			
1.3.4.1 Total dietary fat intake	58		
1.3.4.1.1 Epidemiological studies, IGT and progression to type 2 diabetes	58		
1.3.4.1.2 Intervention studies, obese individuals and total fat intake	59		
1.3.4.2 Type of fat	60		
1.3.4.2.1 Epidemiological studies, IGT and progression to type 2 diabetes	60		
1.3.4.2.2 Intervention studies, IGT and type 2 diabetes	62		
1.3.5 Dietary Fibre	66		
1.3.5.1 Epidemiological studies and progression to type 2 diabetes	66		
1.3.5.2 Intervention studies and type 2 diabetes	67		
1.3.6 Carbohydrates	68		
1.3.6.1 Epidemiological studies and progression to type 2 diabetes	69		
1.3.6.2 Intervention studies type 2 diabetes	70		
1.3.6.3 Simple sugars and type 2 diabetes	70		
1.3.6.7 Other Dietary Factors	71		
1.3.6.7.1 Dietary alcohol	71		
1.3.6.7.2 Coffee consumption	71		
1 3 6 7 3 Micronutrients vitamins and the risk of diabetes	72		
1 3 6 7 4 Magnesium grain and type 2 diabetes	72		
1 3 6 7 5 Chromium and type 2 diabetes	73		
1 4 Summary	74		
1.5 Research arising from this review	76		
1.5.1 Thesis aims and hypothesis	76		
CHAPTER 2: Effect of carbohydrate distribution on post prandial glucose	79		
neaks using continuous glucose monitoring in type 2 diabetes			
2 1 Abstract	82		
2.2 Introduction	83		
2.3 Subjects and Methods	86		
2.4 Results	03		
2.5 Discussion	07		
CHADTED 3: Consistency of diurnal glucose control over time in individuals	102		
with type 2 diabetes	102		
3.1 Abstract	103		
3.2 Introduction	103		
3.3 Subjects and Mathods	104		
3.4 Posulto	105		
3.5 Discussion	107		
CHADTED 4: Determinents of the change in UbA counder conditions of energy	100		
restriction	112		
A 1 Abstract	114		
4.2 Introduction	114		
4.2 Methods	117		
A A Results	172		
+.+ Nosulis	123		

4.5 Discussion	126
CHAPTER 5: Weight loss and reduction in FBG on a carbohydrate restricted	131
high protein dietary pattern does not improve cognitive performance in	
type 2 diabetes	
5.1 Abstract	134
5.2 Introduction	135
5.3 Methods	136
5.4 Results	143
5.5 Discussion	149
CHAPTER 6: The effect of egg consumption as part of a moderate	153
carbohydrate dietary pattern on blood lipid profiles in individuals with	
type 2 diabetes	
6.1 Abstract	155
6.2 Introduction	156
6.3 Materials and Methods	158
6.4 Results	163
6.5 Discussion	170
CHAPTER 7: The effect of a high protein energy restricted diet on renal	175
function in individuals with type 2 diabetes	
7.1 Abstract	177
7.2 Introduction	178
7.3 Subjects and Methods	179
7.4 Results	181
7.5 Discussion	185
CHAPTER 8: Summary and Conclusion	189
8.1 Thesis overview	190
8.2 The aims and hypothesis of the studies described in the thesis	190
8.3 Thesis outcomes	192
8.3.1. Glycemic control	192
8.3.1.1 Measurement of glycemic control	192
8.3.1.2 Glucose control in energy balance	193
8.3.1.3 Glucose control in energy restriction	194
8.3.1.4 Measures of microvascular change	196
8.3.1.5 Measures of macrovascular risk	197
8.3.1.6 Weight loss	197
8.3.1.7 Body composition	198
8.4 Limitations	198
8.5 Future work	199
8.6 Conclusion	202
Appendix 1: Even briefer assessment scale for depression (EBAS DEP)	203
Appendix 2: Baecke Physical Activity Questionnaire	205
Bibliography	209

LIST OF FIGURES

Figure 1.1	15
Individuals with similar HbA_1c may exhibit different glucose variability throughout the day.	
Figure 1.2	24
Relationship between HbA1c and microvascular or macrovascular disease.	
Figure 1.3	40
Mechanisms for weight loss after consumption of a moderate protein diet	
Figure 1.4	50
Insulin signalling cascade regulated by dietary protein	
Figure 2.1-5	95
Diurnal glucose values	
Figure 3.1	108
Blood glucose data	
Figure 4.1.	129
Weight loss and change in FBG over 8 weeks	
Figure 5.1-6	146
Cognitive outcomes	

LIST OF TABLES

Table 1.1	14
Plasma venous diagnostic criterion for diabetes	
Table 1.2	20
Glycemic control in type 2 diabetes and CV risk.	
Table 1.3	44
Studies evaluating the role of high protein diets under conditions of energy balance in type 2 diabetes.	
Table 1.4	48
Studies evaluating the role of dietary protein under conditions of energy restriction in individuals with insulin resistance and type 2 diabetes.	
Table 1.5	61
The effect of high fat (moderate protein) compared to high carbohydrate	
in type 2 diabetes	
Table 2.1 Baseline characteristics	87
Table 2.2 Sample menu of foods and carbohydrate distribution over the day	90
Table 4.1. Subject characteristics at baseline	118
Table 4.2. Macronutrient profile	119
Table 5.1 Baseline characteristics	137
Table 5.2 Macronutrient profile	141
Table 6.1 Subject characteristics at baseline	160
Table 6.2 Macronutrient profile	165
Table 6.3. Lipid, cardiovascular, glycemic and nutritional plasma markers	168
Table 7.1. Subject characteristics at baseline	182
Table 7.2. Dietary intake	182
Table 7.3. Renal function markers	185

ABBREVIATIONS

ACCORD	Action to Control Cardiovascular Risk in Diabetes Trial
ADA	American Diabetes Association
AGE	glycation end product
AHA	American Heart Association
ATP III	Adult Treatment Panel III
ARIC	Coronary Heart Disease and Carotid Arterial Thickening in
	Patients with the Metabolic Syndrome Study
AUC	total area under the glucose curve
AusDiab	Australian Diabetes, Obesity and Lifestyle Study
BCAA	branched chain amino acid
BM	basement membrane
BMI	body mass index
CARB-B	dietary carbohydrate loaded at breakfast
CARB-D	dietary carbohydrate loaded at dinner
CARB-E	dietary carbohydrate loaded evenly across the day
CARB-L	dietary carbohydrate loaded at lunch
CGMS	continuous glucose monitoring systems
CHD	coronary heart disease
CoDAM	Cohort Study of Diabetes and Atherosclerosis Maastricht
CRP	C-reactive protein
CVD	cardiovascular disease
DBW	Digits Backward Test
DCCT	Diabetes Control and Complications Trial

DECODE	Diabetes Epidemiology Collaborative Analysis of Diagnosis
	Criteria in Europe study
DFW	Digits Forward Test
DPS	Finnish Diabetes Prevention Study
DPP	Diabetes Prevention Program
DSST	Digit Symbol Substitution Test
EBAS DEP	Even Briefer Assessment Scale for Depression Test
EPIC	European Prospective Investigation into Cancer and Nutrition
ESRD	end stage renal disease
ESRF	end stage renal failure
FBG	fasting blood glucose
GFI	glomerular filtration rate
GI	glycemic index
GL	glycemic load
G _{max}	maximum postprandial peak glucose
Glut-1	insulin independent glucose transporter - 1
Glycemia	The use of the American spelling will be used in this thesis
HbA ₁ c	glycated haemoglobin: a measure of chronic glycemic control
НС	high carbohydrate
HDL-C	high density lipoprotein cholesterol
HGP	hepatic glucose production
HP	high protein
HPLC	high protein low carbohydrate
НРМС	high protein moderate carbohydrate
IDF	International Diabetes Federation

IFG	impaired fasting glucose
IGT	impaired glucose tolerance
IL-6	interleukin-6
IRAS	Insulin Resistance and Atherosclerosis Study
IT	Inspection Time Test
KANWU	Kuopio Ischaemic Heart Disease Risk Factor Study
LDL-C	low density lipoprotein cholesterol
MMSE	Mini Mental State Examination
MODD	mean of the daily differences
MPHC	moderate protein high carbohydrate
MPHF	moderate protein high fat
NART	National Adult Reading Test
NCEP	National Cholesterol Education Program
NGSP	National Glycohemoglobin Standardization Program
NHANES	National Health and Nutrition Examination Survey Mortality
	Study
OGGT	Oral Glucose Tolerance Test
РКС	protein kinase C
PPG	postprandial blood glucose
SEM	standard error of the mean
SMBG	self monitoring of blood glucose
T>12	time spent with blood glucose levels above 12 mmol/L
TC	total cholesterol
TRIG	triglycerides
T _{fall}	study conducted in the fall

T _{spring}	study conducted in the spring
UKPDS	The United Kingdom Prospective Diabetes Study
VACSDM	Veterans Affairs Cooperative Study on Diabetes Mellitus Trial
VLDL-C	very low density lipoprotein cholesterol
WESDR	Wisconsin Epidemiologic Study of Diabetic Retinopathy
WHO	World Health Organisation
Wt	weight

DECLARATION OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University of Adelaide Library.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder/s of those works.

SIGNED.....

DATE.....

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisors Professor Peter Clifton, Associate Professor Manny Noakes and Dr. John Semmler for their support and guidance throughout my PhD. In particular I thank Peter Clifton and Manny Noakes for their advice and encouragement so patiently given and for the opportunities to present my work at international conferences. I would also like to thank Associate Professor Michael Nordstrom for always making my PhD seem so achievable. Thanks also go to Dr. Carlene Wilson for her advice and guidance for the cognitive study, Dr. Phil Mohr for his assistance with the statistical analysis also for the cognitive study and Dr Jennifer Keogh for dietetic input into the carbohydrate distribution study.

To the *clinic manager* Mr Peter Royle and *staff*, Julia, Kathryn, Anne, Vanessa, the *dietitians* Gemma, Xenia and Julianne, the *nursing staff* Rosemary, Debbie and Lindy and the *laboratory manager* Mr. Mark Manno *and staff* Canditda, Cathryn, Julie and Jenny, I gratefully acknowledge your assistance and support in completing these clinical trials. I would also like to thank my weekend 'work buddies' Dr. Brant Brinkworth, Dr. Jane Bowen and Juliet Summers and fellow students Siew Lim and Eva Pedderson for their support and encouragement. In particular, I would like to thank my volunteers for their commitment and perseverance, especially those wearing continuous glucose monitoring systems who often found it challenging dealing with new technology.

I would like to thank my employers at the School of Pharmacy and Medical Sciences at the University of South Australia, in particular, Professor Allan Evans and Associate Professor Stuart Andrews for giving me the flexibility to meet the demands of clinical trials and overall to complete this PhD.

I would also like to thank Associate Professors Manny Noakes and Stuart Andrews for their additional emotional support through two recent family bereavements.

Finally, I would like to thank my daughter, Genevieve, who often came into CSIRO to help me pack food on the weekends for my volunteers and my son, Nicholas for his encouraging interest in the project. Thanks must also go to my husband Ian for often picking up the pieces at home and never once complaining when my volunteers rang in the middle of the night. I could never have completed this without your love, unconditional assistance, encouragement and motivation!

I acknowledge scholarships through both CSIRO Health Sciences and Nutrition and the University of Adelaide, Department of Physiology, and funding from the Australian Egg Corporation LTD.

Abstract

By the year 2025, it is anticipated that over 300 million individuals world wide will have type 2 diabetes, with a projected increase from 84 to 288 million (170%) in developing countries and from 51 to 72 million (42%) in developed countries. Diabetes leads to a markedly increased risk of heart disease and renal failure and to expensive and debilitating retinopathy and neuropathy. Cognitive decline is also increased.

As there is accumulating evidence of the beneficial effects of moderate carbohydrate, low fat dietary patterns compared to high carbohydrate diets, this thesis will focus on the effects of moderate carbohydrate high protein dietary patterns (total carbohydrate: protein: fat ratio of 40%:34%:26%) on glycemic control, risk factors for macrovascular disease and cognitive function. Information on two key areas in type 2 diabetes will be presented,

- 1. Acute effects of dietary patterns, moderately carbohydrate restricted and high in protein on glucose levels assessed using continuous glucose monitoring systems (CGMS) with verification of these results through a small repeat study.
- 2. Chronic effects of energy restricted dietary patterns, moderately carbohydrate restricted and high in protein on glucose levels, HbA₁c, cognitive function, cardiovascular disease (CVD) risk markers and renal function.

In the acute study, we recruited 23 subjects with type 2 diabetes. The participants were randomized to each of 4, 3-day interventions in a cross over design with a 4 day wash out period in which the carbohydrates were distributed differently at each meal;

1

carbohydrates evenly distributed across the day, or carbohydrates loaded at breakfast, lunch or dinner. Glucose levels were continuously measured using CGMS. Outcomes were assessed by postprandial peak glucose (G_{max}), time spent above 12 mmol/L (T>12) and total area under the glucose curve (AUC₂₀). The intervention showed that an even distribution of carbohydrates did not optimise blood glucose control, whereas carbohydrates loaded at the lunch time meal provided the most favourable postprandial profile.

To verify these results we conducted a repeat study. Six of the previous participants accepted the invitation to return and complete the even distribution arm of the study after a 20 week time lag. The intervention showed that although HbA₁c, fasting blood glucose (FBG), AUC, exercise and ambient temperature remained constant there was a significant effect of change in sunlight hours on G_{max} , suggesting an effect of sunlight.

To assess the chronic effects of energy restricted dietary patterns on the determinants of HbA₁c, cognitive function, CVD risk markers and renal function under conditions of weight loss, we recruited 82 participants with type 2 diabetes. These participants were randomised to one of two high protein energy restricted dietary patterns that differed in cholesterol content, for a 12 week period, in a parallel design. A sub group of these participants completed cognitive function testing with (n=34) or without (n=17) CGMS at baseline and at 8 weeks.

After 8 weeks of the intervention the determinants of HbA₁c under conditions of energy restriction were evaluated. The intervention showed the change in FBG accounted for most of the variance in change in HbA₁c, but % energy reduction also contributed independently of FBG. Both energy restricted high protein diets equally improved glycemic control, particularly T>12, AUC, HbA₁c and FBG.

Fifty one participants completed cognitive testing to evaluate the effect of weight loss and blood glucose control on cognition. Cognitive function was not altered by time, diet, baseline lipid levels. Working memory was predicted by FBG. Short term memory was predicted by FBG, G_{max} and AUC₂₄.

Sixty five participants completed 12 weeks of the intervention to assess CVD risk markers and renal function. Renal function was maintained and CV markers improved on both dietary patterns, with greatest improvement in HDL-C observed in the group consuming a high protein, energy restricted dietary pattern, high in dietary cholesterol.

In conclusion, in the context of a high protein, carbohydrate restricted dietary pattern, cognitive function and renal function did not change, while glycemia and CV risk profiles improved with weight loss over the short term. Under conditions of energy balance diurnal glucose profiles were optimal when the carbohydrates were loaded in the lunch meal.