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We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in

the Coulomb gauge. We use lattices up to a size of 484 and three values of the inverse coupling, � ¼ 5:8,

6.0, and 6.2. While finite-volume effects are hardly visible in the effective Coulomb potential, scaling

violations and a strong dependence on the choice of Gribov copy are observed. We obtain bounds for the

Coulomb string tension that are in agreement with Zwanziger’s inequality relating the Coulomb string

tension to the Wilson string tension.
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I. INTRODUCTION

Confinement is one of the peculiar features of quantum
chromodynamics, the theory of strong interactions. Thanks
to 25 years of intensive research in the field of lattice gauge
theory, a few mechanisms for confinement have been
identified. These mechanisms are associated either with
monopoles or vortices and seem to be closely related to
each other [1]. In this context, confinement was and is
stated mostly by a nonvanishing string tension �Wilson

which expresses the minimal energy of the gluon field
between a pair of static quarks. The string tension is
defined by Wilson loops and can be extracted in the limit
of large Euclidean time from the Wilson-loop’s area-law
decay. This definition, however, is not completely satisfy-
ing, because not only quarks but also gluons are confined,
and there is no area law in the more realistic case of light
dynamical quarks present in the vacuum.

There are two other, though less popular, approaches
that might help to shed additional light on the phenomenon
of confinement. One is given by the Hamiltonian approach
which promises to present an understanding not only of
bound states but also of the vacuum structure in terms of
wave functionals. The other is a more field-theoretically
inspired approach that focuses on the QCD Green’s func-
tions and their infrared behavior. The QCD Green’s func-
tions may serve as input to a hadron phenomenology based
on the Bethe-Salpeter and Faddeev equations. There, the
ultimate goal is to attain a coherent description of hadronic
states and processes based on the dynamics of confined
gluons, ghosts, and quarks (see, e.g., Ref. [2]).

Both the Hamiltonian approach and investigations of
QCD Green’s functions require to fix a gauge. This intro-
duces the well-known Gribov ambiguity present in the
Coulomb as well as in covariant gauges. One should

keep in mind that the confinement mechanisms associated
with monopoles and vortices, that received credit by re-
producing the Wilson string tension, also mostly require a
gauge condition. In the Coulomb gauge, the Gribov ambi-
guity represents a severe source of uncertainty and its
effect on the results must be faithfully checked. On the
other hand, the Coulomb gauge yields a particularly inter-
esting confinement picture called the Gribov-Zwanziger
scenario [3,4]. This scenario might provide an understand-
ing of confinement even in the presence of dynamical
quarks when the Wilson-loop criterion fails.
A central element of the Gribov-Zwanziger confinement

scenario in Coulomb gauge is the instantaneous color-
Coulomb potential involving the Faddeev-Popov operator
M (in Coulomb gauge) and the infrared spectral properties
of the latter [5,6]. The expression

VCoulðx� yÞ�ab ¼ hg2½M�1ð�4ÞM�1�abðx; yÞi (1)

is defined through the vacuum expectation value of the
potential part of the Hamilton operator

H ¼ 1

2

Z
d3xð ~�2

trð ~xÞ þ ~B2ð ~xÞÞ þHCoul (2)

resulting from the elimination of longitudinal degrees of
freedom. Here the potential term HCoul is expressed in
terms of the color-charge density (including external
sources and the charge density of the gluon field itself)
by means of the color-Coulomb potential,

HCoul ¼ 1

2

Z
d3xd3y�að ~xÞVCoulðx� yÞ�ab�bð ~yÞ: (3)

As Zwanziger has shown [4], the Coulomb potential does
not equal the Wilson potential VWilson used to extract the
string tension �Wilson as an order parameter for confine-
ment. Instead, for large spatial distances r the Coulomb
potential represents an upper bound for the rise of the
Wilson potential,
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VWilsonðrÞ � �4
3VCoulðrÞ: (4)

In other words, there is no confinement without Coulomb
confinement since the Coulomb string tension is an upper
bound for the Wilson string tension [7],

�Wilson � 4
3�Coul: (5)

Zwanziger has continuously developed the confinement
scenario originally proposed by Gribov [3]. He has put
forward the Coulomb potential as a new order parameter
for confinement [4,7,8]. In fact, the Coulomb potential is
expected to linearly rise at large r even in the presence of
dynamical quarks when the Wilson-loop criterion fails.
Recent lattice studies have shown, however, that the rela-
tion (4) is only a necessary [9] condition for confinement,
and that the Coulomb potential can be linearly rising with
spatial distance even in the deconfinement phase [6,10].

Using lattice techniques, a linearly rising Coulomb po-
tential [9–11] and a connection between the center-vortex
mechanism and the Gribov-Zwanziger scenario [5,12,13]
have been observed. Furthermore, Greensite et al. pro-
posed [14] to use correlators of partial Polyakov loops to
measure the Coulomb potential. Corresponding SU(2) as
well as SU(3) studies revealed that the Coulomb string
tension �Coul could well be 2–3 times larger than the
Wilson string tension �Wilson [10–12,14]. This is in con-
trast to results of SU(2) studies where the Coulomb poten-
tial was measured by means of its very definition via
Eq. (1) suggesting �Coul ¼ �Wilson [15,16]. In the present
study we provide a (yet missing) thorough measurement of
the Coulomb potential in SU(3) gauge theory based on its
very definition in Eq. (1). We investigate the relation
between �Wilson and �Coul and find, though hedged with
large uncertainty, �Coul to be 1.6 times larger than �Wilson.
The origin of the systematic uncertainty will be discussed.

The paper is organized as follows. In Sec. II we describe
the details of our numerical simulation and define the
lattice observables measured. We investigate finite-volume
effects, lattice-spacing effects and the effects due to the
Gribov ambiguity in Sec. III. In Sec. IV we analyze the
infrared behavior of the effective Coulomb potential. A
summary concludes this paper.

II. DETAILS OF THE NUMERICAL SIMULATION

A. Lattice samples and gauge-fixing algorithms

For our study we use the standard lattice formulation of
SU(3) Yang-Mills theory in Coulomb gauge where we
always start from nongauge-fixed SU(3) gauge configura-
tions and apply the Coulomb gauge condition subse-
quently. Our sets of gauge configurations were generated
with Wilson’s one-plaquette action at three values of the
inverse coupling, � ¼ 5:8, 6.0, and 6.2, for a couple of
lattice sizes L3

s � Lt where Lt and Ls denote the spatial and
temporal lattice extension, respectively. We have only
considered hypercubic lattices with Ls ¼ Lt ¼ L ¼ 12,

16, 24, 32, and 48. Those ensembles were then gauge fixed
to the Coulomb gauge by minimizing the gauge functional

FU½g� ¼ 1

3

X
x

X3
i¼1

Re Trð1� gxUx;ig
y
xþî

Þ; (6)

that involves all spacelike links on the lattice. This was
accomplished by adjusting the gauge transformations gx 2
SUð3Þ while keeping the original gauge configuration U
fixed. Because of the particular form of FU½g� no condition
is imposed on timelike links. Consequently, the different
time slices can be minimized independently. We consid-
ered gauge fixing within a given time slice successful as
soon as the stopping criterion

max
~x;t fix

Tr½ð@igAx;iÞð@igAx;iÞy�< 10�13 (7)

was satisfied. Here the lattice gauge-potential is defined in
the usual way as

gA
xþî=2;i

¼ 1

2iag0
ðgUx;i � gUy

x;iÞ
��������traceless

; (8)

where gUx;i � gxUx;ig
y
xþî

, a is the lattice spacing and g0
the bare coupling constant which is related to � through
� ¼ 6=g20.
To minimize the gauge functional we used an over-

relaxation (OR) algorithm preceded by an optimally tuned
simulated annealing (SA) algorithm. In what follows, we
call this particular combination of simulated annealing and
over-relaxation steps the SA-OR algorithm. To assess the
influence of Gribov copies, we also generated some gauge
copies with the pure OR algorithm without precondition-
ing. In all cases, the over-relaxation parameter was tuned to
! ¼ 1:70 on the small and ! ¼ 1:60 on the large lattices.
More details are given below.
The SA algorithm has been proven to be very useful in

handling various optimization problems. For this algorithm
the gauge functional FU½g� is regarded as a ‘‘spin
Hamiltonian’’ where the gauge transformation fields gx
take the role of ‘‘spin variables’’ coupled through the links
Ux;i (kept fixed). Minimizing FU½g� is achieved by adia-

batically lowering the auxiliary temperature T of a statis-
tical spin glass system characterized by the Gibbs weight

W½g� / expð�FU½g�=TÞ: (9)

The minimization process always starts with equilibrating
this spin system at some initial temperature T ¼ Ti which
is then slowly decreased. Formally, in the limit of (adia-
batically) lowering T ! 0 this system approaches the
ground state and hence the gauge functional reaches its
absolute minimum for a given gauge configuration. For the
practical purpose considered here, such an adiabatic
cooling-down process is not feasible as it would require
an enormous amount of computing time. Nevertheless, we
find that much lower minima for FU½g� can be reached,
compared to applying only over-relaxation (OR), if we
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combine the SAwith the OR algorithm as follows: We start
from an initial temperature of Ti ¼ 0:45 and linearly de-
crease the temperature down to Tf ¼ 0:01 within 1500

‘‘compound sweeps.’’ Each such sweep consists of one
heatbath and three microcanonical update sweeps. After
this, we use the OR algorithm until the Coulomb gauge is
reached, i.e. the stopping criterion (7) is satisfied.

The advantage of using the SA-OR instead of the OR
algorithm alone becomes more pronounced as the lattice
becomes larger. Furthermore, the number of necessary
iterations in the subsequent OR algorithm is drastically
reduced by a preceding SA algorithm, the more the lower
the final Tf is chosen. Note that instead of adding subse-

quent OR steps, we could also have used SA on its own
extending its use to a much lower temperature Tf to fix to

Coulomb gauge. This, however, is much more CPU-time
intensive and we find no benefit in doing this, because after
gauge fixing the transversality condition (7) must at any
case be guaranteed with high precision, which can be
achieved only by the finalizing OR.

We observe that the time slices of a given configuration
may behave very differently during the iterative gauge-
fixing process. In fact, we find the number of necessary
iterations may differ by a factor of 10 to 20 between the
individual time slices of a given configuration. In the
majority of cases, time slices did not show any recalci-
trancy during gauge fixing, although in some cases time
slices could not be fixed within a certain (predefined)
number of iterations. In the latter case we simply repeated
the entire gauge-fixing process for these time slices, using
the same algorithm but starting from a different randomly
chosen gauge transformation. The ‘‘well-behaved’’ and
hence already gauge-fixed time slices were not touched
again.

After all individual time slices had been minimized, the
original configuration U was gauge transformed, i.e.,
Ux;� ! gUx;�. To simplify the notation we drop the label

g in what follows and assume that a gauge configuration U
satisfies the Coulomb gauge condition already. Since our
observables, namely, the effective Coulomb potential and
the ghost propagator, are genuine three-dimensional, in-
stantaneous observables defined by spacelike links only,
we did not have to fix the residual gauge freedom. The
latter, after the Coulomb gauge has been fixed, resides in
spatially constant but time-dependent gauge transforma-
tions (for a continuum view at this problem see [17]).

B. Observables of interest

The Coulomb energy is a complicated functional of the
transverse gauge potential Aið ~xÞ and the total color-charge
density. Nevertheless, it is instructive to characterize its
gross features through the infrared and ultraviolet behavior
of the expectation value of the color-diagonal part of the
kernel M�1ð�4ÞM�1 in momentum space alone. On the
lattice this is defined as the MC average

VL
Coulð ~kÞ ¼

1

8L3
s

�X
a; ~x; ~y

ei
~k�ð ~x� ~yÞ½M�1ð�4ÞM�1�aa~x ~y

�
; (10)

where we use a shorthand notation for the scalar product
~k � ~x ¼ 2�

P
3
i¼1 kixi=Li with integer-valued lattice mo-

menta ki and lattice coordinates xi. M is the lattice
Faddeev-Popov operator for the Coulomb gauge

Mab
xy ¼ �x4;y4

X3
i¼1

Re Tr½fTa; TbgðUx;i þUx�î;iÞ�~x; ~y

� 2TbTaUx;i�~xþî; ~y � 2TaTbUx�î;i�~x�î; ~y�: (11)

Note that the Faddeev-Popov operator is a direct sum of
operators acting within individual time slices. In coordi-
nate space these three-dimensional operators define the
Coulomb energy of a given dynamical (gluonic) color-
charge density plus an external one [cf. Eq. (3)]. Given
the tree-level form of the Coulomb potential on a three-
dimensional lattice we relate integer-valued lattice mo-
menta ki 2 ð�Li=2; Li=2� to physical ones by

qiðkiÞ ¼ 2

a
sin

�
�ki
Li

�
: (12)

Physical units are assigned by using the interpolation
formula for r0=a as given in [18] setting r0 ¼ 0:5 fm. To
simplify the writing we introduce q as abbreviation for j ~qj
whenever appropriate.
In Ref. [8] an analytic calculation of the Coulomb

potential is presented which reads, upon Fourier transfor-
mation,

VCoulðqÞ ¼ q2G2ðqÞ þ VcðqÞ: (13)

Here G denotes the ghost propagator (entering the discon-
nected part) and Vc denotes the connected part of the
potential. Under the assumption that the (yet unknown)
connected part can be neglected, an infrared asymptotic
limit for VCoul has been given in [8]. It will be analyzed
below at what momenta the factorization VCoulðqÞ ’
q2G2ðqÞ is justified from our data concerning both the
effective Coulomb potential and the ghost propagator.
The latter can be estimated in momentum space as the
MC average

GLð ~kÞ ¼ 1

8L3
s

�X
a; ~x; ~y

ei
~k�ð ~x� ~yÞ½M�1�aa~x ~y

�
(14)

at nonzero lattice momenta k. As for the Coulomb potential
we use Eq. (12) to assign physical momenta toG. To invert
the Faddeev-Popov operator we adapted the techniques
developed in Landau-gauge studies of the ghost propagator
(see, e.g., [19]). The data for the ghost propagator used to
test the factorization hypothesis will not be presented in the
present publication. They have been presented at Lattice
2007 [20] and will be discussed more in depth in a forth-
coming paper [21].
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Note that both the evaluation of the effective Coulomb
potential and of the ghost propagator involve CPU-time
intensive operations. As a consequence, we have restricted
our measurements to lattice momenta k that survive a
cylinder cut. Our cylinder cut is the obvious adaptation
of the Landau-gauge cylinder cut [22]. To minimize finite-
volume effects, we also cone cut our data [22] if they refer
to lattices smaller than ð2:5 fmÞ4.

C. Running coupling and physical scale

The Coulomb potential is a renormalization-group in-
variant which can be written as [here for pure SU(3) gauge
theory] [23]

q2VCoulðqÞ ¼ 12

11
g2Coulðq=�CoulÞ; (15)

where �Coul is a special QCD scale parameter character-
istic of the Coulomb gauge, that defines a running coupling
constant gCoul. The latter has to satisfy the renormalization-
group equation

q
@gCoul
@q

¼ �CoulðgCoulÞ; (16)

where the beta function, �Coul, has the usual weak-
coupling expansion starting with the two standard
scheme-independent coefficients

b0 � 11

16�2
and b1 � 51

128�4
(17)

(see [23] for higher terms). For sufficiently large q, the
product 11q2VCoulðqÞ=12 is expected to be described
through the two-loop expression of the running coupling

g2CoulðqÞ ¼
1

b0 lnðq2=�2
CoulÞ

�
1� b1

b20

ln½lnðq2=�2
CoulÞ�

lnðq2=�2
CoulÞ

�
:

(18)

Lattice data describing q2VCoulðqÞ do not depend on the
lattice spacing a in the asymptotic scaling region. At larger
a, scaling violations should be expected though, and they
will be discussed below for the lattice spacings used in this
study.

In a previous analysis of the data [20] we used an
ultraviolet fit to the one-loop expression [cf. the first term
of Eq. (18)] to fix the unknown physical scale of the
effective Coulomb potential (see Ref. [20] for details).
For the present study, we scrutinized if the highest mo-
menta accessible in our simulations really permit a feasible
fit to the one-loop or the two-loop expression given in
Eq. (18). We find that this is not the case and that the
ultraviolet fit described in [20] has artificially up-scaled
our data by a free factor bigger than one. In the present
study, we therefore do not rely anymore on this ultraviolet
fit.

Indeed, the physical scale is fixed by simply multiplying
the bare lattice data for the effective Coulomb potential

with 6=ð�a2Þ:

VCoulðqÞ ¼ 6

�
a2VL

Coulðk; �Þ; (19)

where a denotes the lattice spacing in GeV�1. Again, we
use the interpolation formula in [18] to set a assuming r0 ¼
0:5 fm. For all figures in the present paper, the physical
scale of the effective Coulomb potential is fixed in this
way.

III. STUDYING SYSTEMATIC EFFECTS

In this section we discuss the effects of finite lattice
volumes and lattice spacings as well as the influence of
the Gribov ambiguity on the effective Coulomb potential.

A. Lattice artifacts

As we are primarily interested in the product q4VCoulðqÞ,
we directly discuss this product instead of the effective
Coulomb potential itself. Note that we investigate effects
of finite lattice spacings and volumes by considering
Coulomb-potential data collected for first SA-OR copies
only.
Finite-volume effects are studied by varying the lattice

sizes from 124 to 484 but keeping �, and hence the lattice
spacing a, fixed. We find that only data obtained on the
smaller lattices, 124 and 164, at � ¼ 6:0 show visible
finite-volume effects at lower momenta. For larger lattices,
namely 244, 324, and 484, effects seem to be mild (see the
magnified view in the right panel of Fig. 1). At � ¼ 5:8
(reaching even lower momenta) only the 124 data clearly
deviate from the other data (see Fig. 1, left panel).
Lattice-spacing effects are investigated by comparing

data from lattices of equal physical volume for different
values of �. Within our choice of � values and lattice sizes
L4, we can find only a few combinations of � and L where
this is approximately possible. For those we can compare
data at approximately equal physical momenta and disen-
tangle by eye the effect of varying a. As demonstrated in
Fig. 2 these discretization effects are small and of the order
of 10% to 15% at largest. The difference between data for
� ¼ 6:2 and 6.0 is smaller (right panel) than the difference
between data for � ¼ 6:0 and 5.8 (left panel).

B. Effects due to the Gribov ambiguity

In comparison to lattice artifacts, the Gribov ambiguity
turns out to have a much larger impact on the Coulomb
potential data. In order to assess the influence of this
ambiguity, we follow the ‘‘first-copy—best-copy’’ (fc-bc)
strategy applied before in Landau-gauge studies of gluon
and ghost propagators [19,24]. Here, we use this strategy in
two different ways.
First, we estimate the number Ncp of gauge-fixed copies

per configuration necessary to achieve ‘‘quasiconver-
gence’’ of the Coulomb potential, considered as a function
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of Ncp. Second, we quantify the systematic error of the

Coulomb potential that is admitted if an arbitrary (first)
gauge-fixed copy is chosen instead of the best copy among
Ncp copies for each gauge configuration. A copy is con-

sidered to be the best among allNcp gauge-fixed copies of a

given configuration if its gauge functional is lower than
those of all the other Ncp � 1 copies after the gauge-fixing

has been attempted Ncp times.

Let us first compare the convergence of the bare data
describing the Coulomb potential upon increasing Ncp !
Nmax

cp for the two gauge-fixing algorithms OR and SA-OR.

As an example, in Fig. 3 we show for each lattice size data
describing VCoul for the lowest (on-axis) lattice momentum

available, i.e. ~k ¼ ð½1; 0; 0�Þ with square brackets indicat-
ing that the average over all permutations is taken. Note

that in contrast to the rest of this paper we did not apply
neither the cylinder nor the cone cut here. The obtained
deviations from the best-copy value can be considered as
an upper bound for all other momenta.
The data were obtained at � ¼ 6:0 on lattice sizes L4 ¼

124, 164, and 244. For each gauge-field configuration a
number of Nmax

cp ¼ 20, 30, and 40 independent gauge-fixed

copies was generated separately with the OR and the SA-
OR algorithm. From the figure we see that upon increasing
Ncp the effective Coulomb potential decreases and be-

comes (more or less) independent of Ncp for Ncp coming

closer to Nmax
cp . What Ncp is sufficient to achieve quasicon-

vergence depends, of course, on the gauge-fixing algorithm
and on the lattice size. In fact, it is clearly visible in Fig. 3
that the number of gauge copies necessary to achieve
convergence is substantially lower for the SA-OR algo-
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FIG. 2 (color online). The Coulomb potential multiplied by q4 shown versus q2 measured on comparable physical volumes. Data
for � ¼ 5:8 and 6.0 are shown on the left, and for � ¼ 6:0 and 6.2 on the right-hand side. Only data from first SA-OR copies is
shown.
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FIG. 1 (color online). The Coulomb potential multiplied by q4 shown as a function of q2 in physical units. We show data for
different lattice sizes at � ¼ 5:8 (left) and � ¼ 6:0 (right) to illustrate finite-volume effects. These seem to be under control for data
on lattices larger than 164 because those fall roughly on the same curve. For both � values we only used data from first SA-OR copies
(fc).
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rithm than for the OR algorithm.With both algorithms, one
needs to consider more gauge copies with growing L. For
example, if we use the SA-OR algorithm, a number of
copies Ncp ¼ 5 on a 124 lattice and Ncp ¼ 15 on a 244

lattice is sufficient. In contrast, if we were using the OR
algorithm, Ncp ¼ 40 or more copies are necessary for a

lattice like 244. Note that the observed increase with L at
fixed � is partly due to the smaller physical value associ-
ated with the lowest on-axis lattice momentum that needs
to be considered with increasing L.

On the larger lattices 324 and 484 we could not afford to
gauge-fix more than a single gauge copy per configuration
with the SA-OR algorithm. This was simply due to a
drastic increase of the necessary number of iterations, but
also due to a growing number of ‘‘trouble-making’’ time
slices encountered on those larger lattices. Thus, we did not
apply the OR algorithm for the purpose of comparison, and
therefore we are not in the position to assess the influence
of Gribov copies on these lattices at the present stage.

As mentioned above, we also used the fc-bc strategy to
estimate the impact of Gribov-copy effects on the Coulomb
potential data at different physical momenta. For this pur-
pose we gauge fixed our field configurations at � ¼ 5:8,
6.0, and 6.2 to Coulomb gauge only once with the OR
algorithm on one hand and Ncp times with the SA-OR

algorithm on the other. In order to obtain the results shown
in Fig. 4 we have chosen, referring to Fig. 3, Ncp ¼ 10, 15,

and 20 as sufficient numbers of gauge-fixed copies per

configuration for the lattice sizes 124, 164, and 244, re-
spectively. Then the Coulomb potential was measured
separately on the set of single copies obtained with the
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FIG. 4 (color online). The ratio of the Coulomb potential (as a
function of q2) if evaluated either on arbitrary (first) copies from
simple OR or on best gauge copies from repeated SA-OR. Note
that the enhancement for the first copy tremendously grows with
q2 ! 0 compared to what is known in the case of the ghost
propagator. In contrast to the upper panel of Fig. 3, only
momenta are included that are allowed by the cuts mentioned
above.
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OR algorithm on one hand and on the set of best copies
obtained with the repeated SA-OR algorithm on the other.
For brevity we refer below to these two sets as the first OR
and the best SA-OR copies.

The ratio of the effective Coulomb potential measured
for first OR copies and best SA-OR copies is depicted in
Fig. 4 as a function of momentum squared. The Gribov
ambiguity has a dramatic impact on the effective Coulomb
potential at q2 < 10 GeV2. Even for the rather small latti-
ces considered here, and hence for rather high physical
momenta, the measurement of the effective Coulomb po-
tential on first OR copies gives results larger by up to 100%
than the results on best SA-OR copies. Note that this effect
is much stronger than what has been observed for the ghost
propagator using the same method [20,21]. There an en-
hancement of about 5% to 10% was typical for the pres-
ently accessible lowest momenta. Note also that here we
are comparing the standard with one of the best presently
known methods of gauge fixing.

In order to assess next the difference between VCoul

obtained from an arbitrary, first SA-OR copy (fc) and the
best among a sufficient number of SA-OR copies (bc),
restricted, however, to the smallest lattice momentum for

each lattice size, i.e. ~k ¼ ð½1; 0; 0�Þ, we have to look back to
Fig. 3. Considering the ratio R of the effective Coulomb
potential measured either for first or best SA-OR copies as
a function of the lattice size L, we find that this is well
described by R � c� d=L. If such an ansatz was used to
extrapolate the ratio R at � ¼ 6:0 to L ¼ 48, a ratio R ¼
1:6 would be obtained. For the first OR copy an over-
estimation factor R ¼ 2:7 would be expected. Both are
reasonable upper bounds for the overestimation of the
Coulomb potential at any fixed physical momentum for
first SA-OR copies and—even worse—first OR copies.
This estimate will be needed in the next Sec. IV.

We conclude that the effective Coulomb potential is less
affected by Gribov-copy effects if we use the SA-OR
algorithm instead of the OR algorithm. This conclusion
rests on the observation that the quasiconvergence of the
Coulomb potential is faster for the SA-OR than for the OR
algorithm. Second, the results obtained on arbitrary, first
SA-OR copies (fc) are less affected by the Gribov ambi-
guity than those obtained on arbitrary, first OR copies.
Therefore, we have used the SA-OR algorithm as our
method of choice for the results to be presented in the
following. Recall, however, that if only first SA-OR copies
are available for analysis, measurements of the Coulomb
potential in the infrared region will be accompanied with
an increased uncertainty. For instance, an overestimation
of about 60% for the smallest lattice momentum on a 484

lattice at � ¼ 6:0 must be expected.

IV. INFRARED BEHAVIOR

Despite the Gribov ambiguity being that large, we now
try to summarize what we know about the momentum

dependence of the effective Coulomb potential, globally
and, in particular, in the low-momentum region. As men-
tioned above, we were not in the position to generate more
than a single SA-OR gauge copy per configuration on the
larger lattices 324 and 484. Therefore we present here a full
set of data concerning the Coulomb potential for a single
SA-OR copy (fc) per configuration for all � values and
lattices sizes, ensuring in this way an equal treatment of
Gribov-copy effects on both small and large lattices. As is
well known, this choice is equivalent to an averaging over
all local minima of all configurations, i.e. all over the
Gribov region. Best-copy data, that we have available
only up to lattices 244 (after inspecting a sufficient number
Ncp of copies) would come close to a prescription that

requires an average over only the absolute minimum per
configuration, i.e. restricted to the fundamental modular
region. Zwanziger has argued that these averages should
approach each other in the limit of large volumes.
As long as they did not converge, we are admitting a

strong systematic effect when we restrict the analysis to the
first SA-OR copy. This can be clearly seen in our data from
smaller lattices, 124, 164, and 244. In order not to overload
the Fig. 5 we show here (and lateron in Fig. 6) only selected
results from SA-OR best copies. The data are from the 244

lattice where we had the choice between 40 copies at � ¼
6:0 and between 20 copies at � ¼ 5:8. We try here (and
later for the Coulomb potential) our best to estimate the
systematic error emerging from the ignorance of further
Gribov copies at larger lattices. A thorough study of the
Gribov ambiguity for larger lattices remains highly
desirable.
In the infrared momentum region, the running coupling

given through the effective Coulomb potential diverges
stronger than 1=q2. This is shown in the left panel of
Fig. 5. The very fact of an infrared enhancement will not
need to be revised if a systematic account for the Gribov
effect will be undertaken in the future, although the diver-
gence would be less pronounced. A rough indication of the
size of the effect is given by the filled symbols in that
figure. These are best-copy results for the lattice 244.
In Ref. [8], Zwanziger presented an analytic calculation

of the Coulomb potential. By only considering the discon-
nected part of the expectation value of the effective
Coulomb potential [cf. Eq. (13)] Zwanziger predicted an
almost linearly rising effective Coulomb potential in the
infrared limit. Using our data for the ghost propagator [20]
we are now in the position to test the validity of his
factorization hypothesis. If Zwanziger’s assumption were
valid, the ratio

FCoulðqÞ ¼ VL
CoulðqÞ

ðaqGLðqÞÞ2 (20)

should be constant as a function of the momenta. Note that
VL and GL denote the bare lattice Coulomb potential and
the lattice ghost propagator taken at the physical momen-
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tum q. The resulting plot shown in the right panel of Fig. 5
demonstrates that the assumption of factorization is valid
only for q2 > 10 GeV2, but it is not correct in the momen-
tum range q2 � 10 GeV2. This is in agreement with the
results of Langfeld and Moyaerts for SU(2) pure gauge
theory [16].

Much like the enhancement of the running coupling, our
conclusion that the factorization hypothesis is violated
would also not be invalidated if the effect of Gribov copies
was taken into account properly. Similar to the left panel,
the anticipated Gribov effect on the violation of factoriza-
tion is shown by the filled symbols in the right panel, which
are the best-copy results for the lattice 244.

We discuss now the momentum dependence of the ef-
fective Coulomb potential in three clearly emerging mo-
mentum ranges, the high-momentum range, the
intermediate momentum range, and the low-momentum
range, and describe the influence of the Gribov ambiguity
in each range separately.

The left panel of Fig. 6 shows the presently known
picture concerning the momentum dependence of
q4VCoulðqÞ. A logarithmic momentum scale has been
chosen in order to give a global view including the ultra-
violet and infrared behavior. For the largest momenta in the
high-momentum range q2 � 10 GeV2, the Coulomb po-
tential shows roughly the expected 1=q2 behavior leading
to an increase of q4VCoulðqÞ linear in q2. From Fig. 4 it is
clear that the high-momentum region is robust with respect
to the Gribov ambiguity. Although the inspection by eye
suggests that we are seeing the tree level form of the
Coulomb potential, we could not find reasonable fits of
our data by the one-loop or the two-loop expressions given
in Eq. (18). We conclude that much higher momenta must
be considered to get an estimate of the Coulomb scale
parameter �Coul from such a fit.

With decreasing physical momenta, the first-copy data
for q4VCoulðqÞ reach an almost flat region in the intermedi-
ate momentum range 0:2 GeV2 � q2 � 6 GeV2, although
a little bulge is visible in the left panel of Fig. 6. If the
function q4VCoulðqÞ stayed constant on the level of �
20 GeV2 in the limit q2 ! 0, this would imply a perfect
linearly confining potential corresponding to an estimate of
�Coul � ð890 MeVÞ2. This figure is more likely an upper
bound.
Indeed, if for large spatial distances r we assume the

simple ansatz [15]

VCoulðrÞ ¼ ��Coulrþ C=r; (21)

this suggests a momentum behavior

VCoulðqÞ ¼ 8��Coul

q4
þ 4�C

q2
; (22)

with the intercept of q4VCoulðqÞ at q2 ¼ 0 defining the
Coulomb string tension �Coul.
In the intermediate momentum range 0:2 GeV2 �

q2 � 6 GeV2, the Gribov effect sets in and becomes ap-
parently more severe with decreasing momentum. For in-
stance, for the smallest (on-axis) lattice momenta on
lattices of sizes 124, 164, and 244, we have seen in Fig. 3
that the Coulomb potential VCoulðqÞ is overestimated by the
first SA-OR copies compared with the best SA-OR copies
(among 40 copies). For the 244 lattice at � ¼ 6:0 the
overestimation amounts to � 40%. This can be extrapo-
lated to the 484 lattice where the effect amounts to� 60%.
This is an upper bound for the Gribov effect experienced
by VCoulðqÞ at physical momenta that are allowed by the
cylinder and cone cuts.
In agreement with these estimates it can be seen in the

left panel of Fig. 6 that in the intermediate momentum
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FIG. 5 (color online). Left: The running coupling g2CoulðqÞ / q2VCoulðqÞ diverges in the infrared region and tends to zero in the
asymptotic limit q2 ! 1. Right: The factorization of the effective Coulomb potential is violated for momenta 0:04 GeV2 � q2 �
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range 0:2 GeV2 � q2 � 6 GeV2, the best-copy data from
the 244 lattice (shown as filled symbols) provide us with
another, independent early indication of a plateau. The
somewhat lower level of � 10 GeV2 would correspond
to �Coul � ð630 MeVÞ2. In view of this the bulge must
be understood as an artifact of insufficient gauge fixing.

With the simulation reported here, on our largest lattices
the low-momentum range with q2 < 0:2 has become ac-
cessible for the first time. Rather unexpectedly in this
region the first-copy data for q4VCoulðqÞ drop with decreas-
ing momentum as seen in the left panel. The right panel of
Fig. 6 shows the infrared region magnified and in a linear
scale in q2. This picture shows that a fit ansatz linear in q2

describes the drop of the first-copy data very well. We do
not know whether a similar effect, namely, the onset of an
apparently new infrared regime in the low-momentum
range will happen for the best-copy data as well. For the
time being we assume that the bulge and the new infrared
regime is only a matter of measurements on insufficiently
gauge-fixed configurations. We have fitted the behavior
according to Eq. (22). The Coulomb string tension is
estimated as

�Coul ¼ ð552	 35 MeVÞ2: (23)

With some caution we may consider this as the common
limit for q2 ! 0 and the common lower bound for the
Coulomb string tension (common to both standards of
gauge fixing).

The other fit parameter, the ‘‘Coulombic’’ coefficient C
in front of the 1=r term in Eq. (21), is obtained as

C ¼ 6:0	 1:0: (24)

This parameter has no relation to the Coulombic part 1=r in
Eq. (21). It rather describes the narrow momentum interval
where the single-copy data probably converge to the best-
copy results for q4VCoulðqÞ. The small number of data
points is another reason why we give not much significance
to the fit. Still, details of the least �2 fit of the first-copy
data are shown in Table I. We remark that the choice of the
upper momentum cutoff for the fitting range, qmax, has only
weak influence on the fit results.
In units of the Wilson string tension the fit result is

�Coul ¼ ð1:6	 0:2Þ�Wilson: (25)

This is the tentative lower bound for the Coulomb string
tension.
Our estimate for the Coulomb string tension is in agree-

ment with Zwanziger’s inequality. The relevance of this
estimate is, however, faced with three sources of uncer-
tainty.
(i) First, it relies only on first-copy data in a rather small

number of data points, and the obtained �2=ndf

TABLE I. Results of �2 fits to the single-copy data at mo-
menta q2 � q2max.

q2max [GeV2] No. data points
ffiffiffiffiffiffiffiffiffiffiffi
�Coul

p
[MeV] C �2=ndf

0.11 5 534(16) 6.6(3) 2.9

0.16 6 526(18) 6.8(4) 1.8

0.17 7 558(20) 5.8(2) 2.5

0.18 8 587(28) 4.9(2) 3.8
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FIG. 6 (color online). The effective Coulomb potential multiplied by q4 as a function of the physical momentum squared. Left: A
logarithmic momentum scale has been chosen in order to overview both the IR and UV behavior. Right: The infrared momentum
region is shown in a linear scale in q2 in order to judge the adequacy of the linear fit of the first-copy data in the extremely IR region.
The infrared fit used to extract the corresponding Coulomb string tension is also shown in the left panel. Open symbols (including
stars) represent measurements on the first SA-OR copies per configuration. For comparison, the filled triangles and filled squares in
both panels show results for the best SA-OR gauge copies (bc) for two � values on the lattice 244, the largest lattice where the Gribov
problem was under scrutiny.
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values are rather large (see Table I). The latter might
be interpreted as a probable inadequacy of the as-
sumed infrared ansatz Eq. (22). On the other hand,
the right panel of Fig. 6 supports such a behavior.

(ii) Second, the weak but visible scaling violation of the
effective Coulomb potential has the effect that our
estimate of the Coulomb string tension would be
higher if we considered higher inverse coupling con-
stants �. The effective Coulomb potential in general
slightly increases with increasing �.

(iii) Third, the strong Gribov effect is neglected in this
estimate for the Coulomb string tension. If we had
consequently looked for the best SA-OR copies and
had measured q4VCoulðqÞ for these, the amount of
overestimation by the first-copy data in the bulge
region is of the estimated order. One possibility is
that by the drop described by the fit given above the
(yet unknown) level of the best-copy results is
reached. However, we cannot exclude the possibility
that the best-copy data in the low-momentum range
will also enter a new infrared regime with a similar
decrease, such that the overestimation by the first-
copy data remains. In this case the final estimate of
the Coulomb string tension would be close to the
Wilson string tension.

In the light of these uncertainties, we find it difficult to
draw a conclusion on the exact value of the Coulomb string
tension. Our value is larger than the values reported in
previous SU(2) investigations starting also from the defi-
nition Eq. (1). These authors arrived at an estimate close to
the Wilson string tension [15,16]. However, the Gribov-
copy problem for the effective Coulomb potential was
ignored in these studies. Furthermore, in Ref. [15] the
estimate of the Coulomb string tension actually relies on
data in the perturbative region, while the first plateau of
q4VCoulðqÞ has been considered as a finite-volume effect.
Such a plateau could be observed in Ref. [16] but the
further decrease of q4VCoul for even lower momenta was
beyond the possibilities of this investigation. In contrast,
SU(3) studies using incomplete (partial-length) Polyakov
lines, made in order to interpolate between the Coulomb
string tension and the Wilson string tension, gave �Coul ¼
ð2–3Þ�Wilson [10,11]. These studies also have neglected the
problem of Gribov copies that might have affected the
measured correlators.

V. CONCLUSIONS

In this study we have attempted a thoroughmeasurement
of the effective Coulomb potential in SU(3) lattice gauge
theory. We used a broad range of lattice sizes, 124–484, to
perform Monte Carlo simulations at the three values � ¼
5:8, 6.0, and 6.2. This has allowed us to show that finite-
volume effects are hardly visible on the larger lattices and
discretization effects are modest. Additionally, the use of

the fc-bc strategy has revealed a dramatic dependence of
the Coulomb potential on the choice of Gribov copy.
Unfortunately, by computer resources we were forced to

restrict this ‘‘Gribov analysis’’ to the smaller lattices 124,
164, and 244. Thus, performing a full Gribov study up to
the largest lattices still remains a highly desirable goal. We
note that the necessity of choosing best copies versus first
(and hence arbitrary) gauge-fixed copies is a matter of
current debate (see also [25,26]). As another example, in
a Becchi-Rouet-Stora-Tyutin (BRST) formulation [27], an
average over all Gribov copies is taken which, on the
lattice, usually leads to the well-known Neuberger 0=0
problem [28,29]. For a recent lattice BRST formulation
without this complication, see [30].
What can be said here with confidence is that for the

effective Coulomb potential we find an extraordinarily
strong Gribov-copy effect which has never been observed
before for other observables (say, the gluon and ghost
propagators).
We see a strong violation of the factorization hypothesis

for the effective Coulomb potential in momentum space
below q2 
 5 GeV2. For smaller momenta the ‘‘connected
part’’ of the corresponding expectation value in Eq. (13) is
not negligible anymore. This spoils any simple relation
between the momentum dependence of the effective
Coulomb potential and the behavior of the ghost
propagator.
Using only one SA-OR gauge copy per configuration

and hence allowing a strong systematic Gribov effect to be
included in the bargain, we found a new infrared regime of
the effective Coulomb potential. The first plateau of
q4VCoulðqÞ, encountered with decreasing momenta, turns
out not to represent the asymptotic behavior, because there
is a further steplike decline for even smaller momenta. The
size of the step is of the same order as the extrapolated
difference between single-copy and many-copy SA-OR
results. Therefore, we adopted the point of view that the
‘‘breakthrough’’ to some new infrared regime at large
enough volume is a feature only of the single-copy data,
and that some kind of convergence (between averaging
over the Gribov region and the fundamental modular re-
gion) is behind this observation.
Future studies shall scrutinize whether the presumed

common infrared limit of these two schemes really exists
or, alternatively, the Gribov ambiguity persists at lower
momentum for larger volumes. We estimated the
Coulomb string tension by fitting the data at the lowest
momenta and found it approximately 1.6 times larger than
the Wilson string tension. If the Gribov ambiguity persists,
it is not excluded that in the—further delayed—infrared
limit finally �Coul ¼ �Wilson will be found.
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