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7.1      INTRODUCTION

Traditionally, the ultimate bearing capacity, Qu, of a shallow strip footing, which is 

founded on single-layered homogeneous cohesive-frictional, weightless deposit, in the 

absence of surcharge, can be expressed as:

Qu = qu(c-)  B (7.1)

where B is the width of the strip footing and qu(c-) is the ultimate bearing pressure 

applied to the footing, and can be expressed as follows: 

qu(c-) = cu  Nc (7.2)

where Nc is a non-dimensional bearing capacity factor, as previously mentioned.  

When considering the purely-cohesive and homogeneous case (i.e. c ≠ 0,  = 0, where 

 is the friction angle of soil), Nc is equal to well-known Prantl solution of (2+.  For 

a footing supported on a cohesive-frictional, homogeneous material, Nc can be 

expressed as a function of  and expressed as follows (Prandtl, 1921; Hill, 1950):
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In reality, as discussed earlier, footings are most likely to be founded on multi-layered 

soils, in which the soil profile may consist of distinct layers having significantly 

different properties.  Whilst rigorous solutions to the problem of strip footings 

founded on two-layered cohesive soils have been presented by several researchers, the 

determinination of the bearing capacity of footings on multi-layered, cohesive-

frictional weightless soils remains empirical.  Such an empirical method has been 

suggested by Bowles (1988) by adopting the weighted average soil strength, cav and 

av, of a number of cohesive-frictional layers as follows: 
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where n is the total number of layers within the depth of soil which influences bearing 

capacity; ci and i respectively represent the soil cohesion and friction angle; and, hi is 

the thickness of the ith stratum.  This method was examined in the previous chapter 

and was shown to be unreliable for predicting the bearing capacity of footings 

founded on multi-layered, purely-cohesive soil.  An ANN-based bearing capacity 

equation has been successfully developed in previous chapter for footings on purely-

cohesive soils, and it was shown to be accurate and robust in predicting bearing 

capacities.  Such an ANN-based model is expressed as function of the footing width, 

B, the stratum thickness, hi, and the soil cohesion, ci, as follows: 

qu(c-) = f(ci, hi, B) (7.6)

The main objective of this chapter is to develop a meta-model for predicting the 

bearing capacity of strip, rough footings supported on a ten-layered, cohesive-

frictional, homogeneous and weightless material.  In the next section, the details of 

two proposed methodologies are presented in order to achieve the objective stated 

above.

7.2      PROBLEM DEFINITION AND PROPOSED 
METHODOLOGIES

The problem considered in this chapter is illustrated in Figure 7.1.  A rough, rigid 

strip footing of width, B, is founded on a ten-layered cohesive-frictional soil profile.  

The soil cohesion of each layer, ci, is assumed to vary in the range between 1.0 and 
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10.0 kPa, whilst the friction angle of each layer, i, varies in between 5.0° and 20.0°.  

The footing width, B, will also be varied between 1.0 and 4.0 metres.  The thickness 

of each soil layer, hi, is not uniform but is varied from a minimum value of 0.2 to a 

maximum value of 1.0 metre.

Figure 7.1   Problem definition for 10-layered cohesive-frictional soil profile.

An ANN-based model for predicting the bearing capacity, qu(c-), of cohesive-

frictional soil layer will be developed and expressed using two different approaches.  

One will be expressed as a function of a number of variables, as follows:

qu(c-) = f(ci, i, hi, B) (7.7)

Whilst, in another variation, qu is expressed in the following form:

1)(

~~
cNNNq ccccu    (7.8)

where cN
~

 and cN
~

 denote two newly introduced dimensionless factors, as explained 

below; c1 is the soil cohesion of the uppermost layer, whilst, the friction angle of the 

uppermost soil layer, 1, will be used to calculate the traditional bearing capacity 

dimensionless factor, Nc, as follows:

1.0 < B < 4.0 m

0.1 < h1 < 1.0 m

0.1 < h2 < 1.0 m

0.1 < h3… 9 < 1.0 m

1.0 < c1 < 10.0 kPa

1.0 < c2 < 10.0 kPa

1.0 < c3… 9 < 10.0 kPa

1.0 < c10 < 10.0 kPa

Layer 1

Layer 2

Layer 3, … , 9

    up to Layer 10

Datum

infinite depth 

5.0° < 1 < 20.0°

5.0° <  2 < 20.0°

5.0° <  3… 9 < 20.0°

5.0° <  10 < 20.0°
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cN
~

 is a multi-layered factor for both purely-cohesive and cohesive-frictional soil 

layers and will be expressed in following form:

cN
~

=  f(ci, hi, B) (7.10)

cN
~

 is another multi-layered factor, which will have an assigned value of 1.0 for 

purely-cohesive case, and will be used in conjunction with cN
~

 to calculate the bearing 

capacity of a footing on cohesive-frictional multi-layered soil, and is defined as:

cN
~

 = f(ci, i, hi, B) (7.11)

In this study, ANN-based models will be developed for qu(c) and qu(c-) in the form of a 

series of equations, as well as cN
~

 and cN
~

, obtained using Equations 7.10 and 7.11.  

In order to train the ANN models, data are required, and these can be obtained 

through a parametric study, as discussed below.  

7.3      DATA GENERATION USING NUMERICAL 
FORMULATION OF LOWER BOUND THEOREM

Due to the large number of influencing factors, which include 10 cohesion values, 10 

friction angles, 9 soil layer thicknesses, and the footing width, 5,000 Monte Carlo 

simulations are performed.  As in previous chapter, finite element limit analysis is 

employed to perform the Monte Carlo simulations.  However, in this study, only the 

lower bound finite element limit analysis will be used, as the lower bound 

computations give conservative estimates of the collapse load.  Using the average of 

both the upper and lower bound computations, as in the previous chapter, may lead to 

an overestimate in the collapse load in some cases.  When both upper and lower 

bound analyses were used, there is a need to employ a very fine mesh to reduce the 
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gap between the lower and upper bound solutions, which significantly compromise 

computational speed.  In contrast, lower bound finite element analysis always gives 

estimates that are lower than the actual collapse load, regardless of any adopted finite 

element size.

For each realization, the values ci, i , hi and B are randomly selected from a uniform 

distribution within predefined ranges, and later presented as inputs for the numerical 

simulations.  The two-dimensional lower bound mesh for a strip footing founded on a 

10-layered cohesive-frictional soil under plane strain conditions is shown in Figure 

7.2.  Due to the symmetric nature of the problem, the lower bound computation is 

carried out on half of the domain, as shown.  The boundary conditions and the 

directions for the extension elements are also shown in Figure 7.2.  

Figure 7.2   Typical mesh for analysis of strip footing and directions of extensions for 
lower bound implementation. 
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In order to develop ANN-based models for cN
~

, and later for cN
~

, two separate 

numerical limit analyses are required for each realization: one for purely-cohesive 

cases, and another for cohesive-frictional cases.  Different sets of influencing 

parameters are used for each case (i.e. {ci, hi, B} for purely-cohesive cases and {ci, i, 

hi, B} for cohesive-frictional cases).  For purely-cohesive cases, the numerical limit 

analysis produces a bearing capacity, qu(c), which subsequently allows cN
~

 to be 

calculated.  The value of cN
~

 will be used later together with qu(c- in determining  

cN
~

.  Figure 7.3 illustrates the flow chart used in the proposed methodologies.  

Figure 7.3   Flow chart of the proposed methodologies. 
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7.4      DEVELOPMENT OF NEURAL NETWORK 
MODELS

In this study, the method of back-propagation multi-layer perceptrons (MLPs) in the 

NEUFRAME computer software (Neusciences, 2000) is employed to develop three 

separate MLP models for qu(c-, cN
~

, and cN
~

, as shown previously in Figure 7.3.  In 

total, 20 variables are presented to the MLP model as model inputs for cN
~

, whilst 30 

are presented as model inputs for cN
~

 and qu(c-.  The data are divided into three sets, 

namely: training, testing and validation.  When the data are divided into their subsets, 

it is required to check that the statistics of each of the training, testing and validation 

subsets represent the same population (Master, 1993).  The basic standard statistics of 

the inputs and outputs are shown in Table C.1 in Appendix C, and the null hypothesis 

tests are carried out and summarised in Table C.2 in Appendix C.  Cross validation is 

used as the stoping criteria.  The momentum and the learning rates are set as the 

default values specified by NEUFRAME of 0.8 and 0.2, respectively.

In total, there are 4,000 data values, which account for 80% of the total available data, 

are used for training purposes and the remaining 1,000 data or 20% are used for 

validation.  For those 4,000 data used for training, these are further divided into 70% 

(i.e. 2,800) for training and 30% (i.e. 1,200) for the testing sets.  As in previous 

chapter, data division is achieved by using random selection, and t-test and F-test 

were carried out to ensure that the statistic properties between three data sets are 

consistent.  The results of t-test and F-test are presented in Appendix C.

After the data division process, all variables were scaled between 0 and 1 by using 

simple linear mapping of the variables’ practical extreme to the neural networks’ 

extreme, using xn = (x − xmin)/(xmax − xmin), where xn is the scaled value, x is the 

relevant variable, and xmin and xmax are the minimum and maximum values, 

respectively.  This pre-processing ensures that all variables receive equal attention 

during the training process.  

Training is carried out using one hidden layer, with a minimum of 1 up to 2I+1 hidden 

nodes, where I is the number of input variables, for each MLP model.  A network with 
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one hidden layer is suggested to be sufficient for mapping any continuous function 

(Cybenko, 1989; Hornik et al., 1989).  It is suggested that 2I+1 is the upper limit of 

the number of hidden nodes (Caudill, 1988).  The performance of the networks is 

measured by coefficient of correlation, r, root mean square error, RMSE, and mean 

absolute error, MAE.  The strategy adopted in this study for accessing the optimum 

MLP model is that a model is deemed to be optimal if it satisfies three requirements: 

the model performs well with respect to the testing set; it has a minimum number of 

hidden nodes; and it has consistent performance with the validation set as with that 

obtained from the training and testing sets.

The results of the networks’ performance for each of the models, with respect to 

number of hidden layer nodes, are summarised in Tables 7.1, 7.2 and 7.3, and also 

illustrated graphically in Figures 7.4, 7.5 and 7.6.  The results show that the number of 

hidden layer nodes has a significant effect on the models’ performance.  The networks 

with less than 5 nodes are among the lowest in terms of r values and the highest with 

respect to RMSE and MAE values, which indicated unsatisfactory performance and 

an unacceptably large predictive error.  It can be seen from the results that, in general, 

the predictive error reduces with increasing number of hidden layer nodes.  For all 

three models, the r, RMSE and MAE stabilise after the number of hidden layers nodes 

is equal to and larger than nine (as highlighted in Tables 7.1, 7.2 and 7.3).  In the 

interests of developing a parsimonious model, a network with 9 hidden layer nodes is 

selected for qu(c-), and coincidently, networks with same number of hidden layer 

nodes are selected for cN
~

 and cN
~

.  The optimum structures of the MLP models are 

illustrated in Figures 7.7, 7.8 and 7.9.

7.5      BEARING CAPACITY EQUATION

The developed MLP models are then translated into relatively simple equations, based 

on the results from the NEUFRAME software and the optimal structure of MLP, 

which are suitable for hand calculations.  Note that both the input and output have 

been rescaled, therefore, actual values for the input variables can be used in order to 

obtain the actual value of the bearing capacity.  With reference to Figure 7.7, and the 

optimal MLP model, qu(c-), is expressed as follows:
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Table 7.1   Performance results of ANN models for qu(c-).

Data sets

Training set Testing set Validation set

Performance measuresModel 
number

No. 
hidden 
layer 
nodes

r
RMSE

(kN/m2)
MAE

(kN/m2)
r

RMSE
(kN/m2)

MAE
(kN/m2)

r
RMSE

(kN/m2)
MAE

(kN/m2)

Qu_1 1 0.817 9.003 7.266 0.828 9.028 7.333 0.825 9.163 7.518

Qu_3 3 0.923 5.794 4.450 0.924 5.779 4.450 0.920 5.881 4.526

Qu_5 5 0.942 4.793 3.677 0.940 4.965 3.843 0.936 5.102 3.913

Qu_7 7 0.957 4.325 3.370 0.950 4.645 3.625 0.945 4.792 3.745

Qu_9 9 0.963 3.976 3.084 0.957 4.332 3.374 0.953 4.571 3.608

Qu_11 11 0.967 3.681 2.859 0.959 4.163 3.249 0.956 4.355 3.390

Qu_13 13 0.963 3.898 3.042 0.951 4.529 3.526 0.948 4.674 3.660

Qu_15 15 0.967 3.734 2.929 0.960 4.165 3.245 0.957 4.373 3.377

Qu_17 17 0.966 3.871 3.026 0.958 4.336 3.413 0.956 4.494 3.515

Qu_19 19 0.976 3.158 2.452 0.966 3.792 2.963 0.963 3.906 3.018

Qu_21 21 0.968 3.661 2.859 0.959 4.183 3.269 0.958 4.308 3.346

Qu_23 23 0.971 3.556 2.793 0.957 4.310 3.358 0.957 4.351 3.385

Qu_25 25 0.975 3.202 2.496 0.962 3.996 3.124 0.960 4.135 3.202

Qu_27 27 0.970 3.529 2.748 0.960 4.105 3.207 0.959 4.182 3.259

Qu_29 29 0.969 3.633 2.831 0.959 4.212 3.311 0.958 4.268 3.342

Qu_31 31 0.979 3.004 2.355 0.965 3.855 3.016 0.963 4.020 3.152

Qu_33 33 0.972 3.420 2.664 0.960 4.105 3.226 0.960 4.141 3.225

Qu_35 35 0.975 3.207 2.505 0.962 3.956 3.107 0.961 4.049 3.148

Qu_37 37 0.974 3.321 2.605 0.961 4.078 3.179 0.962 4.075 3.207

Qu_39 39 0.978 3.082 2.422 0.964 3.892 3.039 0.964 3.941 3.061

Qu_41 41 0.971 3.427 2.684 0.959 4.134 3.215 0.957 4.204 3.263

Qu_43 43 0.977 3.107 2.441 0.963 3.957 3.120 0.964 3.946 3.095

Qu_45 45 0.975 3.238 2.530 0.964 3.897 3.024 0.961 4.090 3.165

Qu_47 47 0.979 2.921 2.298 0.964 3.897 3.071 0.962 4.013 3.147

Qu_49 49 0.978 3.130 2.446 0.964 3.973 3.105 0.961 4.083 3.143

Qu_51 51 0.972 3.422 2.680 0.957 4.228 3.320 0.958 4.198 3.275

Qu_53 53 0.980 2.872 2.253 0.966 3.820 2.984 0.963 3.921 3.055

Qu_55 55 0.981 2.775 2.191 0.966 3.793 3.001 0.964 3.887 3.060

Qu_57 57 0.975 3.239 2.543 0.963 3.972 3.085 0.959 4.118 3.209

Qu_59 59 0.971 3.539 2.786 0.959 4.204 3.299 0.958 4.323 3.380

Qu_61 61 0.977 3.090 2.421 0.964 3.899 3.046 0.962 3.948 3.068
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Table 7.2   Performance results of ANN models for cN
~

.

Data sets

Training set Testing set Validation set

Performance measuresModel 
number

No. 
hidden 
layer 
nodes

r
RMSE

(kN/m2)
MAE

(kN/m2)
r

RMSE
(kN/m2)

MAE
(kN/m2)

r
RMSE

(kN/m2)
MAE

(kN/m2)

NC_1 1 0.839 0.172 0.125 0.840 0.162 0.121 0.846 0.159 0.119

NC_3 3 0.932 0.114 0.087 0.920 0.117 0.089 0.925 0.113 0.085

NC_5 5 0.968 0.080 0.061 0.960 0.084 0.064 0.962 0.083 0.063

NC_7 7 0.964 0.085 0.066 0.955 0.089 0.067 0.959 0.086 0.066

NC_9 9 0.978 0.065 0.050 0.970 0.073 0.054 0.971 0.072 0.054

NC_11 11 0.979 0.065 0.049 0.973 0.069 0.052 0.974 0.069 0.052

NC_13 13 0.980 0.063 0.048 0.974 0.068 0.049 0.975 0.067 0.051

NC_15 15 0.981 0.061 0.047 0.972 0.071 0.052 0.973 0.070 0.052

NC_17 17 0.986 0.054 0.042 0.979 0.061 0.045 0.980 0.061 0.046

NC_19 19 0.984 0.058 0.045 0.974 0.068 0.050 0.975 0.069 0.051

NC_21 21 0.985 0.056 0.043 0.975 0.067 0.049 0.977 0.065 0.049

NC_23 23 0.986 0.054 0.042 0.978 0.063 0.047 0.977 0.067 0.050

NC_25 25 0.987 0.051 0.039 0.976 0.065 0.048 0.977 0.065 0.049

NC_27 27 0.987 0.052 0.040 0.975 0.067 0.049 0.975 0.068 0.051

NC_29 29 0.987 0.051 0.040 0.977 0.063 0.047 0.979 0.063 0.048

NC_31 31 0.987 0.053 0.041 0.974 0.069 0.050 0.977 0.067 0.051

NC_33 33 0.988 0.050 0.039 0.977 0.064 0.047 0.978 0.065 0.049

NC_35 35 0.984 0.058 0.045 0.974 0.068 0.050 0.975 0.068 0.051

NC_37 37 0.988 0.051 0.040 0.976 0.065 0.049 0.975 0.068 0.051

NC_39 39 0.987 0.052 0.040 0.977 0.065 0.048 0.978 0.066 0.049

NC_41 41 0.991 0.044 0.034 0.978 0.062 0.045 0.977 0.066 0.050
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Table 7.3   Performance results of ANN models for cN
~

.

Data sets

Training set Testing set Validation set

Performance measures
Model 
number

No. 
hidden 
layer 
nodes

r
RMSE

(kN/m2)
MAE

(kN/m2)
r

RMSE
(kN/m2)

MAE
(kN/m2)

r
RMSE

(kN/m2)
MAE

(kN/m2)

NF_1 1 0.734 0.177 0.134 0.738 0.169 0.130 0.721 0.174 0.130

NF_3 3 0.858 0.131 0.097 0.850 0.128 0.097 0.838 0.134 0.099

NF_5 5 0.869 0.125 0.089 0.867 0.119 0.088 0.849 0.130 0.093

NF_7 7 0.895 0.118 0.089 0.884 0.119 0.091 0.874 0.124 0.093

NF_9 9 0.902 0.112 0.082 0.890 0.112 0.084 0.877 0.121 0.089

NF_11 11 0.918 0.106 0.083 0.889 0.117 0.090 0.876 0.123 0.091

NF_13 13 0.919 0.099 0.074 0.895 0.106 0.079 0.886 0.112 0.081

NF_15 15 0.927 0.097 0.074 0.892 0.110 0.084 0.887 0.114 0.084

NF_17 17 0.917 0.099 0.075 0.884 0.111 0.083 0.878 0.116 0.084

NF_19 19 0.924 0.096 0.073 0.885 0.111 0.083 0.883 0.114 0.082

NF_21 21 0.925 0.095 0.071 0.888 0.109 0.082 0.876 0.117 0.085

NF_23 23 0.936 0.089 0.068 0.892 0.109 0.081 0.875 0.119 0.087

NF_25 25 0.938 0.087 0.066 0.894 0.107 0.079 0.886 0.113 0.083

NF_27 27 0.939 0.087 0.066 0.889 0.110 0.081 0.886 0.113 0.083

NF_29 29 0.932 0.090 0.068 0.886 0.110 0.081 0.883 0.114 0.081

NF_31 31 0.938 0.086 0.066 0.888 0.109 0.080 0.884 0.114 0.083

NF_33 33 0.939 0.087 0.066 0.891 0.109 0.081 0.881 0.116 0.085

NF_35 35 0.946 0.084 0.065 0.890 0.112 0.083 0.885 0.116 0.085

NF_37 37 0.950 0.078 0.060 0.889 0.109 0.080 0.887 0.113 0.081

NF_39 39 0.950 0.078 0.060 0.889 0.109 0.080 0.887 0.113 0.081

NF_41 41 0.942 0.084 0.064 0.891 0.108 0.080 0.883 0.114 0.081

NF_43 43 0.937 0.087 0.066 0.886 0.110 0.081 0.880 0.116 0.084

NF_45 45 0.948 0.086 0.065 0.897 0.110 0.081 0.882 0.119 0.086

NF_47 47 0.939 0.086 0.065 0.889 0.109 0.081 0.884 0.114 0.082

NF_49 49 0.939 0.086 0.065 0.892 0.107 0.080 0.880 0.116 0.084

NF_51 51 0.947 0.081 0.062 0.892 0.108 0.080 0.888 0.112 0.082

NF_53 53 0.948 0.086 0.065 0.891 0.114 0.086 0.877 0.122 0.089

NF_55 55 0.942 0.084 0.064 0.885 0.111 0.083 0.880 0.115 0.084

NF_57 57 0.942 0.084 0.064 0.891 0.109 0.080 0.882 0.115 0.083

NF_59 59 0.950 0.085 0.064 0.897 0.110 0.082 0.885 0.119 0.087

NF_61 61 0.951 0.077 0.060 0.872 0.118 0.088 0.872 0.120 0.088
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Figure 7.4   Root mean square error versus number of hidden layer nodes for qu(c-).
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where Ti=1,… 9 represent the hidden layer nodes as shown in Figure 7.7, which are 

calculated as:
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Figure 7.7   Structure of optimum MLP model for qu(c-).
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Figure 7.8   Structure of optimum MLP model for Ñc.
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Figure 7.9   Structure of optimum MLP model for Ñc- .
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Table 7.4   Value of wi=1,… ,30 and C versus Ti=1,… ,9 for qu(c-)

T1 T2 T3 T4 T5 T6 T7 T8 T9

w1 -0.409 -0.404 0.205 -0.061 -0.109 -0.072 -0.057 -0.155 0.061

w2 0.176 -0.116 -0.189 0.037 -0.012 -0.047 0.068 0.331 -0.004

w3 0.081 0.140 0.134 -0.053 -0.008 -0.120 0.221 0.112 -0.020

w4 0.054 0.054 -0.002 -0.128 0.275 -0.115 -0.073 0.001 -0.022

w5 0.034 0.058 -0.084 -0.130 -0.096 0.005 -0.018 -0.073 -0.029

w6 0.014 0.073 0.009 0.026 -0.059 0.055 -0.080 0.006 -0.037

w7 0.004 0.044 0.029 -0.013 -0.023 0.080 -0.050 0.028 -0.036

w8 0.001 0.021 0.004 0.009 -0.017 -0.001 -0.015 0.004 -0.009

w9 -0.002 0.006 0.015 -0.003 -0.008 0.047 -0.022 0.026 -0.025

w10 0.006 0.013 0.013 0.029 0.002 0.013 -0.019 0.002 0.005

w11 -0.071 -0.063 0.035 0.007 -0.041 -0.008 -0.028 -0.052 0.040

w12 0.047 -0.011 -0.037 0.063 -0.007 -0.042 -0.006 0.055 -0.003

w13 0.022 0.037 0.021 0.005 -0.001 -0.067 0.051 0.005 -0.004

w14 0.004 0.009 -0.010 -0.045 0.047 -0.023 -0.020 0.001 -0.016

w15 -0.001 0.014 -0.020 -0.031 -0.035 -0.015 0.006 -0.028 0.001

w16 -0.004 0.011 -0.004 0.024 -0.032 0.001 -0.019 -0.003 -0.005

w17 0.001 0.014 0.012 0.004 -0.008 0.037 -0.020 0.018 -0.004

w18 -0.006 0.000 -0.001 0.002 -0.002 -0.015 0.002 -0.002 -0.002

w19 0.001 -0.001 -0.003 0.004 0.006 0.001 -0.007 0.006 0.003

w20 -0.002 0.009 0.005 0.002 0.002 0.010 -0.012 0.012 -0.002

w21 1.202 1.660 -0.794 -0.116 0.339 -0.176 0.410 1.287 1.666

w22 0.427 1.079 0.778 -0.535 0.291 0.840 -0.116 -0.999 0.391

w23 0.101 -0.101 -0.620 -0.200 0.313 0.926 -1.402 -0.216 0.118

w24 -0.202 0.230 -0.004 0.220 -1.571 0.992 -0.206 0.009 -0.029

w25 0.020 0.143 0.434 0.553 0.395 0.452 -0.544 0.320 -0.143

w26 0.020 0.085 0.153 0.033 0.057 0.041 0.021 0.016 -0.058

w27 0.076 0.012 -0.064 0.055 -0.263 -0.055 0.176 -0.012 -0.090

w28 0.113 -0.009 -0.064 -0.094 0.121 0.130 -0.027 -0.032 0.133

w29 0.121 0.137 0.007 -0.080 0.032 0.121 0.016 -0.146 0.133

w30 -0.504 -0.587 0.209 -0.022 -0.187 -0.109 0.008 0.164 -0.927

C 0.185 -1.832 0.105 0.178 1.082 0.661 1.034 0.300 -0.868
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where wi=1,… ,30 are the hidden layer node weights and C is the bias and are determined 

using Table 7.4.  Note that wi=1,… ,30 and C are dimensionless.

For cN
~

, the optimal MLP model is expressed as follows:
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where Ti=1,… 9 are calculated as:
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where wi=1,… ,20 and C are determined using Table 7.5.

For cN
~

, the optimal MLP model is expressed as follows:
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where Ti=1,… 9 are calculated as:
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where wi=1,… ,30 and C are determined using Table 7.6.

Table 7.5   Values of wi=1,… ,20 and C versus Ti=1,… ,9 for cN
~

.

T1 T2 T3 T4 T5 T6 T7 T8 T9

w1 -0.777 -0.098 -0.091 -0.313 -0.239 0.097 -0.046 -0.502 -0.238

w2 0.027 -0.002 0.039 0.042 -0.161 0.228 0.622 0.210 -0.085

w3 0.016 0.013 -0.181 0.402 -0.002 -0.164 -0.075 0.170 -0.036

w4 -0.018 -0.060 -0.075 -0.044 0.055 -0.064 -0.014 0.045 0.281

w5 0.026 -0.041 0.051 0.013 0.077 -0.024 -0.030 0.026 0.086

w6 0.012 -0.034 0.034 0.021 0.066 -0.022 -0.027 0.016 0.062

w7 0.024 -0.015 0.010 0.004 0.022 -0.011 -0.015 0.011 0.037

w8 0.005 -0.002 0.003 0.003 0.017 -0.007 -0.002 0.000 0.009

w9 0.006 -0.009 -0.007 0.008 0.008 -0.012 -0.010 -0.006 0.012

w10 -0.004 0.005 0.022 -0.006 0.013 -0.023 -0.019 -0.004 0.007

w11 -7.062 -0.775 -1.067 1.508 -1.834 -0.298 1.876 1.069 1.185

w12 0.038 -0.351 -0.918 0.503 -0.234 0.102 -1.095 0.542 0.533

w13 -0.238 0.664 0.299 -0.840 -0.432 -1.421 0.031 0.045 1.059

w14 -0.015 0.063 0.325 0.262 0.064 -0.153 -0.112 0.045 -0.331

w15 0.076 -0.115 -0.007 -0.047 0.238 0.157 -0.094 0.013 0.184

w16 -0.080 0.097 -0.100 -0.011 -0.035 0.010 -0.072 0.029 -0.079

w17 -0.169 0.044 -0.108 -0.031 -0.042 0.143 0.070 0.006 -0.106

w18 -0.352 0.153 -0.131 -0.105 -0.063 -0.033 0.121 -0.002 -0.022

w19 -0.045 0.136 0.034 0.038 -0.115 -0.383 -0.087 -0.027 0.019

w20 0.473 0.356 -0.048 -0.536 0.750 0.305 -0.152 -0.574 -0.561

C 0.350 1.489 0.274 -1.099 -0.842 0.734 1.606 0.377 -1.782
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Table 7.6   Values of wi=1,… ,30 and C versus Ti=1,… ,9 for cN
~

.

T1 T2 T3 T4 T5 T6 T7 T8 T9

w1 -0.163 -0.107 0.045 -0.362 -0.007 -0.029 0.038 -0.035 0.000

w2 0.090 -0.008 -0.054 0.028 -0.172 0.011 0.018 -0.072 0.003

w3 0.042 0.018 -0.054 0.050 0.092 -0.053 0.060 0.077 -0.125

w4 0.025 0.029 -0.013 0.033 0.054 0.014 -0.076 0.067 0.107

w5 -0.026 0.019 0.038 0.023 0.011 -0.016 0.019 0.003 -0.004

w6 -0.005 0.021 0.025 0.005 0.020 0.020 -0.001 0.006 0.028

w7 0.002 0.009 0.009 -0.014 0.001 -0.016 -0.005 0.025 0.007

w8 0.000 0.011 0.012 0.001 0.009 0.013 0.030 0.008 0.011

w9 0.015 0.017 0.008 -0.011 0.019 0.017 0.024 0.013 -0.005

w10 0.009 0.002 -0.008 -0.010 -0.007 0.000 -0.003 -0.007 -0.020

w11 0.049 -0.100 0.009 0.052 -0.019 0.050 0.023 0.037 -0.002

w12 -0.008 0.027 -0.067 0.011 0.067 0.048 -0.026 -0.035 0.018

w13 -0.015 0.008 -0.044 0.009 -0.008 -0.061 -0.015 0.035 0.041

w14 -0.011 0.018 0.020 -0.003 -0.001 -0.006 0.030 -0.006 -0.026

w15 0.013 0.019 0.012 -0.020 -0.004 0.014 -0.022 -0.003 0.004

w16 -0.007 0.008 0.023 0.009 -0.008 -0.003 -0.016 -0.009 -0.001

w17 -0.002 0.008 0.001 0.000 0.003 -0.011 -0.025 0.002 0.011

w18 -0.004 0.005 0.015 0.006 -0.011 -0.003 -0.012 -0.015 -0.007

w19 0.003 0.011 0.004 -0.006 0.011 0.007 0.041 0.016 0.008

w20 0.000 0.000 0.016 -0.004 -0.007 -0.003 0.000 -0.001 -0.022

w21 0.249 0.598 -0.025 -0.255 -0.746 -0.666 0.599 -0.756 -0.729

w22 0.262 0.112 0.677 -0.364 0.367 -0.232 -0.325 0.775 -0.546

w23 0.194 0.135 0.429 -0.131 0.282 0.444 -0.613 0.062 0.035

w24 0.181 0.188 -0.130 -0.016 0.210 0.205 -0.050 0.068 0.258

w25 -0.072 -0.065 -0.070 -0.014 -0.090 -0.145 0.276 0.024 -0.096

w26 0.050 -0.057 0.016 -0.043 -0.260 -0.024 0.080 -0.119 -0.128

w27 0.021 0.039 -0.035 0.072 0.171 0.139 -0.076 0.094 0.261

w28 -0.130 -0.109 -0.041 0.235 -0.134 0.192 0.521 -0.163 0.135

w29 0.102 0.000 0.051 -0.124 -0.208 0.108 -0.382 -0.002 0.329

w30 -0.114 -0.241 -0.210 0.155 0.022 0.139 0.049 0.014 0.109

C -0.019 0.404 -0.538 -1.640 0.185 -0.111 -0.299 -0.428 0.058
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7.6      SENSITIVITY AND ROBUSTNESS OF THE MLP-
BASED BEARING CAPACITY EQUATIONS

The robustness of the design equations, which were presented in the previous section, 

is determined by examining how well the predicted bearing capacity agrees with the 

underlying physical behaviour of the bearing capacity of a shallow strip footing.  In 

order to test the robustness of MLP-based bearing capacity formulae, sensitivity 

analyses were carried out.  The sensitivity analyses were used to investigate the 

response of the predicted bearing capacity from the design equations to a set of 

hypothetical input data.

Because ANN-based models work best when used in interpolation, the input data was 

generated over the range of the minimum and maximum of the data used for MLP 

model training.  All input variables, except the one chosen to be varied, were fixed to 

a given value.  Hence, a set of synthetic data was generated by increasing the given 

variable within this range.  The generated inputs were then presented to the design 

equations and the bearing capacity calculated.  This process was repeated by choosing 

another variable as the single varied input until the model response was tested for all 

input variables. 

The inputs employed in the sensitivity analyses, and the corresponding responses 

from the MLP models, are presented in the following subsections, which are 

categorized depending on the input variables.  The sensitivity analyses of ci are 

presented in section 7.6.1, while the results for i, hi and B are presented in sections 

7.6.2 to 7.6.4, respectively.

7.6.1    Variation of Predicted qu(c-) with Respect to Variation of c in each of the 

10 Layers

In this section, the results of sensitivity analyses carried out on the soil cohesion, ci

are presented.  The inputs for ci for each of ten cases are presented in Table 7.7.  In 

Case 1, for example, the soil cohesion of the uppermost layer, c1, is varied from 1.0 to 

10.0, while the cohesion of the remaining 9 layers are fixed at a value of 10.0.  The 

values for i, hi and B are fixed at values of 20.0°, 0.5 m and 2.5 m, respectively, in all 
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ten cases.  These inputs are then input in equations, and qu(c-) calculated: one 

determined by Equations 7.12 and 7.13; and another using Equations 7.14 to 7.17.  

The results for Case 1 are then plotted as continuous lines as shown in Figures 7.10

and 7.11.  This process is repeated for all cases.
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The results, shown in Figures 7.10 and 7.11, indicate that, for Case 1, as the soil 

strength of the uppermost layer increases, qu(c-) also increases.  This observation is in 

good agreement with what one would expect based on the physical problem.  In 

general, Cases 2 to 7 demonstrate the same model responses as for Case 1, while 

Cases 8 to 10 illustrate that qu(c-) is stable, or changes little as the soil cohesion in 

layers 8 to 10 increases.  This is appropriate if the variation of ci occurs at a depth that 

is beyond the depth of the influence zone of the footing.  

Interestingly, it can be seen that the estimates of qu(c-) plateaus at different levels, as 

illustrated in Figures 7.10 and 7.11, which are lower than the theoretical estimates.  

Theoretically, qu(c-) should reach approximately 148.5 kN/m2 by using Equations 7.2 

and 7.3, and 142.5 kN/m2 if finite element lower bound analysis is used, for ci = 10.0 

kPa and i = 20.0°.  The explanation of this numerical inaccuracy lies within the 

training data presented for ANN training.  The case, where all the soil layers have the 

same ci = 10.0 kPa and i = 20.0°, never occurs in the Monte Carlo analysis.  

Consequently, the known maximum value of qu(c-), which is only 93.31 kN/m2

(shown in Table C.1 in Appendix C), is the upper limit of the estimates that can be 

obtained from Equations 7.12 and 7.13.  The maximum values of known cN
~

 and 

cN
~

 also affect the upper limit of qu(c-) obtained from Equations 7.14 to 7.17.  Thus, 

these numerical errors highlight the vulnerability and limitation of the MLP-based 

equations.  Whilst, this error is undesirable, the ANN-based model is developed 

primarily to predict the bearing capacity of soil layers having different values ci and 

i.

7.6.2    Variation of Predicted qu(c-) with Respect to Variation of  in Each of the 

10 Layers

In this Section, sensitivity analyses are carried out on i using the methodology 

described earlier.  The hypothetical inputs employed in the sensitivity analyses for 10 
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Figure 7.10   Variation of qu(c-) due to varying soil cohesion, ci. (qu(c-) is determined 

by Equations 7.12 and 7.13)
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Figure 7.11   Variation of qu(c-) with varying soil cohesion, ci. (qu(c-) is determined 

by Equations 7.14 to 7.17)
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cases are presented in Table 7.8.  The values for ci, hi and B are fixed at values of 

5.0 kN/m2, 1.0 m and 2.5 m, respectively.  The results of the sensitivity analyses are 

presented in Figures 7.12 and 7.13.

It can been seen from Figures 7.12 and 7.13, that qu(c-) increases as the soil shear 

strength increases.  For example, the friction angle of the uppermost layer, 1, is 
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varied from 5.0° to 20.0° in Case 1, while the i of other nine layers are fixed at a 

value of 20.0°.  When Equations 7.12 and 7.13 are employed, qu(c-) increases from 

47.5 kN/m2 to 63.2 kN/m2 as 1 increases from 5.0° to 20.0°, and qu(c-) increases from 

31.4 kN/m2 to 67.6 kN/m2 when Equations 7.14 to 7.17 are used.  Despite the 

difference in the estimation of qu(c-) resulting from the different MLP models 

employed, in general, the variations shown in Figures 7.12 and 7.13 agree with the 

expected variation of the bearing capacity.  In some cases (for example, Cases 8 to 10, 

in Figure 7.12, and Cases 6 to 10, in Figure 7.12), it can be seen that the variation of 

i has very little effect on qu(c-) since the variation takes place at a depth which is 

beyond the depth of the influence zone.  As a result of the numerical errors, which 

were discussed in the previous section, qu(c-) plateaus at a level below 70.0 kN/m2, 

and less than the theoretical estimate of approximately 74.3 kN/m2 by using Equations 

7.2 and 7.3, and 74.0 kN/m2 if finite element lower bound analysis is used, when ci

and i of all 10 layers have the same values of 5.0 kN/m2 and 20.0°, respectively.

7.6.3    Variation of Predicted Value of qu(c-) with Respect to Variation of hi in 

Each of the 10 Layers

Variation of hi alone requires careful attention.  If ci and i are assigned the same 

values, the variation of hi alone will not affect qu(c-).  Hence, it is proposed that the 

values of ci and i of the layer where the variation of hi occurs, are assigned different 

values.  The hypothetical inputs for ci, i and hi employed in the sensitivity analyses 

for 10 cases are presented in Table 7.9.  The footing width, B = 2.5 m is used in the 

analyses.  The results of the sensitivity analyses are presented in Figures 7.14 and 

7.15.

The results shown in Figures 7.14 and 7.15 indicate that there are differences in qu(c-)

obtained from the two MLP models.  This could be the result of different initial 

random weights used during training.  In addition, due to the two different ways of 

expressing qu(c-), there are differences in the network architecture and therefore the 

ANN yields vastly different networks, and hence, the predictions of qu(c-).
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Figure 7.12   Variation of qu(c-) due to varying friction angle, i. (qu(c-) is determined 
by Equations 7.12 and 7.13)
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Despite the differences in the output of the MLP models as shown in Figures 7.14 and 

7.15, the trend lines are in good agreement with one would expect when analysing the 

bearing capacity problem of a shallow strip footing.  In Case 1, for example, the shear 

strength of the uppermost layer is assigned to be the weakest of all layers.  The 

thickness of layer 1, h1, is varied from a minimum value of 0.2 m to a maximum value 

of 1.0 m (refer to Table 7.9).  As h1 increases, qu(c-) decreases as shown in Figures 
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7.14 and 7.15.  It can be seen from these figures that this observation is also valid for 

some cases (i.e. Cases 2 to 5), whilst in other cases, such as Cases 6 to 8, the 

decreasing trend is less obvious. 

7.6.4    Variation of Predicted qu(c-) with Respect to Variation of B

Three cases are considered to test the model responses with respect to the input 

variable B, namely decreasing shear strength with depth, constant shear strength, and 
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increasing shear strength with depth.  An illustration of the three cases that are 

considered in the sensitivity analyses and the synthetic inputs are shown in Figure 

7.16.  The results of the analyses are shown in Figures 7.17 and 7.18.

Theoretically, as the footing width, B, increases, the depth of the influence zone also 

increases.  Therefore, the shear strength at greater depth have an increasing effect on 

the bearing capacity of footing.  For footings founded on soil with decreasing shear 

strength with depth, for example, as the footing width increases, the bearing capacity 

of footing reduces, as shown in Figures 7.17 and 7.18.  The results also show that, if 

the footing is founded on soil whose shear strength increases with depth, the bearing 

capacity, qu(c-), of the footing increases as the footing width increases.  If the shear 

strength is constant with depth, the bearing capacity, qu(c-), of the footing, however, 

remains constant, or varies marginally as the footing width is increased.

Overall, the results of the sensitivity analyses presented in this section, indicate that 

the behaviour of the MLP model agrees well with what one would expect based on the 
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Figure 7.14   Variation of qu(c-) versus varying layer thickness, hi. (qu(c-) is 
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determined by Equations 7.14 to 7.17)

Figure 7.16   Three cases considered in the sensitivity analyses.

underlying physical understanding of bearing capacity problem and exhibits a smooth 

and continuous relationship.  Consequently, it is suggested that the MPL-based 

formulae are robust and can be used confidently for predictive purposes.
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Figure 7.17   Variation of qu(c-) versus varying footing width, B. (qu(c-) is determined 
by Equations 7.12 and 7.13)
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Figure 7.18   Variation of qu(c-) versus varying footing width, B. (qu(c-) is determined 
by Equations 7.14 to 7.17)
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7.7      COMPARISON OF MLP MODELS WITH 
CURRENT METHODS

In order to examine the accuracy and the merit of the developed MLP models, they 

are compared with the other available traditional methods.  Unfortunately, the 

weighted average method (e.g. Bowles, 1988) is the only one available and the 

methods proposed by Davis and Booker (1973) can be only applied to relatively 

limited cases.  The comparisons are carried out using two different cases, namely 

purely-cohesive and cohesive-frictional.

7.7.1    Foundation on 10-Layered Purely-cohesive Soil Profiles

The MLP models developed for the 10-layered purely-cohesive soil in the previous 

chapter are used as a comparison with the MLP models incorporating cN
~

 along with 

the weighted average method (Equations 7.4 and 7.5).  The performance of the MLP 

models and the Bowles (1988) method are summarised in Table 7.10 and illustrated 

graphically in Figures 7.19 and 7.20.  The results show that the MLP model with cN
~

performs remarkably well, with equally high r values compared with the MLP model 

developed in the previous chapter, but with slightly lower RMSE and MAE values.  

Note that, the MLP model for qu(c) is developed using different input ranges and the 

average of the upper and lower bounds is used as the model target.  In contrast, the 

MLP model with cN
~

, used the lower bound estimate as the model targets.  As in the 

previous chapter, the weighted average method (Equations 7.4 and 7.5) again 

performed poorly and, in general, overestimated the bearing capacity, which is 

significant in that it provides unsafe foundation designs.  

7.7.2    Foundation on a 10-layered Cohesive-frictional Soil Profiles

In this subsection, the predicted values of bearing capacity are calculated using the 

MLP model with qu(c-), and also the MLP models with cN
~

 and cN
~

.  Again Bowles’ 

(1988) method is used for comparison.  The performance of the MLP models and the 
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Figure 7.19   Comparison of the bearing capacities calculated using the MLP model 

with cN
~

 versus actual values for 10-layered purely-cohesive soil.
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Figure 7.20   Comparison of the bearing capacities calculated using the weighted 
averaging method versus actual values for purely-cohesive soil.
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Table 7.10   Comparison of MLP models and weighted-average method (Bowles, 

1988) for bearing capacity prediction for purely-cohesive soil.

Methods

Performance measurement
MLP - qu(c) MLP- cN

~ Weighted-
average method 
(Bowles, 1988)

Correlation coefficient, r 0.971 0.972 0.838

RMSE (kN/m2) 2.41 1.89 8.71

MAE (kN/m2) 1.64 1.41 6.94

Bowles (1988) method are summarised in Table 7.11 and also illustrated graphically 

in Figures 7.21 to 7.25.  The results show that the MLP model with qu(c-) outperforms 

those using cN
~

 and cN
~

 when predicting the bearing capacity of strip footings on 

cohesive-frictional soil.  Table 7.11 shows that the MLP model with qu(c-) has a 

slightly higher r value compared with the MLP models using cN
~

 and cN
~

, and also 

has lower RMSE and MAE values.  In general, the predictive ability of all MLP 

models is satisfactory and acceptable and therefore, the use of MLP models to obtain 

a first estimation of the bearing capacity of a 10-layered cohesive-frictional soil is 

highly recommended.  The MLP model with qu(c-) achieved r = 0.961 also, and 

RMSE and MAE values of 3.99 and 3.09, respectively, whilst, for the MLP models 

with cN
~

 and cN
~

 , the values of r, RMSE and MAE were found to be 0.942, 5.04 

and 3.81, respectively.

Not surprisingly, the weighted-average method (Bowles, 1988) method again 

performed poorly with a low r value of 0.868 and high RMSE and MAE values of 

15.71 and 13.14, respectively.  In general, the weighted-average method (Bowles, 

1988) overestimated the bearing capacity and dangerously so in many cases, as shown 

in Figure 7.25.  
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Figure 7.21   Comparison of actual versus predicted values of bearing capacity using 
the MLP model for qu(c-).
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Figure 7.23   Comparison of actual versus predicted values of Ñc- using the MLP 

model with Ñc- .
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Figure 7.25   Comparison of the bearing capacities calculated using the weighted-

average method (Bowles, 1988) versus actual values for cohesive-frictional soil.

Table 7.11   Comparison between the MLP models and weighted-average method for 
bearing capacity prediction for c- soil.

Methods

Performance measurement
MLP- qu(c-) MLP- cN

~
, cN

~ Weighted-
average method 
(Bowles, 1988)

Correlation coefficient, r 0.961 0.942 0.868

RMSE (kN/m2) 3.99 5.04 15.71

MAE (kN/m2) 3.09 3.81 13.14

7.8      ILLUSTRATIVE NUMERICAL EXAMPLES

In order to explain better the implementation of the proposed MLP models, multiple 

illustrative numerical examples are given below.  

Line of equality
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Example 1.  Purely-cohesive Soil

A rough footing of width, B = 3.6 m is founded on a 10-layered, purely-cohesive soil 

with cohesions, ci, and thicknesses, hi, of each of the layers given as follows: ci=1,… ,10

= {7.86, 5.71, 9.06, 1.67, 2.94, 6.47, 9.08, 1.70, 1.87, 8.67}; hi=1,… ,9 = {0.2, 1.0, 0.2, 

0.8, 0.8, 1.0, 0.2, 0.4, 0.6}.  A preliminary estimation of the ultimate bearing capacity 

of strip footing is required. 

Solution:

The MLP model for cN
~

 (Equations 7.14 and 7.15) is employed to calculate the 

ultimate bearing capacity of strip footing, qu(c), as follows:

The values of ci=1,… ,10, hi=1,… ,9, and B are substituted into Equation 7.15.

1
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By substituting the values of wi and C given previously in Table 7.5 into the equation 

above, yields T1 = 0.994; T2 = 0.200; T3 = 0.923; T4 = 0.674; T5 = 0.608; T6 = 0.212;

T7 = 0.117; T8 = 0.853; and T9 = 0.985.  These values of Ti=1,… ,9 are then substituted 

into Equation 7.14, which yields:

54.0174.0

818.2985.0110.2

853.0157.3117.0518.4

212.0972.1608.0683.1

674.0281.2923.0305.2

200.0655.2994.0979.6

exp1306.2
~
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Using Equation 7.8 and setting cN
~

 to be 1.0 for the purely-cohesive case and Nc to 

be 5.14 (Prandtl’s solution), the ultimate bearing capacity of the strip footing, qu(c), is 

calculated as follows:
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2
1)( kN/m8.21858.714.554.00.1

~~   cNNNq ccccu

Hence, the result obtained from MLP model in this example is marginally higher than 

the result from the numerical finite limit analysis, which is 19.6 kN/m2.  

Example 2.  Cohesive-frictional Soil

A rough footing with a width B = 3.6 m is founded on a 10-layered cohesive-frictional 

soil with soil cohesions, ci, friction angles, i, and thicknesses, hi, for each of the 

layers as follows: ci=1,… ,10 = {7.86, 5.71, 9.06, 1.67, 2.94, 6.47, 9.08, 1.70, 1.87, 8.67}; 

i=1,… ,10 = {19.45°, 7.31°, 5.10°, 8.89°, 12.77°, 19.49°, 18.96°, 11.49°, 14.71°, 

13.85°}; hi=1,… ,9 = {0.2, 1.0, 0.2, 0.8, 0.8, 1.0, 0.2, 0.4, 0.6}.  Estimate the ultimate 

bearing capacity of the strip footing.

Solution:

Two approaches can be adopted to calculate qu(c-) as follows:

Approach 1: Using the MLP model with qu(c-) (Equations 7.12 and 7.13)

By substituting the given information of ci, i, hi, and B into Equation 7.13, and 

yields:
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By substituting the values of wi and C given previously in Table 7.4 into the equation 

above, yields T1 = 0.956; T2 = 0.974; T3 = 0.016; T4 = 0.617; T5 = 0.954; T6 = 0.222;

T7 = 0.658; T8 = 0.154; and T9 = 0.972.  The values of Ti=1,… ,9 are then substituted into 

Equation 7.12 as follows:
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The result obtained from MLP model is slightly lower than that from the numerical 

finite limit analysis, which is 31.4 kN/m2.  

Approach 2: Using the MLP models with cN
~

 (Equations 7.14 and 7.15) and cN
~

(Equations 7.16 and 7.17)

The value of cN
~

 was obtained in the previous solution (i.e. cN
~

 = 0.54).  To calculate 

cN
~

, the given values of ci, i, hi, and B are substituted into Equation 7.17, yielding:
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By substituting the values of wi and C given previously in Table 7.6 into the equation 

above, yields T1 = 0.297; T2 = -0.754; T3 = -0.230; T4 = -0.996; T5 = 0.193; T6 = 

0.310; T7 = 0.475; T8 = 0.666; and T9 = -0.629.  The values of Ti=1,… ,9 are then

substituted into Equation 7.16 to obtain cN
~

as follows:



Chapter 7 253

67.0524.0

335.0)629.0(593.0

666.0017.1475.0289.0

310.0009.1193.0898.0

)996.0(952.1)230.0(789.0

)754.0(254.1297.0432.1

exp1511.2
~

1


























































cN

By using Equation 7.8, the ultimate bearing capacity of strip footing, qu(c), is 

calculated as follows:

2
1)( kN/m53.3986.733.1454.065.0

~~   cNNNq ccccu

where Nc is calculated using Equation 7.9 by substituting 1 = 19.45° as follows:
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The result given by the equation above is 25% higher than the result from numerical 

finite limit analysis, which is 31.4 kN/m2.  

7.9      SUMMARY AND CONCLUSIONS

This chapter described the development of meta-models for predicting the bearing 

capacity of footings on multi-layered, cohesive-frictional, weightless soil.  Two 

numerical models were used, namely, the finite element lower bound analysis and the 

artificial neural network (ANN) technique.  A total of 5,000 Monte Carlo realisations 

were carried out using the finite element lower bound analyses, and the results of 

these analyses were used in training, validating and testing sets of multi-layer 

perception (MLP) models

New design equations were derived based on the developed optimal MLP models; 

that is, those based on: qu(c-) in Equations 7.12 and 7.13; cN
~

 in Equations 7.14 and 

7.15; and cN
~

 in Equations 7.16 and 7.17.  Sensitivity analyses were also carried out 
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to test the robustness of the MLP models with respect to the various parameters 

influencing the models.

The predictions from the MLP models and weighed average method (e.g. Bowles 

1988) method were compared and the results discussed.  The results indicated that the 

MLP models outperformed the weighted average method and are able to predict 

bearing capacities reliably and relatively accurately, and consequently, their use in 

practice is encouraged.  The performances of each of the models did not differ 

significantly from one another, although, the MLP model based on qu(c-) in Equations 

7.12 and 7.13 slightly outperformed the MLP model based on cN
~

 and cN
~

 in 

Equations 7.14 to 7.17 in cohesive-frictional cases.  The MLP model based on cN
~

and cN
~

 in Equations 7.14 to 7.17 clearly outperformed the MLP model developed 

in Chapter 6 for purely cohesive cases.  

There are a number of important limitations.  For example, the lower bound 

computations were carried out under plane-strain conditions implying the models are 

valid solely for strip footings.  It would be possible to develop ANN-based models for 

rectangular footings, or circular footings, if three-dimensional finite element limit 

analysis was adopted, with the length or diameter as an additional parameter.  Another 

limitation in this study is the range of variables employed in ANN training, which 

ultimately limits the applicability of MLP models, since the ANNs should be used 

only for interpolation.  Finally, it can be seen that, although large number of Monte 

Carlo simulations were carried out, not all possible cases were analysed and included 

in ANN training, thus diminishing the predictability of ANN-based models.
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SUMMARY AND CONCLUSIONS
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8.1      SUMMARY

This study quantified the effects of soil variability on a strip footing placed on single-

and two-layered spatially variable purely cohesive soils.  In addition, meta-models 

were developed, which are useful for making preliminary estimates of the bearing 

capacity of footings on multi-layered, purely cohesive and cohesive-frictional soils 

profiles.  This study, however, focused on the cohesive term, Nc, of Terzaghi’s 

bearing capacity equation by assuming weightless soil and in the absence of 

surcharge, and therefore, both Nq and N were omitted.

In Chapter 2, previous research into the bearing capacity of footings on multi-layered 

and spatially random soils has been presented, with an emphasis on the analysis of 

shallow strip footings.  It was shown that some research has been undertaken in the 

past on non-homogeneous and layered soil profiles and the use of the rigorous 

solutions obtained from these studies in practical design is highly recommended.  

Finally, it was observed that little progress has been made in predicting the ultimate 

bearing capacity of footings founded on multiple layers of soil using relatively simple 

hand calculation methods.

The methodologies adopted in this study to quantify the effects of soil variability on 

the bearing capacity of shallow strip footings were described.  The methods adopted 

include numerical methods to determine the ultimate bearing capacity and load-

settlement responses of foundations and local average subdivision (LAS) to simulate 

spatially variable soils.  Artificial neural networks (ANNs) were used to develop 

meta-models for bearing capacity prediction.  The upper and lower bound limit 

analyses were based on the plastic limit theorem and their numerical implementations 

were used to calculate the collapse load.  The feature of bracketing the solution 

provides a built-in error check on the accuracy of the computed collapse load.  A brief 

discussion of the traditional displacement finite element analysis was also presented in 

Chapter 3.  Furthermore, a discussion of local average subdivision (LAS), which is

based on random field theory, was also given.  The structure and operation of ANNs, 

as well as the development of ANN models were also described.  ANNs learn by 

being presented with training data from which the ANN network adjusts weights to 

find a set of weights that produce the optimum input/output data mappings.  Many 
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factors that affect the development of ANN models were addressed.  These include 

the determination of model inputs, division of data, data pre-processing, determination 

of model architecture, model optimisation, stopping criteria and model validation.

In Chapter 4, the numerical modelling of strip footings founded under plane strain 

conditions was presented.  This was carried out for 2-layered profiles, namely, purely 

cohesive and cohesive-frictional materials.  The results obtained from the numerical 

methods were examined to ensure that the results were both accurate and robust.  In 

the latter part of this thesis, the robustness of the random field generation using LAS 

was examined to ensure and confirm that the simulated profiles conformed to the 

target statistical distribution and underlying correlation structure.

In Chapter 5, the results of analyses on the effects of spatially random soil on the 

bearing capacity of strip footings founded on single- and two-layered purely cohesive 

soils were presented.  Under this investigation, Monte Carlo simulations with 500 

realisations were used and the local average subdivision (LAS) method was 

implemented into both the lower and upper bound finite element methods.  The 

random soil profiles are simulated using LAS method over a range of soil variability 

and scales of fluctuation, i.e. COVc and c.  Modified bearing capacity factors, N*
c, 

were then acquired using both the lower and upper bound finite element methods.  

The average and coefficient of variation (COV) of the bearing capacity factors over 

500 realisations, i.e. N*c AV and COV N*c AV, were used to quantify the effects of soil 

variability on the bearing capacity.  The variations of these two parameters with 

respect to soil variability and scales of fluctuation were then analysed and some useful 

conclusions were derived.  These include:

 The mean of N*
c, N*c, decreases in both single- and two-layered cohesive 

deposits as the soil variability increases.

 The greatest reduction of N*c was observed when c ≈ 0.5B and COVc = 100% 

for the single-layered case.  It was shown that the value of N*c is 38% below 

the deterministic solution.



Chapter 8258

 In the single-layered case, when the scales of fluctuation are either extremely 

small or infinitely large, the value of N*c should revert to the deterministic 

solution.  

 In two-layered cases, when a weak layer is underlain by a strong layer and 

H/B= 0.25 to 0.5, the worst-case scenario occurred when c ≈ 0.1B or less and 

COVc = 100%.  However, when H = 1.0B, the greatest reduction of N*c

occurred when c ≈ 0.25B and COVc = 100%.  The N*c AV are 29% - 38% less 

than the deterministic value in worst-case scenarios for different H/B ratio.

 When the footing is founded on a strong layer and underlain by a weaker 

layer, the worst-case scenario occurs when 0.5B ≤ c ≤ 1.0B and COVc = 100% 

for all H/B ratios.  The reduction of N*c AV value for the worst-case scenario is 

around 37% less than deterministic value.

 In the two-layered case, as H/B increases, the variations of N*c AV and 

COV N*c AV with respect to soil variability and scales of fluctuation are similar 

to those obtained in the single-layered case.

 For the two-layered cases, theoretically, the N*c will revert to the 

deterministic solution as c→0.  However, as c→∞ and COVc is very high, it 

has been demonstrated that there were large proportions of realizations where 

the ratio of c1 / c2 falls outside the intended study ranges under these 

circumstances.  As a consequence, N*c will not revert to deterministic 

solution, and thus the accuracy of COV N*c AV is also affected.

 In addition, the coefficient of variation of the bearing capacity factor, COVN*c, 

was found to be positively correlated with both soil variability and scales of 

fluctuation in both the single- and two-layered cases.  When the normalised 

parameter COVN*c/COVc was used, it was clearly shown that the COVN*c/COVc

does not vary with COVc, but with the c/B.
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 By examining the upper bound failure mechanism, it was found that the 

inherent spatial variability of soil shear strength alters the failure mechanism 

from a symmetrical log spiral mechanism in homogeneous soil cases to a non-

symmetrical mechanism, particularly when the variability of soil properties is 

high.

Chapter 6 described two multi-layer perceptrons (MLP) models developed to provide 

a reliable and robust estimation of bearing capacity of footings on four- and ten-

layered purely-cohesive soil.  This chapter detailed the methodologies used in 

developing the optimum model, including the data generation using Monte-Carlo 

simulation and the development of the ANN-based models.  This chapter also 

presented a comparison between the results obtained using the ANN-based models 

and the weighted average method (Bowles 1988).  The analyses carried out in this 

chapter yielded the following conclusions:

 The optimum model for the four-layered cohesive soil developed in this work 

was obtained using one hidden layer with five hidden layer nodes, the sigmoid 

transfer function in both the hidden and output layers, a momentum term of 

0.8 and a learning rate of 0.2.

 Whilst the optimum model for ten-layered cohesive soil was obtained using 

one hidden layer with seven hidden layer nodes, the sigmoid transfer function 

in both the hidden and output layers, a momentum term of 0.8 and a learning 

rate of 0.2.

 The results of the sensitivity analysis indicated that the footing width, the 

cohesions and the thicknesses of the uppermost layers have the most 

significant impact on the bearing capacity of the shallow strip footing.  On the 

other hand, the impact of the cohesion and thickness of the subsequent layers 

on the bearing capacity of the shallow strip footing reduces as they are further 

away from the footing.
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 The results indicated that the MLP models are able to predict well the bearing 

capacity of a strip footing founded on multi-layered purely cohesive soils and 

significantly outperformed other methods.  The sensitivity analysis carried out 

to test the robustness of the developed MLP model, and consequently the 

ANN-based design equation, indicated that the model is robust and can be 

used for predictive purposes with confidence.  

 However, both upper and lower bound computations were carried out in 2-

dimensions and it was assumed that the footing has infinite length in the out-

of-plane direction.  It would be desirable to vary the length of a rectangular 

footing in the future so that the upgraded model can accurately predict the 

bearing capacity of three-dimensional pad footings.

Finally, in Chapter 7, the objectives were to develop meta-models for predicting the 

bearing capacity of strip, rough footings supported on a ten-layered, cohesive-

frictional, homogeneous and weightless material.  The details of two proposed 

methodologies for developing two meta-models were presented.  The feasibility of 

utilising the ANNs technique for predicting the bearing capacity of shallow strip 

footing on multi-layered soils has been assessed using MLPs trained with the back-

propagation algorithm.  In order to test the robustness of the developed MLP, a 

sensitivity analysis on each of the influencing factors was carried out.  Three new 

tractable design equations based on the MLP models, were derived to facilitate the use 

of the model.  The predictions from the ANN-based models and the other methods 

were compared.  The results and conclusions of this work are as follows: 

 The optimum models for both qu(c-) and cN
~

 were obtained using 1 hidden 

layer with 9 hidden layer nodes, the sigmoid transfer functions in both the 

hidden and output layers, a momentum term of 0.8 and a learning rate of 0.2.

 The optimum model for cN
~

 was obtained using 1 hidden layer with 9 hidden 

layer nodes, the tanh transfer function in the hidden layer, the sigmoid transfer 

function in the output layer, a momentum term of 0.8 and a learning rate of 

0.2.
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 The results of this work indicate that the MLP models are able to predict well 

the bearing capacity of a strip footing on cohesive-frictional multilayered soils 

and significantly outperformed the weighted average method.  The sensitivity 

analysis carried out to test the robustness of the developed MLP model, and 

consequently the MLP-based design equation, indicated that the model is 

robust and can be used for predictive purposes with confidence.  

 The MLP model based on qu(c-) in Equations 7.12 and 7.13 slightly 

outperformed the MLP model based on cN
~

 and cN
~

 in Equations 7.14 to 

7.17 in the cohesive-frictional cases.  The predictions from MLP model, based 

on cN
~

 and cN
~

 in Equations 7.14 to 7.17, clearly outperformed the MLP 

model developed in Chapter 6 for purely cohesive soil.  

 As in the previous chapters, two-dimensional footing analyses were 

performed, and as a result, these models are valid solely for strip footings.

8.2      RECOMMENDED FURTHER RESEARCH

Because very little work has been done on examining the bearing capacity of footings 

on spatially random soil profiles, and this study is certainly the first using finite 

element upper and lower bound methods to study the effect of soil variability on the 

bearing capacity of strip footings, this study has dealt with the relatively simple cases 

of dealing with single and two-layered purely cohesive soil profiles.  This study 

employed the idealisation of weightless soil, and therefore only focused on the 

cohesive term, Nc, of the bearing capacity equation.  Both the Nq and N terms were 

omitted.  Natural soil has unit weight, , so it should be included in future research.  

To implement the bulk unit weight in finite element analyses, it is recommended that 

the void ratio, e, might first be determined or specified, as the void ratio is one of the 

fundamental soil parameters.  The bulk unit weight of soil can then be calculated 

using phase relationships.

Due to the constraints on available resources (e.g. length of PhD candidature and 

computing resources) adopted in this study, several simplifications and assumptions 
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have been made in the study of the effect of soil variability, Chapter 5, to achieve 

manageable computation effort and, at the same time, maintaining reasonable 

accuracy of results.  As a result, the number of parameters examined was limited.  

Some of the variables, which were not included in this study, may impact on the 

results and could be considered in the future research.  Examples of these variables 

include:

 Smooth and rough footings (with varying roughness coefficients);

 Multiple footings;

 More complex multi-layered soil profiles;

 Anisotropic correlation structures; and

 Various combinations of cohesive-frictional material and purely frictional 

material.

Furthermore, 2-dimensional (2-D) finite element analyses were used in this study, 

which implies that all the numerical studies were conducted under plane strain 

conditions.  This implies that the results obtained from the analyses are applicable 

only to strip footings. As computer-processing power increases in the future and 

further progress is made in the area of numerical analysis, the use of 3-D finite 

element analysis will become more efficient technique for simulating circular, square 

and rectangular shaped footings.  Furthermore, analysing footings on purely frictional 

materials required that high concentrations of elements be placed in areas where high 

stress gradients or high velocity gradients are likely to occur; that are at the edges of 

the footings.  In order to employ a fan type mesh suggested by Shiau et al. (2003) and 

discussed in Chapter 4, some modifications on to the LAS implementation are 

required to allow irregular elements shapes, which in this stage only allows regular 

rectangular elements. 

This study has demonstrated that ANNs have the ability to predict the bearing 

capacity of shallow foundations on purely cohesive and cohesive-frictional soil.  

However, Rezania and Javadi (2007) have recently presented a new genetic 

programming (GP) based model for predicting the settlement of shallow foundations.  

They showed that, like ANN, the GP model is capable of rendering the complex 
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relationship between foundation settlement and its contributing factors in the form of 

a very straightforward mathematical function.  The GP model clearly outperformed

the traditional methods, and also slightly improved upon the predictions given by the 

ANN models suggested by Shahin et al. (2002) and described in Chapter 3.  

Furthermore, the GP generates a simple and lean structured representation of the 

system.  It is a promising approach to provide more tractable and slightly superior 

models to those presented in this study.  The GP model will likely to gain momentum 

in the future research.  Therefore, it is recommended that GP models be explored in 

future research.  These include models, which incorporate Nc, Nq, and N. 

8.3      CONCLUSIONS

From the analyses presented in this thesis, it can be concluded that the mean of N*
c, 

N*c, decreases in both single- and two-layered cohesive soil profiles as the soil 

variability increases.  The worst-case scenarios for both the single- and two-layered 

cases are when the scales of fluctuation are smaller than footing width.  Moreover, the 

coefficient of variation of the modified bearing capacity factor, COVN*c, was found to 

be positively correlated with both the variability of soil and scales of fluctuation in 

both single- and two-layered cases.  

In addition, it has been demonstrated that the artificial neural networks (ANNs) have 

the ability to accurately predict the bearing capacity of shallow strip footing founded 

on multi-layered purely-cohesive and cohesive-frictional weightless materials.  

Furthermore, the MLP models that were developed in this work can be translated into 

relative simple equations suitable for hand calculations, which allow practitioners to 

relatively easily predict the bearing capacity of footings on multi-layered soil.  
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