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PREFACE

_____________________________________________________________________

This work was undertaken between November 2002 and October 2008 within the 

School of Civil, Environmental and Mining Engineering at the University of 

Adelaide.  Throughout the thesis, any materials, techniques, methods and concepts 

obtained from other sources have been acknowledged and credited.  The following 

sections list the works which the author claims originality.

In Chapter 4:

 The implementation and incorporation of the random field simulator (i.e. local 

average subdivision (LAS) into finite element limit analysis formulation;

In Chapter 5:

 The analyses and quantification of the effect of soil variability on the bearing 

capacity of footings founded on two-layered, purely cohesive soil;

In Chapter 6:

 The analyses of strip footings on four- and ten-layered, purely cohesive soil;

 Development of ANN-based models for predicting the bearing capacity of strip 

footings on multi-layered, cohesive soil profiles;

In Chapter 7:

 The analyses of strip footings on ten-layered, purely cohesive-frictional soil; and
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 Development of ANN-based models for predicting the bearing capacity of strip 

footing on multi-layered cohesive-frictional soil profiles;

Listed below are the publications, which have been published as a direct result of this 

study:

Kuo, Y. L., Jaksa, M. B., Lyamin, A. V. and Kaggwa, W. S. (2008). ANN-based 

Model for Predicting the Bearing Capacity of Strip Footing on Multi-layered 

Cohesive Soil.  Computers and Geotechnics. doi:10.1016/j.compgeo.2008.07.002.

Jaksa, M. B., Goldsworthy, J. S., Fenton, G. A., Kaggwa, G. W. S., Griffiths, D. 

V., Kuo, Y. L. and Poulos, H. G. (2005). Towards Reliable and Effective Site 

Investigations. Geotechnique, Vol. 55, No. 2, pp. 109-121.

Kuo, Y. L., Jaksa, M. B., Kaggwa, W. S., Fenton, G. A., Griffiths, D. V. and 

Goldsworthy, J. S. (2004).  Probabilistic Analysis of Multi-layered Soil Effects on 

Shallow Foundation Settlement.  Proc. 9th Australia New Zealand Conference on 

Geomechanics, Auckland, New Zealand, Vol. 2, pp. 541-547.

Goldsworthy, J. S., Jaksa, M. B., Fenton, G. A., Kaggwa, W. S., Griffiths, D. V., 

Poulos, H. G. and Kuo, Y. L. (2004). Influence of Site Investigations on the Design 

of Pad Footings. Proc. 9th Australia New Zealand Conference on Geomechanics, 

Auckland, New Zealand, Vol. 1, pp. 282-288.



III

ABSTRACT

_____________________________________________________________________

Footings are often founded on multi-layered soil profiles.  Real soil profiles are often 

multi-layered with material constantly varying with depth, which affects the footing 

response significantly.  Furthermore, the properties of the soil are known to vary with 

location.  The spatial variability of soil can be described by random field theory and 

geostatistics.  The research presented in this thesis focuses on quantifying the effect of 

soil variability on the bearing capacity of rough strip footings on single and two-

layered, purely-cohesive, spatially variable soil profiles.  This has been achieved by 

using Monte Carlo analysis, where the rough strip footings are founded on simulated 

soil profiles are analysed using finite element limit analysis.  The simulations of 

virtual soil profiles are carried out using Local Average Subdivision (LAS), a 

numerical model based on the random field theory.  An extensive parametric study 

has been carried out and the results of the analyses are presented as normalized means 

and coefficients of variation of bearing capacity factor, and comparisons between 

different cases are presented.  The results indicate that, in general, the mean of the 

bearing capacity reduces as soil variability increases and the worstcase scenario 

occurs when the correlation length is in the range of 0.5 to 1.0 times the footing width. 

The problem of estimating the bearing capacity of shallow strip footings founded on 

multi-layered soil profiles is very complex, due to the incomplete knowledge of 

interactions and relationships between parameters.  Much research has been carried 

out on single- and two-layered homogeneous soil profiles.  At present, the inaccurate 

weighted average method is the only technique available for estimating the bearing 

capacity of footing on soils with three or more layers.  In this research, artificial 

neural networks (ANNs) are used to develop meta-models for bearing capacity 

estimation.  ANNs are numerical modelling techniques that imitate the human brain 

capability to learn from experience.  This research is limited to shallow strip footing 

founded on soil mass consisting of ten layers, which are weightless, purely cohesive 

and cohesive-frictional.  
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A large number of data has been obtained by using finite element limit analysis.  

These data are used to train and verify the ANN models.  The shear strength (cohesion 

and friction angle), soil thickness, and footing width are used as model inputs, as they 

are influencing factors of bearing capacity of footings.  The model outputs are the 

bearing capacities of the footings.  The developed ANN-based models are then 

compared with the weighted average method.  Hand-calculation design formulae for 

estimation of bearing capacity of footings on ten-layered soil profiles, based on the 

ANN models, are presented.  It is shown that the ANN-based models have the ability 

to predict the bearing capacity of footings on ten-layered soil profiles with a high 

degree of accuracy, and outperform traditional methods. 
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NOTATION

_____________________________________________________________________

All variables used in this thesis are defined as they are introduced into the text.  For 

convenience, frequently used variables and their units are described as below.  The 

general convention adopted is that vector and matrix variables are shown in bold 

print, while scalar variables are shown in italic.

A surface area/cross sectional area;

A total matrix of equality constraint gradients (finite element limit analyses); 

ai vector of constraint variable;

B width of the footing (m);

B’ effective width of the footing (m);

b right hand side for linear equalities;

C rescaled hidden layer threshold;

jj dyC the covariance between the model output and measured actual output;

c cohesion of soil (kPa);

ci cohesion of individual soil layer (kPa);

cT objective function;

COV coefficient of variation;

Df embedment depth (m);

d the mean of measured actual output; and

dj the historical or measured actual output;

E elastic modulus (MPa) (finite element analysis);
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E global error function (artificial neural networks);

E[… ] expected value operator (random field theory); 

f yield function (finite element limit analyses);

F bearing capacity factor (foundations);

Fi body force (finite element limit analyses); 

Fk yield function (finite element limit analyses);

Gc (… ) normally distributed random field, having zero mean, unit variance, and a 

scale of fluctuation (random field theory);

Gln c (… ) lognormally distributed random field (random field theory);

g, gi vector/component of prescribed body force;

H depth of the soil layer (m);

hi thickness of individual soil layer (m);

I number of model inputs;

J1, J2, J3 stress invariants;

Kp Rankine’ passive earth pressure coefficient;

Ks punching shear coefficient;

L length of the strip footing (m);

n number of data.

N*
c modified non-dimensional bearing capacity factor for multi-layered soil;

cN
~

non-dimensional bearing capacity factor for footings on multi-layered  

purely-cohesive soil profiles;

cN
~

non-dimensional bearing capacity factor for footings on multi-layered  

cohesive-frictional soil profiles

Nc non-dimensional bearing capacity factor;

Ng non-dimensional bearing capacity factor;
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Nq non-dimensional bearing capacity factor;

 p strain rate vector;

p’ surcharge (kN/m2);

Pp passive force (kN);

q load per unit area (kN/m2);

q, qi vector/components of optimisable surface traction;

qb bearing capacity of bottom soil layer (kN/m2);

Qu ultimate bearing capacity (kN);

qu ultimate load per unit area (kN/m2);

qu(1) first failure load per unit area (kN/m2);

qu(c) ultimate load per unit area of footing on purely-cohesive soil (kN/m2);

qu(c-) ultimate load per unit area of footing on cohesive-frictional soil (kN/m2);

r correlation coefficient;

s vector/components of optimisable surface traction;

u tangential velocity jump;

u displacement rate;

Ti connection weight of hidden nodes (artificial neural networks);

Ti external surface tractions (finite element limit analyses);  

V volume (m3);

v Poisson’s ratio of soil;

v normal velocity jump;

wi connection weight of node i;

X global vector of unknown stresses;

x problem variables, vector of stress variables;

xn scaled value;
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xmin minimum values;

xmax maximum values;  

yj the predicted output by the network;

y the mean of model output;

z depth below the soil surface (m);

 load-spread angle (°);

 load-spread angle (°);

 scale of fluctuation (random field theory);

 friction angle of the soil (°);

 friction angle of individual soil layer (°);

 bulk unit weight of the soil (kN/m3);

 learning rate (artificial neural networks);

c normalised overburden pressure;

q normalised bearing capacity;

 plastic multiplier rate;

s
F scalar loading multiplier for body force;

s
T scalar loading multiplier for external surface tractions;

 momentum term (artificial neural networks);

 mean (random field theory);

ln c mean of lognormal variables (random field theory);

c correlation length of soil cohesion (Local average subdivision);

 strength gradient;

 normal stress vector (finite element limit analyses);
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 standard deviation (random field theory);

jd the standard deviation of measured actual output (artificial neural 

networks);

ln c standard deviation of lognormal variables (random field theory);

jy the standard deviation of model output (artificial neural networks);

z vertical stress at the base of the foundation (kN/m2) (foundations);

 distance vector (random field theory);

 shear stress vector (finite element limit analyses);
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