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Computational Intelligence for
Evolving Trading Rules

Adam Ghandar, Zbigniew Michalewicz, Martin Schmidt, Thuy-Duong T6, and Ralf Zurbrugg

Abstract—This paper describes an adaptive computational in-
telligence system for learning trading rules. The trading rules are
represented using a fuzzy logic rule base, and using an artificial
evolutionary process the system learns to form rules that can per-
form well in dynamic market conditions. A comprehensive anal-
ysis of the results of applying the system for portfolio construction
using portfolio evaluation tools widely accepted by both the finan-
cial industry and academia is provided.

Index Terms—Evolutionary computation, fuzzy systems, port-
folio management, stock market, trading systems.

I. INTRODUCTION

HIS PAPER describes a computational intelligence
T system for learning trading rules and provides a com-
parison of the relative performance of a portfolio managed by
the system on companies that were listed as part of the MSCI
Europe Index from 1990 to 2005. Using only price and volume
data, the system determines rules to buy and sell stocks on
a regular basis. Rather than fixing these rules throughout the
sample period, the rules adapt to changing market conditions,
leading to an evolving rule-base that changes with time.

This paper contributes to the extant computing and finance
literature in several ways. From a financial perspective, the use
of learning rules to build and manage a portfolio of assets that
are chosen based on fuzzy logic trading rule bases is not well
documented and comprehensively examined. Emphasis is usu-
ally placed on developing buy/sell trading rules for individual
stocks or indices, not a whole portfolio of stocks which then
need to be managed over time. This study addresses this issue.
From a computing angle, an integrated process to stock selection
and portfolio management allows for a search for the best fuzzy
trading rules using an evolutionary algorithm (EA), as opposed
to standard genetic algorithms, creating a highly adaptive and
dynamic rule base system. The evaluation of the system is then
tested using a comprehensive set of financial performance tools,
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including stochastic dominance tests that cater for non-normal
distributions in the returns series.

The performance of the portfolio managed by the system is
also compared with several other portfolios, including a port-
folio that mimics a passive index fund, a portfolio that follows a
price momentum strategy, and a Jensen’s alpha portfolio, where
stocks are picked based on their alpha ranking using the single-
factor Capital Asset Pricing Model (CAPM). A portfolio that
is optimized using a hill climber algorithm is also included. To
compare performances, a comprehensive set of portfolio eval-
uation tools are applied to give a detailed assessment of the
system’s performance.

The rest of this paper is organized as follows. Section II
provides background information and a literature review.
Section IIT explains the approach. Section IV describes the
setup used in producing the results given in Section V.
Section VI provides a conclusion.

II. BACKGROUND

There are many papers which describe various applications of
nature-inspired algorithms to financial modeling; in this section,
we survey some of this work.

One of the possible financial applications has been in the area
of developing trading rules to signal when investors should buy
or sell various financial instruments. Research in this area has
received greater attention over recent years as an appreciation
for the ease by which computational algorithms can develop and
evolve complex trading strategies are further realized. Research
such as described in [1] and [20] highlight the possibilities for
evolutionary computation to provide trading strategies, based on
pattern recognition, to profit from equity market trading. Pub-
lished research in academic finance journals primarily focuses
on examining how well genetic algorithms can develop specific
trading rules using historical prices to test and expose their prof-
itability.

This type of research is also directly related to the study of
market efficiency. In an efficient capital market, it would not be
possible for traders to make a profit from past data as all rele-
vant information for pricing a security today would be incorpo-
rated in today’s price. Therefore, many finance papers (see [12],
[16], and [21] for example) interrelate the issue of market effi-
ciency with the ability for genetic algorithms to literally “beat
the market.” Results are somewhat mixed. Although there is
general consensus that financial markets do sometimes exhibit
periods where certain trading rules work (see [8]), it is hard to
find clear evidence that a single trading rule can function over an
extended period of time. This is probably due to the fact that fi-
nancial markets are ever evolving and, in fact, given the number
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of technical analysts that are employed in all the major finan-
cial trading institutions, when a trading rule is found to work
it would not take long before it is exploited until it no longer
yields a significant profit. It is, therefore, possibly more inter-
esting to see if trading rules can be constructed that also contin-
ually evolve as the markets change. An adaptive trading strategy
seems to be more promising than static approaches.

As well as genetic algorithms, other nature-inspired search
techniques have been applied to financial problems. Artifi-
cial neural networks have attracted a lot of interest over the
past decade. A selection includes: reference [27] presents
an index forecasting approach; [13] applies an ANN to cur-
rency exchange rate prediction by anticipating the direction of
price change using signal processing methods for series with
high noise and small sample sizes; [4] describes a neural evolu-
tionary approach to find models of correlation between financial
derivatives; [3] discusses assessing credit risk and predicting
using ANNSs; and [2] discusses a neural network for option
pricing. More recently, numerous applications of evolutionary
computation have been published: reference [22] describes a
dynamic stock selection system in which a model optimized
using evolutionary computation determines optimal portfolio
weights given trade recommendations; a genetic programming
approach for combining trading rules in autonomous agents
so that the rules compliment each other is given in [25]; [26]
presents a linear genetic programming system for trading that
uses intraday data; grammatical evolution for evolving human
readable trading rules is extensively discussed in [7]; finally,
an application of genetic programming for discovering trading
rules that are applicable in the short term is given in [23].
A significant benefit of genetic programming in expressing
trading rules is the grammatical structure of phenotypes which
enables expression of rules combining several input in a form
that is able to be readily understood and applied.

In this paper, we describe a system that forms trading rules
using price and volume history of stock prices and adapts the
rules to changing market conditions. The approach is essentially
referred to as technical analysis. Rather than using fundamental
accounting and macroeconomic data to determine which stocks
to buy or sell, trading rules are developed solely applying histor-
ical data series from the previous trades of these stocks. In par-
ticular, moving average and volume indicators are employed for
this purpose. We also allow for the use of a Jensen’s alpha [18]
which can be calculated using just historical index and stock
price movements as an input for the genetic algorithm to de-
velop profitable trading strategies from.

III. APPROACH

This section describes our approach in constructing a dy-
namic and adaptive stock selection system that considers
changing market conditions. Trading rules are represented
using fuzzy logic. An evolutionary process facilitates a search
for high-performance trading rules. In Sections III-A-E, we de-
scribe the structure of the fuzzy rules, the evolutionary process
applied to fuzzy rule bases, and the evaluation function.

0.0 0.2

Fig. 1. Sample membership functions of fuzzy sets EL, . .. , EH for the single
moving average buy signal linguistic variable (not to scale).

A. Representation

The fuzzy rule base representation enables intuitive natural
language interpretation of trading signals and implies a search
space of possible rules that corresponds to trading rules a human
trader could construct. An example of a typical technical trading
rule such as “buy when the price of a stock X’s price becomes
higher than the single moving average of the stock X s price for
the last, say, 20 days” (indicating a possible upward trend) could
be encoded using a fuzzy logic rule such as “If Single Moving
Average Buy Signal is High, then rating is 1”; conversely, we
could have a trading rule such as “sell stocks with high-price
movement when the portfolio value is relatively low” encoded
by a fuzzy rule: “If Price Change is High and Portfolio Value is
Extremely Low, then rating is 0.1.”

Each fuzzy rule base consists of a set of “if—then” rules
where the “If” part specifies properties of technical indicators
and the “then” part specifies a rating with ten discrete levels
given a stock with these properties. The rule inputs are termed
linguistic variables in the fuzzy logic component. Clearly, at
least one linguistic variable must be defined to construct rules.
To construct the rules used to obtain the results presented in this
paper, we used V' = 9. These are described in Section IV. The
output is interpreted as a rating of the strength of a buy recom-
mendation given fulfillment of the “If”” part. It is possible for the
“If” part of a rule to refer to any combination of the technical
indicators the system uses to give one output rating. A rule base
may contain at least one and no more than O = 30 rules.

The value of each linguistic variable is described by one of
a possible seven fuzzy membership sets. These are defined de-
scribing the relative magnitude of a particular observation: Ex-
tremely Low (EL), Very Low (VL), Low (L), Medium (M), High
(H), Very High (VH), and Extremely High (EH). Membership
functions map crisp data observations to degrees of member-
ship of these fuzzy sets.

Fig. 1 shows a visualization of the membership functions for
the single moving average indicator (see Section IV). The mem-
bership functions are triangular: the mapping from an obser-
vation to a degree of membership for each membership func-
tion (EL,...,EH) is fully defined by specifying a minimum,
center and maximum value where the min and max values refer
to the lowest and highest linguistic variable observations at the
edges of the triangle that belong to the membership set to the
least degree and the center belongs to the membership set to the
highest degree (the top of the triangle).

The membership functions for each variable are initialized
using observations of the variable derived from historical data
and updated whenever new data is observed. The procedure for
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1 2 3 4 5 6 7 8 9 10 11
B|B I|B I|B I|B I|B I|B I|B I|B I|B I|F
B|B I|B I|B I|B I|B I|B I|B I|B I|B I|F
B|/B I|B I|B I|B I|B I|B I|B I|B I|B I|F
B(B I|B I|B I|B I|B I|B I|B I|B I|B I|F
B|/B I|B I|B I|B I|B I|B I|B I|B I|B I|F

Fig. 2. Internal rule base representation for a rule base with O = 5 and V' = 9. B indicates a boolean value: B € {T, F'}; I aninteger: I € {1,2,3,4,5,6,7};

and F afloat: F € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}.

T|(F 2|T 1|F 7(F 1|F 6|F 1|F 7|F 4|F 1]09
F|F 4|T 2|F 2|T 3|T 4|F 5|F 1|T 6|F 2|03
F|(T 1|F 3|F 2(F 2|F 2|T 4|F 4|F 4|F 407
T|(T 4|F 5|F 1|(F 4|F 2|T 5|F 2|F 2|F 5|04
T|F 6|T 3|F 3|(T 3|F 7|F 3|T 7|F 1|F 305

Fig. 3. Example of the internal rule base representation. The order of the columns indicates the particular linguistic variables, both this order and the meaning of

the variables is given Section IV.

building a membership function for a linguistic variable com-
prises of first defining a membership set of observations the
function applies to, and then defining the membership function
by finding the minimum, maximum, and center, as discussed
in the previous paragraph. First, a series of historical data ob-
servations for the variable are sorted from lowest to highest.
Then, the series is divided into seven ordered sets of equal size,
where each set corresponds to one of the seven membership sets
(EL,...,EH),the lowest and highest member of each set give
the minimum and maximum values that belong to the set and
the center is found by taking the mean of all the observations
that belong to the set. When new data is input to the system this
procedure is repeated.

Any “If” part may include up to V' = 9 linguistic variables,
which can take one of seven possible values. The output for each
rule gives one of ten different ratings; there can be up to O = 30
rules in each rule base.

To estimate the number of possible phenotypes, we can first
estimate the number of possible phenotypes which consist of
a single rule. Note that if a single rule has one linguistic vari-
able present, then there are 7 x 9 x 10 such phenotypes (nine
possible linguistic variables, seven possible values, ten possible
outcomes). If a single rule has two linguistic variables present,
then there are 72x 36 x 10 such phenotypes (36 possible com-
binations of two linguistic variables out of available nine, 72
possible values for a pair of linguistic variables, ten possible
outcomes). In general, the number of possible phenotypes for a
single rule (with one, two,..., nine linguistic variables present)
is

9
p=10x Y 7' x (‘?) ~ 10102,
1=1

As the number of phenotypes with k rules can be estimated as
p¥, the estimation of the total number of phenotypes is p*° <
10306.
An example of a phenotype rule base that could be produced
by the system is given next. It consists of three rules.
o If Single Moving Average Buy Signal is Extremely Low,
then rating = 0.9.
» If Price Change is High and Double Moving Average Sell
is Very High, then rating = 0.4.

» If On Balance Volume Indicator is Extremely High and
Single Moving Average Buy Signal is Medium and Portfolio
Value is Medium, then rating = 0.5.

Internally, each rule is represented using a sequence of slots.
The columns in Fig. 2 have the following meanings. Column 1
contains a Boolean value to indicate whether the rule is active.
Columns 2-10 represent the rule inputs (each corresponds to a
linguistic variable) and contain: (a) a Boolean value indicating
whether or not the linguistic variable is active and (b) a number
from 1 to 7 representing a membership function for the variable
(1 corresponds to extremely low and 7 to extremely high). Fi-
nally, column 11 indicates the rule output rating and contains a
single floating point value from the set {0.1,0.2,...,1.0}). The
internal representation for a rule base is simply a 30 X 11 matrix
(note that columns 2—10 contain a Boolean and an integer).

The number of possible genotypes is

230 X 2270 X 7270 X 1030

as there are 230 possible truth assignments for the Boolean vari-

able in column 1 of the matrix, 227° possible truth assignments
for all Boolean variables in columns 2-10 of the matrix (i.e.,
9 columns and 30 rows), 7270 possible assignments for integer
variables in columns 2-10 of the matrix (i.e., 9 columns and
30 rows), and 103° possible assignments for the variable in the
eleventh column of the matrix. Note that

230 X 2270 X 7270 % 1030 ~ 10318.

As an example, the genotype representation of the phenotype
given above is provided in Fig. 3. For compactness, the illustra-
tion is of a rule base with O = 5 rules, for O = 30 the rule base
additional rows would have false values in the first slot.

B. Evolutionary Process

The fuzzy rule bases undergo an evolutionary process. An ini-
tial population of rule bases (genotypes) are selected at random
and may be seeded with some rule bases that correspond to
accepted technical trading strategies. For example, the seeds
used in the experiments discussed in this paper are given in
Section IV of this paper.

The EA used in our asset allocation system is summarized by
the following sequence of steps.
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1) Initialize population P of n solutions (each solution RB;
is a rule base)

2) Evaluate each solution: calculate
1 =1,...,n.

3) Identify the best solution found so far (best).

4) Alter the population by applying a few variation operators
(tournament selection of size 2 is used).

5) Apply arepair operator to each offspring; this operator con-
trols diversity of offspring with respect to the best solution
bestprevious from the previous generation (elitism is not
used).

6) Repeat steps 2—5 successively for N generations.

7) The best solution after N generations represents the final
solution.

Three variation operators (one mutation and two crossovers)
and one repair operator are used in the process. We discuss them
in turn.

The mutation operator works by possibly modifying each
gene of a single parent rule base in the process of producing
an offspring. The type of gene remains the same: for instance
a Boolean value cannot become an integer used to represent a
membership function nor a decimal used to represent an output
rating. If a gene is Boolean, it is flipped. Otherwise, if it is an in-
teger or float, one of three events occur with equal probabilities.

1) The corresponding gene in the parent is incremented or
decremented (equal probability for either) by a small
amount, 6, to derive the offspring gene: for floats 6 = 0.1
and for integers 6 = 1. Since integers represent member-
ship sets the change corresponds to a shift of one degree
of membership (for example, from low to very low).

2) The gene in the offspring is assigned a new value at
random. For an integer gene, the new value is selected
from the domain 1, 2, ... 7 and for a float from the domain
0.1,0.2,...,1.0.

3) The corresponding gene in the parent is passed unaltered
to the offspring.

The two crossover operators combine genes from two parents
to produce a single offspring. The first one, uniform crossover,
assigns each gene in the offspring the value of a gene selected
from one of the parents (the parent that provides the gene value
is selected with equal probability). The second crossover oper-
ator assigns the rows of the offspring matrix by selecting—with
equal probability—rows from both parents. In other words, the
effect of this operator is to build a new rule base by choosing
complete rules from each parent.

The last operator used in the system is a repair operator. It
is used to maintain stability between generations. It is a bi-
nary operator with two rule bases as arguments and its effect
is to modify the first genotype in such a way that it is no more
than p percent different from the second genotype, which is
best—the best genotype found. The number p is a parameter
of the method. We found this parameter to be very important in
controlling the type of rules generated, in Section IV the values
we used for p are given.

eval(RB;) for

C. Evaluation of a Fuzzy Rule Base

The evaluation process comprises of three stages: in the first
stage individual stocks are evaluated according to a rule base
(Section III-C1); in the second stage, the overall rule base’s per-
formance is evaluated (Section III-C2). The return on invest-
ment (ROI) is adjusted in the final stage of the evaluation process
(Section III-D).

1) Rating of Individual Stocks: In this section, the proce-
dure to assign a rating to stocks with respect to a rule base is
explained. For any stock X, a rating RB(X) is defined. This
mapping will be described using an example. Consider a rule
base as follows.

1) If Single Moving Average Buy Signal is High, then rating

= 0.7.
2) If Price Change is High and Volume Change is Very High,
then rating = 0.4.

On a particular day ¢, the following observations are made of
technical indicators for stock X.

1) Volume Change = 0.5.

2) Single Moving Average Buy Signal = 0.95.

3) Price Change = 0.2.

The first step of the process is to process each rule individu-
ally. First, consider the single If component of the first rule.

o If Single Moving Average Buy Signal is High.

We observed that for stock X on day ¢ the value for Single
Moving Average Buy Signal was 0.95 on day ¢. We must find the
degree that this observation is High to see how much it matches
the rule: the membership function for High is defined by its min,
center, and max which are, in this case, 0.12, 0.97, and 3.88,
respectively. Using (1), a membership function defined by these
values maps the observed value 0.95 to a degree of membership
of 0.97 in High or 97% High, a visualization of this procedure
is given in Fig. 4

r—min

—==8 - ifmin < z < center
center—min’

m(z) = 1, if = center )
—r=max __ = f center < £ < max
center—max’ = —

otherwise.

Since the first rule only has one If part, we now consider the
output rating part of the rule: then rating = 0.7. Recall from
Section III-A that the output rating is interpreted as a rating of
the strength of a buy recommendation given the total fulfilment
of the If part. By applying the membership function the degree
that a rule fulfills the “If” part is found: the rating is adjusted
proportionally to the degree of membership of an observation
to the linguistic variable specification in the “If” part. As the
rule fulfilled the “If” part of the rule to the degree of 0.97, we
adjust the output rating: 0.97 x 0.7 = 0.679.

The system looks at each rule in turn, the second rule in this
example has two inputs.

 If Price Change is High and Volume Change is Very High,

then rating = 0.4.

First, each conjunction is processed separately. Assume using
the process used for the first rule, it is determined that the obser-
vation Price Change = 0.2 implies membership in the fuzzy set
High Price Change = 0.5; and that Volume Change = 0.5 im-
plies membership in Very High Volume Change = 1. These two
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Fig. 4. Finding the degree of membership of observed single moving average
buy signal 0.95 for stock X is “high” with a degree of 0.98.

values are combined using a common fuzzy and operator: mul-
tiplying the membership degrees. Hence, the combined mem-
bership: 0.5 x 1 = 0.5. In the same way as for the first rule, we
adjust the output rating: 0.5 x 0.4 = 0.2.

The final step of the process is to derive an output rating for
the whole rule base RB(X), this rating combines the results for
each rule to give a rating for stock X given some input data.
Recall that for the first rule the result was 0.679 and for the
second it was 0.200. To get the output rating, the center of mass
of the results from each individual rule is found. In the example,
this value is (0.679 + 0.2) + (0.7 + 0.4) = 0.799

RB(X) = 2% @)

2
where o; is the output of rule ¢ for stock X, and r; is the rating
of rule .

2) Evaluation of Rule Base Performance: Using the proce-
dure explained in the previous section for stock X a rule base
is applied to each stock in the market. The result is a ranking of
all stocks in a market M that is ordered by rating

R(M) = (X1, Xia, ..., Xin) 3)

where M = {Xl,Xg, e ,Xn} and RB(X,k) Z RB(X1k+1)

The performance of a rule base R B is measured through anal-
ysis of the results of applying RB to simulated trading. The
ranking of stocks discussed in the previous section that is im-
plied by each rule base contains the information used in trading.
A decoder defines the interpretation of the ranking to make de-
cisions for portfolio construction.

The simulation takes place over a set period of time—a
window of historical data. In the simulated scenario, an initial
capital amount is allocated which is then used to construct a
portfolio on day 1 of the simulation period. This initial portfolio
is updated and traded over the rest of the data window. The

Pottiolio

Decoder

Ranking on

day d
Rule Base |— | Simulation | —= | Evaluation

Ttading days at 20 day
intervals
I I I I | Histotical Data
0 20 40 &0 8O
day

Fig. 5. The decoder takes a ranking and recommends a portfolio.

decoder (see Fig. 5) formulates buy and sell decisions given a
ranking for trading the portfolio.

In the system, a portfolio F; is defined as a vector of holdings
of stocks in M = (X4,...,X,,) at time ¢

P =la1Xi1,. .., ax Xim] “)
where a1, ..., ay are natural numbers, {X;1,..., X;m} C M,
and Value(P,t) = > a; x price(X;;), forj =1,...,m.

Two key parameters are used in the decoder. They are buy best
stocks percentage and sell Worst Stocks Percentage. Buy best
stocks percentage is the percentage of stocks to select from top
of the ranking and sell Worst Stocks Percentage is the percentage
to sell from the bottom of the ranking. In all simulations we used
a value of 10 for both parameters.

The process for updating a portfolio P; to get the next port-
folio P» involves creating a new ranking on trading day 2 and
selling stocks held that are at the bottom of the new ranking up
to sell worst stocks percentage. Using the cash from selling the
worst stocks as well as any unallocated cash the buy best stocks
percentage of stocks in the new ranking are bought if they are
not already in the portfolio. Cash is distributed evenly over the
best-ranked stocks until cash either runs out or the portfolio con-
tains buy best stocks percentage of all stocks in M. Trading does
not usually take place every day in the simulation scenario, port-
folio updates are processed at set intervals defined by the dis-
tance between trading days.

Transaction costs are accounted for in the simulation. Trans-
action cost is deducted from the simulated capital for every
transaction. The portfolio is updated after a set number of days
d (typically every 20 days), and then every d days after that.

Performance is highly influenced by the assumptions made
in the simulation, including the method used to interpret the
ranking by the decoder and the parameters used to guide the
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portfolio construction. During the simulation the parameters are
tied to each rule base and may be subject to the evolution with
the rules. Another crucial assumption is choice of the historical
data window; we leave discussion of this aspect to further para-
graphs of this subsection.

Rule base performance is evaluated by analysis of portfolio
performance during simulation. The measure used for evalu-
ation of portfolio performance is Return on Investment (ROI)
during the whole simulation period [see (5)]

_ (V) — In(Vy,)
t1 —to

Portfolio Value, t; =

ROI )

where V' = End Time, and t, =
Start Time.

The result of the simulation is the ROI during simulation for
RBx : ROI(RBx). To compare RBx to another rule base
RBy, it is the case that if ROI(RBx) > ROI(RBy), then
RBx is better than RBy . This basic criteria is supplemented
by a few additional characteristics of performance which are
considered in the final evaluation described in Section IV.

D. Final Evaluation

Additional criteria are considered in addition to ROI when
measuring performance. This is implemented using penalties to
guide the evolutionary search away from rule bases that produce
undesirable return distributions within the training period (even
if the return over the whole period is good) and also to prevent
overfitting solutions to training data. The final evaluation value
equals the ROI in simulation minus Penalties. There are two
penalties applied to modify ROI, and they are as follows.

1) Portfolio loss penalty.

2) Ockham’s razor penalty.

Let us discuss each penalty in turn starting with the portfolio
loss penalty.

In simulation, we measure the portfolio gain or loss on each
trading day (see Section III-C2), as well as the final return on
investment over the simulation period. Solutions that result in
a reduction of portfolio value (during simulation) are penalized
if they result in losses on any trading day even if at the end of
the simulation period the return was high [see (6)]. This mecha-
nism provides a risk reduction facility and by adjustment of the
penalty values that are imposed lever to focus the search for rule
bases that can give particular return characteristics. The penalty
becomes progressively higher for large losses

0.01, ifé>—-5%
0.1, if-5%>6>-10% (6)
10, ifé < —10%

m(zx) =

where ¢ is the percentage change in portfolio value since the
previous trading day.

For example, if we had a 120-day training simulation with a
trading interval of 60 days, the penalty would be applied twice:
once at 60 days and once at 120 days. In this example if a rule
base had an initial value of $10,000,000 on day 1 of simulation,
then at day 60 a value of $95,000,000, and on day 120 a value
of $99,500,000, the penalty would be calculated on each trading
day as follows.

Rule Base | @ | Data Rating Ranking

ROI @ | Penalties

Fig. 6. Complete evaluation process.

1) On day 1, no penalty is applied as it is the first day.

2) On day 60, the penalty is incremented by 0.1 because the
portfolio lost 5% of its value (6).

3) On day 120, no penalty is applied because the portfolio
increased 4.5%.

The second penalty, Ockham’s razor (7), reduces the fitness
of a solution with many rules if the same return can be obtained
with fewer rules. The reason that it is better to have fewer rules is
that this encourages generality rather than over fitting to training
data

P,ckham = number of rules x k& @)

where £k is a penalty constant.

The penalties are added together to get an overall value for
each single rule base. This value is deducted from the ROI for
that rule base. Fig. 6 gives an overview of the process required
to determine a fitness value comprising a penalized ROI value
for each rule base.

Using the methods to set the objective of the EA, the charac-
teristics of rule bases with higher performance from both a risk
and return perspective are targeted. The result is a best rule base
that is able to be used for real trading. It is important that the rule
base is applied to real trading in the same way as in simulation.

E. Adapting the Rule Base

In this section, methods to cause rule bases to adapt to market
conditions are discussed. Approaches towards this are through
selection of data windows and by controlling the search. During
the search process, the performance of rule bases is evaluated
based on data, as described in Section III-C. Rule bases that
perform well during the training data window are identified by
the search. We first discuss the methods to select data windows,
and then controlling the search.

Three methods for selecting a data window are considered.

1) Initial Window.

2) Extending Window.

3) Sliding Window.

The initial window (Fig. 7) uses a single initial period to
evolve a rule base and then the rules from this period are used
for all future trading. The extending window (Fig. 8) uses all
the historical data available to evaluate rule bases. The sliding
window (Fig. 9) uses a recent historical time window for eval-
uation. In methods 2 and 3, the rule base adapts to consider the
changing market, the sliding window fits the rule base to a pe-
riod in the recent past. Note that in 2 and 3, the rules are applied
to trading immediately after the last historical data period has
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Trade using sol 1

Trade using sol 1

Fig. 7. A static rule base approach.

Sol 3
Sol 2

Sol 1
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Fig. 8. A sliding window approach to adaptation by updating training data.

Sol 3
Sol 2

Sol 1

Data Window 1

Data Window 2

Data Window 3 Time
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Fig.9. Anextending window approach to adaptation by updating training data.

transpired. Another approach to be tested in the future will in-
volve identifying characteristics of the market (market regimes)
during training windows, and then applying rule bases when the
market appears to be exhibiting these characteristics.

A new search takes place for each new window in the ex-
tending and sliding window methodologies. However, instead of

starting with a completely new population, a memory is main-
tained of the best solution from previous windows. The best so-
lution from the previous window is used in the generation of the
initial population for each window. This is achieved using the
repair operator (Section III-B).

IV. EXPERIMENTAL SETUP

In this section, parameters and details used to configure the
system to obtain the results discussed in Section V are provided.

A. Inputs

The system was tested using historical data for stocks in the
MSCI Europe index from 1990 to 2005. The MSCI Europe
index represents the largest stocks, by market capitalization,
which are traded across Europe. The MSCI Europe is, in fact,
primarily composed from the individual country indices that
MSCI creates and tracks. Although the constituent stocks that
make up the index change over time, between 1990 and 2005
there were at least 700 active stocks that comprised the index
at any point in time, with a total of 1241 represented over the
whole period.

Two input files were used: one containing series for the
trading volume of each stock, the other containing price data.
The linguistic variables used are based on well-known technical
indicators used by real traders. They were calculated solely
using price and volume data. All stock data was adjusted for
various company events that would alter the price of individual
stocks. This would include, for example, share splits and the
payment of dividends. All payments generated from a stock
were assumed to have been reinvested back into the same stock.
Also, share prices were converted to all be in the Euro. Where
necessary, DataStream International Synthetic Euro FX rates
were utilized for currencies without a direct relationship with
Euro or ERM prior to it becoming a physical currency.

The risk free rate of return used to calculate the alpha
of stocks plus performance evaluation statistics provided in
Section IV-B are from the three-month Euro deposit rate series
that was taken from DataStream International.

A listing and brief description of the meaning of each lin-
guistic variable is provided below with reference to a day ¢ when
the signal applies.

1) Price Change: the change in price over a 20 day period

before day ¢.

2) Single Moving Average Buy Signal: the difference between
the price at time ¢ and a 20 day moving average at time ¢
when the price is greater than the moving average.

3) Single Moving Average Sell Signal: the difference between
the price at time ¢ and a 20 day moving average at time ¢
when the price is less than the moving average.

4) Portfolio Value: the value of the portfolio at time .

5) Double Moving Average Buy Signal: the difference be-
tween a 10 day moving average at time ¢ and a second
moving average based on a longer time period (20 days)
at time ¢ when the first moving average is greater than the
double moving average.

6) Double Moving Average Sell Signal: the difference be-
tween a 10 day moving average at time ¢ and a second
moving average based on a longer time period (20 days) at
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time ¢ when the first moving average is less than the double
moving average.

7) On Balance Volume Indicator (OBV) Buy Signal: the OBV
indicator compares volume to price movements. A running
indicator termed the OBV indicator is constructed such that
volume is added if the closing price at time ¢ of the indi-
cator is higher than the previous closing price (att—1), sub-
tracted if it is lower and does not change if the closing price
remains static. A buy signal is produced whose strength de-
pends on the extent of divergence between the maximum
price and the maximum OBV over a period from ¢ to ¢ —20.

8) On Balance Volume Indicator (OBV) Sell Signal: An OBV
sell signal is produced whose strength depends on the ex-
tent of divergence between the minimum price and the min-
imum OBV over a period from ¢ to ¢t — 20.

9) Alpha: an indicator based on the CAPM (see Section V-A).

B. Parameters for the EA

The probabilities for applying the three operators described
in Section III-B were as follows. For mutation there was proba-
bility 0.4, for uniform cross over 0.3, and for rule crossover 0.3.
For the repair operator, we used p = 10% in all experiments.

In Section III-B, we mentioned the initial population can be
seeded with predetermined rule bases. At the beginning of each
optimization including for every window in the sliding window
schema, a single price momentum strategy rule base was in-
serted into the population, its phenotype was:

o If Price Change is Extremely Low, then rating = 0.0.

o If Price Change is Very Low, then rating = 0.16.

o If Price Change is Low, then rating = 0.33.

o If Price Change is Medium, then rating = 0.5.

» If Price Change is High, then rating = 0.67.

e If Price Change is Very High, then rating = 0.83.

o If Price Change is Extremely High, then rating = 1.0.

A sliding window methodology was used with a 120 day
window with a 20 day window movement between periods. The
real trading portfolio used to evaluate the results was generated
using a rule base from the previous window. For the trading sim-
ulation (see Section III-C2) the parameters buy best stocks per-
centage was set to 10% and sell worst stocks percentage was
also set to 10%. An additional constraint was also set that the
maximum number of companies that the portfolio could take a
position in at any one time be limited to 100 stocks.

The period the EA would run for each window was controlled
using a max steps without improvement parameter (MSWI),
which allows the EA to continue iterating until MSWTI iterations
passed without a better rule base being found. In these experi-
ments, M SWI = 5000.

V. RESULTS

In this section, we present results of applying the system
using the experimental setup defined in Section IV. The discus-
sion is divided into two parts: the first, Section V-A, comprises
an analysis using standard portfolio evaluation tools widely
accepted by finance practitioners and researchers; the second,
Section V-B, consists of an evaluation using stochastic methods
that do not make any assumptions about the characteristics of
the return distributions. In the following discussion, we refer

to the portfolio generated using the computational intelligence
system presented in this paper as the EA portfolio.

A. Standard Performance Measures

In order to test and evaluate the performance of the EA port-
folio, not only is a benchmark portfolio required, but also a com-
parison should be made with alternative strategies. A compar-
ison with other traded funds would not necessarily be suitable,
as the EA has been restricted to only utilize price and volume
data. Traded funds in the market are obviously able to also apply
a wealth of company information ranging from cash flows, earn-
ings, and dividend behavior to name but a few, in order to deter-
mine the best “buys” in the market. Therefore, we instead focus
our main efforts into comparing the performance of the EA port-
folio to two other more traditionally constructed portfolios that
use the same information set available to the EA. The first of
these portfolios is constructed from a price momentum strategy.
Every 20 days, the portfolio is rebalanced to hold the top 10%
of stocks that are the best performing, in terms of returns over
the previous 120 day period. There is sufficient academic re-
search to indicate price-momentum strategies can outperform a
passive index-tracking portfolio. Reference [17] provides a re-
cent discussion on the profitability of price momentum strate-
gies and the potential reasons behind it. It is recognized that the
strategy utilized in this paper is different from that discussed in
the aforementioned paper in terms of length of holding period
and ability to short sell. However, by constraining the price mo-
mentum design in this way, it will be utilizing the same dataset
and trading constraints applied by the EA process. The results
from this type of portfolio will, therefore, provide an indicator
as to whether the EA portfolio does more than just replicate a
momentum strategy.

The second portfolio is an alpha portfolio, based on the
single-factor model, presented here

Tit —Tfe = 0+ Bi [Fmye — Tre] + €in (8)

Theoretically, in an efficient market it would be possible to
price stocks based solely on their risk components. Under the
classical CAPM, there is only one risk factor, that being the
systematic risk of the stock. Therefore, excess returns of any
stock, 7, above the risk-free rate, 7, can be fully explained by
its level of systematic risk, J;, and the market risk premium
(rm — 7). The alpha value of the stock, ;, should be zero.
If it is not and, in fact, there is a positive value, then the stock is
outperforming relative to its level of systematic risk and should
be bought. The higher the alpha value, the better the stock is to
purchase. An alpha value is calculated for each stock every 20
days using stock returns from the previous 60 days of trading
data. Stocks with the highest alphas are bought and held.

We recognize that the above single-factor model is a relatively
basic model of risk, and does not take into account more com-
monly used frameworks such as Fama and French’s three-factor
model [11], incorporating size and book to market value effects.
One can also question the validity of calculating alphas over
short periods of only 60 days, and the statistical significance of
them. However, tests using various lengths of time to calculate
alphas did not lead to radically different results. Moreover, the
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Fig. 10. Portfolio Values from 1992 to 2005. Each portfolio starts at a value of 1000 on 16th November 1992.

single-factor model explained above is congruent with forming
a portfolio using only price information. It is also a subset of the
information set utilized by the EA itself, and as such can pro-
vide some measure of relative performance to the EA portfolio
from its ability to deviate away from standard price momentum
and alpha-based strategies.

Three further portfolios were also created. The first being
a hypothetical MSCI Europe passive index. This essentially
mimics the returns from the MSCI total return index itself
and is set as the raw benchmark for all portfolios. The second
is a buy-and-hold portfolio created by holding a selection of
stocks based on optimizing the initial window, as discussed in
Section III-A. This will provide for a comparison of the EA
performance against a static model. Finally, results from a hill
climb optimization routine is also provided to compare the
EA against another search-based optimization approach. The
algorithm was initialized with a random rule-base of the same
type as used by the EA and is based on the mutation operator
described in Section III-B, which enables the search to avoid
being trapped in local optima. The solution is progressively
improved through iterations. The algorithm is terminated when
no improvement is found after 5000 iterations.

At a first glance, it is noticeable that the EA portfolio has
performed exceedingly well when examined from an investor’s
point-of-view who would have held the portfolio from incep-
tion until the end of the sample period. In fact, the EA pro-
vides an excess holding period return of 782.98%, this being
more than four times the excess holding period return generated
from an investor that had simply bought into a passive fund that
tracked the market index (earning a return of 187.25%). To il-
lustrate this, Fig. 10 tracks the value of each portfolio for the
13 year holding period. Annualized excess returns for the EA
were more than double (at 19.09%) to the market index. Inter-
estingly, this higher return performance was not at the expense
of higher risk, with annualized standard deviations below that
of the MSCI index.

From a visual inspection of Fig. 10, it is interesting to ob-
serve that the alpha and price momentum strategies seemed to

perform quite well from 1992 to 2000 when for the most part the
MSCI index followed an upward drift. The bearish market con-
ditions thereafter did not help either portfolio perform as they
did in the past. This is to be somewhat expected as the two
strategies are more aligned for working with bull runs. There
is a substantial body of research analyzing the potential rea-
sons for the success of such simple strategies as that of a price
momentum (see [17]), particularly, during the 1990s. However,
it is also interesting to note that despite the change in market
sentiment, the EA portfolio did not lose anywhere close to the
same amount of money that the alpha and price momentum port-
folios declined by, as it would seem that the adaptive trading
rules utilized by the EA were able to evolve to the bearish phase
in the financial market. This highlights well the importance of
having an evolving rule-base to adapt to new market conditions.
The buy-and-hold rule-base portfolio declines in value with the
alpha and price momentum portfolios, suggesting further that
the initial set of trading rules were suited for a bullish market
and not suitable for bear runs. Interestingly, the hill climb ap-
proach also falls in value, suggesting the rule-bases were not as
adaptive to changing market conditions as the EA method.

As one of the most popular and easily recognizable methods
to compare portfolios is through their Sharpe ratios [24], Table I
tabulates these results. The Sharpe measure is calculated as the
returns of the portfolio, r,,, above the risk-free rate, r ¢, divided
by the portfolio standard deviation

(rp — Tf).

Op

Sharpe =

As a measure of total risk adjusted return performance, only
the EA and buy-and-hold portfolios were able to beat the market
index. The slightly higher returns from the alpha portfolio did
not sufficiently compensate for the far higher level of risk (a
standard deviation of 25.81%). What is also of interest to note
is the relatively high sharpe ratio for the EA portfolio at 1.063.
Once total risk, as measured by the standard deviation of port-
folio returns, is taken into account, the EA portfolio stands out
amongst all of the alternatives.
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TABLE I
STANDARD PORTFOLIO PERFORMANCE MEASURES. ALL FIGURES ARE FOR PORTFOLIOS THAT WERE ORIGINALLY CREATED ON
16TH NOVEMBER 1992 AND HELD UNTIL 19TH SEPTEMBER 2005 USING EURO AS THE BASE CURRENCY. THE SHARPE RATIO IS
CALCULATED FROM ANNUALIZED ARITHMETIC RETURNS. EXCESS RETURNS ARE BASED ON COMPARISON WITH THE THREE-MONTH
EURO DEPOSIT RATE. THE QUOTED ALPHA’S, INFORMATION RANK AND NET SELECTIVITY MEASURES HAVE BEEN ANNUALIZED

MSCI Europe EA Alpha | Buy and Hold | Price Momentum | Hill Climber
Arithmetic Returns 187.25% 782.98% | 258.72% 224.48% 175.94% 78.02%
Geometric Returns 8.61% 19.09% | 10.78% 10.25% 8.46% 4.70%
Annualized Volatility 18.96% 18.07% | 25.81% 19.69% 25.63% 16.98%
Sharpe Ratio 0.5307 1.0630 0.5251 0.5948 0.4452 0.2825
Jensen Alpha NA 16.62% 9.16% 9.85% 7.93% 5.17%
Modified Alpha NA 16.57% 9.09% 9.76% 7.86% 5.06%
Information Rank NA 0.9524 0.3734 0.5066 0.3189 0.3061
Net Selectivity Measure NA 9.62% -0.01% 1.26% -2.12% -2.08%

The next four measures are all based on the single-factor
model and relate the performance of the portfolios to the bench-
mark, MSCI Europe index. The first two measures tabulate the
portfolio alphas. These are similar to a stock’s alpha, but relate
to how much better the portfolio has performed relative to the
systematic risk of the portfolio and performance of the bench-
mark index. All of the portfolios show some degree of over-
performance, having positive alphas. However, only the alpha
statistic from the EA portfolio was found to be significant at
the 1% confidence level. Modified (see [19]) alpha values are
also tabulated. These alpha values have been computed to take
into account the fact that the returns series may not be normally
distributed!. However, there is actually no significant difference
in the figures presented. The robustness of these alpha values
can also be measured through the information performance rank
that is presented. Sometimes also known as the appraisal ratio,
it measures the portfolios average return in excess of the bench-
mark portfolio over the standard deviation of this excess return.
Essentially, it evaluates the active stock-picking skills of the
strategy, once unsystematic risk generated from the investment
process is accounted for. As we are comparing each of our port-
folio’s with the MSCI Europe total return index, the information
ratio is calculated as

VTa

Oe

Annualized Information Ratio =

where T is the period multiple to annualize the ratio and o is the
standard error of (8). Compared with other funds in the market,
an appraisal ratio of 0.95 for the EA portfolio is indicative of a
very strong and consistent performance. Grinold and Kahn [15]
have argued that good information ratios should be between 0.5
and 1, with 1 being excellent. Goodwin [14] examined over 200
professional equity and fixed income managers over a ten year
period and found that although the median information ratio was
positive, it never exceeded 0.5. Of all the alternative portfolios,

IThe modified alpha is calculated as

_ Covlry, —(1+ Fm) ]
P Cov [P, = (14 7m)~?]
where
b M(E[l+7r,])—In(l4ry)
Var[In(1 4+ ry,)] ’

only the buy-and-hold portfolio comes close to beating the 0.5
value.

The final row in Table I presents the results from Fama’s
Net Selectivity measure [10]. It provides a slightly more refined
method to analyze overall performance for an actively managed
fund. Overall performance, measured as the excess returns of
the portfolio over the risk-free rate, can be decomposed into
the level of risk-taking behavior of the strategy and security se-
lection skill. This security selection skill, or Selectivity, can be
measured as a function of the actual return of the portfolio minus
the return that the benchmark portfolio would earn if it had the
same level of systematic risk. This selectivity value, however,
can be broken down still further to calculate Net Selectivity.
Given that a portfolio’s strategy may not be limited to simply
track the benchmark portfolio—which would be the case for
our portfolios under examination—it is also necessary to take
into account the fact that the portfolios are not fully diversi-
fied, relative to the chosen benchmark. In fact, for the EA and
buy-and-hold portfolios, the maximum number of stocks that it
is allowed to have is restricted to 100, far less than the MSCI
index. To account for this, net selectivity is the value of selec-
tivity that the strategy adds to the portfolio minus the added re-
turn required to justify the loss of diversification from the port-
folio moving away from the benchmark. This effectively means
any returns that the portfolio earns above the risk-free rate must
be adjusted for both the returns that the benchmark portfolio
would earn if it had the same level of systematic risk and the
same level of total risk to the benchmark.

The net selectivity figures quoted will, by default, all be less
than the alpha values previously examined. However, even when
the differences in total risk are accounted for, the EA portfolio
provides a very positive result. In fact, the only other portfolio
to show a positive net selectivity figure is, again, from the buy-
and-hold rule base.

Table II shows general distribution characteristics of the port-
folios under examination. A Jarque—Bera test [6] shows that
none of the constructed portfolios are normally distributed with
the exception of the MSCI index. The EA portfolio shows evi-
dence of negative skewness, implying from an investor’s per-
spective that the majority of returns are generally above the
mean, although large negative returns can be expected on an
irregular basis. With the exception of the MSCI index, all se-
ries demonstrate fat tails. In particular, the hill climb exhibits
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TABLE 11
STANDARD PORTFOLIO PERFORMANCE MEASURES. MONTHLY RETURNS ARE CALCULATED ON A DISCRETE BASIS AS A
PERCENTAGE CHANGE FROM ONE DAY TO THE NEXT. THE JARQUE-BERA STATISTIC IS A CHI-SQUARE DISTRIBUTED
TEST FOR NORMALITY WITHIN THE SERIES. “ SIGNIFIES REJECTION OF THE NULL HYPOTHESIS OF A
NORMAL DISTRIBUTION AT THE 1% SIGNIFICANCE LEVEL

MSCI Europe | EA Alpha Buy and Hold | Price Hill Climber
Total Return Momentum
Index
Average monthly || 0.8280% 1.6629% 1.2095% 1.0152% 1.0272% 0.5196%
return
Median monthly || 1.1648% 2.0782% 1.7063% 1.3757% 1.5490% 0.7591%
return
Largest positive || 14.0260% 17.0171% 28.6675% 22.3981% 29.8286% 18.0645%
monthly return
Largest negative || -12.8476 -17.0083 -19.5658 -16.1300 -24.3551 -25.2463%
monthly return
Average monthly || 5.4607% 5.1996% 7.4242% 5.6528% 7.3720% 4.9016%
volatility
Skewness -0.0247 -0.1863 0.2633 -0.0322 0.0552 -0.667352
Kurtosis 3.0383 4.3629 5.3485 4.2690 5.8977 8.907055
Jarque-Bera 0.02491 12.7255¢ 36.9289° 10.2929¢ 53.6072° 226.1609°
Probability of a || 4.58% 2.61% 11.76% 5.88% 16.99% 4.70%
loss greater than
10% in any given
month
Probability of a || 3.92% 4.58% 7.84% 0.65% 1.31% 4.00%
gain greater than
10% in any given
month
Number of || 2.4 3.1 2.7 2.5 2.7 2.3
months before a
negative monthly
return

far more excess kurtosis and skewness than the other portfolios.
The excess kurtosis would lead to more regular, larger swings
away from the mean in investor returns when compared with
the EA portfolio. From an investor’s perspective, this is not par-
ticularly desirable and is investigated further in the stochastic
dominance tests that are conducted.

One of the reasons for the shape of the distribution that has
arisen from the EA strategy could be due to the specific fit-
ness and penalty functions imposed upon the system. To in-
vestigate the tail ends of the returns distribution for the port-
folios, the table also reports some basic probability statistics.
Specifically, the probability of experiencing in any given month
a gain or loss greater than 10%. From these figures, it is note-
worthy that it is the EA portfolio that has the greatest chance of
producing a monthly return in excess of 10%, and the smallest
chance of producing undesirable negative returns greater than
10%. The probability of these occurring in any given month is
4.58% and 2.61%, respectively. These results may be indicative
of the penalty function correctly discarding the choice of stocks
that are more likely to experience a large decline. Although the
penalty function can be viewed as a means to ensure the fit-
ness function is geared more closely towards being a risk-ad-
justed return, it is not the same as employing a Sharpe ratio or
other standard deviation measure. The difference being that the
penalty function only penalizes for large downside risk, rather
than both up and downside risk.

The table also provides a simple measure of how often a neg-
ative monthly return can be expected for an investor holding the

relevant portfolios. Once again, it is the EA portfolio that per-
forms the best out of the alternative strategies, experiencing a
negative return only once every three months.

To cater for the fact that the returns distributions are
non-normal, the Section V-B, evaluates the relative perfor-
mance of each of the constructed portfolios with the MSCI
index using nonparametric, distribution free stochastic domi-
nance tests. These will go someway to deal with the fact that
upside and downside movements in the above portfolios are not
symmetric.

B. Stochastic Dominance Portfolio Evaluation

The concept of stochastic dominance (SD) gives a system-
atic framework to analyze investment choices under uncertainty,
utilizing only some general assumptions on an investor’s utility
function. The attractiveness of the method is therefore on it not
requiring any knowledge of the statistical distribution of the in-
vestment alternatives. It provides a statistical comparison be-
tween portfolios using the whole distribution, rather than just
point estimates.

In CAPM analysis, the efficiency criterion uses only the
mean and variance of the returns, based on the underlying
assumption that returns are distributed normally. As discussed
in Section V-A, none of the return distributions of our portfolios
are normally distributed. SD efficiency criteria do not require
this distributional assumption. The three most general SD
efficiency criteria are as follows.
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TABLE III

Panel 1. P-values calculated by Monte Carlo simulation method 1

1st order dominance 2nd order dominance 3rd order dominance
F G portfolio G portfolio G portfolio
EA PM Al BH Idx Hce EA PM Al BH Idx Hc EA PM Al BH Idx Hc
EA - 033 033 039 0.15 045 - 0.01 0.01 0.04 0.01 0.71 - 0.00 0.00 0.01 0.00 0.67
PM | 0.52 - 045 039 0.19 0.23 | 0.69 - 064 070 047 0.02 |0.65 - 0.66 0.65 0.67 0.09
Al | 0.52 0.59 - 045 045 0.12 [0.69 043 - 055 030 0.03 [0.64 0.31 - 0.66 0.67 0.14
BH | 094 045 0.59 - 023 0.19 [0.65 0.12 0.16 - 0.29 0.16 |0.58 0.04 0.12 - 0.26 041
Idx | 09 059 059 0385 - 0.02 | 052 0.09 0.15 046 - 0.11 |049 0.11 0.18 0.56 - 0.38
Hc | 0.00 0.00 0.00 0.01 0.05 - 0.00 021 0.11 0.11 0.24 - 000 059 0.52 0.16 0.36 -
Panel 2. P-values calculated by Monte Carlo simulation method 2
1st order dominance 2nd order dominance 3rd order dominance
F G portfolio G portfolio G portfolio
EA PM Al BH Idx Hce EA PM Al BH Idx Hc EA PM Al BH Idx Hc
EA - 033 033 039 0.15 045 - 0.01 001 0.04 0.01 0.69 - 0.00 0.00 0.01 0.00 0.65
PM | 0.52 - 045 039 0.19 0.23 |0.72 - 065 072 047 0.02 |0.67 - 0.66 0.67 0.65 0.11
Al [ 052 0.59 - 045 045 0.12 [0.73 044 - 0.57 030 0.03 [0.69 0.33 - 0.68 0.66 0.13
BH | 094 045 0.59 - 023 0.19 [0.66 0.13 0.17 - 0.30 0.15 |0.58 0.05 0.13 - 0.28 041
Idx | 0.90 0.59 059 0.85 - 0.02 | 057 0.11 0.17 0.49 - 0.08 [0.52 0.14 021 0.49 - 0.36
Hc | 0.00 0.00 0.00 0.01 0.05 - 000 022 0.12 0.10 0.29 - 000 063 0.55 0.15 041 -

Legend — EA: evolutionary algorithm; PM: price momentum; Al: alpha; BH: buy and hold;

Idx: msci total return index; He: hill climbing

1) First degree stochastic dominance (FSD) rule. This is the
smallest efficiency criterion which produces the smallest
possible efficient set for all rational investors—individuals
with an increasing utility function.

2) Second degree stochastic dominance (SSD) rule. This
is the smallest efficiency criterion which produces the
smallest possible efficient set for all risk averse investors.

3) Third degree stochastic dominance (TSD) rule. This is the
smallest efficiency criterion which produces the smallest
possible efficient set for all rational investors, who are risk-
averse and have decreasing absolute risk aversion.

To answer the question of whether the EA portfolio is a su-
perior investment choice for any of the above three types of in-
vestors, we need to test whether the return distribution gener-
ated by the EA rules dominates the alternative strategies. This is
achieved by conducting pairwise tests of stochastic dominance

Hg:
Hf

G dominates F stochastically at order j
G does not dominate F'

stochastically at order j

where G and F' are two cumulative return distributions gener-
ated from two different technical strategies. The hypotheses can
be written compactly as

Hg o Ji(%:G) < Jj(% F)
for all z € [0, Z]
H{ : J](Z,G) > JJ(Z/F)

for some z € [0, Z]

where [0, Z] is the common domain of F' and G and J;(+; G) is
the function that integrates the function G to order j — 1 so that,
for example

1(z:G) = G(2)

Jg(z;G):/OZG(t)dt
:/OZ T (t; G)dt

Jy(2:G) = /0 /Ot G(s)dsdt
- /0 Jo(t: Gt

and so on.

Recently, Barret and Donald [5] proposed a set of Kol-
mogorov—Smirnov type tests (KS tests) for SD of any order.
The KS tests compare two distributions at all points in the
domain range, therefore having the potential to be consistent
tests of the full restrictions implied by SD. The tests also allow
for different sample sizes, and the p-values are generated via
a variety of simulation and bootstrap methods. Tables III and
IV report the p-values for various tests of pairwise dominance
between all five portfolios under consideration. In Table III,
the p-values are calculated via two different Monte Carlo
simulation methods, whereas in Tables IV and V, the p-values
are calculated using three different bootstrapping procedures.
The null hypothesis of G dominance over F' is rejected at 95%
level of confidence if the p-value is smaller than 0.05.

For each pair of portfolios, we run the tests of SD in both
ways. Portfolio A is said to be concluded as dominant over port-
folio B if: 1) the hypothesis that A dominates B is not rejected
and 2) the hypothesis that B dominates A is rejected. It can be

Authorized licensed use limited to: University of Adelaide Library. Downloaded on December 2, 2009 at 00:04 from IEEE Xplore. Restrictions apply.



GHANDAR et al.: COMPUTATIONAL INTELLIGENCE FOR EVOLVING TRADING RULES 83

TABLE IV
KS TEST FOR SD—BOOTSTRAP METHODS. THIS TABLE REPORTS THE P-VALUES OF TESTS FOR THE DOMINANCE OF PORTFOLIO G OVER PORTFOLIO F
Panel 1. P-values calculated by bootstrap method 1

1st order dominance 2nd order dominance 3rd order dominance
F G portfolio G portfolio G portfolio
EA PM Al BH Idx Hc EA PM Al BH Idx Hc EA PM Al BH Idx Hc
033 033 039 0.15 045 - 0.00 0.00 0.00 0.00 0.20 - 0.00 0.00 0.00 0.00 0.20
045 039 0.19 0.23 | 0.60 - 040 0.60 040 0.00 |0.20 - 020 020 020 0.00
- 045 045 0.12 | 0.80 0.60 - 0.80 0.60 0.00 |0.80 0.20 - 0.80 0.80 0.00
BH [ 094 045 0.59 - 023 0.19 ({040 0.00 0.00 - 0.00 0.00 [040 0.00 0.00 - 0.00 0.00
Idx | 0.90 059 059 0.85 - 0.02 | 1.00 040 040 0.80 - 0.00 {080 040 040 0.80 - 0.00
He | 0.00 0.00 0.00 0.01 0.05 - 0.00 0.00 020 0.00 0.60 - 0.00 020 0.80 0.00 0.40 -

EA -
PM | 052 -
Al | 052 0.59

Panel 2. P-values calculated by bootstrap method 2

1st order dominance 2nd order dominance 3rd order dominance
F G portfolio G portfolio G portfolio
EA PM Al BH Id&x Hc [ EA PM Al BH 1Id&x Hec [ EA PM Al BH Id&x Hc
033 033 039 0.15 045 - 020 020 0.20 0.00 0.80 - 020 020 020 0.00 0.80
045 039 0.19 0.23 |0.80 - 0.80 0.80 0.80 0.20 |0.80 - 0.80 0.80 0.80 0.40
- 045 045 0.12 | 0.80 0.40 - 040 0.60 0.20 |{0.80 0.40 - 0.80 0.80 0.20
BH | 094 045 0.59 - 023 0.19 | 080 0.20 0.20 - 0.60 020 |0.80 0.20 0.20 - 0.60 0.80
Idx | 090 0.59 0.59 0.85 - 0.02 {080 0.20 0.20 0.60 - 0.40 |0.80 020 0.20 0.40 - 0.60
Hc | 0.00 0.00 0.00 0.01 0.05 - 0.00 040 0.00 0.20 0.00 - 0.00 060 060 020 0.20 -

EA -
PM | 0.52 -
Al | 052 0.59

TABLE V
KS TEST FOR SD—BOOTSTRAP METHODS (CONTINUED)

Panel 3. P-values calculated by bootstrap method 3

1st order dominance 2nd order dominance 3rd order dominance

F G portfolio G portfolio G portfolio

EA PM Al BH 1Idx Hc [ EA PM Al BH 1Idx Hc [ EA PM Al BH 1Idx Hc

033 033 039 015 045 | - 020 020 020 000 080 | - 040 040 0.00 0.00 0.80

045 039 019 023 |1.00 - 1.00 1.00 080 0.60 (080 - 1.00 0.80 0.80 0.60
- 045 045 0.12 |1.00 080 - 1.00 0.60 0.40 [1.00 0.80 - 1.00 1.00 0.60

BH | 094 045 059 - 023 0.19 {080 060 060 - 080 0.60 (080 0.60 060 - 080 0.80

Idx [ 090 059 059 08 - 002 (08 08 080 08 - 020 |0.80 080 0.80 080 - 0.60

Hc | 0.00 0.00 0.00 0.01 0.05 - |0.00 020 040 040 080 - [020 0.80 080 0.60 080 -

Legend — EA: evolutionary algorithm; PM: price momentum; Al: alpha; BH: buy and hold;

Idx: msci total return index; He: hill climbing

EA -
PM | 0.52 -
Al | 052 0.59

TABLE VI
MAXIMAL T TEST FOR SD. THIS TABLE REPORTS THE P-VALUES OF TESTS FOR THE DOMINANCE OF PORTFOLIO G OVER PORTFOLIO F'

Panel 1. 10-point evaluation, simulated p-values

1st order dominance 2nd order dominance 3rd order dominance
F G portfolio G portfolio G portfolio
EA PM Al BH Tdx Hc EA PM Al BH Tdx Hc EA PM Al BH Idx Hc
0.05 0.14 0.50 0.05 0.29 - 0.01 0.02 0.15 0.07 0.70 - 0.02 0.02 0.17 0.13 0.82
067 049 027 0.14 |0.95 - 0.66 0.71 0.60 0.04 |[0.99 - 0.71 0.87 0.81 0.09
- 034 034 0.14 ({092 0.52 - 0.65 0.51 0.05 {098 0.44 - 0.83 0.75 0.13
BH | 094 0.80 0.63 - 044 030 (096 0.05 0.09 - 049 0.28 |0.81 0.07 0.06 - 0.54 0.3
Idx | 0.74 042 042 0.74 - 0.19 [ 0.89 0.04 0.04 0.46 - 020 [0.64 0.03 0.02 0.39 - 0.53
Hc | 0.00 0.00 0.01 0.01 0.03 - 0.05 044 037 036 0.52 - 0.12 0.74 0.68 044 0.34 -

EA -
PM | 0.64 -
Al | 034 0.34

Panel 2. 10-point evaluation, conservative p-values

1st order dominance 2nd order dominance 3rd order dominance
F G portfolio G portfolio G portfolio
EA PM Al BH Idx Hc EA PM Al BH Idx Hc EA PM Al BH 1Idx Hc
0.09 021 042 0.09 0.50 - 0.09 0.11 0.19 033 1.00 - 0.13 0.15 020 0.53 1.00
091 0.77 046 0.21 |1.00 - 1.00 1.00 1.00 0.21 |1.00 - 1.00 1.00 1.00 0.47
- 0.58 0.58 0.21 | 1.00 0.99 - 1.00 099 023 [1.00 0.97 - 1.00 1.00 0.57
BH | 1.00 0.99 0.89 - 0.70 050 [ 1.00 0.28 0.41 - 098 0.81 |1.00 0.33 0.31 - 099 0.99
Idx | 0.95 0.69 0.69 095 - 032 [1.00 0.16 021 097 - 0.66 [1.00 0.19 0.16 0.96 - 0.99
He | 0.00 0.00 0.01 0.01 0.05 - 026 098 0.92 091 0.99 - 0.53 1.00 1.00 097 094 -

EA -
PM | 090 -
Al | 0.58 0.58

seen from Tables III and I'Vthat there is no clear dominance pat- and-Hold, Price Momentum, and Alpha strategies. However, the
tern among the five portfolios: Hill Climbing, MSCI Index, Buy- EA portfolio is found to dominate the Hill Climbing in all or-
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TABLE VII
MAXIMAL T TEST FOR SD (CONTINUED)

Panel 3. 5-point evaluation, simulated p-values

1st order dominance 2nd order dominance 3rd order dominance

F G portfolio G portfolio G portfolio

EA PM Al BH 1Idx Hc [ EA PM Al BH 1Idx Hc | EA PM Al BH Idx Hc
EA - 0.13 0.12 0.69 0.04 0.21 - 0.01 0.02 0.63 0.06 0.71 - 0.02 0.02 072 0.10 0.77
PM | 0.63 - 050 049 0.26 0.21 |0.93 - 0.63 0.68 0.56 0.04 |0.98 - 0.67 0.83 0.76 0.08
Al | 049 0.54 - 049 036 0.12 [0.89 0.52 - 0.61 048 0.05 [0.97 045 - 0.77 0.70 0.10
BH | 0.84 0.80 0.60 - 035 021 {093 0.12 0.19 - 045 025 |0.87 0.05 0.06 - 0.52 0.50
Idx [ 0.85 0.89 095 0.75 - 0.12 (095 0.06 0.11 0.50 - 0.17 (0.72 0.02 0.02 0.39 - 0.51
Hc | 0.00 0.00 0.01 0.01 0.05 - 026 098 092 091 0.99 - 0.53 1.00 1.00 097 0.94 -

TABLE VIII
MAXIMAL T TEST FOR SD—(CONTINUED)
Panel 4. 5-point evaluation, conservative p-values
1st order dominance 2nd order dominance 3rd order dominance

F G portfolio G portfolio G portfolio

EA PM Al BH 1Idx Hc [ EA PM Al BH Id&x Hec [ EA PM Al BH 1Id&x Hc
EA - 0.15 0.15 0.67 0.04 0.26 - 0.05 0.07 039 0.20 0.99 - 0.07 0.08 0.50 0.30 1.00
PM | 0.81 - 0.67 0.66 034 026 |1.00 - 097 098 093 0.14 |1.00 - 1.00 1.00 1.00 0.25
Al | 0.66 0.74 - 066 048 0.15 [1.00 0.92 - 095 086 0.16 |1.00 0.89 - 1.00 099 0.33
BH | 097 095 0.80 - 048 026 | 1.00 031 0.47 - 085 062 |1.00 0.17 0.21 - 093 093
Idx | 0.97 0.98 1.00 091 - 0.15 [ 1.00 020 0.29 0.88 - 043 (099 0.10 0.10 0.81 - 0.93
Hc | 0.00 0.01 0.01 0.01 0.05 - 0.04 041 033 031 048 - 0.09 069 063 045 041

Legend — EA: evolutionary algorithm; PM: price momentum; Al: alpha; BH: buy and hold;

Idx: msci total return index; He: hill climbing

ders, and dominate the other four portfolios in the second and
third orders, implying that all risk-averse investors will favor the
EA portfolio compared with the others.

One important assumption underlying the KS tests is the inde-
pendence of the two samples coming from the two return distri-
butions to be compared. In our case, even though the EA proce-
dures do have some links with other portfolio generation rules,
the correlation is between the return distributions themselves,
rather than between the samples generated. However, we per-
form an additional SD test, as proposed by [9], which allows
for interdependency between the samples tested. The test is basi-
cally a Maximal-T test, which compares two return distributions
at a fixed number of points only. Conservative p-values (based
on the widely applicable conservative critical values) and simu-
lated p-values are reported in Table VI.

The Maximal-T test results confirm the previous finding that
there is no clear dominance pattern amongst the Price Mo-
mentum, Alpha, Buy-and-Hold, and Hill Climbing portfolios.
However, the tests give some support to the hypothesis that the
Price Momentum and Alpha portfolios outperform the MSCI
Index in the third order, i.e., those investors who are risk averse
and have decreasing absolute risk aversion will not choose to
invest in the Index portfolio.

Similar to the KS tests, the EA portfolio is still found to be the
best performing one. It dominates both the Price Momentum and
the Alpha strategies in the second and third orders, and therefore
is still the preferred choice for risk-averse investors.

VI. CONCLUSION AND FUTURE WORK

This paper has provided a discussion of the framework in
which an EA manages a portfolio of selected stocks chosen
using only price and volume information of individual com-

pany shares. Using fuzzy logic rules to characterize stocks into
various membership sets and then ranking them according to
their fit as a “buy” recommendation, a portfolio is initially con-
structed and then rebalanced every 20 days with the best “buy”
recommended stocks bought and held. As stocks fall in ranking
from the top “buy” recommendations, they are sold off and re-
placed with higher ranked stocks. The fuzzy logic rules are de-
signed to optimize towards a specific fitness function. The fit-
ness function describes the ultimate objective of the portfolio.
In this EA code, the fitness function is a simple return on invest-
ment measure. A specific financial penalty function is also in-
corporated to penalize solutions that select a portfolio of stocks
that experiences significant losses. Effectively, it is a penalty for
downside risk.

The empirical results from testing the EA on historical data
show that it cannot only beat traditional, fixed rule-based strate-
gies (such as the price momentum and alpha portfolios), but also
beat the market index. This is shown for the case of MSCI Eu-
rope listed stocks spanning a period from 1990 until the end of
2005. Given that we impose both costs to trading and restric-
tions on how trades can occur, it is a relatively impressive re-
sult. This is even particularly more true when considering that
only price and volume information is used to generate “buy”
recommendations.

We believe the success of the EA portfolio lies in its ability to
adapt its rule-base to new market conditions. This is a significant
advantage over fixed rule-base strategies and as such can also
successfully pinpoint technical trading patterns that allow it to
select stocks that are likely to outperform.

In the future, the system will incorporate several new features
to allow it to evolve better rules based on specific market con-
ditions. This includes, but not restricted to:
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1) The level of volatility within the market.

2) Whether it is a bull or bear market.

3) Refined techniques to minimize downside risk within the
portfolio via changes to the fitness function and design of
portfolio construction using higher moment analysis.

In addition, the system will be tested on other markets and with
shorter term data (intraday), as well as applied to other deriva-
tive classes. Finally, the system will incorporate additional fi-
nancial accounting and economic information to increase the
information content of the rules found. This will also allow for
the incorporation of several multifactor risk model approaches
to further increase the asset selection performance of the system.
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