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Chapter 1 

Introduction 

 
1.1 The Resistivity Method 
 

1.1.1 Basic Concept and Applications  

 

The electrical resistivity method is one of the principal electrical methods used in geophysical 

exploration.  There are several excellent texts devoted to the subject  (Keller and Frishknecht, 

1966; Kunetz, 1966; Van Nostrand and Cook, 1966; Bhattacharya and Patra, 1968; Orellana, 

1972; Mooney, 1980; Telford et al., 1990; Nabighian, 1998).  The method uses an artificial 

DC power source to create an electric field in the subsurface by injecting current into the 

ground between two metallic electrodes.  By measuring and analysing the potential (voltage) 

response on the ground surface or underground (in boreholes or in a mine), one can obtain a 

resistivity distribution map of the subsurface.  This map is then used with other information to 

help identify and delineate geological structures. 

 

The relative simplicity of the method, the low equipment cost and ease of use combine to 

make electrical imaging a useful prospecting technique, and highly competitive with 

alternative methods like gravity and magnetics, electromagnetics, and seismic exploration.  

The method has proven very popular for shallow (near-surface) investigations in connection 

with groundwater search/hydrology (Barker and Moore, 1998; Kenna et al., 2002), 

geotechnical appraisal/mining engineering (Panthulu et al., 2001; Roth et al., 2002), cavity 

detection (Peng and Ziaie, 1991;Van Schoor, 2002), mapping of pollution plumes (Binley et 

al., 1997; Olivar et al., 1998), environmental work (Van et al., 1991; Daily and Ramirez, 

1995; archaeological investigations (Arslan et al., 1999; Shaaban and Shaaban; 2001), and  

assorted geological studies.  Although there are differences in the nature of the target and its 

depth (which strongly affects detection and resolution capability) the resistivity method (and 

its close cousin, the induced polarisation method) has also found important application in coal 

mining and metalliferous mineral exploration.  
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1.1.2 Resistivities of Earth Materials 

  

The electrical resistivity method is based on the fact that resistivities of earth materials vary 

widely, more than any other physical property. The range is up to 12 orders of magnitude. 

Resistivity depends on a number of factors: the mineralogical composition, the porosity and 

degree of water saturation, the salinity of the connate water, the structure and texture of the 

rock, as well as temperature and pressure. Apart from metallic minerals, where electronic 

conduction is important, ionic (electrolytic) conduction is the dominant mode of passing 

electricity through the ground. 

 

Dense rocks with few voids, little moisture and negligible amounts of dissolved salts (free 

ions) will have high resistivity.  Soft saturated clay will have a low resistivity, particularly if 

any decomposed organic matter or soluble salts are present.  An extensive tabulation of the 

resistivities of earth materials is given by Parkhomenko (1967).  The article by Keller (1998) 

also provides a comprehensive treatment on the electrical properties of rocks and minerals.   

Igneous rocks have high resistivity, typically above 1000 ohm-m.  Sedimentary rocks like 

sandstone and shale have lower resistivity (100 – 200 ohm-m).  Coal is an unusual material 

and is characterised by moderately high resistivity (300 – 600 ohm-m).  Overburden 

materials, especially below the water table, have relatively low resistivity (e.g. 30 – 60 ohm-

m).  Massive sulphide ore deposits have extremely low resistivity (less than 0.01 ohm-m).  

Resistivity contrast and target size are the key factors which determine detectability of a 

target.  Unless the geological unit is quite thick, comparable to the depth, it is often difficult to 

detect (and especially delineate) such buried resistivity anomalies from the surface.  This 

relates to the limited depth of current penetration, and problems of electrical equivalence and 

suppression (see Keller and Frischknect, 1966).  Basically, targets must get progressively 

larger with depth to see them from the surface.  Often only the tops, and not the base of 

targets, can be delineated.  

  

Mineralogical and geochemical changes, such as oxidation, weathering and alteration, can 

have a profound effect on resistivities of earth materials, as can moisture content.  Oxidation 

and salinity lower the resistivity appreciably.  
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1.2. Electrical Resistivity Imaging  
 

1.2.1. Field Procedures and Electrode Arrays 

 

Resistivity surveying is carried out using various field procedures and electrode 

configurations. The reader is referred to standard textbooks for a full discussion.  The basic 

data collection strategies involve use of four collinear electrodes (two current, two potential) 

which can  be classified into rather standard array types, like Wenner, Schlumberger, dipole-

dipole, pole-dipole etc .  In resistivity sounding, the electrode spacing interval is changed 

while maintaining a fixed location for the centre of the electrode spread.  Since depth of 

investigation increases in a general way with increasing electrode spacing, resistivity 

sounding is the preferred approach when we wish to learn how resistivity varies with depth.  

In resistivity profiling, the location of the spread is changed while maintaining a fixed 

electrode spacing interval.  Since the depth of investigation will remain roughly unchanged 

from one reading to the next, resistivity profiling is the preferred approach when we wish to 

learn how resistivity varies in a horizontal direction.  For example, our goal might be to locate 

the positions of faults, dykes, gravel deposits or ore bodies. 

 

One extension of the profiling method is to repeat the traverse with one or more different 

values for the electrode spacing.  A comparison of the results can provide some control over 

depth.  

 

Another extension is to run profiles along parallel lines, thus providing coverage of an area 

rather than a line. The field quantities can then be compiled into a contour map or image.  

 

1.2.2. Concept of Apparent Resistivity 

 

In either procedure the idea is to convert the field measurement of voltage into a quantity 

called the apparent resistivity aρ  which corrects for the current strength and the electrode 

geometry.  If the earth is perfectly uniform then the apparent resistivity is equal to the true 

resistivity.  Changes in apparent resistivity show departures of the earth from being uniform. 

It is a useful way to display and interpret field data. 
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1.2.3. Imaging and Tomography 

 

Sounding and/or profiling was the usual way resistivity surveys were conducted up until 

about the early 1990s.  With greater computer power made available in recent years, in 

combination with multi-electrode cables and computer-controlled acquisition, plus increasing 

interest based on geophysical inversion theory, the natural progression has been to resistivity 

imaging.  It has involved combining sounding with profiling through use of multiple electrode 

data acquisition in which apparent resistivities are obtained for various electrode spacings at 

each horizontal location along the traverse, thus yielding a 2-D picture of vertical and 

horizontal resistivity variations in the subsurface.  Electrical resistivity imaging (ERI) is now 

routinely practised.  It has even been extended into areal distributions of electrodes and 3-D 

surveys.  

 

A number of articles have appeared on 2-D and 3-D resistivity imaging using surface array 

scanning pole-pole, Wenner, bipole-bipole and other electrode configurations (Smith and 

Vozoff, 1984; Park and Van, 1991; Li and Oldenburg, 1992; Ellis and Oldenburg, 1994; 

Dabas et al., 1994; Sasaki, 1994; Zhang et al., 1995; Loke and Barker, 1995, 1996). Xu and 

Noel (1993) discussed some independent measurements of the surface surveys using two-, 

three- and four- electrode configurations for 2-D and 3-D resistivity imaging. 

 

Crosshole DC electrical surveying, in which the source electrode (current injection point) and 

the potential electrode (measuring point) are placed downhole in two horizontally separated 

boreholes and moved over a range of depths, is able to yield detailed information on the 

variation of electrical conductivity between the boreholes (Daniels, 1977, 1984; Shima, 

1992).  Such crosshole measurements permit the detection of and delineation of interesting 

geological conditions between various transmitter and receiver locations.  They offer potential 

advantages for greatly improving the effectiveness of a test boring program by locating 

targets more accurately.  Furthermore, the downhole electric measurements greatly extend the 

anomaly detection capability beyond the performance limits of surface electric surveying. 

Owen (1983) discussed cross-hole bipole-bipole electric surveying to search for buried caves 

and tunnels. Daniels and Dyck (1984) demonstrated a variety of potential applications of 

borehole resistivity measurements to mineral exploration, but did not present any case 

histories as such.  
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In recent years, there has been great interest in developing crosshole DC electrical surveying 

so as to image the 2-D and 3-D structure of the earth. Crosshole resistivity imaging or 

tomography (Daily and Owen, 1991; Shima, 1992; Zhou and Greenhalgh, 2000) is used to 

reconstruct the conductivity structure of the earth using crosshole scanning and profiling data. 

In theory, the technique is no more than a geophysical inversion procedure with various 

electrode array data.  With the merits of crosshole measurements, it is possible to image the 

targets between the boreholes. 

 

Some rather interesting applications of crosshole electric inversion to hydrology and 

environmental studies have been reported by Daily and Ramiriez (1995), Slater et al. (1996, 

2000), Spies and Ellis (1995), Middleton and Binley (2001)  and Greenhalgh et al. (2003). 

For example, Daily and Ramirez (1995) used 2-D resistivity tomography to monitor in-situ 

remediation processes for removal of volatile organic compounds from subsurface water and 

soil. Five boreholes, at separations of 20 m, and extending over a depth extent of 60 m were 

used for the experiment.  In addition they used four electrodes on the surface.  Air sparging 

and water infiltration both changed the subsurface resistivity sufficiently to be imaged by 

electrical resistivity tomography.  Spies and Ellis (1995) successfully employed 3-D DC 

crosshole tomography to monitor the melting and solidification process of an in-situ 

vitrification experiment with six boreholes on the circumference of a circle of radius 6.5 m. 

The resistivity contrast in their experiment was very high, over 1000 times. 

 

Zhou and Greenhalgh (1999) have analysed the different effects (sensitivity patterns and 

anomaly amplitudes) from a variety of common electrode configurations by means of 2.5-D 

numerical resistivity modelling and inversion.  They concluded that the bipole-bipole and 

pole-bipole arrays performed best.  Their models included faulted and dipping conductors. 

The boreholes were separated by a distance comparable to the borehole depth over which 

“measurements” could be taken. Resolution was expected to degrade as the borehole 

separation increases. 

 

1.3. Electrical Anisotropy and Its Importance   
 

1.3.1. Micro-anisotropy and Macro-anisotropy 

 

Apart from resistivity heterogeneity, a further complication which often arises in electrical 

prospecting is that of anisotropy.  It refers to the situation in which the ground resistivity (or 
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conductivity), and hence the measured voltage (or apparent resistivity) is a function of the 

direction of measurement, even in homogeneous media.  Such directional dependence is 

common in materials like shale, slate and clay which have a distinct lineation or platey fabric. 

It also exists in certain minerals.  This is referred to as intrinsic anisotropy or 

microanisotropy; it depends on the crystal symmetry or texture of the material. Anisotropy 

may also occur on a macroscopic scale whereby a series of layers or bands of dissimilar 

isotropic materials behave as a single, equivalent anisotropic unit.  Fracturing, jointing and 

rock cleavage can also produce this type of structural anisotropy, in which case the “layers” 

have alternating resistivities (rock and joint fill).  Such pseudo-anisotropy arises when the 

thickness of the individual isotropic bands or units is small relative to the electrode separation 

used for the measurement. 

 

1.3.2. Transversely Isotropic Materials and Magnitude of Anisotropy 

 

In general, the resistivity must be described by a second rank tensor and the anisotropy by the 

tensor ellipsoid.  This is described in detail in chapter 3, but for present purposes the simple 

model of a transversely isotropic (TI) medium will suffice.  It is a very popular model in 

which resistivity is constant (isotropic) within a specific plane eg plane of stratification, 

fracture plane, but different in all other directions outside that plane.  Resistivity values tend 

to be large (up to ten times) when measured perpendicular to this plane (referred to as the 

transverse resistivity tρ ) compared to values parallel to the plane (referred to as the 

longitudinal resistivity lρ ).  The converse holds for the reciprocal quantity, electrical 

conductivity.  It is often a maximum parallel to the foliation or fracturing and a minimum in 

the transverse direction, because of the presence of water and dissolved salts (or the preferred 

mineral alignment) along the plane, where permeability is greater.  

 

For the TI medium the average resistivity (geometric mean) can be defined as ltm ρρρ =  

and the coefficient of anisotropy as λ = lt ρρ / .  Typical values of λ for shales and slates 

are 1.2 to 3 (see Parkhomenko, 1967; Keller and Frischknecht, 1966).  Shale and sandstone 

interbeds have values in the range 1.05 –1.15, while interbedded anhydrite and shale have 

reported values of 4.0–7.5.  Even alluvium may have anisotropy factors of 1.02-1.1.  Igneous 

and metamorphic rocks can also have significant anisotropy (Hill, 1972, Asten, 1974). 
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1.3.3. Effects of Anisotropy on Field Measurements 

 

If anisotropy exists in the ground but is ignored, then the true ground resistivities and the 

geologic structure that are interpreted from measured apparent resistivity may be incorrect. 

Papers which deal with the effects of anisotropy on surface resistivity measurements include 

Habberjam (1972, 1975), Matias and Habberjam (1986) and Matias (2002).  The borehole 

resistivity measurment problem has been considered by Kunz and Noran (1958), Asten (1974) 

and Moran and Gianzero (1979).  

 

When the axis of symmetry of the TI medium is vertical, such as for horizontal bedding, then 

for normal resistivity surveys carried out at the surface, there is no way to tell the difference 

between resistivity measured vertically and resistivity measured horizontally.  The 

measurement is invariant in all horizontal directions.  Such anisotropy is therefore 

undetectable at the surface.  If such anisotropy exists, depth estimates will be in error by a 

factor of λ.  This follows from the Principle of Equivalence.  It can be illustrated as follows. 

Consider current flow in the longitudinal direction in an anisotropic layer of thickness h, and 

of unit length in the two perpendicular directions.  The longitudinal conductance s (inverse of 

resistance AlR l /ρ=  where l is the length and A = cross sectional area; here l = 1 and  

A = h.1) is given by ml hhs ρλρ //1. == .  Now consider current flow in the transverse 

direction across the layer.  In this case A = 1.1 and l = h, so transverse resistance is 

mt hht ρλρ == .1.1/.

t

.  Therefore an anisotropic layer of thickness h and having resistivities 

ρ   and lρ  will be indistinguishable from an isotropic layer of thickness λh and 

resistivity mρ .  

 

As stated earlier, a sequence of thin isotropic layers can appear as a single macro-anisotropic 

layer.  The effective longitudinal resistivity of the sequence is obtained by considering it to 

behave like a parallel resistor network, in which current can distribute itself through the layers 

and each layer can be replaced by the resistor iiiiii shhR /1/1./1. === ρρ .  The equivalent 

total resistance is therefore given by: 

 

 ∑∑ === illieq hAlsR /1/./1 ρρ  
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yielding an effective longitudinal resistivity: 

 

∑ ∑= iil sh /ρ , where iii hs ρ/= .       (1.1) 

 

Now consider current flow in the transverse direction through the layer stack, which behaves 

like a series resistor network in which each layer can be replaced by its resistance 

iiiii thAlR === 1.1// ρρ .  The total equivalent resistance is: 

                           

∑∑ ∑ ==== itittieq hhAltR ρρρ .1.1/).(/ , 

 

yielding an effective transverse resistivity: 

 

                           , where ∑ ∑= iit ht /ρ iii ht ρ= .     (1.2) 

 

For example, a sequence of 20 layers each 2 metres thick, alternating in resistivity from 5 to 

100 ohm-m, has the following effective parameters: 7.9=lρ ; 5.52=tρ ; mm Ω= 6.22ρ ; λ 

=2.32; h = 92.8 m. It follows that errors in interpreted depths can be appreciable; the true 

depth in this example is 40 metres, while the apparent depth is 92.8 m. 

  

Let us now turn to the situation where the axis of symmetry of the TI medium is almost 

horizontal, e.g. steeply dipping beds or fractures.  In this case the resistivity measured with 

electrodes oriented in one direction will be different to that measured using the same electrode 

array oriented in a different direction.  As shown in chapter 3, the apparent resistivity 

measured for steeply dipping beds (if there is no overburden) is counter intuitive.  One might 

expect that the measured resistivity (like the true resistivity) would be lowest parallel to strike 

since current tends to flow along paths of least resistance.  In fact, the measured resistivity is 

higher along strike because of increased current density parallel to the survey line (apparent 

resistivity calculations assume uniform current density in three directions).  When current 

density is higher than it would be in a uniform isotropic ground the measured potential 

difference is higher for the given current source, resulting in higher apparent resistivity.  In 

fact, the apparent resistivity is equal to mρ , as shown mathematically in section 3.4.2. 

Conversely, the apparent resistivity measured perpendicular to strike is not equal to the 

transverse resistivity tρ  at all, but takes on its minimum value and is equal to that of the true 
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longitudinal resistivity (see section 3.4.2).  This is referred to as the Paradox of Anisotropy 

(see Maillet, 1947; Keller and Frischknecht, 1966; Bhattaycharia and Patra, 1968).  

 

1.3.4. Detecting Anisotropy 

 

Two principal field techniques have been advocated to detect and characterise electrical 

anisotropy: (1) azimuthal resitivity measurements in which linear arrays of electrodes are used 

to measure apparent resistivity in a variety of directions, say every ten degrees ( Taylor and 

Fleming, 1988, Ritzi and Andolsek,1992, Busby, 2000), and (2) square array techniques 

pioneered by Habberjam and co-workers ( Habberjam and Watkins, 1967; Habberjam, 1972 

;1975; Matias and Habberjam, 1986).  The square array is claimed to offer greater sensitivity 

over standard co-linear arrays, because three sets of measurements are made in different 

direction at each point (along the diagonal of the square as well as along the two orthogonal 

sides).  This technique has been further developed in recent years by Matia (2002).  Watson 

and Barker (1999) advocated that with the offset Wenner system it is possible to distinguish 

anisostropy from dipping layers and lateral changes in resistivity, which can influence the 

square array measurements.  They caution that many of the reported cases of anisotropy in the 

literature have most likely been misinterpreted. 

 

Numerous resistivity field studies have been performed linking electrical anisotropy with 

fractures, joints and other features.  For example, in England Nunn et al. (1983) measured the 

fracture anisotropy in chalk while Busby and Jackson (2006) used time lapse measurements 

for the prediction of coastal cliff failure.  In the USA surveys have been reported by Ritzi and 

Andolsek (1992), Wishart (2006), among others, for hydrological assessment.  Electrical 

characterisation of jointed and faulted systems by azimuthal anisotropy have also been 

published for Australia (Wilson et al., 2001), Germany (Hagrey, 1994), and France (Nguyen 

et al., 2007).  Electrical anisotropy is also important in crustal MT studies (Wannamaker, 

2005; Hamilton et al., 2006) and in shallow EM investigations (Slater et al., 1998; Linde and 

Pederson, 2004). 

 

Anisotropy can be more readily detected using cross-hole and borehole-to-surface techniques 

than with simple surface measurements, especially when the axis of symmetry is sub-vertical. 

The emerging trend is for tensor measurements, in which the impressed electric field (from 

the current electrodes) is sequentially applied in two orthogonal directions, and the voltage 

measurements made on two orthogonal sets of potential electrodes. 
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1.4  Resistivity Modelling 

 

Resistivity modelling refers to the process of calculating, usually by some numerical 

technique, the theoretical electric response of the earth for a given situation (conductivity 

model) and particular electrode configuration.  It is an indispensable aid to interpretation, and 

an essential part of resistivity inversion.  For the latter, one attempts to obtain the conductivity 

distribution by fitting the observed data to a suitable theoretical model.  This generally 

involves iterative model adjustment and forward computations until the misfit is reduced to 

some acceptable error tolerance, subject to certain regularisation procedure, often involving 

smoothing, damping and constraints.  An essential part of inversion is choosing the 

appropriate degree of model complexity.  For many years one-dimensional conductivity 

distributions (layered earth models) were about as sophisticated as one could get.  These days 

two-dimensional models, in which the conductivity can vary in two spatial directions, and 

even three-dimensional models, are commonplace. The various modelling procedures, which 

include boundary integral, finite difference and finite element, will be reviewed in sections 

2.4 and 2.5. 

 

The interpretation of anisotropic resistivity data is still problematic.  It is often only semi-

quantitative, principally to delineate fracture and joint orientation.  Very few researchers have 

developed resistivity imaging and inversion codes to quantitatively handle anisotropic 

situations.  The computer programs that have been developed (Pain et al., 2003; LaBreque et 

al., 2004; Herwanger et al., 2004 and Kim et al., 2006) are largely based on simplified forms 

of the conductivity tensor.  Part of the problem is that the mathematical problem is quite 

complex.  There are very few analytic solutions available for resistivity problems and then 

only for the simplest of situations, like a half-space.  Even idealised models like spheres, 

cylinders, and cuboids embedded in a half space do not lend themselves to easy theoretical 

analysis, especially if the background medium is anisotropic.  

Apart from its utility in resistivity interpretation, forward modelling is a very useful aid to 

survey design, to know what type of electric response to expect and which electrode geometry 

is likely to perform best.  Modelling also helps to understand questions of detection and 

resolution, whether certain targets can be delineated, and what the likely anomaly effect is.  It 

is also an integral part of sensitivity analysis, so important in any geophysical inversion.  This 

will be taken up in chapter 6. 
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1.5  Thesis Objectives 

 

The main objective of this thesis research was to develop a new numerical technique for 2.5-

D / 3-D DC resistivity modelling in heterogeneous, anisotropic media having arbitrary surface 

topography.  Most of the available algorithms (finite difference, finite element) do not 

incorporate anisotropy and have difficulty handling irregular surface topography.  The new 

method, based on Gaussian quadrature grids, is particularly well designed for handling the 

above-mentioned complexities.  It differs from the spectral method, popular in areas like 

hydrodynamics, but retains all the main advantages of the advanced numerical method.  The 

new Gaussian Quadrature Grid (GQG) method could be considered as a modified version of 

the spectral element method in which we discretize the model domain with the Gaussian 

quadrature abscissae rather than the constant elements, then employ local cardinal functions 

to calculate the unknown potentials values and their gradients at the abscissae.  Like the 

standard FE method and the spectral element method, it leads to a sparse and symmetric linear 

equation system to solve.  The main advantages of the new method are no requirements of the 

element mesh matching the surface topography, nor for an element integration so that it 

makes complex forward modelling much easier. 

 

The subsidiary aims of the thesis are to make use of the new modelling program to better 

understand effects of anisotropy on resistivity measurements, and to develop expressions for 

the Fréchet derivatives (sensitivity functions) in 3-D heterogeneous, anisotropic media.  The 

special case of a homogeneous tilted transversely isotropic medium is investigated in some 

detail, to see how the various derivatives differ from each other and from the isotropic case. 

 

The thesis also sets out to analyse the properties of the resistivity tensor and how the various 

elements relate to the principal values and the angles defining the axis of symmetry. Explicit 

expressions are developed for the derivatives of the tensor elements with respect to the 

principal values, which lie at the heart of the sensitivity equations. 
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Chapter 2 

Resistivity Modelling:  Theory and Previous Approaches 

 

2.1. Basic Electromagnetic Theory 
 

Electromagnetic theory, on which the electrical and electromagnetic (EM) methods of 

exploration are based, is treated in many physics books, at all levels.  The texts by Smythe 

(1950) and Stratton (1941) are classics and will suffice for our purposes.  Here I give only the 

briefest of treatments.  The purpose is to show the special form of Maxwell’s equations in the 

DC case, and to introduce the idea of electric potential and to review Ohm’s Law and the 

Equation of Continuity.  These two equations, together with the boundary conditions for the 

electric field, are the basis for solving for current flow (and electric potential) in arbitrary 

media. 

 

2.1.1 Maxwell’s Equations and the Electrical Properties of Matter 

 

The following quantities describe the bulk electrical properties of a medium in which we wish 

to measure the electromagnetic field: 

  

ε = permittivity ( or dielectric constant 0κ ε ε= , where 0ε  is the free space value) 

 μ =magnetic permeability 

 σ = electrical conductivity ( or its reciprocal resistivity 1ρ σ= ) 

 

In a uniform medium, these quantities are scalar constants. In an isotropic but inhomogeneous 

medium, they are scalar functions of position. In anisotropic media, they are second rank 

tensors.  

The electric and magnetic fields in the medium, which are often the quantities we wish to 

compute, may be described by: 

 

E =
r

electric field intensity [V.m-1] 

B =
r

magnetic induction  [W.m-2] 

D =
r

electric displacement  [C.m-2] 

H =
r

magnetic field intensity  [A-turn.m-1] 
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These vector quantities are related to 

 

 electric charge density  [C.m-3] ,   and  ρ =

J =
r

 electric current density  [A.m-2] 

 

through the four Maxwell Equations  

 

0BE t
∂∇× + =∂

rr r
 (Faraday’s law)     (2.1) 

 

 DH t J∂∇× − =∂
r r r

 (Ampere’s Law)     (2.2) 

 

   (Solenoidal property of  B)    (2.3) 0B∇⋅ =
r r

 

 D ρ∇⋅ =
r r

  (Coulomb’s Law)     (2.4) 

 

These are fundamental equations which show the inter-dependence of the field quantities 

BED
vvv

,, and H
v

.  They do not directly yield expressions for these quantities, although they 

permit the computation of one from the other. Most texts on electromagnetic theory say more 

or less about the derivation of these equations. 

An auxiliary equation, which may be derived from Maxwell’s equations, is the Equation of 

Continuity, which along with Ohm’s Law, is the theoretical basis for DC resistivity 

prospecting: 

 

 0J t
ρ∂∇ ⋅ + =∂

r r
        (2.5) 

 

It is a statement of conservation of charge and says that away from sources, the current 

density is divergence free ( )0J∇⋅ =
r

. 

 

 

 

 

 



Chapter 2:  Resistivity Modelling:  Theory and Previous Approaches 14

2.1.2 Measurable Quantities and Boundary Conditions 

 

The measurable EM quantities in physics/geophysics are: 

 

1. Total current flow through a cross –sectional area A:  

( )I J D t A+ ∂ ∂ ⋅
r r

 =

 The second term is Maxwell’s displacement current and for DC: 0D t∂ ∂ →
r

 

 

2. Voltage developed between two points A and B 

 
B

A

V E dl= ⋅∫
rr

 

 

3. Magnetic field intensity H
r

. 

 

Boundary conditions are also required in solving problems in electromagnetism.  They serve 

to connect the EM field quantities from one region to another.  The four boundary conditions 

can be stated as follows: 

 

1. The tangential component of E
v

 is continuous 

2. The normal component of B
v

 is continuous 

3. The normal component of D
v

 differs across the boundary by the density of surface 

chargeω .  

4. The tangential component of H
v

 differs across the boundary by the density of surface 

current K
r

. 

 

The surface current density  is only required for very good conductors, and it may normally 

be ignored.  In that case, tangential 

K
r

H
v

 is continuous. 

 

2.1.3 Electric Potential and Ohm’s Law 

 

The resistivity method operates in the absence of a field of induction and is based on 

observations of an electric field maintained by direct current.  This means that we may set all 

time dependence equal to zero, except that we permit stationary currents to exist. We are now 
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considering electric and magnetic fields associated with stationary (DC) currents; the two 

fields are decoupled and we may consider either one independently.  Equations (2.1) and (2.2) 

become:  

 

 0,0 =×∇=×∇ BE
vv

      (2.6) 

 

It is the electric field which is important in the resistivity method.  We do not consider the 

magnetic field associated with the stationary current flow.  The zero curl (irrotational) 

property specified by equation (2.6) shows that the electric field  is conservative and so it 

can be expressed as the gradient of a scalar potential U, i.e. 

E
r

 

 E U= −∇
r r

         (2.7) 

 

Ohm’s Law provides the connection between current density J
r

 and the electric field E
r

:  

 

 i ijJ jEσ=      i, j = x, y ,z   (2.8) 

 

where σ  is the conductivity described by a 2nd rank tensor (see chapter 3).  Summation is 

implied in the above equation through repetition of subscript j, so that each component of the 

current density is a linear combination of each component of the electric field.  Similar linear 

equations exist linking the other field quantities: 

 

 i ij

i ij

D E j

jB H
ε
μ

=
=

        (2.9) 

 

For isotropic media, the medium properties are defined simply as the ratios of the magnitudes 

of the various field quantities: 

  

, ,D E B H J Eε μ σ= = =       (2.10) 
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2.1.4  The 3-D Poisson Equation for Electric Potential 

 

Combining equations (2.5), (2.7) and (2.8) results in the differential equation:  

 

       (2.13) ( ) ,ij s sU I r r r rσ δ∇⋅ ∇ = − ∈Ω
r r r r r r

 

where we have made the replacement from equation (2.5) that the current strength 
t

I
∂
∂

=
ρ . 

Here ( , , )s s s sr x y z=
r  is the location of the current electrode in Ω . Equation (2.13) involves a 

dyadic product (see Appendix A) between the conductivity tensor and the gradient of the 

potential.  Or stated another way in this particular case, we form the matrix product between 

the 3x3 conductivity matrix and the 3x1 electric field vector , and then take the divergence of 

the resulting 3x1 vector (current density). 

 

Within uniform and isotropic sub-volumes of the medium we see that the above equation can 

be written as: 

 

 )(2
srrIU vvv

−=∇ δ
σ

        (2.14) 

 

which is recognised as the more usual (simplified version) form of Poisson’s equation. Away 

from sources )( srr vv ≠ the equation reduces to Laplace’s equation:  

 

02 =∇ U .         (2.15) 

 

Analytic solutions to equation (2.13) may be developed for a particular model by selecting a 

coordinate system to match the geometry and imposing appropriate boundary conditions.  The 

basic solution of equation (2.13) for a uniform, isotropic full-space medium (σ = constant) 

has the simple expression: 

  

 ( ),
4s

s

IU r r
r rπ

=
−

.        (2.16) 
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In a half space with the current source at the surface we simply replace the “4π” factor in the 

above equation by “2π” since the current flows radially out through a hemispherical surface 

and not a full sphere.  For more complicated media (variable conductivity), one has to solve 

equation (2.13) in conjunction with the boundary conditions by some numerical method.  The 

boundary conditions in the DC case reduce to: 

 

(1)  continuity of voltage across the interface,   

(2)  continuity of the normal component of current density across the interface.  

 

Obviously, at the Earth’s free surface, the latter condition leads to zero component of current 

density at the surface (current flow is entirely tangential).  From Ohm’s Law, this is 

equivalent to requiring that the normal derivative of the potential is zero (Neumann 

condition).  There is also the radiation condition that at infinity the potential is zero (Dirichlet 

condition). 

 

2.2.  The 2.5-D Approximation 
 

In many geophysical applications the 2.5-D approximation is the natural treatment. It refers to 

the situation in which the current electrode is assumed to be a point-source, and the 

conductivity σ  model is considered to be 2-D, that is, the variation of the conductivity 

depends upon only the x- and z- coordinates:  ( ),ij ij x zσ σ=

)s

 in equation (2.13).  To remove 

the y-coordinate, we set the source at and take the Fourier-cosine transform with 

respect to the y-coordinate, which transforms equation (2.13) into: 

,0,( s zx

 

 ( ) ( ) ( ) ( )2 , , ,
2ij y ij s s s s
IU k U x x z z x x z zσ σ δ δ∇ ⋅ ∇ − = − − − ∈Ω

r r r r r r   (2.17) 

 

where we use ( , )x z∇ = ∂ ∂  for the 2-D gradient in the ( ),x z  plane and 

 

 ( ) ( ) ( )
0

, , , , cosyU x z k U x y z k y dy
∞

= ∫ y .     (2.18) 
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2.2.1 Helmholtz Equation 

 

Inspecting equation (2.17), it is recognised to be the Helmholtz equation.  In its more general 

form, applicable to electromagnetic or seismic wave propagation, it is given by: 

  

( ) ( ) ( )( )2, , , , , 0a ya x z k a x z b x z k∇⋅ ⎡ ∇Φ⎤ + Φ =⎣ ⎦ ,   (2.19) 

 

where ( , )x z∇ = ∂ ∂ , Φ  is the Fourier cosine transform of Φ  (the 3-D physical field, i.e. 

electric potential) and  and ( ,a x z ) ( ),b x z  are two arbitrary model functions that represent 

the physical properties of the medium defined in the ( ),x z -plane, e.g. the electrical 

conductivity ( ),x zσ .   

 

The quantity  is the y component of the 3-D wavenumber, and  may be called the 

apparent wavenumber in the (

yk ak

),x z

( ), z

 plane.  The apparent wavenumber is generally a function 

of the model parameters , a x ( ),b x z  and wavenumber .  Obviously, equation (2.19) is 

a general form of the ordinary Helmholtz equation and it arises from the 2.5-D approximation.  

So, we call it the 2.5-D Helmholtz equation with which the following problem may be defined 

when including a point-source and a mixed boundary condition: 

yk

 

( ) ( ) ( )2 , , , ,
2

0 ,

a y s s
Sa k a b k x x z z x z

B x
n

δ δ⎧∇ ⋅ ⎡ ∇Φ⎤ + Φ = − − − ∈Ω⎣ ⎦⎪⎪
⎨

∂Φ⎪ z+ Φ = ∈Γ
⎪ ∂⎩

r

  (2.20) 

 

Here S is the magnitude of the source located at the point ( ),0,s sx z , the factor 1 2  comes 

from the Fourier-cosine transform of ( )0yδ − , B is a boundary operator and  is the unit 

normal vector for the boundary 

nr

Γ enclosing Ω .  It can be seen that the Helmholtz equation 

(2.20) represents the DC electric potential field.  The forward problem of modelling, entails 

solving equation (2.20) for the physical quantity Φ  at some specified spatial positions, with 

given model parameters and ( ,a x z ) ( ),b x z .  From equation (2.18), the spectrum ( ), , yU x z k  

is the wavenumber domain form of the 3-D electric potential and is a real valued function.  
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Then equation (2.17) becomes the governing equation for the DC electric potential 

computation with the 2.5-D approximation.  Comparing with equation (2.20), it is obviously 

the specified form of the 2.5-D Helmholtz equation with ( , = constant, 

 and S = I).   

( ),ija xσ= z

)

b

(2 2 ,a y ijk k x zσ= −

 

In numerical simulations, only a limited computational range Ω  is employed so that some 

artificial boundary condition must be introduced in the modelling.  In general, the boundary 

condition may be expressed by a mixed-boundary condition that includes Dirichlet and 

Neumann boundary conditions.  So, the defined partial differential equation problem for DC 

resistivity measurements becomes: 

 

( ) ( ) ( ) ( )

( )

2 , ,
2

0 ,

y ij s s s
IU k U x x z z x x

U BU x z
n

σ σ δ δ− = − − −

∂
+ =

∂

r r r r , sz z ∈Ω

∈∂Ω

ij
⎧∇ ⋅ ∇⎪⎪
⎨
⎪
⎪⎩

r r

  (2.21) 

 

where the boundary operator B will be given later in chapter 4. 

 

2.2.2   The 2.5-D and 3-D Green’s Functions 

 

The 2.5-D Helmholtz equation Green’s function allows us to skip the consideration of the 

source properties, e.g. current magnitude I.  It is the potential resulting from a delta function 

current source of unit amplitude.  In following chapters it is the basic quantity for calculating 

the synthetic data in modelling, and evaluating the Fréchet and second derivatives.  The 2.5-D 

Green’s functions may be defined by 

 

 ( ) ( ) ( )2.5 3

0

, , 2 , , cosD D
yG x k z G x y z k y d

∞

= ∫ y y

)

     (2.22) 

 

where  is the 3-D Green’s functions for the DC electric potential field.  The factor 2 

is to remove the ½ factor resulting from the Fourier-cosine transform of .  Obviously, 

the Green’s functions satisfy the DC resistivity equation: 

( , ,G x y z

( yδ − )0
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( ) ( ) ( ) ( )

( )

2.5 2 2.5

2.5
2.5

, , ,

0 ,

D D
ij y ij s s s s

D
D

G k G x x z z x x z z
G BG x z

n

σ σ δ δ⎧∇ ⋅ ∇ − = − − ∈Ω
⎪
⎨ ∂

+ = ∈Γ⎪ ∂⎩

r r r r r r

 (2.23) 

According to the definitions, when 0yk =  the Green’s function reduces to the 2-D one 

(response of a line source).  Comparing equation (2.19) with (2.17), the general 2.5-D 

response to a point source S = I can be obtained by convolution, or frequency domain 

multiplication, using the relation: 

 

 ( ) ({1 2.5, , , ,
2

D
c

IU x y z F G x k z−= ⋅ )}y       (2.24) 

 

 In the 3-D case: 

 

),,(.),,( 3 zyxGIzyxU D=        (2.25) 

 

where  now satisfies the Poisson equation: DG 3

 

         (2.26) )(. sij rrG −=∇∇ δσ
vv

 

2.2.3. Reciprocity 

 

An important property of the 2.5-D Green’s functions is that of reciprocity: 

 

 ( ) ( )2.5 2.5, , , ,D D
y s p y p sG k r r G k r r=       (2.27) 

 

where sr  and  represent the positions of the current source and potential electrode.  This 

equation states that the equivalent values of the 2.5-D Green’s function can be obtained by 

exchange of the positions of source and receiver.  The same holds true for the 3D Green’s 

functions.  From equations (2.24) and (2.25), it also follows that the electric potential U 

exhibits the reciprocity property: 

pr

 

( ) (, ),s p pU r r U r r= s         (2.28) 
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Thus identical voltage measurements will be obtained if current and potential electrodes are 

interchanged in an arbitrary medium. 

 

2.3  Numerical Forward Modelling Approaches  
 

It has been shown that the DC electrical resistivity model may be reduced to a boundary value 

problem of the 3-D Poisson equation (2.13) or the 2.5-D Helmholtz equation (2.17).  To solve 

the defined partial differential equation for an arbitrary medium, some numerical technique 

must be employed.   

 

There are three principal techniques of DC resistivity modelling which have been reported in 

the literature: finite-difference methods (FDM), finite element methods (FEM) and integral 

equation methods.  Each technique has its own advantages and is specifically suitable for 

some model geometries.  In this section we will briefly review the different approaches. 

 

2.3.1 Finite Difference and Finite Element Methods 

 

The FDM applies difference operators to approximate the vector calculus gradient and 

divergence operators in the governing equation (Mufti 1976; Dey and Morrison 1979a, 

1979b; Mundry 1984; James 1985; Spitzer 1995).  The FEM converts the partial differential 

equations into integral equations by a Variational Principle or Galerkin method, then carries 

out a numerical integration (Coggon 1971; Fox et al. 1980; Pridmore et al. 1981; Holcombe 

and Jirack 1984; Querlat et al. 1991; Zhou and Greenhalgh 2001). 

 

In many applications of 2-D or 3-D resistivity imaging, we often encounter a geological 

model that has a complex topography, such as small cliffs, steep hills and large trenches.  

Such natural conditions pose a difficulty for numerical modelling with the FD method.  To 

deal with these cases, most researchers prefer the FEM in which some powerful 2-D/3-D grid 

generators, such as TetGen (3-D) and Delaunay Triangulator (2-D), are applied to the finite 

element mesh which fit the complex topography (Loke 2000; Shewchuk 2002; Rucker et al. 

2005; Kerry & Weiss 2006).  However, employing such grid generators, one hardly in 

advance knows where the grid nodes are and it results in an irregular parameterization for 

forward modelling and inversion.  We desire to develop a new numerical method that can 

handle a complex topography without the grid generator and control the node distribution of 
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model parameterization in forward modelling and inversion, as well as being suitable for the 

anisotropic model when thin layered, fractured or cleaved rocks are present. 

 

Both the FDM and the FEM improve accuracy by employing dense nodes of the mesh 

(especially near the current sources where potential varies rapidly) or by decreasing the size 

of the element.  Singularity removal techniques (Lowry et al. 1989; Zhao and Yedlin 1996) 

have been developed to overcome numerical problems at the source, and infinite element 

methods (Blome and Maurer 2007) have been introduced as a means of overcoming 

limitations of artificial boundary conditions (combined Neumann and Dirichlet condition, see 

Dey and Morrison 1979a,b) under the earth. 

 

2.3.2. Boundary Integral Methods 

 

The integral equation methods (Dieter et al., 1969; Lee, 1975; Snyder, 1976; Okabe, 1981; 

Das and Paransis, 1987; Xu et al., 1988) are based on the integral form of solution of the DC 

resistivity problem (directly using the Green’s function of a uniform medium).  They are 

sometimes referred to as boundary element methods (BEM) and deal well with complex 

topography.  Such methods are particularly suitable for simple model geometries such as 

several homogeneous sub-regions.  They have been typically applied to the problem of 

embedded regular shaped bodies in an otherwise homogeneous or layered half space.  The 

main advantage is the lower cost of computer resources than for other methods in computing 

the 3-D potential response.  However the BEM is not well suited for modelling of arbitrary 

media.  A comprehensive treatment of integral equation methods as applied to the geoelectric 

problem is given in the book by Eskola (1992). 

 

2.4  Solutions for Anisotropic Models  
 

Few researchers have incorporated anisotropy into the numerical modelling (Yin and Wiedelt, 

1999; Pain et al., 2005; Li and Spitzer, 2005; Pervago et al., 2006; Kim et al., 2006; 

LaBrecque et al. 2004).  As shown earlier, it involves a dyadic product (see appendix A) 

between the conductivity tensor and the gradient of the potential (or Green’s function).  Most 

treatments have been based on a finite element solution to the partial differential equation. 

The integral equation approach was used by Pal and Dasgupta (1984) who studied the electric 

potential due to a surface point source over an inhomogeneous anisotropic half-space of the 

simple vertical transversely isotropic (VTI) type.  An extension of this was made by Pal and 
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Mukherjee (1986) who dealt with a layered conducting earth with dipping anisotropy. 

Eloranta (1988) modelled mise a la masse anomalies in a TI medium containing prismatic 

conductors, while Eskola and Hongisto (1997) considered an anisotropic body located in an 

isotropic environment. Flykt et al. (1996) calculated the potential anomalies caused by a 

conducting body in an anisotropic conducting half-space.  Li and Uren (1997a,b) gave 

analytic solutions for the point source potential in an anisotropic 3-D half space, comprising 

either two horizontal layers or two vertical boundary planes.  In another paper (Li and Uren, 

1998) they applied image theory to derive the solution for the potential from a buried current 

source in an arbitrary anisotropic half space, and showed how the image source is laterally 

displaced from the true source horizontal position.  Li and Stagnitti (2000) studied the 

problem of direct current electric potential in an anisotropic half-space with a vertical contact 

and containing a conductive 3D body. 
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Chapter 3 

Anisotropy and the Electrical Conductivity Tensor  

 

3.1 The Conductivity Tensor 
 

The conductivity tensor , which relates the current density σ J
r

 to the electric field E
r

 through 

the Ohm’s law relation (section 2.1.3): 

 

, , ,i ij jJ E i j x y zσ= =        (3.1)  

 

is of rank 2, and for the most general anisotropic medium can be described by 6 independent 

components.  (See Appendix A for a more detailed overview).  Writing it out as a 3 x 3 

symmetric matrix in the cartesian co-ordinate or recording frame, we have: 

 

xx xy xz

xy yy yz

xz yz zz

σ σ σ
σ σ σ
σ σ σ

⎛ ⎞
⎜

= ⎜
⎜ ⎟
⎝ ⎠

σ ⎟
⎟         (3.2) 

 

The matrix can be diagonalised to produce the three eigenvalues 1 2 3, ,σ σ σ  which yield the 

principal conductivities in the directions of the three principal axes (or eigenvectors ˆ ˆ ˆ, ,x y z ). 

 

 
1

2

3

0 0 0 0
0 0 0
0 0 0 0

x x

y y

z z

σ σ
σ 0σ

σ σ

′ ′

′ ′

′ ′

⎛ ⎞ ⎛
⎜ ⎟ ⎜′ = =⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

σ
⎞
⎟
⎟
⎟
⎠

     (3.3) 

 

These orthogonal directions refer to the natural frame of the rock and reflect symmetry axes 

or the actual rock structure/fabric.  In these directions, J
r

 is parallel to E , but for all other 

directions, the current density and electric field are in different directions to each other.  The 

three Euler angles, which permit a rotation from the Cartesian frame into the principal 

directions, together with the three eigenvalues, constitute an alternative set of the six 

independent components of the tensor to those given in equation (3.2). 

r
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ij i jx x

3.2  The Representation Quadric and Tensor  
 

For second rank symmetric tensors like the conductivity tensor, there is a simple geometrical 

representation referred to as the representation quadric: 

 

 1=

1

         (3.4) σ

 

or expanding out into the various components: 

 

 2 2 2 2 2 2xx yy zz xy xz yzx y z xy xz yzσ σ σ σ σ σ+ + + + + =     (3.5) 

 

This is the equation of an ellipsoid, centred at the origin, in the Cartesian co-ordinate frame. 

The axes of the ellipsoid are tilted in the directions of the principal directions mentioned 

above (see Fig 3.1a).  By a co-ordinate rotation, the cross terms (or off-diagonal elements) in 

the above equation are eliminated, yielding, in the natural rock frame , ,x y z′ ′ ′ : 

 

 ( ) ( ) ( )2 2 2
1 2 3 1x y zσ σ σ′ ′ ′+ + =       (3.6) 

 

  
Fig. 3.1a The conductivity tensor ellipsoid in the 
geographic co-ordinate frame x,y,z. 

Fig. 3.1b The conductivity tensor ellipsoid in the 
principal axis frame (or natural rock frame) x’,y’,z’ 

  

 

 

The semi –major axis lengths of the ellipsoid are equal to the inverse of the square roots of the 

eigenvalues or principal conductivities (see Fig 3.1b).  If we choose to work with the 
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resistivity tensor, , then the semi-axes are equal in length to the square roots of the 

principal resistivities:  

1−=ρ σ

1 1 2 2 31 , 1 , 1 3ρ σ ρ σ ρ σ= . = =

 

For an electric field oriented in an arbitrary direction  from the centre of the ellipsoid to the 

surface of the ellipsoid, the radius r (or distance along this line) gives the square root of the 

resistivity in that direction (see Fig 3.2).  The normal to the tangent at P gives the direction of 

the current density vector (Fig 3.2).  Obviously, for an isotropic medium the ellipsoid reduces 

to a sphere and the radius is normal to the surface, so that 

n̂

J
r

 is parallel to E
r

.  The current 

density in the direction  of the electric field is given by  n̂

 

 2ˆn nJ J n E E rσ= ⋅ = =
r

       (3.7) 

 

with E E=
r

, r is distance from the centre of the ellipsoid to the point on its surface 

intersected by the electric field E
r

 and nσ  is the conductivity in direction , given by: n̂

 

n ij i jn nσ=           (3.8)  σ

 

Summation is implied by the repeated subscripts and the unit vector is determined by 

n E E=
rr . 

 
Fig. 3.2 The relationship between the electric field vector and the current density vector .  The E field is in 
direction  whereas the  vector is orthogonal to the tangent plane where the line  meets the surface of the 

ellipsoid. The current density in direction  is simply  where r is length of line from centre of ellipsoid 
to its surface in direction . 
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The long axis of the conductivity ellipsoid ẑ′ , which represents the direction of the dominant 

principal resistivity, often co-incides with the normal to the major rock lineation.  It is 

referred to as the transverse direction.  It is characterised by polar angles 0θ  and 0ϕ , which 

give the inclination (dip) and azimuth (bearing) respectively in spherical co-ordinates.  It has 

components: 

 

( 0 0 0 0 0ˆ cos sin ,sin sin ,cosz )ϕ θ ϕ θ θ′ =      (3.9) 

 

The other two principal directions lie in the plane perpendicular to this direction.  The third 

(Euler) angle is the amount of tilt rotation about the ẑ′  axis to fix the orientation of x̂′  in the 

plane perpendicular to .  Alternatively, it can be expressed as the azimuth swing (call it ε) 

of 

ẑ′

x̂′  from that of .  A special case is that in which ε = 0 so that direction ẑ′ x̂′  is obtained 

simply by adding 90 degrees to 0θ : 

 

( 0 0 0 0 0ˆ cos cos ,sin cos , sinx )ϕ θ ϕ θ θ′ = −      (3.10) 

 

The third unit vector ŷ′  is obtained from the orthogonality property by taking the cross-

product: 

 

       (3.11) ( 0 0ˆ ˆˆ sin ,cos ,0y z x ϕ ϕ′ ′ ′= × = − )

 

So defining as the rotation matrix  

 

0 0 0 0 0

0 0

0 0 0 0 0

ˆ cos cos sin cos sin
ˆ sin cos 0
ˆ cos sin sin sin cos

x
R y

z

ϕ θ ϕ θ θ
ϕ ϕ

ϕ θ ϕ θ θ

′ −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟′= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟′⎝ ⎠ ⎝ ⎠

    (3.12) 

 

we can now compute the conductivity matrix in the cartesian or recording frame as the 

product of the three matrices:  TR R′=σ σ  where the diagonal eigenvalue matrix σ ′  is given 

by equation (3.3).  

 



Chapter 3:  Anisotropy and the Electrical Conductivity Tensor 28

The six components of the conductivity tensor can now be written out as follows in terms of 

the principal conductivities and the two polar angles defining the direction of dominant 

eigenvector: 

 

( )
2 2 2 2 2

1 0 0 2 0 3 0 0

2 2
1 0 0 2 0 3 0 0

cos cos sin sin cos

0.5 cos sin 2 sin 2 sin sin 2
xx

xy

σ θ ϕ σ ϕ σ θ ϕσ
σ σ θ ϕ σ ϕ σ θ ϕ

+ +⎛ ⎞
⎜ ⎟ − +⎜ ⎟

⎛ ⎞
⎜ ⎟
⎜ ⎟

( )

( )

3 1 0 0
2 2 2 2 2

1 0 0 2 0 3 0 0

3 1 0
2

1

0.5 cos sin 2
cos sin cos sin sin

0.5 sin sin 2
sin

xz

yy

yz

zz

σ σ σ ϕ θ
σ σ θ ϕ σ ϕ σ θ ϕ
σ σ σ ϕ θ
σ σ θ

⎜ ⎟ −=⎜ ⎟
+ +⎜ ⎟

⎜ ⎟ −⎜ ⎟⎜ ⎟
⎝ ⎠ 2

0 3 0cosσ θ

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

  (3.13) 

 

For the 2.5-D situation, one principal axis is taken to be parallel to strike i.e. ˆ||y y′ .  The 

conductivity components are obtained by letting the azimuth angle 0φ  = 0. 

 

( )

2 2
1 0 3

3 1 0

2
2 2

1 0 3

cos sin
0.5 sin 2

sin cos

xx

xz

yy

zz

σ 0

0

σ θ σ θ
σ σ σ θ
σ σ
σ σ θ σ θ

⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟ −⎜⎜ ⎟ = ⎜⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

⎟
⎟       (3.14) 

 

Note that in both cases, the trace of the conductivity tensor { }( )xx yy zzTr σ σ σ= + +σ  is equal 

to the sum of the eigenvalues 321 σσσ ++ .  The above model, involving just 5 parameters in 

the 3-D case, is slightly less complex than the most general anisotropic case (3 angles, 3 

principal values) but when there is isotropy in the plane of stratification, which is frequently 

the situation, there is no need to concern oneself with eigenvector ( )ˆ ˆ,x y  orientation in the 

plane perpendicular to .  This particular class of practical model will now be considered. ẑ

 

3.3  The Tilted Transversely Isotropic (TTI) Medium 
 

A special 3-D situation where azimuth is still important, and finds widespread application, is 

that in which the two principal conductivities in the plane orthogonal to are equal.ẑ′ 1 2σ σ= .  

This is referred to as a transversely isotropic (TI) medium and was discussed in section 1.3.2.  

The medium anisotropy is then characterised by just four parameters: the longitudinal 

resistivity 11 1l 2ρ σ σ= = , the transverse resistivity 31tρ σ= , the dip angle 0θ  and azimuth 
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angle 0ϕ  which define the arbitrary axis of symmetry which lies normal to the plane of 

stratification (eg bedding plane, fracture plane, cleavage plane).  This plane is characterised in 

terms of strike angle 0 2β ϕ π= +  and the dip angle from the horizontal 0α θ=  (see Fig 3.3).  

Resistivity is constant at lρ  for any direction within the bedding plane, but different in all 

other directions, reaching its maximum value tρ  along the symmetry axis or transverse 

direction ), 00( θφ .  The tensor ellipsoid for this special case of TI media has circular cross 

section perpendicular to the long axis.  

 

As an alternative to lρ  and tρ , we introduce  two auxiliary quantities: 

 

m l tρ ρ ρ      t lλ ρ ρ=       (3.15) =

 

The quantity λ is called the coefficient of anisotropy, typically in the range 1 to 3 (see section 

1.3.2), while mρ  is the geometric mean of the two principal resistivities.  It is sometimes 

referred to as the equivalent isotropic medium resistivity.  Replacing 1 2,σ σ  with lσ  and 3σ  

with tσ  in equation (3.13), the TTI tensor becomes:  

 

( )
( )( )

( )
( )

( )

2 2
0 0 0 0 0

0 0 0 0 0

0 0

2 2
0 0 0 0 0

0
2

0

cos c sin sin cos

cos sin 2 sin sin 2

0.5 cos sin 2

cos si cos sin sin

sin sin 2
sin co

l t
xx

l txy

xz t l

yy
l t

yz
t l

zz
l t

σ θ ϕ ϕ σ θ ϕσ
σ θ ϕ ϕ θ ϕσ

σ σ σ ϕ
σ σ θ ϕ ϕ σ θ ϕ
σ

σ σ ϕ
σ

σ θ σ

+ +
⎛ ⎞
⎜ ⎟ − +⎜ ⎟
⎜ ⎟ −⎜ ⎟
⎜ ⎟ + +
⎜ ⎟

−⎜ ⎟⎜ ⎟
⎝ ⎠ + 2

0s θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

2 2

2 2

os

sin 2

n
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2
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2

σ

θ
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=    (3.16) 

 

For an isotropic case, l tσ σ σ== , all diagonal elements iiσ  reduce to the same scalar value 

σ , and the off-diagonal elements vanish.  For the general 2.5-D case with no azimuthal 

dependence, we obtain: 

 

( )
0 0

0

0 0

s
sin

c

xx l t

xz t l

yy l

zz l t

σ 2 2

2 2

in
2

os

cos
0.5
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σ θ σ θ
σ σ σ θ
σ σ
σ σ θ σ θ

⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟ −⎜⎜ ⎟
⎜⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

⎟
⎟        (3.17) =
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Figure 3.3. (a) Geographic recording frame (x,y,z) and the rotated or natural rock frame (x’,y’z’) which defines 
the principal conductivity directions.  The symmetry axis is in the z’ direction (or 3σ  direction), specified by 

polar angles 00 ,θϕ .  This is the minimum conductivity (maximum resistivity) direction.  If the azimuth of the x’ 

axis, ε, is equal to that of the z’ axis, 0ϕ , then the number of independent components of the conductivity tensor 

reduces from 6 to 5 (3 principal values - 321 ,, σσσ  - and two polar angles 00 ,θϕ ).  (b) Special case of tilted 

transversely isotropic media showing plane of stratification (foliation) having strike β = 0 90ϕ ± °  and dip from 

horizontal α = 0θ .  The longitudinal conductivity, in the plane of stratification, is lσ  and the transverse 

conductiv irection ormal to the plane ofity, in the d of the symmetry axis (n  stratification) is tσ .  The longitudinal 

and transv ities are erse resistiv ll σρ /1=  and t tσρ /1= . 
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3.4  Electric Potential and Current Density in a Uniform Medium 
 

3.4.1  VTI Medium 

 

Keller and Frischknecht (1970) show for a medium having a vertical symmetry axis (i.e 

orizontally layered or VTI medium) the potential U at some arbitrary point P(x,y,z) in the h

medium due to a current source I on the surface at the origin is given by: 

 

( )
2 2 2 2

, ,
2

lI
y z
ρ λU x y z

xπ λ
=

+ +
      (3.18a) 

 

The equipotential surfaces are then given by: 

    (3.18b) 

where C is a constant. i.e., th

f the current density are given by: 

 

Czyx =++ 2222 λ     

 

ey are ellipsoids of revolution about the z-axis.  The components 

o  J
r

 

1 1U U 1, ,x y z
l l t

UJ J J
x y zρ ρ ρ

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
         (3.19) 

 

Now we can recast these results entirely in terms of the distance 222 zyxR ++=  to the 

point of measurement and the angle of inclination ψ  from the symmetry axis (in this case 

vertical) using: 

 
2 2x y 2 2

2 2 2

sin
cos
R

z R
ψ

ψ
+ =

 
=

        (3.20) 

Note that for a vertical axis of symmetry the situation is axisymmetric, i.e., has azimuthal 

mmetry.  Therefore there is no dependence of the potential on the azimuth angle to point P. 

herefore  

 

sy

 

T  
( )2 22 1 1 cos

lIU
R

λρ

π λ ψ
=

+ −
      (3.21) 



Chapter 3:  Anisotropy and the Electrical Conductivity Tensor 32

Differentiati n (3.21) into the current density equations (3.19) ng and substituting eq

provides the current density in the alternative co-ordinates.  The component of current density 

uatio

in the direction of the symmetry axis ( )|| zJ J=  is: 

 

( )( )|| 3 22 2 2

cosIJ
2 1 1 cosR

λ ψ
=

π λ ψ+ −
      (3.22) 

 

and that in the orthogonal direction ( )2 2
x yJ J J⊥ = +  is: 

 

 
( )( )3 22 2 2

sinIJ
2 1 1 cosR

λ ψ
=

π λ ψ
⊥

+ −
      (3.23) 

3.4.2  TTI Medium 

slate these results into situations where the axis of symmetry is tilted in 

me arbitrary direction.  For such a TTI medium let the axis of symmetry have azimuth 

 

 

Now we want to tran

so 0φ  

(from the x axis) and inclination angle 0θ  (from the vertical or z axis, see Fig. 3.4).  The unit 

vector ẑ′  defining this direction has Cartesian components given by equation (3.9).  The point 

P at which we want to compute the potential and the current density has spherical co-

ordinates ( ), ,R φ θ .  The unit vector defining this direction has Cartesian components: 

 

)ˆ os ,sin sin ,cosn (sin cθ φ θ φ θ=       (3.24) 

The cosine of the incident angle ψ meas

e dot product between the unit vectors

 

ured relative to the symmetry axis  is found by taking 

 ẑ′th  and : n̂

 

( )0 0 0ˆˆcos sin sin cos coz n s cosψ θ θ φ θ′= ⋅ = − +φ θ       (3.25) 

If we now substitute for 

 

cosψ  from equation (3.25) into 

t any interior point 

equation (3.21) we find the potential 

( ), ,P R φ θa  for a rotated symmetry axis, in the geographic frame. 
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Similarly, it is possible to find the current density J
r

 for a tilted axis of symmetry in terms of 

the original co-ordinate 

 

|| 0 0cos sinxJ J

system: 

0 0

|| 0 0 0 0

|| 0 0

cos cos
sin sin sin cos

cos sin
y

z

J
J J J
J J J

φ θ φ θ
φ θ φ

= +
= + θ     (3.26) 

 

where  are given by equations (3.22) and (3.23) and illustrated in (Fig. 3.4). 

θ θ

⊥

⊥

⊥= −
 

|| ,J J⊥

 

 
Fig. 3.4 Point P(R, φ, θ ) inside an anisotropic medium h ng tilted axis of symmetry (defined by angles avi

at which potential U and current density J
r

00 ,θφ ) are to be c puted. 

 
om

We will now consider some special cases. 
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For a vertical axis of symmetry, with 0 0θ = , cos cosψ θ=  and ψ θ= , the general solution 

expre ion for the ediumequation (3.21) reverts to the earlier ss VTI m , with no azimuthal 

dependence: 

 

( )
( )2 2

, ,
2 1 1 cos

mIU R
R

ρφ θ
π λ θ

=
+ −

      (3.27) 

 

herew  m lρ λρ= .  For vertically dipping beds, or a horizontal axis of symmetry  we 

 

 0
0 90=θ

have  

 

cos )cos(sin 0ψ = φφθ −        (3.28) 

 

nd the potential is given by: a

 

2/1
0

222 ))(cossin)1(1(2
),,(

φφθλπ
ρ

θφ
−−+

=
R

I
RU m    (3.29) 

 

onsider now a point P on the surface of the Earth.  Here z = 0, or θ = 90 and equation (3.25):  

)

C

 

 cos(sincos 00 φφθψ −=        (3.30) 

ubstituting into equation (3.21) we find that the surface potential is given by: 

 

S

 

2/1
0

2
0

22 )sin)(cos)1(1(2
)0,,()0,,(

θφφλπ
ρ

φ
−−+

==
r

I
rUyxU m   (3.31) 

 

here .  This is the same as the result given by Bhattacharya and Patra (1968, w 222 yxr +=

p.18 ) although they expressed it in terms of the bedding plane strike ( )0 90β φ φ= − +  and 

dip ( )0α θ=  from the horizontal.  They do not give expressions  the 

subsurface.  For a vertical axis of symmetry 00

for potential in

=θ  (bedding plane dip of zero), the potential 

is: 

r
I

U m

π
ρ

2
=          (3.32) 
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with no azimuthal dependence.  The apparent resistivity for a pole-pole array is: 

 

  lma I
(3.33) 

 

 case of a profile oriented in a 

ngitudinal resistivity direction.  However, the apparent resistivity is greater than the 

ymmetry 

Ur λρρπρ === .2        

This is the direction parallel to the layering or in the 

lo

longitudinal resistivity by a factor equal to the coefficient of anisotropy. 

 

Next consider the case of vertically dipping beds i.e., horizontal axis of s 900 =θ  and 

gain with observations at the Earth’s surface.  Consider a profile in the samea  direction as the 

strike of the bedding plane, 0φφ = .  From equation (3.29) we find that 

 

r
I

r
I mrU l

πλπ
ρ ρ

 φ
2.2

)90,,( ==        (3.34) 

and the apparent resistivity for a pole-pole array is 

 

la ρρ = .  Note that this is the case of a 

rofile oriented in a direction perpendicular to the layering or in the transverse resistivity 

ngitud

files parallel to the strike of the bedding plane, the apparent resistivity is again equal to 

p

direction, yet the apparent resistivity is equal to the lo inal resistivity, not the transverse 

resistivity.  This is referred to as the Paradox of Anisotropy, and was introduced in section 

1.3.3.  

 

For pro

mρ .  There is a clear azimuthal dependence in the apparent resistivity, with values ranging 

between lρ  and mρ . 
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3.4.3  Illustrative Example 

potential and current density patterns in the subsurface for a 

rface current electrode over a uniform isotropic medium having a conductivity of 0.1 S/m. 

s for a current electrode on the surface 

bove a uniform, anisotropic TI medium having a longitudinal conductivity of 0.1S/m, a 

 

Figure 3.5a shows the equi

su

The diagram is for a single vertical slice through the current electrode which is located to 

position (0,0).  Note the circular equipotential patterns and the constant magnitude of the 

current density vectors (indicated by arrows) at a fixed radial distance from the current 

electrode.  There is no angular variation of the current density.  Both the potential and the 

current density fall off inversely with distance.  Note also that the current density vectors are 

everywhere orthogonal to the equipotential contours.  

 

By contrast, Fig. 3.5b shows the corresponding pattern

a

transverse conductivity of 0.025 S/m and a dipping axis of symmetry of tilt angle 45 degrees. 

The azimuth of the axis of symmetry is 0φ  = 0 degrees.  The cross section is at an azimuth of 

φ = 0 degrees and passes through the current source.  We now observe a pronounced 

asymmetry in the equipotential patterns (elliptical) with the long axis of the ellipse in the 

longitudinal direction (i.e parallel to the bedding plane).  The current density now not only 

falls off with increasing distance from the current source but there is also a pronounced 

angular variation, with maximum current density in the longitudinal (most conductive) 

direction (i.e parallel to the plane of stratification) and minimum current density in the 

transverse conductivity direction (parallel to the bedding plane normal).  Also we observe that 

the current density vectors are no longer perpendicular to the equipotential contours, except 

along the axes of the ellipse. 
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Figure 3.5  The equipotential and current density patterns in the subsurface for a surface current electrode 
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Chapter 4 

New Gaussian Quadrature Grid Method for Resistivity Modelling 
 

It has been shown that the spectral method (Trefethen 2000) and the spectral element method 

(Komatitsch and Tromp 1999) have more attractive features than the two traditional FDM and 

FEM numerical methods used in resistivity modelling (as reviewed in section 2.3).  The main 

advantages lie in the capability to simulate complex physical models and the exponential 

power convergence.  They have been successfully applied to fluid flow dynamic modelling 

(Boyd 1989), seismic wave simulations (Komatitsch and Tromp 1999) and electromagnetic 

computations (Martinec 1999). 

 

The spectral method uses some global series of orthogonal functions to present the unknown 

solution at the irregular collocation points, subject to boundary conditions.  The resulting 

linear system matrix is full.  The spectral element method combines the spectral method and 

the finite element method, and it possesses the main advantages of each.  This includes the 

capability to handle various model shapes, the sparse matrix format of the FEM and the 

exponential power convergence of the spectral method. 

 

In this chapter I develop and present the theory for a new method of 3-D/2.5-D DC resistivity 

modelling in heterogeneous, anisotropic media having arbitrary surface topography.  The 

scheme is based on Gaussian Quadrature Grids (GQG).  It was inspired by the spectral 

element approach, but does not require a constant element mesh matching the surface 

topography (avoiding the 2-D/3-D mesh generator), or the resistivity tensor to be constant 

within the element integrations.  It is particularly well suited for handling arbitrary surface 

topography and easily accommodates general anisotropy of the medium.  This new method 

makes complex forward modelling much easier. 

 

4.1  Variational Principle 
 

The Variational Principle is the basis for the method.  For completeness, I give a brief 

introduction here.  More details can be found in Graham and Oden’s book (1983. p96).  The 

Variational Principle states that the following boundary-value problem of a partial differential 

equation: 
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,

0,

Du f r
u vu r
n

= ∈⎧
⎪
∂⎨

+ = ∈Γ⎪∂⎩

Ω
       (4.1) 

 

may be solved by minimizing the following functional 

  

( ) 1 ,
2

u u Du uΨ = − , f                                          (4.2) 

 

incorporating the boundary condition, provided that the differential operator D is linear and 

self-adjoint.  This means that the following equations are satisfied for arbitrary differentiable 

functions u, v, w and a constant λ: 

 

 ( )
, ,

, ,
w Du u Dw

w D u v w Du w Dvλ λ
=

+ = + ,
                           (4.3) 

 

Here, the angular bracket represents the integral over the domain Ω: 

 

( ) ( ),f g f r g r d
Ω

= ∫ Ω                                                (4.4)  

 

The principle is based on the variational analysis for an arbitrary small change uδ , which 

gives rise to: 

 

1 , , ,
2
1 , ,
2

, 0

u Du u D u u f

u Du u Du u f

u Du f

δ δ δ δ

δ δ δ

δ

Ψ = ⎡ + ⎤ −⎣ ⎦

= ⎡ + ⎤ −⎣ ⎦

= − =

,                              (4.5) 

 

Equation (4.5) shows that δΨ  vanishes if and only if ,Du f uδ= ∀ , which is the 

governing equation in the boundary-value problem (4.1). The Variational Principle may be 

applied to 2.5-D and 3-D resistivity anisotropic forward modelling, in which the governing 

equations are: 
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2.5D: 
( ) ( ) ( )

( ) ( )

2 1 ,
2

0 ,

y yy sG k G r r r x z

G n vG r x z

σ δ⎧∇ ⋅ ⋅∇ + = − − = ∈Ω⎪
⎨
⎪ ⋅∇ ⋅ + = = ∈Γ⎩

σ

σ

r r

r r
           (4.6) 

 

3D:    
( ) ( ) ( )

( ) ( )

, ,

0 , ,

sG r r r x y z

G n vG r x y z

δ⎧∇ ⋅ ⋅∇ = − − = ∈Ω⎪
⎨

⋅∇ ⋅ + = = ∈Γ⎪⎩

σ

σ

r r

r r                             (4.7) 

 

Here  is in general a 2 × 2 or 3×3 symmetric conductivity matrix in the 2.5-D or 3-D case, 

 is the unit normal vector to the boundary 

σ

nr Γ ,  is a known function of the spatial 

coordinates and the conductivity, which specifies the mixed boundary condition derived in the 

next section, 

v

sr is the current point-source location, and G or G is the Green’s function (the 

potential response to a unit current injection) in the wavenumber (Fourier transformed with 

respect to the strike or y direction) or spatial domain, respectively.  

 

Chapter 3 examined the conductivity tensor in some detail.  It was shown that if the medium 

has elliptical anisotropy, i.e. defined by the three principal values ( ), ,x x y y z zσ σ σ′ ′ ′ ′ ′ ′

( 0 ,

 and with 

the symmetry-axis in the direction defined by the orientation angles ẑ )0ϕ θ , the 

conductivity tensor  has components: σ

 

2.5D: ( )

2 2
0 0

0

2 2
0 0

cos sin
0.5 sin 2

sin cos

xx x x z z

xz z z x x

yy y y

zz x x z z

σ σ θ σ θ
σ σ σ θ
σ σ
σ σ θ σ θ

′ ′ ′ ′

′ ′ ′ ′

′ ′

′ ′ ′ ′

⎛ ⎞+⎛ ⎞
⎜ ⎟⎜ ⎟ −⎜⎜ ⎟ = ⎜⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

⎟
⎟       (4.8) 

 

3D:  (4.9) 

( )
( )

2 2 2 2 2
0 0 0 0 0

2 2
0 0 0 0 0
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2 2 2 2

0 0 0

cos cos sin sin cos

0.5 cos sin 2 sin 2 sin sin 2
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′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

′ ′ ′ ′

′ ′ ′ ′ ′ ′

+ +⎛ ⎞
⎜ ⎟ − +⎜ ⎟
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+ +⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠
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0
2 2

0 0

sin
0.5 sin sin 2

sin cos
z z x x

x x z z

θ ϕ
σ σ ϕ θ

σ θ σ θ
′ ′ ′ ′

′ ′ ′ ′

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟+⎝ ⎠

 

Applying equation (4.2) to the Helmholtz equations (4.6) and (4.7) gives: 
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2.5-D: ( ) ( ) 2 2 21
2 y yy sG G G k G d vG dσ

Ω Γ

⎛ ⎞⎡ ⎤Ψ = ⋅∇ ⋅∇ + Ω+ Γ −⎜ ⎟⎣ ⎦⎝ ⎠
∫ σ

r r
G∫  (4.10) 

 

3-D: ( ) ( ) 21
2 sG G G d vG d

Ω Γ

⎛ ⎞⎡ ⎤Ψ = ∇ ⋅∇ Ω+ Γ −⎜ ⎟⎣ ⎦⎝ ⎠
∫ ∫σ

r r
G    (4.11) 

 

Here, sG  or sG  means the value of the Green’s function at the source position, expressed by 

the interpolation formula of the neighbouring points when the functionals in (4.10) and (4.11) 

are discretized. 

 

4.2  Anisotropic Mixed-Boundary Condition 
 

In numerical modelling, a finite region has to be considered for efficiency, so special 

boundary conditions are used in numerical techniques.  The boundary  is integrated over 

when the Variational Principle is applied to the resistivity Helmholtz equation.  This means 

that the operator B in the mixed Dirichlet / Neumann boundary condition in equation (2.21) 

must be designed for this case.  A self-adjoint differential operator B is also desired so as to 

make the operator  self adjoint too, and to ensure that the resultant element matrix 

becomes symmetric.b 

∂Ω

( ,yL k σ)

 

Normally, the boundary consists of two parts: the earth’s surface sΓ  and the artificial 

boundary  (under the ground).  On the earth’s surface, because no current crosses it, the 

Neumann boundary should be satisfied, for the 3-D case: 

aΓ

 

,0, s
U r
n

∂
=

∂
∈Γ

) )

       (4.12) 

 

where  represents the coordinates of the boundary and ( , ,r x y z= ( , ,x y zn n n n=  is the 

outward unit vector normal to the boundary.  In the 2.5-D case, we have 

 

,0, s
U r
n

∂
=

∂
∈Γ       (4.13) 
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For simplicity and since , we take 0yn = ( ),x zn n n=
r  and ( ),r x z= .  U  is the Fourier-cosine 

transform of the 3-D electric potential.  On the artificial boundary (the left and right sides and 

the bottom of the numerical grid), Dey and Morrison (1979a,b) proposed a mixed boundary 

condition in their FDM.  Several researchers have shown that the mixed boundary condition 

produces better numerical solutions than either the classical Dirichlet or Neumann boundary 

conditions (Zhou and Zhong, 1984).   

 

Here we derive the expressions for the parameter  which appears in equations (4.6) - (4.7).   v

Consider a homogeneous anisotropic medium, at least at the position of the boundaries far 

away from the source.  The Green’s function of a point source (I=1) located at (0, 0,0) may be 

simply written in the form (Li and Uren, 1997): 

 

T

CG
r r

=
⋅ ⋅ρr r

)

,                                                      (4.14)  

 

where , constant ( , ,r x y z=
r 2ijC ρ π=  and 

1

ij ijρ σ
−

⎡ ⎤= ⎣ ⎦  is the resistivity tensor, the 

inverse matrix of the conductivity tensor.  For the 2.5-D problem ( )0xy yzρ ρ= = , the Green’s 

function becomes (see chapter 3): 

 

2 2 22
yy

xx xz zz yy

C CG
2x xz z y a y

ρ

ρ ρ ρ ρ

′
= =

+ + + +
,                  (4.15) 

 

where yyCC ρ/=′  and the quantity  0a >

 

( ) ( )2 21 12 xx xz
xx xz zz

xz zzyy yy

x
a x xz z x z

z
ρ ρ

ρ ρ ρ
ρ ρρ ρ

⎛ ⎞⎛ ⎞
= + + = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
  (4.16) 

 

as required by the positivity of the resistivity matrixρ .  According to the definition of the 

McDonald function: 

 

( ) (02
0

cos y
y

k y
dy K k a

a y

∞

=
+

∫ )                                           (4.17) 



Chapter 4:  New Gaussian Quadrature Grid Method for Resistivity Modelling 43

The Fourier cosine transformed Green’s function may be calculated by 

 

( )0 yG C K k a′= .                                                      (4.18) 

 

Differentiating the above with respect to (x, z) and replacing ( )0 yC G K k a′ = , we have the 

gradient: 

 

( )
( )

1

02
yy

y

K k ak
G

a K k a

⎡ ⎤
⎢∇ = − ∇
⎢
⎣ ⎦

a G⎥
⎥

                                        (4.19) 

 

Here  can be calculated from equation (4.16) and the coefficient  for the 2.5-D mixed 

boundary condition is:  

a∇ v

 

( )
( ) ( )1

02
yy

y

K k ak
v

a K k a
σ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

r
a n∇ ⋅

r       (4.20) 

 

In a 3-D case, one may directly calculate the following product with equation (4.14): 

 

( ) ( )1
2

G n B n G
B

⎡ ⎤∇ ⋅ = − ∇ ⋅⎢⎣ ⎦
σ σ
r r

⎥
r r  ,                                  (4.21) 

where 

2TB r r B= ⋅ ⋅ ∇ =ρ
rr r rρr ,                                         (4.22) 

 

From equation (4.21), the coefficient is 

 

( )1
2

v B
B

= ∇σ
r rn⋅ .                                                (4.23) 

 

It should be noted that the operator v  used in the boundary integral is dependent on the 

position of the source and the wavenumber  for 2.5-D.  In a practical DC resistivity survey, 

different source positions (current injection points) are commonly employed to obtain the 

maximum information about the resistivity variation in the medium.  If we directly use the 

yk
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boundary operator , it leads to redundant computations in the boundary integral due to the 

different source locations, and for any given .  An efficient way is to replace the source 

point in  with the average position of all the current injection points so that the boundary 

integral is calculated only once and for each wavenumber.  This saves much computer 

memory and computer time.  Obviously, the replacement is reasonable when the DC 

resistivity survey is simulated within the relatively small central area of the entire 

computational range. 

v

yk

v

 

4.3  Discretisation of a 2-D Functional 
 

For 2.5-D resistivity modelling, the subsurface is often limited by a 2-D computational 

domain, i.e ( ) ( )1 0, , 0,
xNx z x x z x⎡ ⎤∈ × ⎡⎣⎣ ⎦ ⎤⎦ , where the function ( )0z x  gives the topography of 

the Earth’s surface (see Fig. 4.1).  The functional given in the previous section may be 

calculated by summation of successive integrals over the intervals 

[ ] (, , 2, , 1; 2x xi N N )1ix +: ,i iL x 1= − ≥K

( )iL

 in which the topography  is differentiable, i.e. 

, the integral becomes 

( )x0z

( )0z x ∈ 1C

 
1 0 ( )1

1 0

( , , ) [ ( , , ) ]
i

i

x z xNx

i x

F G G d F G dxdz
+−

=Ω

∇ Ω = ∑∫ ∫σ σ G∇∫ ,                           (4.24) 

 

where the integrand ( , ,F G Gσ ∇ )  is a function of the conductivity tensor σ , the field 

quantity G  and its gradient G∇ , all of which in general vary with the spatial coordinates 

.  In order to calculate the inner integral along the z-axis, we may divide the 

elevation  into  parts and equation (4.24) becomes 

( ),x z ∈Ω

( )x0z (1, 2z zN N− ≥ )

 
0

1 0 1

0

( )
( ) ( 1)1 1 1

1 1 1 ( 1) ( )0
1

[ ( , , ) [ ( , , )
i ix

i i

z x
j

x z x x NzN Nx Nz

i i j j z xx x
Nz

F G G dxdz F G G dz dx
+ + −− − −

= = = −
−

∇ = ∇∑ ∑ ∑∫ ∫ ∫ ∫σ σ ] ,          (4.25) 

 

where ,  and ( )1 0z x = ( ) ( )0Nzz x z x= ( ) ( ) ( ) ( )01jz x j z x Nz 1= − −  may be the sub-surfaces 

of the model or mathematical boundaries.  Particularly, if , then 2 2Nx and Nz= =
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( ) ( ) ( )1 1 2 1, 0 ,i i i i 0x x z x and x x z x z x+ += = = = , then the sub-domain Ω  reverts to the 

global domain 

ij

Ω .  To this we apply the variable replacement in the sub-domain 

[ ] ( ) ( )1 1, ,ij i i j jx x z x z x+ +⎡ ⎤Ω = × ⎣ ⎦  (see Fig. 4.1). 

 

( ) ( ) ( ) ( )

1 1

1 1

( ) ( ) (
2 2

( , )

i i i

j j

x x xx

z x z
z

ξ ξ

ξ η

− +
= + ), [ 1,1],

] [ ], [ 1,1],
2 2

i

j j

x

x z x z x

ξ

η η

+ +

+ +

∈ −

− +
= + ∈ −[

            (4.26) 

 

Ω

ijΩ

z

x

ijΩ

ξ

η

)(0 xz

ix 1+ix

)(xz j

)(1 xz j+

Figure 4.1  Model having topographic surface ( )0z x  and transformation of co-ordinates from ( ),x z  to new 

coordinates ( , )ξ η  in the model sub-domains. 

 

The resulting Jacobian matrix is: 

 

( ) ( )1 1
( , ) 1 ( )
( , ) 4 i i j j

x z
x z x x z x z x

x z
ξ ξ

ξ η
η η

+ +

∂ ∂
∂ ∂∂ ⎡ ⎤= = − −⎣ ⎦∂ ∂∂
∂ ∂

    (4.27) 

 

Applying Gaussian quadrature formulae (Stroud and Secrest 1966: Abramowitz and Stegun 

1965, Philip and Rabinowitz 1984) to the double intervals in equation (4.25), yields 

 

( )

( )

( ) ( )

11 1 1

1 1

1 1 ( , )
1 1

( , )[ ( , , ) ] ( , , )
( , )

1 ( ) ( , , )
4

ji

i j

i j

k l

z xx

x z x

N N
i j
k l i i j j

k l

x zF G G dz dx F G G d d

w w x x z x z x F G G
ξ η

ξ η
,

ξ η
ξ η

++

− −

+ +
= =

∂
∇ = ∇

∂

⎡ ⎤= − − ∇⎣ ⎦

∫ ∫ ∫ ∫

∑∑

σ σ

σ

            (4.28) 
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where ( ),k lξ η  and )  are the Gaussian quadrature abscissae and weights respectively 

in the 2-D case, and they can be analytically calculated once the inte s iNξ d jNη  are 

given for the sub-domains (Phillip and Rabinowitz, 19

( ,i j
k lw w

ger an

84) 

 

[ ] ( ) ( )j1 1j: ,ij i i ,x x z+ + x z x . 

The accuracy of the numerical integration depends on the number of the abscissae iNξ  a  

jNη  along with the Gaussian quadrature order.  The Gaussian quadrature order determines the 

number of abscissae in a sub-domain.  Gaussian quadrature grid (GQG) refers to the grid 

generated by the abscissae.  It spans the whole domain Ω and may easily fit the topography of 

the Earth’s surface and the sub-surfaces.  The key step of computing equation (4.28) is to 

calculate the values of 

⎡ ⎤Ω × ⎣ ⎦

nd

( , ,F G G∇ )σ  at the Gaussian quadrature abscissae ( lk ηξ , ).  This 

involves sampling the conductivity ( ) ( )( ), ,k kx z lξ ξ ησ  and the Green’s function 

( ) (( , ,k kz )G x )lξ ξ η  (representing electric potential) and calculating the gradient 

( ) (( z ))l, ,k kG x ξ ξ η∇  based on the GQG.  It is apparent that such grid may give the details of 

a complex conductivity model ( ),x zσ  and the electric potential Green’s function ( ), zG x . 

 

The GQG method differs from the traditional finite element method and the spectral element 

methods, both of which require a powerful element generator for fitting a complex 

topography and the subsurface interfaces in the modelling and assume that each element has 

constant model parameters, i.e. conductivity tensor (Shewchuk 2002; Rucker et al. 2005; 

Kerry & Weiss 2006). 

 

In order to calculate the gradient ( ),G G x G z∇ = ∂ ∂ ∂ ∂ , we apply the differential chain rule: 

 

1

2
i i

G G x G z
x z

x x G z G
x z

ξ ξ

ξ
+

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

⎛ ⎞− ∂ ∂ ∂⎛ ⎞= +⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ξ
          (4.29) 

 

 
( )1( )

2
j jz x z xG G x G z G

x z zη η η
+ −∂ ∂ ∂ ∂ ∂ ∂

= + =
∂ ∂ ∂ ∂ ∂ ∂

                                       (4.30) 
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ξ∂∂ /zwhere  can be calculated by equation (4.26).  We now want to express these equations 

(4.29) and (4.30) in terms of the partial derivatives of the original model coordinates 

 

( )
1 1

1 1

( ) ( ) ( ) ( )2
( )

2

j j j j

i i j j

z x z x z x z xG G G
x x x z x z x

G G

η
ξ

1( ) ( )j jz z x z x

η
+ +

+ +

′ ′ ′ ′⎡ ⎤ ⎡ ⎤− + +∂ ∂ ∂⎣ ⎦ ⎣ ⎦= −
∂ − ∂ − ∂

∂ ∂
=

             (4.31) 

e approximate the Green’s function 

η+∂ − ∂

 

 in the domain ( ) [ ] [ ], 1,1 1k lξ η ∈ − × − (,1 lk ηξ , )GW  by 

Lagrange interpolation: 

 

1 1
p q pq

p q= =

( , ) ( ) ( )
i jN N

G l l G
ξ η

ξ η ξ η=∑∑                                                      (4.32) 

 

This leads to the derivatives with respect to the Gaussian quadrature abscissae ( ),k lξ η : 

 

1 1 1

1 1 1
p k q l pq q l kq

p q qklη = = =
⎜ ⎟∂⎝ ⎠

 

It should be mentioned that the Lagrange interpolation in equation (4.32) actually has the 

exponential power convergence for the derivatives in equation (4.33).  This is due to 

density ( )

( ) ( ) ( )

( ) ( ) ( )

i j i

i j j

N N N

p k q l pq p k pl
p q pkl

N N N

G l l G l G

G l l G l G

ξ η ξ

ξ η η

ξ η ξ
ξ

ξ η η

= = =

⎛ ⎞∂ ′ ′= =⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ′ ′= =

∑∑ ∑

∑∑ ∑
                         (4.33) 

employing the irregular collocation points which have the Legendre polynomial zeroes’ 

21
clus

Nx
x

μ = .  The Legendre / Chebyshev points are 
π − 2

π  times less dense in 

the middle than the equally space grid ( )
2reg
Nxμ⎛ ⎞=⎜ ⎟

⎝ ⎠
 with the same number of points N.  

So that polynomial interpolation using Legendre distribution of points is 

( )N
Nf p O const−− =  if f is Lipishitz continuous.  This is the principle of the spectral 

ethod (Trefethen 2000).  An improved Barycentric Interpolation Spectral Differentiation m

matrix is also available (Berrut, Trefethen 2004).   
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Substituting equation  (4.33) for (4.31), we obtain the derivatives with respect to the 

original coordinates ( ),

s

x z ; they are: 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

1 1

1 11 1

( )

2

( , )

i jN N

T x
x k l

z x z x z x z xlG

N G

ξ η ηξ

ξ η

⎛ ⎞′ ′ ′ ′⎡ ⎤ ⎡ ⎤− + +′⎛ ⎞⎛ ⎞∂ ⎣ ⎦ ⎣ ⎦ ( )j j j jp k
pl q l kq

p qi i j jkl

G l G
x x x z x z x

η+ +

= =+ +

′⎜ ⎟= +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=
rr

and            (4.34) 

∑ ∑

( ) ( )1 1

( )

2 ( )

( , )

jN
q l

kq
q j jkl

T z
z k l

lG G
z z x z x

N G

η η

ξ η

= +

⎛ ⎞′⎛ ⎞∂
= ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ −⎝ ⎠ ⎝ ⎠

=

∑
rr

 

 

where 

 

( ) ( ) ( ) ( ) ( )

( )

x ,

{ , 1, 2,..., }
( ) { , 1, 2,..., }

l k z k

l i
pl

G G G G G

G G p Nξ

= ∪ =

= =

r r r r r

r

r
                                        (4.35) 

 

and the components of the vectors 

k j
kqG G q Nη= =

( ),x k lN ξ η
r

 and ( ),z k lN ξ η
r

 are calculated as follows: 

 

( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1

,p l
j j

l N p N N
z x z x ( )

1

1 1

2 , 1

,

i
p k

i i

x k l p
j j j j i i j

l p N
x x

N
z x z x z x z x

ξ

ξ ξ ηη
+

< ≤ +⎪ −⎩

ξ

ξ η
η

+

+ +

⎧⎛ ⎞
′ ≤ ≤⎪⎜ ⎟−⎝ ⎠⎪= ⎨

′ ′ ′ ′⎡ ⎤ ⎡ ⎤− + −⎪⎣ ⎦ ⎣ ⎦ ′

 

 

and           (4.36) 

 

( ) ( )( ) ( )( ) ( ) ( )
1

z k l p lp
j k j kz x z x

2, , 1 jN l p Nηξ η η′= ≤ ≤  
ξ ξ+ −

 

From equation (4.34) one can see that the derivative G x∂ ∂  depends ( )j′  and  on z x ( )1 , 

the slopes of the top and bottom boundaries of the sub-domain ij

jz x+′

Ω  (see Fig. 4.1), which are 

defined by the topography in the interval [ ]1,i ix x + .  This implies that ( )jz x  and ( )1jz x+  must 
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be differentiable in the interval [ ]1,i ix x + .  In the FEM and the SEM, there is no such 

requirement, because they use a t element mesh created by a mesh generator to fit the 

topography or interfaces.  However, the requirement can be easily satisfied by appropriate 

arrangemen

 c

t of the intervals 

onstan

[ ]1,i ix x +

 mesh ge

 in terms of the surface topography or interfaces.  

herefore, it does not need t nerator and can be applied to any topology or 

he integrand 

T he

interfaces. 

 

( ), ,F G G∇σT  in the 2.5-D equation (4.10) has the following matrix-vector form 

upon substitution of the partial derivatives in equation (4.34): 

 

( )

( )

( )

] [ (

[ ] [ (

] [ (

)

( )

( , )

( )

( )

( , , ) [ , ) ( , ) ( , )]

, ) ( , ) ( , )]

[ , ) ( , ) ( , )]

.

k l

2 ( ,

x T T x
k l x k l x k l

T x
l z k l x k l

T z
k l z k l z k l

kl

F G G G N N G

G N N G

G N N G

G

ξ η
η ξ η ξ η

η ξ η ξ η

η ξ η ξ η

∇ =

+

+

σ
r rr

xx

z T
zx k

z T
zz

l

σ ξ

σ ξ

σ ξ

ηy yy kk σ ξ+

r

r rr r

r rr r
  (4.37) 

Therefore, equation (4.24) becom

 

 

es 

( )
( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

11
2 2

1 1 ,
,

, , [ ] [ , , ]
jz x

p pq q yyT T
kl p k l q k l kl y klF G G dz dx G w N N G w k Gξ η ξ η

++
i jN Nξ η

⎧ ⎫⎡ ⎤ ⎪ix

i j
k l p x zx z x

q x z
= = ∈

⎪⎢ ⎥∇ = +⎨
∈

⎬
⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

∑∑ ∑∫ ∫ σ
r rr r

 

 

where           (

 

4.38) 

( ) ( ) (( )kz x ) ( )( ) ( )( )1 1 ,

1
4 k l

pq i j
kl i i j j k k l pqw x x z x w w

ξ η
ξ ξ σ+ +⎡ ⎤= − −⎣ ⎦    
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The boundary integral in equation (4.10) ma

t (R) and bottom (B).  They are 

y be calculated in terms of the three sides: left 

(L), righ

 
( )

( )

( )1 11 1
2 2

jz
z xz x N

G d G dz G d

( ) ( )

1

2

10

1
2

1 1 1
1 1

1
2

j

j
z

jL z x

NN
j

j j l l jl
j l

z x z x w G
η

ν ν ν
+−

Γ = = ∑∫ ∫ ∫ η

ν

=

−

+
= =

⎡ ⎤= −⎣ ⎦∑∑
     (4.39) 

 
( )

( )

( )

( ) ( )

11
2 2

10

1
2

1
1 1

1
2

j NxNx z

j Nx

j
z

z xz x N

jR z

NN
j

j Nx j Nx l l jl
j l

G d G dz G d

z x z x w G
η

2

x

ν ν ν

ν

+−

=

−

+
= =

Γ = =

⎡ ⎤= −⎣ ⎦

∑∫ ∫ ∫

∑∑

η

     (4.40) 

 

( )

( )
1

11
12 2 2

1 12

Nxx Nx
i i

iB x

ik

x x
G d G dx G dν

1
1 2

1 1 2

iNNx
i i i

k k
i k

x x
w G

ξ

ν ν ξ
−

+

= −

−
Γ = = ∑∫ ∫ ∫

    (4.41) 

Substituting equations (4.38)–( at e ma orm  the nal 

for 2.5-D resistivity modelling 

ν
−

+

= =

−
= ∑∑

 

4.41) for (4.10), we arrive  th trix f  of  functio

 

1( )
2

TG G MG b G= −
r r r rr

                                            (4.42) 

where 

sΨ

 

G
r

 is the vector consisting of the values at all points of the Gaussian quadrature grid, 

M  is the matrix assembled b cal matrices y the lo ( ) ( ) ( ), ,pq T
kl p k l q k lw N Nξ η ξ η

r r
 and the 

coefficients in equations (4.38)–(4.41) and sb
r

 is the source vector containing the interpolation 

functions so that the equation T
s sG b G=

rr
 is satisfied.  Theref odellingore, the forward m  

duces to solving the linear equation system: 

 

re

sMG b= .                                                  
r r

         (4.43) 
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4.4  Discretisation of a 3-D Functional 

For 3-D resistivity modelling, the subsurface geological model m y be give : 

 

( ) [
a n over the domain

] ( )0, , , , 0, ,1 1Nx Nyx y z x x y y z x y⎡ ⎤∈ × × ⎡ ⎤⎣ ⎦

topography of the Earth’s surface.

⎣ ⎦ , where the function pecifies the 3-D 

  We divide the rectangular 

( )0 ,z x y s

xy -domain [ ]1 1, ,Nx Nyx x y y⎡ ⎤× ⎣ ⎦

into sequential rectangles 

 

[ ]1 1: , ,ij i i j jx x y y+ +⎡ ⎤Ω × ⎣ ⎦  ( )1, 2, , 1; 1, 2, , 1i Nx j Ny= − = −K K  

( ), 2Nx Ny ≥  in which the topography ( )0 ,z x y  is differentiable (0 ,z x ) ( )1
ijC∈ Ω .  When y

the Variational Principle is applied to the 3-D problem as in equation (4.11), the volume 

integral can be calculated by summing the integrals over the 

 

y                       (4.44) 

 

ollowing the same methodology as the 2.5-D case, we split the elevation  into 

 parts and equation (4.44) becomes 

 

y              (4.45) 

Here 

rectangles: 

( ) ( )
( )1 01 ,11

, , , ,
ji y z x yxNyNx

F G G d F G G dz dxd
++−− ⎡ ⎤

∇ Ω = ∇⎢ ⎥∑ ∑∫ ∫ ∫ ∫σ σ  
1 1 0i j

i j x y= =Ω ⎢ ⎥⎣ ⎦

F ( )0 ,z x y

( )1 2Nz Nz− ≥

( ) ( )
(

( )1 11 ,11 1

1 1 1
, , , ,

j ki

i j k

y z x yxNyNx Nz

i j k x y z

F G G d F G G dz dxd
+ ++−− −

= = =

⎡ ⎤
∇ Ω = ∇⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ ∑∫ ∫ ∫ ∫σ σ  

),x yΩ

 

( ) ( )( ) ( )0, , 1kz x y z x y k Nz= − 1− .  Then applying the coordinate maps 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

1 1

1 1

2 2

2 2
, , , ,

i i i i

j j j j

x x x x
x

y y y y
y

z x y z x y z x y z x y

ξ ξ

η η

+ +

+ +

− +
= +

− +
= +

− +

                   (4.46) 

we have the following expression for the volume integral  

 

1 1, ,
2 2

k k k kz ξ η ζ ζ+ += +

 

( ) ( ) ( )
( )( )

( )1 11 , 1 1 1

, 1 1 1

, ,
, , , ,

, ,

j ki

i j kx y z

y z x y

x y

x y z
F G G dxdydz F G G d d d

x

ξ η ζ
ξ η ζ

+ ++

− − −

∂
∇ = ∇

∂∫ ∫ ∫ ∫σ σ   (4.47) ∫ ∫
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where 

 

( )
( ) ( ) ( )( ) ( )1 1 0 ,

, , 8 1 i i j j

, , 1

x y z

x y z x y z x x y y z x y
Nz

x y z
ξ η ζ η η η + +

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
= = − −

∂ ∂ ∂ ∂ −
∂ ∂ ∂

  (4.48) 

pplying Gaussian quadrature (Stroud & Secrest, 1966; Phillip and Rabinowitz, 1984) to 

equation (4.47), we obtain the following form:  

 

ξ ξ ξ

ζ ζ ζ∂ ∂ ∂

 

A

( )
( )

( )1 11 ,

,

, ,
j ki

i j k

y z x yx

x y z x y

F G G dxdyd
+ ++

∇∫ ∫ ∫ σ  z

( )( ) ( ) ( )( )
( ) ( )1 1 0

( )
,

, , |
i j kN N N

i i j j i j k
x x y y z x y

w w w F G G
ξ η ζ

, ,8 1Nz α β γ

α β
α β γ ξ η ζ

α β γ −

 

computing the integrand 

ξ η+ +− −
∑∑∑ σ  (4.49) 

The w terms are the Gaussian weights in each co-ordinate direction.  Now, we turn to 

= ∇

( ), ,F G G∇σ
r

 at the Gaussian quadrature abscissae ( ), ,α β γξ η ζ .  

Upon inspection of equation (4.46), the electric potential represented by the Green’s function 

 is now mapped to the Gaussian quadrature space, e.g. ( ) ( ) ( )( ), ,, ,G G x y zξ η ξ= η ζ .  The G

differential chain rule provides the new partial derivatives: 

 

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )( )
( )

1

1 0

0

2 1 ,
2 2 1

2 1 ,
2 2 1

,

0i i

j j

x x k z x yG G G
x Nz x z

y y k z x yG G G
y

2 1

Nz y z

z x yG G

ζ
ξ

ζ
η

ξ η

+

+

⎡ ⎤− + − ∂∂ ∂ ∂
= +⎢ ⎥∂ ∂ − ∂ ∂⎣ ⎦

− ⎡ ⎤+ − ∂∂ ∂ ∂
= +⎢ ⎥∂ ∂ − ∂ ∂⎣ ⎦

=

                          (4.50) 

The derivatives with respect to the original coordinates 

Nz zζ∂ − ∂
∂ ∂

 

( ), ,x y z  are thus: 
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( )
( )

( ) ( )( )
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1 0

0

01
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2 1 ,2
,

2 1 ,2
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2 1
,

i i
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k z x yG G
x x x xz x y

k z x yG G
y yz x yy y

NzG G
z z x y

ζ G

G

ξ ζξ η

ζ
η ζξ η

ζξ η

+

+

+ − ∂∂ ∂
= −

∂ − ∂ ∂

+ − ∂∂ ∂
= −

∂ ∂ ∂−

−∂ ∂
=

∂ ∂

∂
∂

∂
∂

G

    (4.51) 

 

where G may be expressed by the Lagrange interpolation formula: 

 

( ) ( ) ( ) ( )
1 1 1

, ,
i j kN N N

p q v pqv
p q v

G l l l
ξ η ζ

ξ η ζ ξ η ζ
= = =

=∑∑∑       (4.52) 

 

Therefore, we have 
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p
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ζ
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=

=

=
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∂
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∂

∂ ′=
∂

∑

∑

∑

                                                   (4.53) 

 

 Substituting (4.53) for (4.51), we obtain the gradients 
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where the vectors ,x yN N
r r

 and zN
r

 consist of the following components: 
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The vectors ( ) ( ) ( ), ,x yG G G
r r r

z  are given by 
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Once again, equations (4.54) and (4.55) indicate that the derivatives G x∂ ∂ and G y∂ ∂  

require the slopes of the topography ( )0 ,z x y x∂ ∂  and ( )0 ,z x y y∂ ∂  in the sub-domain 

[ ]1, ,i i j jx x y y+ ⎡× ⎣ 1+ ⎤⎦ .  Similarly, one can appropriately arrange the sub-domains 
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[ ]1, ,i i j jx x y y+ ⎡× ⎣

( )

1+ ⎤⎦  in which the slopes exist.  Accordingly, the volume integrand for 3-D 

resistivity modelling equation (4.11) may be written as follows: 
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The cross-term outer-product vectors have been appended with zeros at the relevant indices in 

the computer code to make the derivative shape function vectors and Green’s function value 

vectors commute and symmetric. 

 

Substituting equation (4.62) into equation (4.49) yields 
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The boundary integral in equation (4.11) consists of the following five parts: 
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The surface integrals using the same (GQG) are: 
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Now all terms in the governing 3-D modelling problem, have been explicitly derived and 

defined and it is clear that upon substituting into equation (4.11), it reduces to the same 

quadratic form as in the 2.5-D modelling problem, i.e.   
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       (4.70) 

 

According to the Variational Principle, ,u Du fδ δ 0Ψ = − =  and taking the differential of 

equation (4.70): 
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So again it reduces to solving the linear equation system     

 

 sMG b=
rr

         (4.72) 

 

4.5  The Partial Derivative Approximation Accuracy  
 

The discretizations of 2-D and 3-D functionals described above required the gradient of the 

Green’s functions ( ),G G x G z∇ = ∂ ∂ ∂ ∂
r

 and ( ), ,G G x G y G z∇ = ∂ ∂ ∂ ∂ ∂ ∂
r

 to be discretised.  

These are crucial quantities for the numerical modelling.  We may employ global or local 

Gaussian quadrature abscissae to calculate the functionals (2-D/3-D integrations) and the 

gradients.  
 

Two examples of the two abscissae schemes in which we include an undulating surface 

topography in the model to take account of the skew are displayed (figure 4.2).  In the spectral 

method, the global abscissae in each direction are employed in an orthogonal function series, 

such as Chebyshev or Fourier series, so as to achieve high accuracy of the derivatives, but it 

results in a full system matrix (Trefethen 2000) and is very expensive in terms of computer 

memory and time for large 3-D modelling.  

In order to obtain a sparse matrix, we apply the global abscissae (figure 4.2a) to the 

integrations but calculate the gradient with the local cardinal functions obtained by the certain 

neighbouring points rather than the orthogonal function series.  We still name it ‘global 

scheme’ to discriminate the ‘local scheme’ (figure 4.2b), which applies the Gaussian 

quadrature abscissae to both the integrations and gradients in the sub-domains that cover the 
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whole model and whose conductivity tensors are variable at point by point rather than being 

constant.  

 

To assess the validity of the approximations made, we use a simple 2-D analytic example for 

the function )/2sin()/2cos(),( yx LyLxAyxf ππ=

zf ∂∂ /

.  We include an undulating surface 

topography in the model to take account of the mis-alignment in the grid.  Obviously the 

vertical derivatives  should be easier to deal with because all GQG points align in a 

vertical direction at each horizontal position (figure 4.2).  But the horizontal derivatives 

 are more challenging because there is no horizontal alignment of grid points at any 

given depth.  For the particular function in question, exact analytic solutions are available for 

the derivatives, which we can compare with the numerical derivatives.  

xf ∂∂ /

 

(b)(a) 

Figure 4.2.  Gaussian quadrature grids for an undulating surface topography: (a) global scheme (Nx = Nz = 2, 151 
and 76 abscissae in the x- and z-directions, 5 neighbouring points for the local cardinal function) and (b) local 
scheme (Nx = 31, Nz = 17, 5 abscissae in each direction in a sub-domain). 
 

The upper panel in figure 4.3 shows the derivatives using the global scheme (Nx = 2, Nz = 2, 

the abscissae are equal to 151 and 76 in the x- and z-directions respectively, and the local 

cardinal functions of 5 neighbouring points to compute the derivatives).  The bottom panel 

shows the absolute errors |ε|, which indicates at some points the relative error may be as large 

as 40%.  They are worse for the x derivatives because of the staggering or misalignment 

associated with the surface topography and resultant co-ordinate stretching.  
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Figure 4.3.  Approximations to the partial derivatives on the Gaussian quadrature grid using the global abscissae 
shown in Fig. 4.2a for a simple analytic case =),( zxf  )/2cos( xLxA π )/2sin( zLzπ .  The upper two 

diagrams show the numerical derivatives zfxf ∂∂∂∂ /,/  and the lower diagrams give the absolute errors |ε|. 
These errors are unacceptably large and so a global scheme is not satisfactory. 
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Figure 4.4 Approximations to the partial derivatives on the Gaussian quadrature grid using local scheme shown 
in Fig.2b for the same analytic example given in Fig 3.  The errors (lower diagrams) in the numerical derivatives 
are now generally less than 0.5%. 
 

We see from figure (4.4) the results using the local scheme ( Nx = 30, Nz = 15 and 5 abscissae 

per 10 m).  Again, both the actual computed derivatives and the absolute errors to the true 

solution are shown.  The errors in this case are much reduced, and generally less than 1%.  

We have conducted tests for other topographies including a flat surface, a sloping interface 

and a trench using the same analytic expression.  We find that the local scheme does quite a 
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good job (errors less than 1%) in all cases.  From the spectral method theory (Trefethen 

2000), it is not difficult to understand why the ‘global scheme’ is worse than the local scheme, 

because the neighbouring points for computing the derivatives in the global scheme are 

actually not the collocation points of the spectral method, but the Gaussian abscissae in the 

sub-domains. 

 

4.6   Computational Aspects 
 

We showed above that the GQG method gives rise to a system of linear equations: 

  

( )
( )

3 :

2.5 : ,
s

y s

D M G

D M k G

− =

− =

σ

σ

b

b

rr

r r           (4.73) 

 

where  or ( )M σ ( , y )M kσ  is an N N×  banded symmetric matrix depending on the 

conductivity tensor  and the wavenumber , σ yk G
r

 or G
r

 is the N-component vector which 

gives the values of the Green’s functions or the wavenumber version (Fourier transformed) of 

the Green’s functions at all grid nodes, and sb
r

 is the source vector which has zero 

components except for the current magnitude 1 at the current injection location(s).  The 

potential U is simply related to the Green’s function G through the relation U = IG, where I is 

the actual current magnitude.  Here N is the dimension of the discrete model (total number of 

the Gaussian quadrature abscissae), and it may be as large as several hundred when tackling a 

3-D problem.  

 

Upon solving the linear equation system, one can obtain the potential values corresponding to 

a current injection point.  Normally, electrical resistivity imaging surveys involve a large 

number of current electrode positions so that equation (4.73) may have to be solved hundreds 

of times. 

 

In 3-D applications, an efficient and accurate linear equation solver is required.  Zhou and 

Greenhalgh (2001) compared four iterative solvers based on the pre-conditioned conjugate 

gradient method and one matrix method (banded Cholesky decomposition) in terms of 

accuracy and efficiency and concluded that the two iterative solvers (symmetric successive 

over-relaxation algorithm, see Axelsson 1984; Spitzer 1995) and the incomplete Cholesky 
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decomposition algorithm, see David 1978; Ajiz and Jennings 1984; Manolis and Michael 

1991; Zhang et al. 1995) are suitable options for 3-D modelling.  

 

It has been shown (Zhou & Greenhalgh 2001) that in the 3-D FEM, if the tetrahedron 

elements are employed the non-zero elements in each row of the matrix M is 8, but from the 

previous formulation one can see that the GQG method (similar to the spectral element 

method) has in general more than 8 non-zero elements.  This is because the minimum number 

of Gaussian quadrature abscissae is 2 (see equation 4.44).  It means that if the dimension (N) 

is the same, the GQG method costs more computer memory and time, regardless of which 

solver is applied. 

 

In 2.5-D applications, the banded Cholesky decomposition method ( T )M LL=
r r

 is commonly 

applied to the linear equation system.  The advantage of the matrix method is that the 

decomposition is carried out only once for all the current electrodes.  The cost of computer 

memory and time depend on the dimension (N) of the matrix M and its band-width ( )bwN . 

The smaller the band-width, the faster is the solving procedure.  It is not difficult to show that 

the maximum band-widths of the FEM (triangular or rectangular elements) and the GQG 

method (similar to the spectral element method) can be estimated by { }maxN N 1z= +⎡ ⎤⎣ ⎦
FEM
bw  

(Zhou & Greenhalgh 2000) and ( ) { }1 max 1GQG
bw zN N Nξ= − +⎡ ⎤⎣ ⎦

N

 (see equation 4.34), where 

 is the total number of nodes in the vertical direction and zN ξ is the number of the Gaussian 

quadrature abscissae in the x-direction of a sub-domain.  Obviously, the 2.5-D GQG 

modelling costs more computer memory and time than the FEM because . 2Nξ ≥

 

In addition, for efficiency and accuracy, limited wavenumbers are often employed and the 

choice of the limited wavenumbers includes determining the total number and the distribution 

in the range (0,yk )∈ ∞ , as well as an appropriate interpolation of ( )yG k
r

 for the inverse 

Fourier cosine transform.  Theoretically, the more wavenumbers that are used, the more 

accurate the solution.  From examinations of the analytic solutions for some simple models, 

i.e. half space, two layered model, or a vertical contact, the range of the wavenumber depends 

on the conductivity model and the spacing of the current and potential electrodes.  In general, 

a small spacing requires a relatively large range of and a large spacing needs a small range 

of .  Several schemes for choosing  and the interpolation for 

yk

yk yk ( )yG k
r

 have been 
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ty

developed (Dey and Morrison 1979a; Queralt et al. 1991; LaBrecque et al. 1996; Xu et al. 

2000).  Actually, these schemes are all based on analytic solutions for the simple models due 

to the non-existence of any universal scheme to choose the wavenumbers for a general 

inhomogeneous model.  Consequently, the computation errors for 2.5-D modelling are mainly 

contributed by using a limited set of wavenumbers, the discretization of the model, and the 

validity of the artificial mixed boundary condition.  The analogous problem for 2.5-D acoustic 

modeling was recently investigated by Zhou and Greenhalgh (2006), who developed an 

adaptive wavenumber sampling scheme.  Numerical experiments show that this approach can 

yield satisfactory results for even complex models.  

 

After obtaining the Green’s function G, one can easily compute the apparent resistivi  aρ  

for different electrode configurations by the following formula: 

 

                                               (4.74) MNa GKΔ=ρ

 

where K is the geometry factor for the specific electrode configuration, which only depends 

on the positions of the electrodes, and MNGΔ  is the potential difference between the two 

measuring electrodes.  This normalised quantity is employed to indicate variation of the 

resistivity of the subsurface, i.e. departures from uniformity. 

 

 
Matrix dim.
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Figure 4.5. PC time costs of the linear equation solver (LLT) per wavenumber (Pentium (R) M, 2GHz, 2GB 
RAM) for three Gaussian quadrature order and three sub-domain sizes applied to homogenous anisotropic 
modelling.  Here the dimension of the system matrix is given for each case. 
 

Experiments showing computer resources show that as the number of Gaussian quadrature 

abscissae increases, or the sub-domain size deceases, the computer time significantly increase, 

because the dimension of the matrix in the linear equation system (equation 4.43) and the 
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non-zero elements in each row of the matrix increase accordingly.  Figure 4.5 shows the PC 

time (Pentium (R) M, 2GHz, 2GB RAM) costs for one wavenumber in these cases.  Note the 

dramatic increase in the diagram from matrix dimension 2,710 (order 3) to dimension 32,131 

(order 8) and over three orders of magnitude increase in the computation time.  Also note that 

the size of 2.5m with order 3 has the same matrix dimension (32,131) as the size of 10m with 

order 8 and both give satisfactory results (see figure 4.5), but the former cost about 1/5 

computer time of the latter, due to reducing the band width of the matrix with the low order. 

Therefore, there is a balance between the sub-domain size and the GQG order for the 

accuracy and efficiency.  One must reach a compromise between them in any modelling.  
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Chapter 5 

GQG Modelling Results 
 

In this chapter I present results of numerical modelling for a variety of simplified geological 

models using the new GQG approach.  The purpose is not only to validate the procedure but 

also to demonstrate its versatility in being able to handle complex surface topography and 

anisotropic structures.  Both 2.5-D and 3-D models are considered.  I begin by examining 

isotropic homogeneous models with and without variable topography.  The former has a 

simple analytic solution for comparing with the numerical method in order to check accuracy. 

I then move on to consider 2.5-D heterogeneous isotropic models with both resistive and 

conductive anomalies.  These solutions are compared against finite element results.  Next I 

study an anisotropic homogeneous model without surface topography, for which an analytic 

solution exists for comparison.  The next step is to consider heterogeneous 2.5-D models 

involving an anisotropic background medium with embedded resistive and conductive 

isotropic blocks.  These models are extended to incorporate variable surface topography. 

Finally I present results of 3-D numerical modelling for both isotropic and anisotropic 

structures with variable topography.  The former is compared against FE solutions.  The 

chapter also includes an analysis of computational accuracy using different Gaussian orders 

and sub-domain sizes. 

 

5.1  2.5-D Isotropic Homogeneous Models with Variable Topography  
 

First we consider four homogeneous, isotropic models having a fixed resistivity of 10 Ω-m, 

but variable surface topographies.  Figure 5.1 shows the actual models and the results 

obtained.  The model domains of the GQGs are plotted as the backgrounds to the diagrams. 

The entire GQGs include the extended margins on both sides and the deeper part of the model 

to reduce the artificial boundary effects.  The marginal parts are not depicted in all of the 

diagrams.  The plots show the equipotential contours in the subsurface as vertical sections for 

each model, as well as the computed profiles of voltage versus distance along the ground 

surface.  The diagram in the upper left is for a flat topography, which has an analytical 

solution.  It is plotted against the GQG solution (figure 5.1).  The error in the numerical 

solution is less than 0.85%.  This occurs in the vicinity of the current source position.  Next 

we show the results for a sloping surface topography (upper right).  The GQG solution along 

the surface is compared with that obtained using a finite element algorithm (Zhou and 
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Greenhalgh 2000), where the sloping surface is approximated by a series of small vertical 

steps.  Agreement between the two results is very good.  The equipotential contours are quasi-

circular but affected by the topography.  The bottom two diagrams are for an undulating 

surface topography and a prominent trench or valley.  The slight deviations between the FEM 

solutions and the GQGs’ in the vicinity of the source are due to the errors in matching of the 

topography in the FEM code (Zhou, 1998).  In each case one can see that the contours are 

roughly circular and all contours meet the surface topography at 90 degrees, implying 

tangential current flow here (the Neumann boundary condition ).  0=nJ
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Figure 5.1. Results of GQG modelling of the electric response for four homogeneous, isotropic models (ρ = 10 
Ω-m) but incorporating surface topography.  Equipotential diagrams are shown in cross-section form along with 
surface voltage profiles.  The surface profiles are compared against the analytic solution (flat topography case) 
and the finite element solutions (FEM) with the fine rectangular mesh.  The slight deviations in vicinity of the 
source between the FEM solutions and the GQGs are due to the errors in matching of the topography in the 
FEM.  The source is horizontally located at the origin for all but the trench model at x = - 40. 
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5.2  2.5-D Isotropic Heterogeneous Models with Variable Topography 
 

The next set of GQG results are four inhomogeneous isotropic models (figure 5.2).  The same 

topographic surfaces as before are used (flat, inclined, undulating valley) but now there are 

low and high resistivity anomalous bodies of 1 Ω-m and 500 Ω-m embedded within the 

background medium.  The rectangular bodies are of approximate dimension 40 m.  There is a 

clear distortion in the equipotential contours compared to the homogeneous case, with the 

equipotential lines being deflected away from the conductive body (current lines drawn in) 

and attracted towards the resistor (current lines deflected away).  
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Figure 5.2.  GQG modelling results for four heterogeneous, isotropic models, having the same topography as in 
previous models (Fig. 5) but now incorporating embedded low and high resistivity blocks(1 Ω-m and 500 Ω-m) 
in a background resistivity of 30 Ω-m.  Note the distortion of the equipotentials around the anomalous bodies. 
The surface voltage profiles are compared against the finite element modelling results and found to be 
comparable.  The source is horizontally located at the origin for all but the trench model at x = - 40.  
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Figure 5.2 also shows the surface voltage profiles obtained with each model.  A comparison 

of the results obtained is made using a FEM program that uses very small steps which match 

the surface topography.  There is good agreement in each case, as can be clearly seen. 

 

5.3  2.5-D Anisotropic Homogeneous Models with Flat Surface Topography 
 

Analytic solutions exist for the potential at the surface of a uniform, tilted transversely 

isotropic half space having a flat surface (Bhattacharya & Patra 1968; eq. 2.35).  Analytic 

solutions also exist for the potential in the subsurface of a uniform tilted transversely isotropic 

half space having a flat surface (Li & Spitzer 2005).  The next six figures display the electric 

potential obtained for a uniform TTI flat surface model with three different dips of the 

symmetry axis: 30°, 45° and 60° (measured from the horizontal).  The coefficient of anisotropy 

is 3.16λ = .  This is really quite a large value and therefore represents a fairly severe case. 

The current injection point is at the origin.   

 

The following three even numbered figures (figures 5.4, 5.6, 5.8) have the analytic solutions 

superimposed on the horizontal and vertical profiles.  The surface potential is compared and 

displayed in the top panel, extracted out of the numerical solution at 10m intervals.  The 

subsurface potentials are compared at the GQG points with the analytical solution at three 

fictitious boreholes horizontally offset by 25m either side of the source and directly below the 

source. 

 

The following three odd numbered figures (figures 5.5, 5.7, 5.9) display the GQG potential 

colour image and corresponding contours for these models.  For the GQG solution, the 

subdomain  size is  with a quadrature order of 5, such that there are 25 nodes in each 

inner element subdomain .  The bi-variate Shepard interpolant (Shepard, 1968) with a 

search window size of  is used to generate a regular mesh with a cell dimension of 

1.003345m x 1.006711m in the x and z directions respectively.  A further mesh refinement to 

0.2m x 0.2m with a bi-linear interpolant is then invoked to increase the resolution of the 

following images.  The following Matlab images and contours require a regular grid and are 

just a guide as to the general shape of the situation being investigated.  The surface potentials 

are exact as they coincide with the GQG solution mesh.  The image colour is scaled to display 
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potential (0.04:1.0) [V] in the wavenumber~offset confidence range ( ]10 , 150R
yk m= ± ± m .  

The potentials are calculated and displayed in the plane normal to strike, i.e. y = 0. 
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Figure 5.4  The electric potential in a uniform TTI medium with a flat surface and dip .   030

 
Figure 5.5  The GQG numerical solution for the subsurface potential  in a uniform TTI medium with a flat 
surface and dip .   030
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Figure 5.6  The electric potential in a uniform TTI medium with flat surface and dip .  045
 

 
Figure 5.7  The GQG numerical solution for the subsurface potential  in a uniform TTI medium with a flat 
surface and dip .  045
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Figure 5.8  The electric  potential in a uniform TTI medium with a flat surface and dip .   060
 

 
Figure 5.9  The GQG numerical solution for the subsurface potential in a uniform TTI medium with a flat 
surface and dip . 060
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The potential contour sections in figures 5.5, 5.7, 5.9 clearly show the elliptic patterns with 

the long axis pointing in the direction of the bedding plane (or longitudinal direction).  Note 

how the elliptical patterns steepen as the dip of the plane of stratification (measured from the 

horizontal) increases. 

 

The next three figures (5.10, 5.11 and 5.12) show the results of experimenting with different 

sub-domain sizes and different orders of the GQG method for the same uniform TTI models 

for the three dip angles.  The horizontal and vertical profiles now display the absolute relative 

error against the exact analytic solution.  There are two sub-domain sizes: 5m x 5m and 10m x 

10m.  For these two sub-domain sizes, there are two orders: 3 and 5 quadrature points in each 

dimension so that a sub-domain contains either 9 or 25 nodes.  Clearly, except near the 

source, the errors are within acceptable limits (< 1%) in all cases, and even near the source the 

errors significantly decrease when the model domain discretization is denser.   
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Figure 5.10 The relative errors for the GQG numerical solutions in a uniform TTI medium with a regular 
boundary, at 10m intervals for different p- and h- refinements.  The 5m x 5m patches with 5x5 quadrature points, 
has the best accuracy nearest the source. 
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Figure 5.12 The relative errors for the GQG numerical solutions in a uniform TTI medium with a regular 
boundary, at 10m intervals for different p- and h- refinements.  The 5m x5m patches with 5x5 quadrature points, 
has the best accuracy nearest the source. 
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Figure 5.14  The relative errors for the GQG numerical solutions in a uniform TTI medium with a regular 
boundary, at 10m intervals for different p- and h- refinements.  The 5m x 5m patches with 5x5 quadrature points, 
has the best accuracy nearest the source. 
 
 
 



Chapter 5:  GQG Modelling Results 73

The next issue addressed is how the accuracy is affected by the choice of sub-domain size and 

the choice of quadrature order.  This problem is known as that of h-refinement and p-

refinement respectively in the finite element literature.  The spectral method tells us that the 

clustered set of points described by the zeros of the Legendre polynomial results in the 

optimal configuration of nodes at which to evaluate the derivative.  Intuitively, by the 

reasoning of spectral theory and Gaussian quadrature theory, it would seem that a more 

accurate solution could be achieved by increasing the size of the subdomains and allowing the 

abscissae to have a better clustering.   

By using approximately the same number of nodes in two different configurations, i.e. with 

10m sub-domains and 9 Gaussian pts and 5m subdomains and 5 Gaussian pts per dimension, 

(see figure (5.15) a comparison of mesh accuracy was investigated.  The resulting relative 

errors are plotted in figure (5.16) for a uniform TTI model having a dip of30 .  As seen in 

figure 5.16, the 5m – 5pts achieves a better accuracy near the source.   

0

The derivative of the solution should be smooth in spectral element theory.  It was shown 

before in equation (4.14) that for a uniform TTI medium, the analytic solution for the DC 

electric problem is a scaled McDonald function.  So, for this electrostatic problem, it appears 

that the smaller subdomain size helps in damping the source singularity potential artefact 

since the neighbouring subdomains (that cover the same area as the larger subdomain size), 

have partial derivative Lagrangian interpolants that are independent of the source node that is 

present in the larger subdomain size, i.e. 10m – 9pts (see figure 5.15).   

Besides this and the choice of wavenumer sampling range (Zhou 2006) another reason why 

the 5m – 5 pts achieves better accuracy is that there are fewer nodes near the singularity than 

for the 10m – 9 pts.  In general, a boundary value problem should have the source inside the 

boundary, but for surface surveys in DC resistivity, this is not the case.  Also the source is 

described by a Dirac delta distribution which is not mathematically satisfactory for the 

Poisson equation.  One additional reason for error besides round-off is that the coordinate 

transformation used to map the physical coordinates to a quadrature space is not conformal 

and the preservation of derivatives under the described mapping can not be guaranteed.  But 

since the weak form of solution is found with the Variational Principle or Galerkin solution, 

this is of limited value.  The Lagrange polynomials used as the shape functions could be 

modified for the boundary elements to satisfy the boundary conditions.  This could be 

achieved using Hermite polynomials (Weideman, Reddy, 2001), but since the potential is 

very small on the extended subsurface boundaries, this does not seem necessary.  The only 

argument is that the boundary nodes are located on the diagonal of the system matrix which is 

the dominant influence when inverting. 
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Figure 5.15 The two different p- and h- refinements.  The 5m x 5m patches with 5x5 quadrature points, has the 
best accuracy nearest the source since the smaller patches help reduce the source singularity influence on the 
partial derivative approximations. 
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Figure 5.16 The relative errors sifted out of the GQG numerical solutions in a uniform TTI medium with a 
regular boundary, at 10m intervals for the two different p- and h- refinements.  The 5m x 5m patches with 5x5 
quadrature points, has the best accuracy nearest the source. 
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5.4  2.5 D Anisotropic Heterogeneous Models with Flat Surface Topography 
 

The next class of model investigated was that of a TTI background medium, but this time 

with a dominant inhomogeneity present.  The surface topography is flat.  Figures 5.17 and 

5.18 illustrate the subsurface electric potential for a TTI medium with a dip angle of  with 

the same coefficient of anisotropy as the previous uniform models, i.e. 

030

3.16λ = .  However 

this time there is a conductive (figure 5.17) and resistive (figure 5.18) anomaly buried 10m 

below the source and having dimensions 10m x 10m.  Comparison with figure 5.5 (same 

anisotropic model but homogeneous) shows that the current penetrates deeper in the 

conductor model and the current remains in the shallower region in the resistor model.  This is 

also evident in the surface potential profiles in figure 5.19. 

 

Bhattacharya & Patra (1968) show that the surface potential in the x – z plane (y = 0) of a 

uniform TTI medium is symmetric about the source point.  Figure 5.19 illustrates the 

asymmetry of the surface potential for the TTI heterogeneous model.  Figure 5.20 shows the 

differences in potential for these heterogeneous models with respect to the uniform TTI 

model.  Such voltage differences are in the detectable range, and so we conclude that these 

two highly artificial anomalous bodies are resolvable in a TTI medium. 

 

 

 
Figure 5.17  The GQG numerical solution for the subsurface potential in an inhomogeneous (buried conductor), 
TTI medium with a flat surface.   
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Figure 5.18  The GQG numerical solution for the subsurface potential in an inhomogeneous (buried resistor), 
TTI medium with a flat surface.  
 
 
 
 

-60 -40 -20 0 20 40 600

100

200

300
Surface potential comparison for the conductor in the TTI model

x [m]

po
te

nt
ia

l [
m

V]

-60 -40 -20 0 20 40 600

100

200

300

Surface potential comparison for the resistor in the TTI model

x [m]

po
te

nt
ia

l [
m

V]

uniform
conductor

uniform
resistor

 
Figure 5.19  A comparison of the GQG surface potentials for the conductor and resistor models in a TTI 
medium with a flat surface.   
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Figure 5.20  A comparison of the GQG surface potential differences for the conductor and resistor models in a 
TTI medium with a flat surface.   
 

5.5  2.5-D Anisotropic Heterogeneous Models with Variable Topography 
 

In this section, the two topographies investigated are the sinusoidal type (valley and hill 

feature, or undulating topography) and trench (cliff) type.  Both topographic types have the 

same underlying TTI medium as for the previous flat surface models, i.e. 100t mρ = Ω , 

10l mρ = Ω  and a dip angle of .  Also, the same heterogeneities are incorporated, i.e. the 

shallow buried conductor and resistor.  Before progressing it should be noted that it is not 

possible to compare the models in this section with results from FE modelling because our 

FEM code does not at the time of writing include electrical anisotropy.  Li and Spitzer (2006) 

have performed 3D azimuthal electrical anisotropic modelling with the FEM.   

030

First the undulating topographic models are considered.  The source is located at the surface 

with position ( ) , which corresponds with the inflection point of the sinusoidal 

surface.  Figure 5.21 displays the uniform TTI media described above.  This is a good 

reference model to compare the more complicated potential contours of the conductor and 

resistor models against, at least qualitatively (as shown above).  It is interesting to compare 

this model with that of the flat surface model, viz. figure 5.5.   There is no longer a surface 

potential symmetry evident.  For example, it is observed in figure 5.21 that the 0.22V and 

0.14V equipotential contours are shallower than the flat surface equivalent contours.   They 

(, 0, 2x z = − )0
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are also stretched laterally to the left (top of hill) by approximately twice that to the right 

(bottom of valley).  This asymmetry is also seen in the surface potential plot in figure 5.24 for 

the uniform plot denoted ‘o’.  The potentials to the right of the source are less than their 

equivalent x direction offset counterparts to the left.  

 
Figure 5.21  The GQG numerical solution for the subsurface potential in a uniform TTI medium with a 
sinusoidal surface topography. 
 

Figure 5.22 is the conductor model ( )5 mρ = Ω  embedded in the TTI background and having 

a sinusoidal topography.  The image shows similar effects as those observed for the flat 

surface TTI conductor model (deeper current penetration below source), except we now see 

the topographic distortion like that seen in figure 5.21 for the homogeneous model.  The 

surface plot comparison given in the top panel of figure 5.24 shows an increased asymmetry 

pattern with larger potentials to the left of the source for the conductor model and denoted by 

the symbol  ‘*’.  The computed voltage contours for the companion buried resistor model are 

displayed in figure 5.23.  The diagram shows a shallower depth of current penetration and 

distortion of the contours in vicinity of the body from the otherwise parallel trend to the  

dipping longitudinal resistivity axis.  It is seen that in the resistor model however, the surface 

potentials are higher than the corresponding uniform model, and also higher to the left of the 

source.   Finally, a graph of the potential difference between the uniform and conductor (blue) 

/ resistor (green) TTI models is displayed in figure 5.24.  Qualitatively, the embedded 

conductor TTI model potential difference has a positive skew while the embedded resistor 

TTI model potential difference has a negative skew.  There is much less difference in 

030
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potential values between the resistor - uniform TTI valley model than the conductor – uniform 

TTI valley model. 

 
Figure 5.22  The GQG numerical solution for the subsurface potential in an inhomogeneous (buried conductor), 
TTI medium with a sinusoidal  surface topography. 

 
Figure 5.23  The GQG numerical solution for the subsurface potential in an inhomogeneous (buried resistor), 
TTI medium with a sinusoidal surface topography. 
 
Also, the valley and hill topography appears to reduce the resistor - uniform TTI model 

difference in potential relative to the flat model significantly, whilst the topography appears to 

increase the difference in potential relative to the flat surface for the conductor – uniform TTI 

valley model.   
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Figure 5.24  A comparison of the GQG surface potentials for the conductor and resistor models in a TTI 
medium with a sinusoidal surface (equivalent flat surface spacings denoted by ‘x’).   
 

-60 -40 -20 0 20 40 600

10

20

30

40

50

60

70

80

90

100
Potential difference 

x [m]

po
te

nt
ia

l [
m

V]

|Uuniform - Uconductor|
|Uuniform - Uresistor|

 
Figure 5.25  A comparison of the GQG surface potential differences for the conductor and resistor models in a 
TTI medium with a sinusoidal surface (equivalent flat surface spacings denoted ‘x’).  
 

This kind of analysis is fairly empirical.  In theory, the resistivity inversion problem is ill-

posed and so by increasing the number of model parameters by incorporating topography and 

anisotropy (in addition to inhomogenieties) with fixed observables, (i.e. surface potential 

measurements and electrode geometric factors based on a flat surface assumption) it would be 
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extremely difficult to reconstruct any of the models presented thus far with present day 

recording procedures and smooth inversion techniques (see Herwanger et al., 2004).  In 

chapter 6, a theoretical framework for computing the Frechét derivatives and sensitivity 

patterns for TTI media is developed as an initial attack on this difficult problem. 

 

Before introducing the 3-D modelling results, it is instructive to examine the capabilities of 

the GQG modelling approach for an extreme topography.  Below in figures 5.26, 5.27 and 

5.28 the same TTI medium as used previously, and incorporating the conductive and resistive 

anomalies, but now the current source is located at a surface boundary discontinuity.  The 

topography is a sharp trench or cliff having a very steep side.  The uniform TTI model image 

in figure 5.26 shows the correct elliptic equi-potential shape dipping at  parallel to the 

plane of isotropy (stratification).  In the boundary region of 

030

[ ]45,5x∈ − 0  [ ]70,90∈z  the 

contouring algorithm is unable to interpolate this region effectively.  Apart from this artefact, 

the image looks satisfactory. 

 

 
Figure 5.26  The GQG numerical solution for the subsurface potential in a uniform TTI medium for the trench 
topographic model. 
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The conductor and resistor models that follow in figure 5.27 and figure 5.28 respectively, 

have the anomalous body displaced 10 m deeper and 20 m to the right, i.e. at an angle of 

 from the source to the centre of the anomaly.  The angle of the cliff from the 

horizontal is .  The angle of dip of the anisotropy axis is again .  Within  the 

resistive anomaly (figure 5.28), the equipotentials are denser and much closer together which 

is due to the larger voltage drop in a resistor.  Conversely, the equipotentials are much further 

apart in the conductive anomaly (figure 5.27) reflecting the lower voltage drop over a 

comparable distance in a conductor.   

020.55
015.95 030

 
Figure 5.27  The GQG numerical solution for the subsurface potential in an inhomogeneous (buried conductor 
in the middle of the trench model longitude), TTI medium. 
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Figure 5.28  The GQG numerical solution for the subsurface potential in an inhomogeneous (buried resistor in 
the middle of the trench model longitude), TTI medium. 
 

5.6  3-D Isotropic Homogeneous Model with Topography 
 

The 3-D resistivity modelling over an irregular topographic boundary will now be 

investigated.  The topography chosen features two hills and adjacent low lying areas or 

valleys (see figure 5.30).  Firstly an isotropic homogeneous subsurface having resistivity 

10 mρ = Ω  and with a current source of unit strength at the origin (centre) was modelled with 
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the GQG method.  This yielded voltage values at all points within and on the surface of the   

3-D model.  Two orthogonal lines of potential electrodes, denoted A and B and situated along 

the inflection (saddle point) lines, are shown in figure 5.31.  For comparison purposes the 

same 3-D model was also investigated at my request by Mark Blome of ETH Zurich (Swiss 

Federal Institute of Technology), who has developed some powerful and flexible numerical 

resistivity modelling code.  He generated results using the boundary element method (BEM) 

using the mesh in figure 5.30, and the two FEMs using the mesh shown in figure 5.29.  The 

calculated surface potential solution is displayed in figure 5.31.  The two FEMs are linear and 

quadratic shape functions, i.e. 10 instead of 4 nodes per tetrahedron.  A Robin (mixed) type 

boundary condition was used in the FEM models.  He also used a local refinement in the 

triangulation about these electrodes.  

 
Figure 5.29  The FEM  mesh with local refinement around the current electrode, used for comparison with the 3-

D GQG. (Courtesy of Mark Blome, ETH Zurich)   
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Figure 5.30  The BEM surface mesh and potential image for the 3-D uniform isotropic media with topography. 
(Courtesy of Mark Blome, ETH Zurich)   

 
Figure 5.31  The FEM surface mesh and potential image for the 3-D uniform isotropic media with topography. 
(Courtesy of Mark Blome, ETH Zurich)   
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This specific topography is quite unique and good for testing the GQG code.  The current 

electrode and the potential electrodes are strategically placed to nullify the topographic effect.  

The assertion is that the surface potential measured along these profiles should be symmetric 

about the source.  Additionally, it is also evident that the potential should be exactly the same 

regardless of which orientation it is measured, i.e. lines A and B should yield the same 

electric potential profile.  This is true for the GQG, so the surface potentials are displayed in 

figure 5.32 for only line A to show the GQG performance against the BEM and two FEMs.  

The GQG solution matches the other well established methods considerably well.  In addition, 

the GQG is the only method of these four that has a symmetric potential profile for this 

specific topography.  
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Figure 5.32  The FEM solution for surface potential overlayed on the mesh (tetgen), used for comparison with 
the 3-D GQG.   
 

Observe in figure 5.30 how the tetrahedrons approximate the square surface boundary.  The 

four horizontal / vertical plane interfaces at the surface have dissimilar approximations as a 

result of the triangulation.  This could explain the slight asymmetry of BEMs’ and FEM(s)’ 

potential curves.  Figure 5.33 shows the individual comparisons.  For completeness, the BEM 

and FEMs transpose survey lines A and B are plotted in figure 5.34 to show the other slight 

asymmetry for this special topography.    
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Figure 5.33  Individual survey line A potential curve comparisons.   
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Figure 5.34  Survey lines A and B of BEM, FEM1 and FEM2 are compared for equivalence.  
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5.7  3D Anisotropic Homogeneous Model with Topography 
 

Figure 5.35 shows two examples of 3-D homogenous anisotropic modelling (ρx’x’ = ρy’y’ = 5 

Ωm, ρz’z’ = 10 Ωm, θ0 = 45°, φ0 = 0°).  One has a flat surface so that it has an analytic solution 

for comparison.  The other is the same as the previous example i.e. two hills and adjacent low 

lying areas.  We have plotted in figure 5.35 the electric potential contour sections in the 

subsurface obtained from GQG modelling and the voltage profiles obtained for the two  

orthogonal surface lines shown in the model and labelled A and B. 

 

For the flat surface model the potential curves on the surface are symmetric to the source 

point in terms of the analytic solution (equation 4.14).  From the left panel of figure 5.35, we 

observe excellent agreement between the GQG modelling and the analytic solutions.  From 

the 3-D topographic result (right panel in figure 5.35), one can see the potential curves are no 

longer symmetric.  This change implies a coupled anisotropy - topography effect.  The 

potential profiles are no longer symmetric and equal when both complexities are included.  

The results in this chapter demonstrate the versatility and accuracy of the GQG method.  
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Figure 5.35  The analytic and GQG solutions for surface potential on exotic topography for uniform TTI media. 
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