Fluorescent Assay Technologies for

G-protein Interactions

Tamara Cooper

Discipline of Biochemistry,

School of Molecular and Biomedical Sciences,

The University of Adelaide, South Australia

&

CSIRO Molecular and Health Technologies

Contents

List of F	igures and Tables	/i
Declarat	ioni	X
Abstrac	t	x
Acknow	ledgementsx	ii
Abbrevi	ations xi	ii
Academ	ic Prizes and Awards x	v
Publicat	ions arising from this thesisxv	/i
1. Liter and G-p	ature Review: Measuring G-Protein Coupled Receptor rotein signalling	1
1.1. Intr	oduction	.2
1.2. G-p 1.2.1. 1.2.2. 1.2.3.	rotein coupled receptors Adrenergic receptors M ₂ -muscarinic receptors H ₁ -histamine receptors	. 3 5 6 7
1.3. GP	CR signalling through heterotrimeric G-proteins	.7
1.4. The 1.4.1. 1.4.2.	G-protein subunits	. 9 0
1.5. Exp 1.5.1. 1.5.2. 1.5.3. 1.5.4.	ression systems 1 Bacterial expression systems 1 Yeast expression systems 1 Mammalian cell expression systems 1 Baculovirus / Insect cell expression 1	2 3 4 4
1.6. Ass 1.6.1. 1.6.2. 1.6.3. 1.6.4. 1.6.5.	ay technologies for GPCRs 1 Ligand binding assays 1 [³⁵ S]GTPγS signalling assays 2 Signalling assays using fluorescent GTP analogues 2 Second messenger assays 2 Use of "promiscuous" G-protein subunits 2	17 18 20 21 22 22
1.0.0.	Forsier resonance energy transfer platforms	3

1.6.7 1.6.8	 Bioluminescence resonance energy transfer (BRET) assay platforms Time resolved-FRET 	26 26
1.7. 1.7.1	Fluorescent labelling technologies for TR-FRET applications	 30 31
1.7.2	Summary	
1.0.	Community	45
2. T mole betw	R-FRET assays for G-protein interactions using small cule labels: Characterization of a novel interaction een Gα-subunits and CrV2	43
2.1.	Introduction	49
2.2. 2.2.2 2.2.2 2.2.2 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 2.2.1 2.3. 2.3.1 2.3.2 2.3.1 2.3.2 2.3.3	Methods General Materials Purification of CrV2 from <i>E. coli</i> SDS-PAGE and Coomassie blue staining procedure Sf9 cell culture and infection with baculovirus Purification of G-protein subunits Labelling of CrV2 and G-protein subunits Determining protein concentration [^{35}S]GTP γ S binding to G α TR-FRET Assays Data analysis Purification of CrV2 from <i>E. coli</i> Purification of G-protein subunits from Sf9 cells Interaction of CrV2 with G α_{i1} measured using TR-FRET	51 51 52 52 52 53 55 55 55 56 57 58 58 60
3. C and I	Constructing Lanthanide Binding Tag (LBT) Fusion Prof Labelling with Terbium	teins 75
3.1.	Introduction	76
3.2. 3.2.2 3.2.2 3.2.3 3.2.4 3.2.5	Methods Lanthanide binding tag (LBT2) peptide assays. Generation of excitation and emission spectra. Chimeric Ga / lanthanide binding tag fusion gene construction. Construction of the His-LBT2-Ga _{i1} fusion gene Construction of LBT1-Gβ4 Construction of a LBT2:pOE30 vector and a LBT2:pE81 vector	79 80 80 82 83 83
3.2.0 3.2.7 3.2.8	Construction of Ga_{i1} -LBT2	83 84 84

3.2.9.	Restriction enzyme digests	85
3.2.10.	DNA gel electrophoresis	85
3.2.11.	Ligation reactions	85
3.2.12.	Preparation of competent E. coli and heat shock transformation	86
3.2.13.	Sequencing	86
3.2.14.	Generating recombinant baculovirus and transfection of Sf9 cells	87
3.2.15.	3-Solution method for bacmid purification from recombinant DH10Bac™	[∧] E. coli or
	Sf9 cells	89
3.2.16.	Expression and purification of His-tagged proteins from E. coli	90
3.2.17.	Sf9 cell culture, infection and amplification of baculovirus	90
3.2.18.	Terbium staining of SDS-PAGE gels	90
3.2.19.	Western Blotting	90
3.2.20.	Membrane preparation of Gas25 chimeras	91
3.2.21.	Purification of G-protein subunits	91
3.2.22.	Measurement of terbium binding to fusion LBTs	92
3.2.23.	Receptor preparations	92
3.2.24.	Testing G-protein functionality through receptor signalling in a [35S]GTP	γS binding
	assay	
3.2.25.	Data analysis	93
22 Dec	with and Discussion	04
3.3. Res	Characterisation of the LPT2 pontide	94 0/
3.3.1.	Draduction of recombinant baculoviruses for lanthanida binding tag fus	ion protoin
J.J.Z.	expression	
3 3 3	Generation and characterization of promiscuous LBT-Go proteins	
331	Construction Expression and Characterization of His-I BT2-Gov	100
335	Construction, expression and characterization of LBT1-GB	
336	Other I BT fusion proteins	118
	F	
3.4. Fur	ther discussion and conclusions	119
4. Labe	Iling Tetracysteine Motifs (TCMs) with FIAsH	123
4.1. Intr	oduction	124
1.2 Mot	hade	126
4.2.1 Met	Labelling TCMs with FIAsH and measuring FIAsH fluorescence	126
422	Construction of Gvo-TCM and TCM-Gvo	
423	Construction of TCM-Gaia and His-TCM-Gaia	
424	Expression of TCM fusion proteins in Sf9 cells	
425	Protein purification from insect cells and on-column or solution labelling w	/ith FIAsH
1.2.0.		128
426	Western Blot	128
4.2.7	[³⁵ SIGTPvS binding assavs	
4.3. Res	ults and Discussion	129
4.3.1.	Characterization of the TCM:FIAsH interaction	129
4.3.2.	Generation of recombinant baculoviruses	133
4.3.3.	Construction and characterization of TCM fusions to G _{γ2}	133
4.3.4.	Construction and characterization of TCM-Gai1	138

4.3	5. Construction and Characterization of His-TCM-Gα _{i1}	141
4.4.	Further discussion and conclusions	147
5. prot	CCM and LBT fusion proteins as TR-FRET partners in a (ein subunit interaction assay	G- 151
5.1.	Introduction	152
5.2.	Methods	154
5.2	1. Protein production and labelling	154
5.2	2. TR-FRET assays	154
5.2	3. Data analysis	154
5.3.	Results and Discussion	155
5.3	1. LBT2-Gα _{S25} TR-FRET with Gβγ:Alexa	155
5.3	2. Investigation of the LBT1-G $\beta_4\gamma_2$ interaction with G α :Alexa using TR-FRET	157
5.3	3. Interaction of $G\beta_4\gamma_2$ -TCM:FIAsH with $G\alpha_{i1}$:Tb	158
5.3	4. Investigation of IR-FRET using GBTCM- γ_2	159
5.3	5. IR-FRET between His-TCM-Gα _{i1} :FIAsH and Gβγ:Tb	161
5.3	b. Spectral overlap of LB12:10 and 1CM:FIASH TD EDET between TCM:FIAsH and LDT:Th	162
5.3	7. TR-FRET Delween TOWI-FIASH and LDT.TD	165
5.5		105
5.4.	Further Discussion and Conclusions	168
6. I	Exploring the use of LBTs fused to G-protein Coupled	
Rec	eptors	174
6.1.	Introduction	175
6 2	Mathada	176
0.Z. 6.2	1 Construction and expression of B2AR-I BT2	176
6.2	2 Construction of B2AR-TCM-I BT2	176
6.2	3. Construction and expression of M2-LBT1	177
6.2	4. Construction of M2-TCM-LBT1	
6.2	5. Sequencing	178
6.2	6. Production of receptor membrane preparations	178
6.2	7. [³ H]Ligand-binding assays	178
6.2	 [³⁵S]GTPγS signalling assays 	179
6.2	9. Labelling LBTs with terbium	179
6.2	10. TR-FRET assay between M2-LBT1 or β2AR-LBT2 and Gα _{i1} :Alexa	179
6.2	11. Data Analysis	180
6.3.	Results and Discussion	181
6.3	1. Expression and characterization of M2-LBT1	181
6.3	2. Expression and characterization of the β ₂ -adrenergic receptor fused to LBT2	187
6.4.	Further discussion and conclusions	192

7. General discussion, future directions and conclusion	195
8. Appendices	202
8.1. Comparison of <i>Drosophila</i> $G\alpha_o$ and rat $G\alpha_{i1}$ amino acid sequences	203
8.2. Effect of CrV2 on GTP-binding to Gα _{i1}	204
	205 205 205 206 207
8.4. Expression of promiscuous chimeric Gα-subunits in <i>E. coli</i>	209
8.5. Other LBT fusion proteins 8.5.1. Purification of Gα _{i1} -LBT2 and terbium-binding properties 8.5.2. Purification of Gγ ₂ -LBT2 and terbium binding properties	210
8.7. Purification and FIAsH-labelling of $G\beta TCM-\gamma_2$	215
8.8. Labelling and TR-FRET of LBT1-Gβ₄γ₂-TCM	217
8.9. Receptor fusion protein sequences. 8.9.1. M2-LBT1. 8.9.2. β2-LBT2.	220
9. References	222

List of Figures and Tables

Figure 1.1: The family of GPCRs bind ligands with a high degree of chemical diversity and couple to different families of G-proteins to modulate an array of down stream	
effectors	. 4
Figure 1.2: Schematic showing the traditional GDP/GTP dependent G-protein mediated signalling cvcle.	. 9
Figure 1.3. Generic infection cycle of pathogenic baculoviruses	16
Figure 1.4: Representative example of a ligand-binding curve	18
Figure 1.5: Representative examples of data from [35S]GTPvS signalling assays.	21
Figure 1.6: Schematic of Förster resonance energy transfer (FRET)	24
Figure 1.7: Gated measurement of terbium emission	27
Figure 1.8: Measurement of heterotrimeric G-protein and regulators of G-protein signalling	
interactions by time-resolved fluorescence resonance energy transfer (Leifert et al.	
2006)	29
Figure 1.9: Example of a diethylene triamine pentaacetic acid based-chelate for a lanthanide	
ion available from Molecular Probes (Invitrogen)	32
Figure 1.10: Amino acid sequence of lanthanide binding tags LBT1 and LBT2	34
Figure 1.11: Terbium binding to lanthanide binding tags LBT2 and LBT1	35
Figure 1.12: Strategy for labelling a tetracysteine motif with 4',5'-bis(1,3,2-dithioarsolan-2-	
yl)fluorescein-(1,2-ethanedithiol) ₂ (FIAsH).	42
Figure 1.13: Schematic of the proposed TR-FRET platform for G-protein subunit interactions	
using site-specific labelling.	44
Figure 1.14: Experimental layout for chapters 3-5	46
Figure 2.1: Expression and purification of CrV2 from <i>E. coli</i>	58
Figure 2.2: Representative SDS-PAGE analyses of purified fractions of G-protein subunits	
expressed in Sf9 cells, eluted from a Ni-NTA column	59
Figure 2.3: CrV2:Alexa association with Gqi1:Tb	60
Figure 2.4: Saturation of Gα _{i1} :Tb with CrV2:Alexa	61
Figure 2.5: Protease treatment reduces the TR-FRET signal from CrV2:Alexa interacting with	
Ga _{i1} :Tb	62
Figure 2.6: Unlabelled Ga_{i1} competes with Ga_{i1} :Tb for binding to CrV2:Alexa	63
Figure 2.7: Unlabelled CrV2 competes with CrV2:Alexa for binding to Ga_{i1} :Tb	63
Figure 2.8: $G\beta_4\gamma_2$ inhibits CrV2:Alexa association with $G\alpha_{i1}$:Tb	64
Figure 2.9: CrV2:Alexa interacts minimally with Gβγ:Tb	65
Figure 2.10: Effect of the activation state of Ga_{i1} on interacting with CrV2	67
Figure 2.11: Purification of <i>Drosophila</i> Gα₀ from <i>Sf</i> 9 cells	68
Figure 2.12: Drosophila Gα₀ binds to [³5S]GTPγS	69
Figure 2.13: CrV2:Alexa binds preferentially to <i>Drosophila</i> Gα ₀	70

Figure 3.1: Brief experimental procedure for expression and characterization of lanthanide	
binding tag-G-protein fusion constructs.	78
Figure 3.2: Multiple cloning site of the LBT2:pFastBac1 vector	84
Figure 3.3: Specificity and affinity of terbium for LBT2.	95
Figure 3.4: Gadolinium competes with terbium for binding to LBT2	95
Figure 3.5: LBT2:Tb visualized on SDS-PAGE under UV light	97
Figure 3.6: Optimal luminescence from LBT2 binding to Tb ³⁺ occurred at pH 7	97

Figure 3.7: Excitation and Emission spectra of LBT2:Tb ³⁺	98
Figure 3.8: Example of a diagnostic PCR to check for recombinant bacmid	100
Figure 3.9: Lanthanide binding tag constructs.	101
Figure 3.10: Western blots showing expression of chimeric Ga _{S25} subunits in Sf9 cells	103
Figure 3.11: Signalling of various receptors through promiscuous Gas25.	104
Figure 3.12: Luminescence from Tb ³⁺ binding to LBT2-Gα _{S25} in <i>Sf</i> 9 membrane preparations	
was significantly higher compared to Gas25.	106
Figure 3.13: Gd ³⁺ competes for Tb ³⁺ binding sites	107
Figure 3.14 Effect of Proteinase K treatment on terbium binding to membrane preparations	108
Figure 3.15: Purification of His-LBT2-Gai1.	109
Figure 3.16: Affinity of His-LBT2-Gα _{i1} for Tb ³⁺	110
Figure 3.17: Specificity of Tb ³⁺ binding to His-LBT2-Gai1 and comparison with LBT2	111
Figure 3.18: His-LBT2-Ga _{i1} failed to receive signals from the M ₂ -muscarinic receptor	112
Figure 3.19: His-LBT2-Gai1 binds less [35S]GTPyS than Gai1	113
Figure 3.20: SDS-PAGE elution profile from purification of His-Ga _{i1} from LBT1-G $\beta_4\gamma_2$ using N	li-
NTA beads.	114
Figure 3.21: Tb ³⁺ binding of LBT1-Gβ ₄ γ ₂ compared to LBT2	115
Figure 3.22: Affinity of LBT1-Gβ4 for Tb ³⁺	116
Figure 3.23: Proteinase K treatment reduces terbium binding to LBT1-Gβ ₄ γ ₂	117
Figure 3.24: LBT1-Gβ ₄ γ ₂ can reconstitute a functional signalling transductosome	118
Table 3. 1: LBT constructs generated and assessment of binding terbium and signalling	119

Figure 4.1: Layout of the investigation of tetracystine motif-G-protein fusion constructs Figure 4.2: Time course of FIAsH binding to the TCM peptide	125 129
Figure 4.3: Effect of increasing FIAsH and TCM peptide concentrations on FIAsH fluorescer Figure 4.4: Effect of reducing agents on FIAsH binding to the TCM peptide.	nce.130 131
Figure 4.5: Excitation and emission spectra of FIAsH bound to TCM peptide.	132
Figure 4.6: Schematic of TCM fusions constructs generated in this study	133
Figure 4.7: Expression and Purification of $G\beta_4\gamma_2$ -1 CM.	134
Figure 4.8: Comparison of FIAsH labelling efficiency of $G\beta_4\gamma_2$ -TCM with the TCM peptide	135
Figure 4.9: G $\beta_4\gamma_2$ -TCM:FIAsH can receive signals from GPCRs in a reconstituted system	136
Figure 4.10: Polyacrylamide gel showing purified TCM-Gai1 captured using co-purified His-	
tagged Gβγ	138
Figure 4.11: TCM-G α_{i1} can receive signals from the M ₂ -muscarinic receptor and the α_{2A} -	
adrenergic receptor	139
Figure 4.12: Comparison of FIAsH binding to TCM-Ga _{i1} and the TCM peptide	141
Figure 4.13: Purification of His-TCM-Ga _{i1}	142
Figure 4.14: His-TCM-Gail binding to FIAsH compared to the TCM peptide	143
Figure 4.15: FIAsH binding increases with protein and FIAsH concentration	143
Figure 4.16: His-TCM-Gail is non-functional in receiving signals from the M ₂ -muscarinic	
receptor	144
Figure 4.17: His-TCM-Gα _{i1} binds to [³⁵ S]GTPγS	145
Table 4.1: Summary of FIAsH binding and signalling properties of G-protein subunit constru	icts
fused to TCMs	147

Figure 5.1: Flow diagram of investigation of fusion proteins as TR-FRET partners	.153
Figure 5.2: Association of Tb:LBT2:Ga _{S25} with Gβγ:Alexa measured using TR-FRET	.156
Figure 5.3: Association of LBT1-G $\beta_4\gamma_2$ with G α_{i1} -Alexa	.158

Figure 5.4: $G\beta_4\gamma_2$ -TCM:FIAsH association with $G\alpha_{i1}$:Tb.	159
Figure 5.6: Time course of CR. TCM vs binding Cg_{11} Tb and compatitive binding of CR.	161
Figure 5.0. Time course of Op41 CM- γ_2 binding Ou ₁₁ . To and competitive binding of Op4	162
Figure 5.7. Association of his-TOW-Oult-FIASIT with Opy. 10.	102
	160
Eisure C.O. TD EDET between LDT4 CQ, and Cu. TCM	103
Figure 5.9: TR-FRET between LBTT-GP4 and GV2-TOM.	104
Figure 5.10: Protease treatment reduced TR-FRET signal	165
Figure 5.11: TR-FRET concentration response curve of GB ₄ γ_2 -TCM:FIAsH against LBT2-	
Gas25.	166
Figure 5.12: LBT2-G α_{S25} concentration response curves against G $\beta_4\gamma_2$ -TCM:FIAsH	167
Table 5.1: TR-FRET partner combinations investigated	170
Figure 6.1: Specific [3H]scopolamine binding to M2-LBT1.	181
Figure 6.2. M2-LBT1 signals to G-proteins, stimulating [35S]GTPvS binding	182
Figure 6.3: Terbium luminescence was significantly greater with M2-I BT1 preparations	102
compared to M2R	183
Figure 6.4. The presence of gadolinium and treatment with a protease reduced terbium hindir	100 10
to M2-I BT1	'9 184
Figure 6.5: Interactions between M2-I BT1 and Ga: Alexa measured with TR-ERET	186
Figure 6.6: Specific [3H]CCD ligand binding to R2AD RT2	100
Figure 6.7: R2AD L DT2 can signal to C protoing	100
Figure 6.9: Tarbium hinding to 620 P L PT2 compared to 620 P	109
	190
Figure 7.1: Schematic of TR-FRET platforms investigated during this study	197
Figure 8.1: Effect of $CrV/2$ on GTP-hinding to Gau	204
Figure 8.2: Expression of lanthanido binding taggod chimoric Gg subunits in <i>E. coli</i>	204
Figure 9.2: SDS DACE olution profile from purification of Caul DT2 from Hig C2.00 using Ni	209
Figure 0.5. SDS-FAGE elution prome nom purmication of Guin-LDTZ from his-Gp1y2 using Ni-	010
NTA Deads	210
Figure 6.4. Terbium binding to Gait-LBT2	
Figure 8.5: Purification of His-Gγ ₂ -LB12 with Gβ ₁	211
Figure 8.6: Terbium binding to $G\beta\gamma_2$ -LB12.	212
Figure 8.7: Purification of His-tagged TCM- γ_2 with GB ₄	215
Figure 8.8: Comparison of FIAsH labelling of GβTCM-γ _{2his} and Gα _{i1}	216
Figure 8.9: Labelling of His-G γ_2 -TCM with FIAsH and effect of an increasing concentration of	
TbCl ₃ on FIAsH fluorescence	217
Figure 8.10: Terbium-binding to the LBT1-G β_4 :His-G γ_2 -TCM preparation.	218
Figure 8.11: GdCl ₃ reduces TR-FRET signal between LBT1-G β_4 and His-G γ_2 -TCM	218

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

.....

Tamara Cooper

Abstract

Assay technologies for GPCRs and their associated G-proteins are in demand for drug screening and other biotechnology applications such as biosensors for diagnostic purposes or odorant/flavour assessment as well as for elucidating the remaining controversial mechanisms in G-protein mediated signalling. This study aims to make progress towards developing a TR-FRET assay for G-protein interactions that could be used as a generic assay platform for GPCR signalling that would be fluorescent, homogeneous and amenable to miniaturization. The first chapter of this study investigates the use of small molecule labels, CS124-DTPA-EMCH: Tb and Alexa546 in a TR-FRET assay. This TR-FRET pair had previously been applied to Ga, GBy and RGS4 proteins and during the characterization of this assay, the protein CrV2 was observed to interact with the G-protein. Using TR-FRET, it was demonstrated that a high affinity interaction appears to occur between Gai1 and CrV2 (Apparent Kd 6.2 nM). CrV2 is encoded by a polydnavirus from endoparasitoid wasps, which is thought to mediate immune suppression, and the interaction with Ga could have important implications in the regulation of the immune system of invertebrates. Improvements to the labelling strategy used in this assay are then attempted through the creation of various G-protein subunit fusions with small, genetically encoded lanthanide binding tags (LBTs) or tetracysteine motifs (TCMs) for site-specific labelling with terbium or FIAsH, respectively. The consequence of the fusions on maintaining G-protein subunit integrity and on the affinity of the tags for their labels is characterized, and then the utility of these constructs as TR-FRET partners is demonstrated. TCM:FIAsH complexes could successfully be used as TR-FRET acceptors for CS124-DTPA-EMCH:Tb labelled binding partners. The interaction between G_{βy2}-TCM:FIAsH and Gα:Tb could be measured using TR-FRET and generated an apparent Kd of 3.6 nM. Likewise, LBT:Tb complexes could be used as TR-FRET donors to Alexa546 labelled binding partners which was demonstrated using the chimeric, promiscuous Ga subunit, LBT2:Tb-Ga_{S25} and G_βy:Alexa. Furthermore, the two site-specific

labelling strategies can be used together in TR-FRET studies and an interaction between LBT2:Tb-G α_{S25} and G $\beta\gamma_2$ -TCM:FIAsH was shown to have an apparent *K*d of 2.3 nM. The TR-FRET assays were further validated using protease treatments and the addition of unlabelled binding partners reduced the TR-FRET signal. Finally, the feasibility of fusing lanthanide binding tags to GPCRs for alternate assay platforms or other applications was investigated. The β_2 -adrenergic and M₂-muscarinic receptors were fused to LBTs and the integrity of the receptors determined using ligand binding and [³⁵S]GTP γ S signalling assays. Terbium binding to the LBT was then demonstrated. The utility of these constructs in alternative TR-FRET platforms with G-proteins was then explored.

Acknowledgements

I would firstly like to thank my supervisors for their support and guidance over the period of my PhD. My principle CSIRO supervisors Assoc. Prof. Ted McMurchie and Dr. Wayne Leifert continued their support and encouragement through major upheavals and the closure of the laboratory in which this project started. Without their continued interest, the completion of this thesis would not have been achieved. Many thanks also go to Dr. Richard Glatz who provided much technical support at the beginning of the project and was later a welcome addition to my supervisory panel when his role with CSIRO ended. I look forward to continuing to work with him in the future. Thanks also to the final member of my supervisory panel, Prof. John Wallace who expanded my PhD experience from CSIRO to within the university community.

My thanks also go to the other scientists who have contributed to the completion of this study. Prof. Richard Neubig, Dr. Sassan Asgari, Prof. James Garrison, Dr. Andrejs Krumins, Prof. Alfred Gilman, Dr. Roger Sunahara and Prof. Yung-Hou Wong generously provided various constructs used in this study. Dr. Jack Ryan and Megan Kruger kindly synthesized the FIAsH used in this study and Prof. John Carver and Dr. Leah Cosgrove provided access to the Cary Eclipse fluorospectrophotometer and the Victor3 multilabel plate reader, respectively.

I would also like to thank other past and present members of our laboratory including Kelly Bailey, Amanda Aloia, Janelle Williams and Sharon Burnard. Their friendship, discussions, advice and support made the period of my PhD a very enjoyable time.

Finally, thank you to my family, friends and partner, Stevan, who have endured with me through what must seem like a never-ending period of study. Your encouragement and faith saw me through it.

Abbreviations

[³⁵ S]GTPγS	³⁵ S radiolabelled guanosine 5'-O-(3-thiotriphosphate)
a.u.	arbitrary units
ACP	acyl carrier protein
Alexa	Alexa fluor 546 C ₅ maleimide
AIF ₄ -	aluminium fluoride
AMP-PNP	adenosine 5'-(β,γ-imido)triphosphate
B2AR	β ₂ -adrenergic receptor
BCIP	5-Bromo-4-Chloro-3'-Indolyphosphate p-Toluidine salt
BirA	<i>E. coli</i> biotin ligase
Вр	base pairs
BSA	bovine serum albumin
cAMP	cyclic adenosine monophosphate
cDNA	complementary deoxyribonucleic acid
CFP	cyan fluorescent protein
CNS	central nervous system
CSIRO	Commonwealth Scientific and Industrial Research Organization
Da	daltons
DHFR	dihydrofolate reductase
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DTPA	diethylene triamine pentaacetic acid
DTT	dithiothreitol
EC ₅₀	effective concentration
EDT	1,2-ethanedithiol
EDTA	ethylenediaminetetraacetic acid
FBS	foetal bovine serum
FIAsH	4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein-(1,2-ethanedithiol)2
FRET	Förster Resonance Energy Transfer
GDP	guanosine diphosphate
GFC	glass microfiber 1 µM filter papers
GFP	Green fluorescent protein
GPCR	G-protein coupled receptor
G-protein	heterotrimeric guanine nucleotide binding protein
GTP	guanosine triphosphate
GTΡγS	guanosine 5'-O-(3-thiotriphosphate)
Gα	Ga-subunit
Gβ	G-protein β subunit
Ġγ	G-protein a subunit
hÁGT	human O ⁶ -alkylguanine-DNA alkyltransferase
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
His-tag	6 histidine tag
hr	hours
IC ₅₀	inhibitory concentration
IMAC	immobilized metal affinity chromatography
IMVS	Institute of Medical and Veterinary Science
IPTG	isopropyl-β-D-thiogalactopyranoside
Kd	dissociation constant
LBT	lanthanide binding tag

LBT1	lanthanide binding tag of the amino acid sequence: Tyr Ile Asp Thr
	Asn Asn Asp Giy Trp Tyr Giu Giy Asp Giu Leu Leu Ala
LBIZ	Lanthanide binding tag of the amino acid sequence: Ala Cys Val Asp
	TIP ASITASITASP GIV TIP TVI GIU GIV ASP GIU CVS Ala
MZR	
min	minutes
MOI	multiplicity of infection
MW	molecular weight
NBT	nitro-blue tetrazolium chloride
Ni-NTA	nickel-nitriloacetic acid
OD	optical density
PBS	phosphate buffered saline
PCP	peptide carrier protein
PCR	polymerase Chain Reaction
PMSF	phenylmethanesulphonylfluoride
PPtase	phosphopantetheinyl transferase
RGS	regulator of G-protein signalling
Rluc	Renilla luciferase
SARDI	South Australian Research and Development Institute
S	seconds
SDS-PAGE	sodium dodecyl sulphate- polyacrylamide gel electrophoresis
TCEP	tris(2-carboxyethyl)phosphine
TCM	tetracysteine motif
TR-FRET	Time resolved - Förster Resonance Energy Transfer
UK	UK 14304, synthetic adrenalin analogue
UV	ultra violet
YFP	yellow fluorescent protein

Academic Prizes and Awards

2008	Lorne Protein Conference Committee travel grant \$100
2005-2008	School of Molecular Biosciences travel awards 4 x \$500
2007	Doreen McCarthy bursary: The Australian Federation of University Women – South Australian Inc. Trust fund \$3000
2007	Informa Life Sciences: 5 th Annual Congress: GPCRs in Drug Discovery Poster Prize. "Time-resolved fluorescent technologies for GPCRs, G-protein and Regulator of G-protein signalling interactions".
2006	ARC/NHMRC Research Network: Fluorescence Applications in Biotechnology and Life Sciences (FABLS) \$400 to attend Fluoro2006
2005	The Biochemical Journal Poster Prize for biochemistry and molecular biology (Presented at ComBio2005, Adelaide)
2005-2008	Australian Postgraduate Award ~ \$19 000 p.a.
2005-2008	CSIRO Postgraduate Studentship \$7000 p.a. + \$6000 travel
2004	Commonwealth Accommodation Scholarship \$4000
2004	Chancellors Letter of Commendation in recognition of outstanding results towards B.Biotechnology (Hons)
2002	Admission into the Advanced Entry Program in 2002 allowing completion of the Bachelor of Biotechnology (Hons) in 3 years rather than 4.

Publications arising from this thesis

2008 Tamara Cooper and Wayne R. Leifert (accepted for publication date 2009). [³⁵S]GTPγS binding in G-protein coupled receptor assays. *In Methods in Molecular Biology: G-protein Coupled Receptors in Drug Discovery*. Editor, Wayne R. Leifert. Humana Press, Totowa, New Jersey.

Tamara Cooper, Wayne R. Leifert, Richard V. Glatz and Edward J. McMurchie. (2008). Expression and characterisation of functional lanthanide-binding tags fused to a G α -protein and muscarinic (M2) receptor. *J. Bionanoscience*. (In press).

Wayne Leifert, **Tamara Cooper** and Kelly Bailey. (2008). G-protein Coupled Receptors: Progress in Surface Display and Biosensor Technology. *Springer Handbook of Nanotechnology*, *3rd Edition*. (In press)

Wayne Leifert, **Tamara Cooper**, Kelly Bailey, Richard Glatz, Marta Bally, Brigette Stadler, Eric Reimhult and Joe Shapter. (2008). Biosensors and Biochips. *Annual Reviews in Nanotechnology*. (In preparation)

- 2007 Glatz, R. V., Leifert, W. R., Cooper, T. H., Bailey, K., Barton, C. S., Martin, A. S., Aloia, A., Bucco, O., Waniganayake, L., Wei, G., Raguse, B., Weiczorek, L. & McMurchie, E. J. (2007). Cell-free assaying of G-protein Coupled Receptors and G-proteins. *Aust. J. Chem.* Research Front "Bionanochemistry". 60, pp.309– 313. (Invited Rapid Communication)
- 2006 Wayne R. Leifert, Kelly Bailey, **Tamara H. Cooper**, Amanda L. Aloia, Richard V. Glatz, Edward J. McMurchie (2006). Measurement of heterotrimeric G-protein and regulators of G-protein signalling interactions by time-resolved fluorescence resonance energy transfer. *Analytical Biochemistry*, 355, pp.201–212.

Abstracts arising from this thesis

- **2008 T. Cooper**, R. Glatz, W. Leifert, E. McMurchie (2008). The use of Lanthanide Binding Tags (LBTs) in the development of TR-FRET assay technologies for G-protein coupled receptors (GPCRs). *Lorne Protein Conference*, Lorne, Victoria.
- 2007 T. Cooper, K. Bailey, R. Glatz, W. Leifert, J. Wallace, E. McMurchie (2007). Time-resolved fluorescent technologies for GPCRs, G-protein and Regulator of G-protein signalling interactions. Informa Life Sciences - 5th annual congress: GPCRs in Drug Discovery, Lisbon, Portugal. Winner of the Poster Prize – Oral presentation

T. Cooper, K. Bailey, R. Glatz, A. Aloia, W. Leifert, J. Wallace, E. McMurchie (2007). Time-resolved FRET assay development for GPCRs, G-protein and Regulator of G-protein signalling interactions. *Molecular Pharmacology of G-Protein-Coupled Receptors. Proceedings of The Australasian Society of Clinical*

and Experimental Pharmacologists and Toxicologists (ASCEPT). Invited talk – student oral prize session

2006 T. Cooper, R. Glatz, W. Leifert, J. Wallace, E. McMurchie (2006). Development of site-specific fluorescent labelling of G-protein subunits using a lanthanide (Tb³⁺) binding tag and a FIAsH binding tetracysteine motif. *Proceedings of the Australian Society for Medical Research Scientific Meeting*.

Richard V. Glatz, Wayne R. Leifert, Kelly Bailey, **Tamara H. Coope**r, Chris S. Barton, A. Scott Martin, Amanda Aloia, Olgatina Bucco, Lakshmi Waniganayake, Gang Wei, Burkhard Raguse, Lech Wieczorek, and Edward J. McMurchie (2006). Cell-free receptor-based biosensors. *International Conference of Nanoscience and Nanotechnology Proceedings.*

Richard V. Glatz, Wayne R. Leifert, Kelly Bailey, **Tamara H. Cooper**, Chris S. Barton, A.Scott Martin, Amanda L. Aloia, Olgatina Bucco, L. Waniganayake, Gang Wei, Burkhard Raguse, Lech Wieczorek and Edward J. McMurchie. (2006). G-protein Coupled Receptors: towards cell-free environmental biosensing. *Proceedings of the Australian and New Zealand Entomological Society Conference*.

2005 Tamara Cooper, Wayne R. Leifert, Kelly Bailey, Richard V. Glatz and Edward J. McMurchie (2005). Time Resolved Fluorescence Resonance Energy Transfer assay for studying RGS4 interactions with G-protein Gα-subunits in varying states of activation. *Proceedings of the Australian Society for Biochemistry and Molecular Biology*. *Biochemical Journal Poster Prize for Biochemistry and Molecular Biology*

R. Glatz, **T. Cooper**, W. Leifert, C. Barton, L. Wieczorek, E. McMurchie (2005). Engineering of G-proteins for production of cell-free ligand biosensors. *Proceedings of the Australian Society for Biochemistry and Molecular Biology.*

Wayne R. Leifert, Kelly Bailey, **Tamara Cooper**, Amanda Aloia, Richard V. Glatz, Edward J. McMurchie (2005). Measurement of heterotrimeric G-protein and RGS interactions by a novel homogeneous TR-LRET assay. Drug Discovery: From Targets to Candidates. *Proceedings of the Society for Biomolecular Screening*. P04049. Geneva PalExpo, Switzerland, Sept 11-15.

T. Cooper, W. R. Leifert, K. Bailey, R. V. Glatz, E. J. McMurchie (2005). Analysis of RGS4 and $G\alpha_{i1}$ interactions in different activation states. *Proceedings of the Australian Society for Medical Research Scientific Meeting*.

Tamara Cooper, Wayne R. Leifert, Kelly Bailey, Richard V. Glatz, John Wallace and Edward J. McMurchie (2005). Measurement of RGS4 interactions with Gprotein subunits in varying states of activation using time-resolved fluorescence resonance energy transfer. *Molecular Pharmacology of G-Protein-Coupled Receptors. Proceedings of The Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT)*.