Development and Demonstration of a New Non-Equilibrium Rate-Based Process Model for the Hot Potassium Carbonate Process

by

Su Ming Pamela Ooi

Thesis submitted for the degree of Doctor of Philosophy

in

The University of Adelaide School of Chemical Engineering July 2008

Summary

Chemical absorption and desorption processes are two fundamental operations in the process industry. Due to the rate-controlled nature of these processes, classical equilibrium stage models are usually inadequate for describing the behaviour of chemical absorption and desorption processes. A more effective modelling method is the non-equilibrium rate-based approach, which considers the effects of the various driving forces across the vapour-liquid interface.

In this thesis, a new non-equilibrium rate-based model for chemical absorption and desorption is developed and applied to the hot potassium carbonate process CO₂ Removal Trains at the Santos Moomba Processing Facility. The rate-based process models incorporate rigorous thermodynamic and mass transfer relations for the system and detailed hydrodynamic calculations for the column internals. The enhancement factor approach was used to represent the effects of the chemical reactions.

The non-equilibrium rate-based CO_2 Removal Train process models were implemented in the Aspen Custom Modeler® simulation environment, which enabled rigorous thermodynamic and physical property calculations via the Aspen Properties® software. Literature data were used to determine the parameters for the Aspen Properties® property models and to develop empirical correlations when the default Aspen Properties® models were inadequate. Preliminary simulations indicated the need for adjustments to the absorber column models, and a sensitivity analysis identified the effective interfacial area as a suitable model parameter for adjustment. Following the application of adjustment factors to the absorber column models, the CO_2 Removal Train process models were successfully validated against steady-state plant data.

The success of the Aspen Custom Modeler® process models demonstrated the suitability of the nonequilibrium rate-based approach for modelling the hot potassium carbonate process. Unfortunately, the hot potassium carbonate process could not be modelled as such in HYSYS®, Santos's preferred simulation environment, due to the absence of electrolyte components and property models and the limitations of the HYSYS® column operations in accommodating chemical reactions and nonequilibrium column behaviour. While importation of the Aspen Custom Modeler® process models into HYSYS® was possible, it was considered impractical due to the significant associated computation time.

To overcome this problem, a novel approach involving the HYSYS® column stage efficiencies and hypothetical HYSYS® components was developed. Stage efficiency correlations, relating various operating parameters to the column performance, were derived from parametric studies performed in Aspen Custom Modeler®. Preliminary simulations indicated that the efficiency correlations were only necessary for the absorber columns; the regenerator columns were adequately represented by the default equilibrium stage models. Hypothetical components were created for the hot potassium carbonate system and the standard Peng-Robinson property package model in HYSYS® was

i

modified to include tabular physical property models to accommodate the hot potassium carbonate system. Relevant model parameters were determined from literature data. As for the Aspen Custom Modeler® process models, the HYSYS® CO₂ Removal Train process models were successfully validated against steady-state plant data.

To demonstrate a potential application of the HYSYS® process models, dynamic simulations of the two most dissimilarly configured trains, CO_2 Removal Trains #1 and #7, were performed. Simple first-order plus dead time (FOPDT) process transfer function models, relating the key process variables, were derived to develop a diagonal control structure for each CO_2 Removal Train. The FOPDT model is the standard process engineering approximation to higher order systems, and it effectively described most of the process response curves for the two CO_2 Removal Trains. Although a few response curves were distinctly underdamped, the quality of the validating data for the CO_2 Removal Trains did not justify the use of more complex models than the FOPDT model.

While diagonal control structures are a well established form of control for multivariable systems, their application to the hot potassium carbonate process has not been documented in literature. Using a number of controllability analysis methods, the two CO_2 Removal Trains were found to share the same optimal diagonal control structure, which suggested that the identified control scheme was independent of the CO_2 Removal Train configurations. The optimal diagonal control structure was tested in dynamic simulations using the MATLAB® numerical computing environment and was found to provide effective control. This finding confirmed the results of the controllability analyses and demonstrated how the HYSYS® process model could be used to facilitate the development of a control strategy for the Moomba CO_2 Removal Trains.

In conclusion, this work addressed the development of a new non-equilibrium rate-based model for the hot potassium carbonate process and its application to the Moomba CO₂ Removal Trains. Further work is recommended to extend the model validity over a wider range of operating conditions and to expand the dynamic HYSYS® simulations to incorporate the diagonal control structures and/or more complex control schemes.

Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Su Ming Pamela Ooi Adelaide, 16/07/2008

Acknowledgements

I wish to express my sincere appreciation to all organisations and persons who have contributed council and assistance during this work.

In particular, I would like to thank Santos for providing funding and technical support for this project. Special thanks are extended to Keith Humphris, Len Cowen, Ian Smith, Ross Mullner, Claire Barber, Randall Yeates and Mark Moss for their advice and assistance with providing technical data.

I would also like to thank my academic supervisors, Associate Professor Brian O'Neill, Dr Chris Colby and Professor Keith King, for their encouragement, advice and guidance. Special thanks are extended to Dr Robin Thiele who provided invaluable advice regarding rate-based modelling.

Finally, I would like to express my deepest gratitude to my boyfriend Simon and to my parents for providing endless support and encouragement, without which I could not have completed this thesis.

Table of Contents

Nomenclature	 xvii
Chapter 1: Introduction	 1
1.1 Project Objectives	 2
1.2 Thesis Structure	 2
Chapter 2: Literature Review	 4
2.1 The Hot Potassium Carbonate Process	 5
2.2 The Non-Equilibrium Rate-Based Approach	 18
2.3 Electrolyte Thermodynamics	 30
2.4 Process Simulation Platform	 32
2.5 Multivariable Process Control	 34
2.6 Summary	 45
Chapter 3: Thermodynamic and Physical Properties of the Hot Potassium Carbonate System	 46
3.1 Summary of Property Models	 47
3.2 The Electrolyte NRTL Model	 50
3.3 Summary	 58
Chapter 4: Aspen Custom Modeler® Process Model Development	 59
4.1 Process Model Equations	 60
4.2 Preliminary CO ₂ Train Simulations	 69
4.3 Column Model Adjustments	 73
4.4 CO ₂ Train Model Validation	 83
4.5 Summary	 91
Chapter 5: Aspen Custom Modeler ${ m I\!B}$ CO $_2$ Removal Train Parametric Studies	 92
5.1 Solution Operating Parameters	 93
5.2 Raw Gas Operating Parameters	 97
5.3 Column Operating Parameters	 100
5.4 Summary	 107
Chapter 6: Modelling the Hot Potassium Carbonate System in $HYSYS$ ®	 108
6.1 The Modelling Approach	 109
6.2 Thermodynamic and Physical Property Models	 115
6.3 Summary	 120
Chapter 7: The Absorber and Regenerator Column Models	 121
7.1 Absorber Column Models	 122
7.2 Regenerator Column Models	 124
7.3 Preliminary Column Model Simulations	 127
7.4 Column Stage Efficiency Correlations	 135

7.5 Summary	 141
Chapter 8: HYSYS® CO ₂ Removal Train Process Model Development	 142
8.1 Ancillary Operation Models	 143
8.2 Steady-State CO ₂ Train Models	 147
8.3 Model Validation	 151
8.4 Summary	 158
Chapter 9: Dynamic HYSYS® Simulations of CO_2 Removal Trains #1 and #7	 159
9.1 Dynamic CO ₂ Train Models	 160
9.2 Process Case Studies	 169
9.3 Summary	 175
Chapter 10: Process Control Studies for CO ₂ Trains #1 and #7	 176
10.1 Selection of Diagonal Control Structure	 177
10.2 Selection of Diagonal Control Structure Configuration	 184
10.3 Analysis of Diagonal Control Structure Performance	 187
10.4 BLT Tuning	 190
10.5 Diagonal Control Structure Dynamic Simulations	 192
10.6 Summary	 198
Chapter 11: Conclusions and Recommendations	 199
11.1 Conclusions	 200
11.2 Recommendations	 203
References	 204
Appendix A: Thermodynamic Model Equations	 A-1
A.1 Reference States	 A-2
A.2 The Electrolyte NRTL Model	 A-3
A.3 Cubic Equations of State	 A-8
Appendix B: Property Models for Aspen Custom Modeler®	 A-10
B.1 Thermodynamic Property Models	 A-11
B.2 Physical and Transport Property Models	 A-17
Appendix C: Electrolyte NRTL Adjustable Parameters	 A-38
C.1 Parameter Values	 A-39
C.2 Data Regression Procedure	 A-41
C.3 Data Regression Results	 A-44
Appendix D: Aspen Custom Modeler® Simulation Results	 A-49
D.1 The Different Modelling Approaches	 A-50
D.2 Model Adjustments	 A-52
D.3 CO ₂ Train Model Validation	 A-56
Appendix E: Hypothetical K ₂ CO ₃ * HYSYS® Component Properties	 A-62

E.1 Base Properties	 A-63
E.2 Additional Point Properties	 A-66
E.3 Temperature Dependent Properties	 A-67
Appendix F: Property Models for HYSYS®	 A-70
F.1 Thermodynamic Property Models	 A-71
F.2 Physical and Transport Property Models	 A-72
Appendix G: Enhanced PR Binary Interaction Parameters	 A-84
G.1 Data Regression Procedure	 A-85
G.2 Data Regression Results	 A-87
Appendix H: HYSYS [®] Simulation Results	 A-88
H.1 Preliminary Column Model Simulations	 A-89
H.2 Steady-State CO ₂ Train Models	 A-95
H.3 CO ₂ Train Model Validation	 A-101
Appendix I: Process Control Studies of the CO ₂ Trains	 A-107
I.1 Selection of Diagonal Control Structure	 A-108
I.2 Selection of Diagonal Control Structure Configuration	 A-111
I.3 Analysis of Diagonal Control Structure Performance	 A-114
I.4 BLT Tuning	 A-115
I.5 Diagonal Control Structure Dynamic Simulations	 A-117

List of Figures

Figure 2.1.1:	A simple form of the hot potassium carbonate process.	 5
Figure 2.1.2:	Basic CO ₂ train process flow diagrams.	 7
Figure 2.1.3:	Reaction flow scheme for the hot potassium carbonate process.	 10
Figure 2.2.1:	The two-film model for simultaneous mass and energy transfer.	 20
Figure 3.2.1:	Comparison between the Electrolyte NRTL predictions and the experimental data.	 54
Figure 3.2.2:	CO_2 partial pressure over K_2CO_3 solution as a function of CO_2 loading.	 54
Figure 3.2.3:	Comparison between the Electrolyte NRTL predictions and the experimental data.	 57
Figure 3.2.4:	H_2S partial pressure over K_2CO_3 solution as a function of equivalent H_2S content.	 57
Figure 4.1.1:	Equilibrium stage for Model 1 (adapted from Thiele (2007)).	 62
Figure 4.1.2:	Non-equilibrium stage for Model 2 (adapted from Thiele (2007)).	 63
Figure 4.1.3:	Non-equilibrium stage for Model 3 (adapted from Thiele (2007)).	 64
Figure 4.2.1:	Preliminary Aspen Custom Modeler® simulation column configurations.	 69
Figure 4.2.2:	Results of the absorber discretisation simulation runs for CO_2 train #1.	 70
Figure 4.2.3:	Results of the regenerator discretisation simulation runs for CO_2 train #1.	 70
Figure 4.2.4:	Results of the different modelling approaches for CO_2 trains #1 and #7.	 72
Figure 4.3.1:	Temperature profiles for CO_2 trains #1 and #7.	 74
Figure 4.3.2:	Effect of the liquid phase enthalpy correction on the absorber profiles.	 75
Figure 4.3.3:	Sensitivity analysis results for the absorber column model (Model 2).	 79
Figure 4.3.4:	Sensitivity analysis results for the regenerator column model (Model 2).	 80
Figure 4.3.5:	Effect of the solution reboiler steam flow on the regenerator column model (Model 2).	 81
Figure 4.3.6:	Effect of the effective interfacial area adjustment factor on the absorber CO_2 and H_2S vapour phase profiles.	 82
Figure 4.4.1:	Simplified CO ₂ train configurations for the Aspen Custom Modeler® simulations.	 83
Figure 4.4.2:	CO_2 and H_2S vapour and liquid phase profiles for the first set of plant data.	 88
Figure 4.4.3:	CO_2 and H_2S vapour and liquid phase profiles for the second set of plant data.	 87
Figure 4.4.4:	Vapour and liquid phase temperature profiles for the two sets of plant data.	 88
Figure 5.1.1:	Effect of the solution flow rate on the performance of the CO_2 trains.	 94

rength on the performance of the CO_2		
		95
O ₂ loading on the performance of the CO ₂		96
ow rate on the performance of the CO ₂		98
O_2 content on the performance of the CO_2		99
emperature on the performance of the		101
or temperature on the performance of the		102
ne performance of the CO ₂ trains.		104
v rate to the regenerator solution reboilers the CO_2 trains.		105
vater flow rate to the regenerator overhead rmance of the CO_2 trains.		106
s of the column stage efficiency $\boldsymbol{\eta}$ in		114
he enhanced PR predictions and the		118
he enhanced PR predictions and the		119
of an absorber column model in HYSYS®.		122
of the two most dissimilar regenerator $YS^{\mathbb{R}}$.		126
lation results for the absorber and		128
ults for the absorber models.		130
age efficiencies on the absorber erature profiles.		131
ults for the regenerator models.		132
age efficiencies on the regenerator erature profiles.		133
eam flow on the regenerator column		134
overall stage efficiencies on the steady- s.		137
overall stage efficiencies on the steady- dynamic absorber columns.		137
spreadsheet for calculating the absorber es.		139
diagram of the CO ₂ train absorption		143
diagram of the solution pumpset model.		144
for the pumpset calculations.		145
	O_2 loading on the performance of the CO_2 ow rate on the performance of the CO_2 O_2 content on the performance of the CO_2 emperature on the performance of the or temperature on the performance of the ne performance of the CO_2 trains. v rate to the regenerator solution reboilers the CO_2 trains. vater flow rate to the regenerator overhead mance of the CO_2 trains. s of the column stage efficiency η in he enhanced PR predictions and the he enhanced PR predictions and the of an absorber column model in HYSYS®. of the two most dissimilar regenerator YS®. lation results for the absorber and ults for the absorber models. age efficiencies on the absorber erature profiles. ults for the regenerator models. age efficiencies on the regenerator erature profiles. eam flow on the regenerator column overall stage efficiencies on the steady- s. overall stage efficiencies on the steady- s. diagram of the CO_2 train absorption diagram of the solution pumpset model. for the pumpset calculations.	O ₂ loading on the performance of the CO ₂

Figure 8.2.1:	Process flow diagram for the steady-state HYSYS® model of CO_2 train #1.	 149
Figure 8.2.2:	Process flow diagram for the steady-state HYSYS® model of CO_2 train #7.	 150
Figure 8.3.1:	CO_2 and H_2S vapour and liquid phase profiles for the first set of data.	 153
Figure 8.3.2:	CO_2 and H_2S vapour and liquid phase profiles for the second set of data.	 154
Figure 8.3.3:	Vapour and liquid phase temperature profiles for the two sets of plant data.	 155
Figure 9.1.1:	Process flow diagram of the simplified dynamic HYSYS® model for CO_2 train #1.	 163
Figure 9.1.2:	Process flow diagram of the simplified dynamic HYSYS® model for CO_2 train #7.	 164
Figure 9.1.3:	Flow control loop responses.	 166
Figure 9.1.4:	Temperature control loop responses.	 167
Figure 9.1.5:	Liquid level control loop responses.	 168
Figure 9.2.1:	Process response curves for a 2% magnitude step change in the raw gas flow rate at 0 min.	 171
Figure 9.2.2:	Process response curves for a 2% magnitude step change in the lean solution flow rate at 0 min.	 171
Figure 9.2.3:	Process response curves for a 2% magnitude step change in the reboiler steam flow rate at 0 min.	 172
Figure 9.2.4:	Process response curves for a 2% magnitude step change in the regenerator liquid level at 0 min.	 172
Figure 9.2.5:	Process response curves for a 2% magnitude step change in the raw gas CO_2 content at 0 min.	 173
Figure 10.1.1:	Frequency plots of the MRI and CN.	 181
Figure 10.1.2:	Frequency plots of DCN and DC for CO ₂ train #1.	 182
Figure 10.1.3:	Frequency plots of DCN and DC for CO ₂ train #7.	 183
Figure 10.2.1:	Frequency plots for the RGA elements.	 185
Figure 10.3.1:	Frequency plots for PRGA _{ij} and CLDG _{ij} .	 189
Figure 10.4.1:	Plots of the scalar function W.	 191
Figure 10.5.1:	Frequency plots of 1+ G_{OL,i}(s) and PRGA _{ij} .	 195
Figure 10.5.2:	CO_2 train #1 closed-loop step response curves at the high gas throughput conditions.	 196
Figure 10.5.3:	CO_2 train #7 closed-loop step response curves at the high gas throughput conditions.	 197
Figure B.1.1:	Comparison between the predicted and experimental solution heat capacities.	 A-16
Figure B.2.1:	Comparison between the predicted and experimental solution mass densities.	 A-20
Figure B.2.2:	Comparison between the predicted and experimental solution viscosities.	 A-25
Figure B.2.3:	Comparison between the predicted and experimental solution surface tensions.	 A-28

Figure B.2.4:	Comparison between the predicted and experimental solution thermal conductivities.	 A-33
Figure D.1.1:	Results of the different modelling approaches for CO_2 trains #2 to #4.	 A-50
Figure D.1.2:	Results of the different modelling approaches for CO_2 trains #5 and #6.	 A-51
Figure D.2.1:	Temperature profiles for CO_2 trains #2 to #4.	 A-52
Figure D.2.2:	Temperature profiles for CO_2 trains #5 and #6.	 A-53
Figure D.2.3:	Effect of the effective interfacial area adjustment factor on the absorber CO_2 and H_2S vapour phase profiles.	 A-55
Figure D.3.1:	CO_2 and H_2S vapour and liquid phase column profiles for the first set of plant data.	 A-56
Figure D.3.2:	CO_2 and H_2S vapour and liquid phase column profiles for the first set of plant data.	 A-57
Figure D.3.3:	CO_2 and H_2S vapour and liquid phase column profiles for the second set of plant data.	 A-58
Figure D.3.4:	CO_2 and H_2S vapour and liquid phase column profiles for the second set of plant data.	 A-59
Figure D.3.5:	Column temperature profiles for the first set of plant data.	 A-60
Figure D.3.6:	Column temperature profiles for the second set of plant data.	 A-61
Figure F.2.1:	Comparison between the predicted and experimental solution mass densities.	 A-74
Figure F.2.2:	Comparison between the predicted and experimental solution viscosities.	 A-77
Figure F.2.3:	Comparison between the solution surface tensions predicted by the tabular model and the empirical correlation.	 A-79
Figure F.2.4:	Comparison between the solution thermal conductivities predicted by the tabular model and the empirical correlation.	 A-83
Figure H.1.1:	Equilibrium stage simulation results for the absorber and regenerator columns.	 A-89
Figure H.1.2:	Equilibrium stage simulation results for the absorber and regenerator columns.	 A-90
Figure H.1.3:	Effect of the correlated overall stage efficiencies on the steady- state absorber columns.	 A-91
Figure H.1.4:	Effect of the correlated overall stage efficiencies on the steady- state absorber columns.	 A-92
Figure H.1.5:	Effect of the correlated overall stage efficiencies on the steady- state behaviour of the dynamic absorber columns.	 A-93
Figure H.1.6:	Effect of the correlated overall stage efficiencies on the steady- state behaviour of the dynamic absorber columns.	 A-94
Figure H.2.1:	Process flow diagram for the steady-state model of CO_2 train #2.	 A-96
Figure H.2.2:	Process flow diagram for the steady-state model of CO_2 train #3.	 A-97
Figure H.2.3:	Process flow diagram for the steady-state model of CO ₂ train #4.	 A-98
Figure H.2.4:	Process flow diagram for the steady-state model of CO_2 train #5.	 A-99
Figure H.2.5:	Process flow diagram for the steady-state model of CO ₂ train #6.	 A-100

Figure H.3.1:	CO_2 and H_2S vapour and liquid phase column profiles for the first set of plant data.	 A-101
Figure H.3.2:	CO_2 and H_2S vapour and liquid phase column profiles for the first set of plant data.	 A-102
Figure H.3.3:	CO_2 and H_2S vapour and liquid phase column profiles for the second set of plant data.	 A-103
Figure H.3.4:	CO_2 and H_2S vapour and liquid phase column profiles for the second set of plant data.	 A-104
Figure H.3.5:	Column temperature profiles for the first set of plant data.	 A-105
Figure H.3.6:	Column temperature profiles for the second set of plant data.	 A-106
Figure I.5.1:	CO ₂ train #1 closed-loop step response curves at the medium gas throughput conditions.	 A-121
Figure I.5.2:	CO ₂ train #7 closed-loop step response curves at the medium gas throughput conditions.	 A-122
Figure I.5.3:	CO_2 train #1 closed-loop step response curves at the low gas throughput conditions.	 A-123
Figure I.5.4:	CO_2 train #7 closed-loop step response curves at the low gas throughput conditions.	 A-124

List of Tables

Table 2.1.1:	Nameplate capacity of the CO ₂ trains.	 8
Table 2.1.2:	Typical operating data for the CO_2 trains from 2002.	 9
Table 2.1.3:	Acid gas absorption reactions in the hot potassium carbonate process.	 10
Table 2.1.4:	Ion contribution factors (Pohorecki and Moniuk, 1988).	 13
Table 2.1.5:	Acid gas desorption reactions in the hot potassium carbonate process.	 13
Table 2.1.6:	CO_2 -H ₂ S-K ₂ CO ₃ -KHCO ₃ -KHS-K ₂ S-H ₂ O system equilibria.	 15
Table 2.1.7:	Temperature dependence of the equilibrium and Henry's Law constants.	 16
Table 2.1.8:	Liquid phase relations and vapour-liquid equilibria expressions.	 16
Table 2.2.1:	The MESH equations for a stage i and j = 1NC components.	 19
Table 2.2.2:	Mass transfer relations (Taylor and Krishna, 1993).	 21
Table 2.2.3:	Mass transfer coefficient and effective interfacial area correlations (Onda et al., 1968ab).	 27
Table 2.2.4:	Hydrodynamic relations (Stichlmair et al., 1989).	 29
Table 2.2.5:	Packing characteristics and constants for metal random packings.	 29
Table 2.5.1:	Common dynamic process behaviour (Stephanopoulos, 1984; Wade, 2004).	 35
Table 2.5.2:	Ziegler-Nichols and Tyreus-Luyben controller tuning rules.	 37
Table 2.5.3:	Liquid level PID controller tuning rules (Wade, 2004).	 37
Table 3.1.1:	Vapour phase thermodynamic and physical property models.	 47
Table 3.1.2:	Liquid phase thermodynamic and physical property models.	 48
Table 3.1.3:	Property data sources for the hot potassium carbonate system.	 49
Table 3.2.1:	Adjustable binary parameters for the Electrolyte NRTL model.	 50
Table 3.2.2:	Electrolyte NRTL parameters for the CO_2 -K ₂ CO ₃ -KHCO ₃ -H ₂ O system.	 53
Table 3.2.3:	Electrolyte NRTL parameters for the CO_2 -H ₂ S-K ₂ CO ₃ -KHCO ₃ -KHCO ₃ -KHCO ₃ -KHCO ₂ -KHCO ₂ -KHCO ₂ -KHCO ₂ -KHCO ₂ -KHCO ₃ -KH	 56
Table 4.3.1:	The average variation associated with the model parameter values for the CO_2 train absorbers and regenerators.	 77
Table 4.3.2:	Effective interfacial area adjustment factor values and their effect on the CO_2 train absorbers.	 82
Table 4.4.1:	CO_2 train simulation results for the first set of plant data in Table 2.1.2.	 89
Table 4.4.2:	CO_2 train simulation results for the second set of plant data in Table 2.1.2.	 90
Table 6.1.1:	Property estimation methods for the Miscellaneous class of hypothetical components.	 110
Table 6.2.1:	Thermodynamic and physical property models.	 115

Table 6.2.2:	Enhanced PR parameter values for the CO ₂ -K ₂ CO ₃ -H ₂ O system.	 117
Table 6.2.3:	Enhanced PR parameter values for the CO_2 -H ₂ S-K ₂ CO ₃ -H ₂ O system.	 119
Table 7.4.1:	Coefficients for the steady-state column stage efficiency correlations.	 136
Table 7.4.2:	Coefficients for the dynamic column stage efficiency correlations.	 136
Table 7.4.3:	An example HYSYS® macro for updating the absorber overall stage efficiencies.	 140
Table 8.3.1:	CO ₂ train simulation results for the first set of plant data in Table 2.1.2.	 156
Table 8.3.2:	CO ₂ train simulation results for the second set of plant data in Table 2.1.2.	 157
Table 9.1.1:	Flow control loop characteristics and controller settings for CO_2 trains #1 and #7.	 166
Table 9.1.2:	Temperature control loop characteristics and controller settings for CO_2 trains #1 and #7.	 167
Table 9.1.3:	Liquid level controller settings for CO_2 trains #1 and #7.	 167
Table 9.2.1:	Process transfer functions for CO ₂ train #1.	 173
Table 9.2.2:	Process transfer functions for CO ₂ train #7.	 174
Table 10.1.1:	Process transfer function matrices for the diagonal control structures.	 179
Table 10.1.2:	Sensitivity analysis indices at steady-state.	 180
Table 10.2.1:	Steady-state results for the interaction and stability analyses for the RGF-RSF control structure.	 185
Table 10.2.2:	Reordered process transfer function matrices for the RGF-RSF diagonal control structure.	 186
Table 10.3.1:	Steady-state values for the PRGA and CLDG for the selected configuration for the RGF-RSF diagonal control structure.	 188
Table 10.4.1:	BLT tuning parameters for the RGF-RSF diagonal control structures for CO_2 trains #1 and #7.	 191
Table B.1.1:	Component critical properties (Poling et al., 2001).	 A-11
Table B.1.2:	Ideal gas heat capacity coefficients and enthalpies of formation (Poling et al., 2001).	 A-12
Table B.1.3:	lonic species thermodynamic properties (Zemaitis et al., 1986).	 A-15
Table B.1.4:	Temperature dependence of Henry's Law constants.	 A-15
Table B.1.5:	Criss-Cobble entropy parameters (Criss and Cobble, 1964ab).	 A-16
Table B.1.6:	Atmospheric solution heat capacity data.	 A-16
Table B.1.7:	Parameter values for the Aspen Properties® heat capacity polynomial.	 A-16
Table B.2.1:	Antoine equation coefficients (Rowley et al., 1998).	 A-17
Table B.2.2:	Parameter values for the modified Rackett equation (Spencer and Danner, 1972).	 A-19
Table B.2.3:	Atmospheric solution mass density data.	 A-19

Table B.2.4:	Pair parameter values for the Clarke Aqueous Electrolyte Volume model.	 A-19
Table B.2.5:	Component characteristic volumes.	 A-21
Table B.2.6:	Coefficients for the DIPPR vapour viscosity model (Rowley et al., 1998).	 A-23
Table B.2.7:	Coefficients for the Andrade liquid viscosity equation (Reid et al., 1977).	 A-24
Table B.2.8:	Atmospheric solution viscosity data.	 A-25
Table B.2.9:	Parameter values for the Jones-Dole viscosity equation.	 A-25
Table B.2.10:	Coefficients for the DIPPR surface tension equation (Rowley et al., 1998).	 A-27
Table B.2.11:	Atmospheric solution surface tension data.	 A-28
Table B.2.12:	Surface tension correlation coefficients.	 A-28
Table B.2.13:	Coefficients for the DIPPR vapour thermal conductivity model (Rowley et al., 1998).	 A-30
Table B.2.14:	Coefficients for the DIPPR liquid thermal conductivity equation (Rowley et al., 1998).	 A-32
Table B.2.15:	Atmospheric solution thermal conductivity data.	 A-32
Table B.2.16:	Liquid phase thermal conductivity correlation coefficients.	 A-32
Table B.2.17:	Normal boiling points and the corresponding liquid molar volumes (Poling et al., 2001).	 A-35
Table B.2.18:	Ionic conductivities at infinite dilution.	 A-37
Table B.2.19:	Diffusivities in water at 25°C.	 A-37
Table C.1.1:	The Electrolyte NRTL adjustable parameters used in this work.	 A-39
Table C.1.2:	The Electrolyte NRTL adjustable parameters used in this work.	 A-40
Table C.3.1:	Statistical results for the CO_2 - K_2CO_3 - $KHCO_3$ - H_2O system data regression runs.	 A-45
Table C.3.2:	Suitable parameter value sets for the CO_2 -K ₂ CO_3 -KHCO ₃ -H ₂ O system.	 A-46
Table C.3.3:	Statistical results for the CO_2 -H ₂ S-K ₂ CO ₃ -KHCO ₃ -KHS-K ₂ S-H ₂ O system data regression runs.	 A-47
Table C.3.4:	Suitable parameter value sets for the CO_2 -H ₂ S-K ₂ CO ₃ -KHCO ₃ -KHS-K ₂ S-H ₂ O system.	 A-48
Table D.2.1:	Alternative mass transfer coefficient and effective interfacial area correlations.	 A-54
Table E.3.1:	Temperature dependent property correlation coefficients.	 A-67
Table F.2.1:	Coefficient values for the HYSYS® liquid density tabular model.	 A-73
Table F.2.2:	Coefficient values for the HYSYS® liquid viscosity tabular model.	 A-77
Table F.2.3:	Coefficient values for the HYSYS® liquid surface tension tabular model.	 A-79
Table F.2.4:	Coefficient values for the HYSYS® liquid thermal conductivity tabular model.	 A-83
Table G.2.1:	Statistical results for the CO_2 - K_2CO_3 - H_2O system data regression runs.	 A-87

Table G.2.2:	Statistical results for the CO ₂ -H ₂ S-K ₂ CO ₃ -H ₂ O system data	Δ_87	
	regression runs.		A-87
Table I.2.1:	System poles and zeros for the SGC-RSF control structure.		A-111

Nomenclature

Latin Letters

A	_	Step size or amplitude of limit cycle
A [*]	-	Latini component parameter
A _{ca}	m ³ /kmol	Clarke Aqueous Electrolyte Volume parameter
A _φ	-	Debye-Hückel parameter
AAD	%	Average absolute deviation
а	_	Activity
а	m ⁶ ·bar/kmol ²	Cubic equation of state mixture parameter
а	m²/m³	Specific surface area
a _a	W⋅m²/K⋅kmol	Riedel anion parameter
a _c	W⋅m²/K⋅kmol	Riedel cation parameter
aı	m²/m³	Effective interfacial area
aj	m ⁶ ·bar/kmol ²	Cubic equation of state parameter for species j
а _{т,j}	kJ/kmol·K	Criss-Cobble entropy parameter
B _{ca}	L/mol	Breslau-Miller electrolyte parameter
b	m ³ /kmol	Cubic equation of state mixture parameter
b	m ³ /kmol	Ion contribution factor
b _{a,1}	m ³ /kmol	Breslau-Miller anion parameter
b _{a,2}	m³/kmol·K	Breslau-Miller anion parameter
b _{c,1}	m ³ /kmol	Breslau-Miller cation parameter
b _{c,2}	m³/kmol·K	Breslau-Miller cation parameter
bj	m ³ /kmol	Cubic equation of state parameter for species j
b _{T,j}	-	Criss-Cobble entropy parameter
С	kmol/m ³ mol/cm ³	Molar concentration or molar density
\hat{C}_{H_2S}	mol/m ³	Equivalent H ₂ S content
Cj	-	Electrolyte NRTL parameter (z_j for ions and 1 for molecular species)
$\mathbf{C}_{j\mathbf{w}}^{\circ}$	-	Reduced volume integral of species j at infinite dilution in water
Cp	kJ/kmol·K cal/mol·K kJ/kg⋅K Btu/lbmol·°R	Heat capacity
Ĉ _p	kJ/kg∙K	Mass heat capacity
$C_p \Big _{25}^T$	kJ/kmol∙K	Average value of $C_{p}^{}$ between 25°C and temperature T
C _R	-	Reduced molar density
Cv	J/mol·K	Heat capacity at constant volume
CLDG	_	Closed-loop disturbance gain matrix
CN	_	Condition number
Ct	kmol/m ³	Total mole concentration
D	m	Diameter
D	cm²/s m²/s	Effective diffusion coefficient or diffusivity

D _{jk}	m²/s	Binary diffusion coefficient for species pair j-k
D _w	cm²/s	Diffusion coefficient in water
Ð _{jk}	m²/s	Maxwell-Stefan diffusivity for the binary species pair j-k
DC	-	Disturbance cost
DCN	-	Disturbance condition number
DR	-	Decay ratio
DRGA	-	Dynamic relative gain array
d	-	Height of first overshoot
d	-	Process load or disturbance
d (s)	-	Vector of process disturbances
d _h	m	Hydraulic diameter
d _N	m	Nominal packing size
dp	m	Particle diameter
df	-	Degrees of freedom
E	kW/m ²	Energy flux across the vapour-liquid interface
E _{stage}	-	HYSYS® column overall stage efficiency
E _{Murph}	-	Murphree vapour efficiency
EF	-	Enhancement factor
е	С	Charge of an electron (1.60219×10 ⁻¹⁹ C)
F	C/mol	Faraday's constant (96 485 C/mol)
F	kmol/s	Feed molar flow
F	kmol/s	Flow rate
F	-	F-Test result
F	-	BLT detuning factor
F ₁ , F ₂ ,F ₃	-	Chung functions
Fc	-	Fractional conversion of K_2CO_3 to $KHCO_3$ and KHS
F_{CO_2}	-	CO ₂ loading
Fj	-	Fractional conversion of CO ₃ ²⁻ to HCO ₃ ⁻ due to species j absorption
F _{max}	m³/min	Maximum flow through control valve
ΔF_{in}	%	Maximum percentage step change in inflow
f	atm bar Pa	Fugacity
fo	_	Particle friction factor
f⊤	-	Twu function at temperature T
f _{x,0}	_	Ely-Hanley function
G	-	Electrolyte NRTL parameter
G	kmol/s	Vapour phase molar flow
G	-	Transfer function
G (s)	-	Transfer function matrix
Ĝ	sm³/h	Vapour phase standard volumetric flow
<u>G(</u> s)	_	Transfer function matrix with paired elements along the diagonal
G^{E}	kJ/kmol	Symmetric excess Gibbs energy
$G^{E^{\star}}$	kJ/kmol	Un-symmetric excess Gibbs energy
G(s)	-	Process transfer function

g	m/s ²	Gravitational acceleration (9.81m/s ²)
Н	m	Height
Hj	bar∙m³/kmol	Henry's Law constant for species j in solution
Hj	bar	Henry's Law constant for species j in pure water
H_j^w	bar⋅m³/kmol	Henry's Law constant for species j in water
На	_	Hatta number
HETP	m	Height of packing equivalent to a theoretical plate
h	kJ/kmol kJ/kg	Enthalpy
h	-	Height of relay
h	-	Twu function
$h_{x,0}$	-	Ely-Hanley function
Δh^{f}	kJ/kmol kJ/mol	Enthalpy or heat of formation
$\Delta \textbf{h}^{\text{vap}}$	kJ/kmol	Enthalpy of vaporisation
∆hfk	kJ/mol	Joback contribution for group k to the enthalpy of formation
I	-	Identity matrix
l _c	kmol/m ³	Molar concentration based ionic strength
l _x	-	Mole fraction based ionic strength
IAE	-	Integral of the absolute error
J	-	Objective function for the linear quadratic regulator problem
J	kmol/m²⋅s	Diffusion flux
К	– kmol/m ³ kmol ² /m ⁶	Chemical equilibrium constant
к	_	Gain
K'	_	Pseudo-equilibrium constant
K'n	_	Integrator gain
k	J/K erg/K	Boltzmann constant (1.38066×10 ⁻²³ J/K or 1.38066×10 ⁻¹⁶ erg/K)
k	m/s	Mass transfer coefficient
k	1/s m³/kmol⋅s m ⁶ /kmol²⋅s	Reaction rate constant
k _{jk}	-	Cubic equation of state binary interaction parameter for species pair j-k
k'	1/s	Pseudo-first-order reaction rate constant
k"	1/s	Kinetic coefficient
L	kmol/s	Liquid phase molar flow
Lc	-	Closed-loop log modulus
ΔL_{max}	%	Maximum allowable percentage deviation from setpoint
Ĺ	m ³ /h	Liquid phase volumetric flow
Le	_	Lewis number
М	kmol	Material holdup
MAD	%	Maximum absolute deviation
MIC	_	Morari index of integral controllability
MRI	_	Morari Resiliency Index

MW	kg/kmol g/mol	Molecular weight
m	_	Manipulated variable
m	kmol/m ³	Solution molarity (total K ₂ CO ₃ concentration)
Ν	kmol/m ² ·s	Molar flux across the vapour-liquid interface
Ν	_	Number
Ν	_	Order of multivariable system
N _{eqm}	_	Number of equilibrium stages
N _k	_	Number of UNIFAC groups of type k for Joback method
No	1/mol	Avogadro's number (6.02205×10 ²³ 1/mol)
NC	-	Number of components
ND	-	Number of data points
NI	_	Niederlinski index
n	kmol	Number of moles
n	-	Number of species in the system
Ρ	atm bar Pa psia	Pressure or partial pressure
P ^s	bar	Vapour pressure
Po	min	Period of oscillation
Pu	min	Ultimate period or limit cycle period
ΔP	Pa	Pressure drop
	кра	
PRGA	- -	Performance relative gain array
PRGA р	кга - -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9)
PRGA p p	- - -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value
PRGA p p Q	- - - -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs
PRGA p Q Q	kra – – – kJ/s kW	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty
PRGA p Q Q QDR	kra – – – kJ/s kW –	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio
PRGA p Q Q QDR R	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K)
PRGA p Q Q QDR R	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K)
PRGA p Q Q QDR R R Rsp	- - - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint
PRGA p Q Q QDR R R R R SP RGA	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array
PRGA p Q Q QDR R R R R SP RGA RRMSQE	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error
PRGA p Q Q QDR R R R R R R R R R R R R R	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number
PRGA p Q Q QDR R R RSP RGA RRMSQE Re r _j	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s - - m	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number Born radius of species j
PRGA p Q Q QDR R R R R R R R R R R R R R	- - - kJ/s kW - kJ/kmol·K m ³ ·bar/K·kmol atm·cm ³ /mol·K kmol/m ³ ·s - - m kJ/kmol·K	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number Born radius of species j Infinite dilution entropy at 25°C
PRGApQQQDRRRRSPRGARRMSQERe r_j S_{25}^{∞} S_T^{∞}	 KPa - - - kJ/s kW - kJ/kmol·K m³·bar/K·kmol atm·cm³/mol·K kmol/m³·s - - m kJ/kmol·K kJ/kmol·K kJ/kmol·K 	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number Born radius of species j Infinite dilution entropy at 25°C
PRGApQQQDRRRRSPRGARRMSQERe r_j S_{25}^{25} S_T^{T} SG	 KPa - - kJ/s kW - kJ/kmol·K m kJ/kmol·K kJ/kmol·K kJ/kmol·K kJ/kmol·K kJ/kmol·K kJ/kmol·K kJ/kmol·K 	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number Born radius of species j Infinite dilution entropy at 25°C Infinite dilution entropy at temperature T Specific gravity
PRGApQQQQDRRRRSPRGARRMSQERe r_j S_{25}^{∞} SGSSQ	 KPa - - - kJ/s kW - kJ/kmol·K m³·bar/K·kmol atm·cm³/mol·K kmol/m³·s - - - m kJ/kmol·K kJ/kmol·K kJ/kmol·K 	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number Born radius of species j Infinite dilution entropy at 25°C Infinite dilution entropy at temperature T Specific gravity Sum of squared errors
PRGAppQQQDRRSPRGARRMSQERe r_j S_{25}^{25} S_T^{T} SGSSQ Δ SG	 KPa - - kJ/s kW - kJ/kmol·K m³·bar/K·kmol atm·cm³/mol·K kmol/m³·s - - - m kJ/kmol·K kJ/kmol·K kJ/kmol·K - -	Performance relative gain array Pitzer-Debye-Hückel closest approach parameter (14.9) p-value Objective function for the data regression runs Heat flow or duty Quarter decay ratio Gas constant (8.3144 kJ/kmol·K or 0.0831447 m ³ ·bar/K·kmol or 82.06 atm·cm ³ /mol·K) Molar reaction rate Ratio setpoint Relative gain array Residual root mean square error Reynolds number Born radius of species j Infinite dilution entropy at 25°C Infinite dilution entropy at temperature T Specific gravity Sum of squared errors Change in specific gravity

Т	K °C °R °F	Temperature
T _{ref}	К	Reference temperature (298.15 K)
T*	_	Dimensionless temperature
t	min	Time
U	kJ	Energy holdup
U(s)	-	Process input transfer function
u	-	Process input
V	m ³	Volume
V	cm ³ /mol m ³ /kmol	Molar volume
V_{ca}^{∞}	m ³ /kmol	Clarke Aqueous Electrolyte Volume parameter
Ve	L/mol	Breslau-Miller effective volume
V_R^o , V_R^δ	-	COSTALD reduced volumes
v	m/s	Velocity
v*	cm ³ /mol	Characteristic volume
ĩ	-	Reduced molar volume
\overline{v}^{∞}	cm ³ /mol m ³ /kmol	Partial molar volume at infinite dilution in pure water
W	-	Scalar BLT function
Wi	-	Weight of data group i
WSSQ	-	Weighted sum of squares
wf	-	Weight fraction
$\text{wf}_{\text{K}_2\text{CO}_3}$	-	Equivalent weight fraction of K ₂ CO ₃
Х	-	Effective local mole fraction
х	-	Liquid phase mole fraction
х	-	Component mole fraction
Y(s)	-	Process output transfer function
у	-	Vapour phase mole fraction
у	-	Component mass fraction
у	-	Process output or response
Z	-	Compressibility
Z	-	Chung parameter
Z	cSt	Twu kinematic viscosity parameter
Z°	1/atm	Isothermal compressibility at infinite dilution in water
Z ⁽⁰⁾	-	Pitzer compressibility function for spherical molecules
Z ⁽¹⁾	-	Pitzer compressibility deviation function
Z _{RA}	-	Rackett parameter
z	-	Charge number
Z	-	Feed mole fraction
z	-	Ionic charge
z	-	Secondary process variable

Greek Letters

α	_	Chung parameter
α	-	Electrolyte NRTL non-randomness factor
α	-	Latini component parameter
α	kW/m²⋅K	Heat transfer coefficient
α_{c}	_	Riedel critical point parameter
α_j	-	Cubic equation of state alpha function for species j
β	-	Chung parameter
β	-	Latini component parameter
β	-	Packing specific constant
β_{CO_2}	m ³ /kmol	Contribution factor for CO ₂ absorption
δ	m	Film thickness
δ	Debye	Dipole moment
δ_{p}	-	Chapman-Enskog-Brokaw polar parameter
3	-	Error
3	C²/J⋅m	Dielectric constant
3	erg	Characteristic energy
φ	0	Phase lag
	rad	
φ	m ³ /m ³	Phase volumetric holdup
φ	m ³ /m ³	Packing voidage
ф _{јк}	-	Wilke viscosity function for species pair j-k
Γ	m·K/W	Stiel-Thodos parameter
γ	-	Activity coefficient
γ	-	Latini component parameter
γ	-	Symmetric activity coefficient
γ [*]	-	Un-symmetric activity coefficient
η	-	Dimensionless film coordinate
η	-	Column stage efficiency
φ	kV	Electrical potential
φ	-	Fugacity coefficient
κ	-	Chung association factor
λ	-	Relative gain
λ	-	Eigenvalue
λ	min	IMC tuning parameter
λ	W/m·K	Thermal conductivity
λ	-	Vector of eigenvalues
λ'	W/m·K	Ely-Hanley translational thermal conductivity contribution
λ"	W/m·K	Ely-Hanley internal thermal conductivity contribution
λ^{∞}	m²/Ω·kmol	lonic conductivity at infinite dilution in water
μ	kJ·m/kmol	Chemical potential

μ	cP kg/m·s Pa·s	Dynamic viscosity
$\Delta \mu_{ca}$	cP	Jones-Dole viscosity contribution term for electrolyte ca
ν	cSt m²/s	Kinematic viscosity
θ	min	Dead time
ρ	g/m ³ kg/m ³	Mass density
σ	-	Standard error associated with a data point
σ(s)	-	Singular value
σ	Å	Characteristic length
σ_{c}	N/m	Critical surface tension parameter
$\Delta\sigma_{\text{ca}}$	N/m	Onsager-Samaras surface tension contribution term for electrolyte ca
σι	N/m dyne/cm	Surface tension
τ	-	Electrolyte NRTL binary interaction energy parameter
τ	min	Natural period of oscillation
τ	min	Time constant
υ	-	Stoichiometric coefficient
$\Omega_{\text{D,jk}}$	-	Diffusion coefficient integral for species pair j-k
ω	-	Acentricity
ω	rad/min	Frequency
ξ	K ^{1/6} ·kmol ^{1/2} /kg ^{1/2} ·atm ^{2/3}	Dean-Stiel parameter
Ψ	-	Chung function
ψ_{b}	-	Riedel parameter
ζ	-	Damping factor

Subscripts

×	Final or at infinity or at steady-state
0	Reference fluid
Abs	Absorber
a, a'	Anion
aq	Aqueous
av	Average
В	Bandwidth
b	Normal boiling point
CL	Closed-loop
CLR	Closed-loop regulator
CLS	Closed-loop servo
Cond	Condenser
С	Column
С	Controller
С	Critical
C, C'	Cation
са	Electrolyte consisting of cation c and anion a
со	Cross-over
D	Derivative
d	Disturbance
diag	Diagonal matrix
dry	Dry packing
eq	Equilibrium
est	Estimated
expt	Experimental
F	Feed
f	Film
f	Forward reaction
G	Vapour phase
Н	High gas throughput
H ₂ O	Water
I	Integral
I	Vapour-liquid interface
IG	Ideal gas
i	Stage
irr	Irrigated packing
j	Component or species
j	Data point
jk	Component or species pair j-k
K ₂ CO ₃	Potassium carbonate
k	Component or species
L	Liquid phase
L	Low gas throughput

LS	Lean solution
lc	Local composition
М	Medium gas throughput
m, m'	Molecular species
m	Measured
max	Maximum
min	Minimum
OL	Open-loop
0	Pre-loading
PV	Process variable or measured process variable
р	Process
R	Reaction
Reb	Reboiler
RG	Raw gas
r	Reverse reaction
ref	Reference
SP	Setpoint
S	Solvent
Т	Temperature
Т	Total or mixture
t	Total or mixture
u	Ultimate
vap	Vapour
W	Water
х	Fluid of interest

Superscripts

At infinite dilution in water or in solvent
Un-symmetric convention
Adjusted matrix with positive diagonal elements
Inverse
Born model
Chemical
Molar concentration basis
Excess
Chemical equilibrium
Excess
Formation
Conjugate transpose
Low pressure or atmospheric pressure
Reference
Non-Random Two-Liquid model
Pitzer-Debye-Hückel model
Physical
Residual
Saturation or at vapour pressure P ^s
Transpose
Water
Ziegler-Nichols