IDENTIFICATION AND CHARACTERISATION OF ENDOGLYCOSIDASE ACTIVITIES TOWARDS DERMATAN SULPHATE BY TANDEM MASS SPECTROMETRY

A thesis presented for the degree of

DOCTOR OF PHILOSOPHY

by

Timothy C. Nielsen BSc(Hons)

Discipline of Paediatrics The University of Adelaide Adelaide, South Australia

Lysosomal Diseases Research Unit Department of Genetic Medicine Children, Youth and Women's Health Service Adelaide, South Australia

July, 2009

CONTENTS -

Summary	i
Declaration	iii
Acknowledgements	iv
Abbreviations	v
List of Figures	vii
List of Tables	viii
Publications	ix
Dedication	X
	1
L HAPTER UNE; INTRODUCTION	- 1
1.1 GL I COSAMINOGL I CANS 1.2 DEDMATAN SULEATE	2
1.2 DERIVIATAN SULFATE $1.2 DERIVITIESIS OF DERMATAN SUL DUATE$	2
1.5 DIUS INTRESIS OF DERMATAN SULPRATE 1.4 DIOLOCICAL EUNCTIONS OF DEDMATAN SUL DIATE	כ ד
1.4 DIOLOGICAL FUNCTIONS OF DERMATAN SULPHATE 1.5 DECD AD ATION OF DEDMATAN SUL DIATE	/
1.5 DEGRADATION OF DERMATAN SULPHATE	10
1.5.1 Endodegradation of dermatan sulphate	10
1.5.2 Exodegradation of dermatan sulphate	14
1.0 THE MUCOPULY SACCHARIDUSES	15
1.7 MASS SPECTRUMETRY OF DERMATAN SULPHATE OLIGOSACCHARIDES	21
1.8 RESEARCH AIMS, HYPOTHESES AND SIGNIFICANCE	23
CHAPTER TWO: MATERIALS AND METHODS	- 25
2.1 MATERIALS	26
2.1.1 General chemicals	26
2.1.2 Cell culture materials	29
2.1.2 Concentrate materials	29
2.1.4 Mouse tissues	29
2.1.5 Reagents and solutions	30
2.1.6 Equipment and software	32
2.2 METHODS	33
2.2.1 Preparation of internal standard #3 for mass spectrometry	33
2.2.2 Cell culture	34
2.2.3 Sub-cellular fractionation	35
2.2.4 Preparation of oligosaccharide substrates	35
2.2.4.1 Glycosaminoglycan digestion	35
2.2.4.1 Size fractionation of oligosaccharides	36
2.2. 1.2 Size frictionation of Oirgosacchandes	36
2.2.4.2.2 Calibration of Bio-Gel P6 column	36
2.2.4.2.3 Size-exclusion chromatography on Bio-Gel P6 column	36
2.2.1.2.5 Size exclusion enformatography on Bio Gerro commin	37
2.2.4.5 p griterioniduse argestion of origosacchartaes	37
2.2.5 Frequencies of samples for endogrycosidase product assay	38
2.2.0 Endogrycosidase product assay	38
2.2.7 Trotein determination	30
2.2.0 CA determination	30
2.2.7 p-nexosaminuase and actu phosphatase activity determination	39 /0
2.2.10 Chloride determination 2.2.11 Sample preparation for mass spectromatry	40 70
2.2.11 Sample preparation of samples from Pic Col D6 column	40 70
2.2.11.1 Freparation of samples from bio-Gel PO column	40 71
2.2.11.2 F reparation of samples from enaogiycostaase product assay	41

 2.2.11.3 Preparation of samples from β-glucuronidase digests 2.2.11.4 Preparation of density gradient fractions and skin fibroblasts 2.2.12 Mass spectrometry of oligosaccharides 2.2.12.1 Identification of oligosaccharides 2.2.12.2 On the state of the state o	41 42 43 43
2.2.12.2 Quantification of oligosaccharides	43
CHAPTER THREE: PREPARATION AND CHARACTERISATION OF	_ 10
3 1 INTRODUCTION	- 4 9 50
3.2 RESULTS	52
3.2.1 Preparation and purification of oligosaccharides	52
3.2.2 MS of oligosaccharides	52
3.3 DISCUSSION	72
CHAPTER FOUR: DEVELOPMENT OF ENDOGLYCOSIDASE PRODUCT ASSAY	80
4.1 INTRODUCTION	81
4.2 RESULTS	82
4.2.1 Selection of oligosaccharides for use as assay substrates	82
4.2.2 Endo-β- <i>N</i> -acetylhexosaminidase activity towards oligosaccharide substrates	84
4.2.3 Endohexuronidase activity towards oligosaccharide substrates	87
4.2.4 Optimisation of assay conditions	88
4.2.5 Attempted inhibition of endo- β - <i>N</i> -acetylhexosaminidase activity	97
4.3 DISCUSSION	97
4.3.1 Substrate specificity of endo- β - <i>N</i> -acetylhexosaminidase activity	99
4.3.2 Substrate specificity of endohexuronidase activity	101
4.3.3 Properties of endoglycosidase activities	102

CHAPTER FIVE: ENDOGLYCOSIDASE ACTIVITIES IN THE MUCOPOLYSACCHARIDOSES

MUCOPOLYSACCHARIDOSES	<u> </u>
5.1 INTRODUCTION	106
5.2 RESULTS	107
5.2.1 Endoglycosidase activity in skin fibroblasts	107
5.2.2 Endoglycosidase product oligosaccharides in skin fibroblasts	108
5.2.3 Sub-cellular localisation of oligosaccharides in skin fibroblasts	110
5.2.4 Endoglycosidase activity in fibroblast lysosomes	117
5.2.5 Endoglycosidase activity in mouse tissues	119
5.3 DISCUSSION	119
SUMMARY AND CONCLUSIONS	126
REFERENCES	137

SUMMARY -

Dermatan sulphate (DS) is a sulphated glycosaminoglycan (GAG) that is widely distributed as proteoglycan throughout the extracellular matrix and at cell surfaces where it plays an important role in many key biological processes. The intra-cellular catabolism of DS commences with endohydrolysis of the polysaccharide chains to oligosaccharides, which are then sequentially degraded from the non-reducing terminus by lysosomal exoenzymes to monosaccharides and inorganic sulphate for transport out of the lysosome and re-utilisation by the cell. Both endo- β -N-acetylhexosaminidase (Hyal-1 hyaluronidase) and endo- β glucuronidase activities towards DS have been proposed. The present study was undertaken to: 1) determine the substrate specificities and sub-cellular locations of these endoglycosidase activities; and 2) compare endoglycosidase activities and substrate specificities in the mucopolysaccharidoses, where a defect in one of the lysosomal exoenzymes required to degrade DS results in the lysosomal accumulation of partially degraded DS oligosaccharide fragments. To this end, a series of oligosaccharide substrates designed to represent aspects of the physiological substrate was prepared, and an assay was developed to measure endoglycosidase activities and determine their substrate specificities by quantifying specific oligosaccharide products.

Assay substrates rich in glucuronic acid (GlcA) or iduronic acid (IdoA) were prepared by limited chondroitinase ABC digestion of chondroitin sulphate A and DS, respectively. The resulting tetra- to hexadecasaccharides were separated by size-exclusion chromatography and characterised by electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). These substrates, which were not susceptible to degradation by lysosomal exoenzymes, were then incubated with Chinese hamster ovary (CHO)-K1 cell homogenate (source of endoglycosidase activity), and the oligosaccharide products generated from the non-reducing end of the substrate were measured by ESI-MS/MS. Endo-β-N-acetylhexosaminidase and endohexuronidase activities were detected towards the oligosaccharide substrates, with both activities preferentially degrading the GlcA-rich substrates and only minor activity observed towards IdoA-rich substrate. The endo- β -N-acetylhexosaminidase activity had a minimumsized substrate requirement of a hexasaccharide and was observed to sequentially remove tetrasaccharides from the non-reducing end of oligosaccharides, whereas the

endohexuronidase activity had a minimum substrate of an octasaccharide, acted randomly and was comparatively low. The activities displayed the same acidic pH optimum and responded in the same manner to changes in buffer composition and substrate concentration, and to the presence of divalent cations, NaCl, detergent and protease inhibitors. Both activities were modestly affected by the hyaluronidase inhibitor, apigenin. Percoll density gradient subcellular fractionation confirmed that the activities were primarily in the lysosomes and late endosomes. The endo- β -*N*-acetylhexosaminidase and endohexuronidase activities detected here in CHO-K1 cells are consistent with the Hyal-1 and endo- β -glucuronidase enzymes described previously. These data suggest that Hyal-1 and endo- β -glucuronidase are predominantly lysosomal enzymes that act in concert to degrade the low-sulphate, GlcA-rich domains of DS, but are less active towards the highly sulphated regions containing IdoA.

To test the hypothesis that endoglycosidase activities are altered in the mucopolysaccharidoses, an attempt was made to compare Hyal-1- and endo-β-glucuronidaselike activities and their substrate specificities in mucopolysaccharidosis (MPS)-affected and unaffected control skin fibroblasts. However, no activity was detected towards octa- to hexadecasaccharide substrates in control fibroblast homogenates, and in homogenates of MPS lysosomal fibroblasts deficient α -L-iduronidase in the exoenzymes and Nacetylgalactosamine-4-sulphatase, despite the fact that: 1) what appear to be the products of Hyal-1 and endo-β-glucuronidase activities towards endogenous DS could be detected in the lysosomes of the MPS cells by sub-cellular fractionation; and 2) the ESI-MS/MS assay was demonstrated sensitive enough to detect endoglycosidase activities in homogenates of a number of different mouse tissues (including whole skin). We hypothesise that this absence of detectable endoglycosidase activity in skin fibroblasts results from enzyme non-recognition of the exogenous assay substrates tested, and hence that these cells contain heretofore undescribed Hyal-1 and endo- β -glucuronidase isoforms with unique substrate specificities.

In conclusion, the development of an ESI-MS/MS assay to measure the products of endoglycosidase activities has enabled the characterisation of these activities towards DS. This strategy may be useful for the future study of endoglycosidase activities towards a variety of other GAGs such as heparan sulphate, where particular oligosaccharide structures have been shown to possess unique biological activities.

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

.....

TC NIELSEN

July, 2009

I would like to sincerely thank the following people for their support over the last few years:

- Dr Maria Fuller, my principal supervisor, for her absolute dedication to the research undertaken, her continued concern for my professional development, and in particular for her rapid feedback and encouragement during the writing phase.

- Prof. John Hopwood, co-supervisor, whose vast experience in the field of glycosaminoglycan biochemistry was a priceless resource in guiding the overall direction of the project and providing a "bigger picture" perspective.

- Assoc. Prof. Peter Meikle, co-supervisor, whose influence is apparent in chapters three and four of this thesis.

- All the members of the LDRU, 2005-2009, who provided not only professional but also emotional support throughout, often while completely unaware that they were doing so. A big thank you to the "Blue Lab" in particular, who could always be relied upon to provide a welcome distraction when required. I'm sure I'm in danger of missing someone out, but here goes: Philippa Davey, Karissa Phillis, Dr Mark Prodoehl, Dr Emma Parkinson-Lawrence, Glenn Borlace, Chris Turner and Dr Anthony Fedele. Thanks also to the guys upstairs, Stephen Duplock and Troy Stomski, and to Prof. Doug Brooks.

- Special thanks to Dr Tomas Rozek, who spent much of his own time showing me the ropes on the mass spec, developing methods and trying to figure out where all those product ions came from!

- Sophie Lazenkas, for her thorough proof-reading of this manuscript.

- My family, whose support in the form of babysitting and other sundries made life a bit easier.

...and finally, my wife, Mara, who deserves an award of some kind for sitting this out with me. Perhaps one day I will be able to repay you. Until then, I can only say: thankyou.

ΔUA	unsaturated uronic acid
amu	atomic mass units
AUX	auxiliary gas
BME	basal modified eagle's medium
BSA	bovine serum albumin
BTH	bovine testicular hyaluronidase
CAD	collision gas
CE	collision energy
СНО	Chinese hamster ovary
CNS	central nervous system
CS	chondroitin sulphate
CUR	curtain gas
СХР	collision cell exit potential
Da	Dalton
DMG	3,3-dimethylglutaric acid
DMSO	dimethylsulphoxide
DNA	deoxyribonucleic acid
DP	declustering potential
DS	dermatan sulphate
DSPG	dermatan sulphate proteoglycan
ECM	extra-cellular matrix
EP	entrance potential
ER	endoplasmic reticulum
ESI	electrospray ionisation
FCS	foetal calf serum
FGF	fibroblast growth factor
FP	focussing potential
GAG	glycosaminoglycan
Gal	galactose
GalNAc	N-acetylgalactosamine
GlcA	glucuronic acid
GlcN	glucosamine
GlcNAc	N-acetylglucosamine
GPI	glycosylphosphatidylinositol

-V-

HC II	heparin cofactor II
HNAc	N-acetylhexosamine
HPLC	high performance liquid chromatography
IdoA	iduronic acid
IS	ion spray voltage
ISTD	internal standard
MPS	mucopolysaccharidosis
MPSs	mucopolysaccharidoses
MRM	multiple reaction monitoring
MS	mass spectrometry
MS/MS	tandem mass spectrometry
m/z	mass-to-charge ratio
NEB	nebuliser gas
PBS	phosphate-buffered saline
PG	proteoglycan
PMP	1-phenyl-3-methyl-5-pyrazolone
PMSF	phenylmethanesulphonylfluoride
RHhyal-1	recombinant human Hyal-1
S	sulphate
SPAM-1	sperm adhesion molecule-1
TEM	temperature
UA	uronic acid
UDP	uridine diphosphate
UV	ultraviolet
\mathbf{V}_0	void volume
\mathbf{V}_{t}	total volume
Xyl	xylose

Figure 1.1 Composition of DS 4 Figure 1.2 Structure of the DS-core protein linkage region in DSPG 5 Figure 1.3 Exodegradation of DS 16 CHAPTER THREE 51 Figure 3.1 Degradation of DS by chondroitinase ABC 51 Figure 3.2 Purification of oligosaccharides from BTH digestion of CS-A 58 Figure 3.3 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.6 ESI-MS/MS of selected oligosaccharides from bondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide form chondroitinase ABC digestion of DS 70 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 4.1 Relative teresascharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of OIsosaccharide substrates 86 Figure 4.3 Relative levels of endo-β-N-acetylhexosaminidase product following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of aubstrate concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.	СНАРТЕ	R ONE	
Figure 1.2 Structure of the DS-core protein linkage region in DSPG 5 Figure 1.3 Exodegradation of DS 16 CHAPTER THREE 51 Figure 3.2 Purification of DS by chondroitinase ABC 53 Figure 3.2 Purification of DS by chondroitinase ABC digestion of CS-A 58 Figure 3.4 ESI-MS of oligosaccharides from BTH digestion of CS-A 60 Figure 3.5 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.5 UBSI-MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.4 UBgosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.10 Ubgosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 70 Figure 4.1 Relative tersasccharide levels following digestion with β-glucuronidase 70 Figure 4.1 Relative tersasccharide levels following digestion with β-glucuronidase 71 Figure 4.1 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of Oligosaccharide substrates 86 Figure 4.2 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.3 Effect of apple on centration on relative product levels following endohydrolysis of CS-A 93 Figure 4.4 Effect of anaple concentration on relative product levels following endohydrolysis of CS-A	Figure 1.1	Composition of DS	4
Figure 1.3 Exodegradation of DS 16 CHAPTER THREE 51 Figure 3.1 Degradation of DS by chondroitinase ABC 51 Figure 3.2 Purification of oligosaccharides from BTH and chondroitinase ABC digests of CS-A and DS 53 Figure 3.3 ESI-MS of oligosaccharides from BTH digestion of CS-A 58 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.5 ESI-MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.10 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed Structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR 70 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of OS-A 79 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase product levels following endohydrolysis of CS-A 93 Figure 4.4 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures </td <td>Figure 1.2</td> <td>Structure of the DS-core protein linkage region in DSPG</td> <td>5</td>	Figure 1.2	Structure of the DS-core protein linkage region in DSPG	5
CHAPTER THREE Figure 3.1 Degradation of DS by chondroitinase ABC 51 Figure 3.2 Purification of oligosaccharides from BTH and chondroitinase ABC digests of CS-A and DS 53 Figure 3.3 ESI-MS of oligosaccharides from BTH digestion of CS-A 60 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.6 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.10 Proposed Structures of pentasaccharides from BTH digest of CS-A 70 CHAPTER FOUR Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 84 89 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 89 92 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of Oligosaccharide substrates 89 89 Figure 4.2 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 93 93 Figure 4.4 Effect of p1 on relative product levels following endohydrolysis of CS-A 96	Figure 1.3	Exodegradation of DS	16
Figure 3.1 Degradation of DS by chondroitinase ABC 51 Figure 3.2 Purification of oligosaccharides from BTH and chondroitinase ABC digests of CS-A and DS 53 Figure 3.3 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 60 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.6 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 96	СНАРТЕ	R THREE	
Figure 3.2 Purification of oligosaccharides from BTH and chondroitinase ABC digests of CS-A and DS 53 Figure 3.3 ESI-MS of oligosaccharides from BTH digestion of CS-A 58 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.6 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from Chondroitinase ABC digestion of DS 70 Figure 3.7 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 70 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of Oligosaccharide substrates 86 Figure 4.3 Relative levels of endo-kexuronidase product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 93 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 94 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of Oigosaccharide substr	Figure 3.1	Degradation of DS by chondroitinase ABC	51
CS-A and DS 53 Figure 3.3 ESI-MS of oligosaccharides from BTH digestion of CS-A 58 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 60 Figure 3.5 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68 Figure 3.6 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of OS-A 86 Figure 4.3 Relative levels of endo-β-N-acetylhexosaminidase product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.7 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 96 </td <td>Figure 3.2</td> <td>Purification of oligosaccharides from BTH and chondroitinase ABC digests of</td> <td></td>	Figure 3.2	Purification of oligosaccharides from BTH and chondroitinase ABC digests of	
Figure 3.3 ESI-MS of oligosaccharides from BTH digestion of CS-A 58 Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 60 Figure 3.5 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from bTH digestion of CS-A 68 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.10 Proposed Structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR 83 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endo-β-N-acetylhexosaminidase product following endohydrolysis of CS-A 93 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase product following endohydrolysis of CS-A 94 Figure 5.1 Relative product levels following endohydrolysis of CS-A 93 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 <		CS-A and DS	53
Figure 3.4 ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A 60 Figure 3.5 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 70 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β- <i>N</i> -acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endohexuronidase product following endohydrolysis of CS-A 92 Figure 4.5 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β- <i>N</i> -acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 96 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β- <i>N</i> -acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 <t< td=""><td>Figure 3.3</td><td>ESI-MS of oligosaccharides from BTH digestion of CS-A</td><td>58</td></t<>	Figure 3.3	ESI-MS of oligosaccharides from BTH digestion of CS-A	58
Figure 3.5 ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS 62 Figure 3.6 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.10 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.1 Relative tetrasaccharide levels following digestion on relative products following endohydrolysis of oligosaccharide substrates 89 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of CS-A 92 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixt	Figure 3.4	ESI-MS of oligosaccharides from chondroitinase ABC digestion of CS-A	60
Figure 3.6 ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A 68 Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.10 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 86 Figure 4.3 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.5 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of anglenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of Oligosaccharides in skin fibroblast 97 Figure 4.7 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 103 CHAPTER FIVE Figur	Figure 3.5	ESI-MS of oligosaccharides from chondroitinase ABC digestion of DS	62
Figure 3.7 ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS 70 Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed Structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR 83 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of CS-A 92 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 94 Figure 5.1 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 Figure 5.2 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 103 CHAPTER FIVE 198 198 Figure 5.1 Relative levels of oligosaccharides in s	Figure 3.6	ESI-MS/MS of selected oligosaccharides from BTH digestion of CS-A	68
Figure 3.8 Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) 75 Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR 83 Figure 4.1 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates 89 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 Figure 5.1 Relative levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 103 CHAPTER FIVE 111 Figure 5.1 Relative levels of oligosaccharides in MPS VI skin fibroblast density gradient fractions 114 Figure 5.2 Relative levels of oligosaccharides	Figure 3.7	ESI-MS/MS of selected oligosaccharides from chondroitinase ABC digestion of DS	70
Figure 3.9 Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis 77 Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR 83 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of CS-A 89 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 94 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 Figure 5.1 Relative product levels following endohydrolysis of CS-A in approximate ESI-MS/MS response factors 103 CHAPTER FIVE 111 Figure 5.1 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.2 Relative levels of oligosaccharides in MPS VI skin fibroblast dens	Figure 3.8	Oligosaccharide derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP)	75
Figure 3.10 Proposed structures of pentasaccharides from BTH digest of CS-A 79 CHAPTER FOUR 83 Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase 83 Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates 89 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of plusent econcentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 94 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A 98 Figure 5.1 Relative product levels following endohydrolysis of CS-A in approximate ESI-MS/MS response factors 103 CHAPTER FIVE 111 Figure 5.2 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of oligosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product l	Figure 3.9	Proposed CS-A oligosaccharide fragmentations during ESI-MS/MS analysis	77
CHAPTER FOURFigure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase83Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates86Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates89Figure 4.3 Reflect of sample concentration on relative product levels following endohydrolysis of CS-A92Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A93Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A96Figure 4.7 Effect of apigenin on relative product levels following endohydrolysis of CS-A96Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A98Figure 5.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures103CHAPTER FIVEFigure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures114Figure 5.4 Relative levels of oligosaccharides in skin fibroblasts111Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions116Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells118Figure 5.6 Relative product levels following endohydrolysis of CS-A in misrue hormozenates120	Figure 3.1	0 Proposed structures of pentasaccharides from BTH digest of CS-A	79
Figure 4.1 Relative tetrasaccharide levels following digestion with β-glucuronidase83Figure 4.2 Relative levels of endo- β -N-acetylhexosaminidase products following endohydrolysis of oligosaccharide substrates86Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates89Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A92Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A93Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A94Figure 4.7 Effect of apigenin on relative product levels following endohydrolysis of CS-A96Figure 4.9 Relative levels of endo- β -N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors103 CHAPTER FIVE Figure 5.1 Relative levels of oligosaccharides in skin fibroblast fibroblast mixtures111Figure 5.2 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions114Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions116Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells118Figure 5.6 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells118	СНАРТЕ	R FOUR	
Figure 4.2 Relative levels of endo-β-N-acetylhexosaminidase products following 86 Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates 89 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 94 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of CIS-A 98 Figure 5.1 Relative product levels following endohydrolysis of CS-A 98 Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 103 CHAPTER FIVE 109 Figure 5.2 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells	Figure 4.1	Relative tetrasaccharide levels following digestion with β -glucuronidase	83
endohydrolysis of oligosaccharide substrates 86 Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis of oligosaccharide substrates 89 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue	Figure 4.2	Relative levels of endo- β - <i>N</i> -acetylhexosaminidase products following	
Figure 4.3 Relative levels of endohexuronidase products following endohydrolysis 89 Figure 4.4 Effect of sample concentration on relative product levels following 92 Figure 4.5 Effect of substrate concentration on relative product levels following 93 Figure 4.6 Effect of PH on relative product levels following 93 Figure 4.7 Effect of divalent metal cations on relative product levels following 96 Figure 4.7 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of Oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE 109 111 Figure 5.1 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.2 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		endohydrolysis of oligosaccharide substrates	86
of oligosaccharide substrates 89 Figure 4.4 Effect of sample concentration on relative product levels following endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue hormogenates 120	Figure 4.3	Relative levels of endohexuronidase products following endohydrolysis	_
Figure 4.4 Effect of sample concentration on relative product levels following 92 Figure 4.5 Effect of substrate concentration on relative product levels following 93 Figure 4.5 Effect of pH on relative product levels following endohydrolysis of CS-A 93 Figure 4.7 Effect of divalent metal cations on relative product levels following 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase 97 products following endohydrolysis of CS-A 98 Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.4 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		of oligosaccharide substrates	89
endohydrolysis of CS-A 92 Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.4 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 4.4	Effect of sample concentration on relative product levels following	
Figure 4.5 Effect of substrate concentration on relative product levels following endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 98 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.4 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		endohydrolysis of CS-A	92
endohydrolysis of CS-A 93 Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 96 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 98 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 4.5	Effect of substrate concentration on relative product levels following	
Figure 4.6 Effect of pH on relative product levels following endohydrolysis of CS-A 94 Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.4 Relative levels of monosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	D'	endohydrolysis of CS-A	93
Figure 4.7 Effect of divalent metal cations on relative product levels following endohydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 90 CHAPTER FIVE 103 Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 4.6 Γ	Effect of pH on relative product levels following endohydrolysis of CS-A	94
endonydrolysis of CS-A 96 Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of CS-A 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 98 CHAPTER FIVE 103 Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 4. /	Effect of divalent metal cations on relative product levels following	06
Figure 4.8 Effect of apigenin on relative product levels following endohydrolysis of 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase 98 products following endohydrolysis of oligosaccharide substrates, corrected 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue 118	F' 40	endohydrolysis of CS-A	96
CS-A 98 Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE 103 Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 4.8	Effect of apigenin on relative product levels following endonydrolysis of	00
Figure 4.9 Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	F ' 10		98
products following endohydrolysis of oligosaccharide substrates, corrected for approximate ESI-MS/MS response factors 103 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 4.9	Relative levels of endo-β-N-acetylhexosaminidase and endohexuronidase	
Iterapproximate ESI-MS/MS response factors 105 CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		products following endonydrolysis of oligosaccharide substrates, corrected	102
CHAPTER FIVE Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures 109 Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		for approximate ESI-MS/MS response factors	103
Figure 5.1 Relative product levels following endohydrolysis of CS-A in CHO-K1/skin fibroblast mixtures109Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts111Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions114Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions116Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells118Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates120	СНАРТЕ	R FIVE	
fibroblast mixtures109Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts111Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions114Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions116Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells118Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates120	Figure 5.1	Relative product levels following endohydrolysis of CS-A in CHO-K1/skin	
Figure 5.2 Relative levels of oligosaccharides in skin fibroblasts 111 Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		fibroblast mixtures	109
Figure 5.3 Relative levels of oligosaccharides in MPS I skin fibroblast density gradient fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 5.2	Relative levels of oligosaccharides in skin fibroblasts	111
fractions 114 Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 5.3	Relative levels of oligosaccharides in MPS I skin fibroblast density gradient	
Figure 5.4 Relative levels of monosaccharides in MPS VI skin fibroblast density 116 gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, 118 rendosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue 120		fractions	114
gradient fractions 116 Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120	Figure 5.4	Relative levels of monosaccharides in MPS VI skin fibroblast density	
Figure 5.5 Relative product levels following endohydrolysis of CS-A in microsomal, endosomal and lysosomal preparations from CHO-K1 cells 118 Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue homogenates 120		gradient fractions	116
Figure 5.6 Relative product levels following endohydrolysis of CS-A in tissue	Figure 5.5	Relative product levels following endohydrolysis of CS-A in microsomal,	110
rigure 5.6 Keiative product levels following endohydrolysis of CS-A in tissue homogenates 120	Eigene 5 C	endosomal and lysosomal preparations from CHO-K1 cells	118
	Figure 5.6	homogenates	120

LIST C)F TA	ABLES
--------	-------	-------

9
17
45
46
47
48
64
f
65
66
85
90
95
95

The following publications resulted from the work described in this thesis:

Peer-reviewed journals

Nielsen, T.C., Meikle, P.J., Hopwood, J.J. and Fuller, M. (2008) Minimum substrate requirements of endoglycosidase activities towards dermatan sulfate by electrosprayionization tandem mass spectrometry *Glycobiology* **18**(**12**): 1119-1128

Conference abstracts

Nielsen, T.C., Meikle, P.J., Hopwood, J.J. and Fuller, M. A method to measure endohydrolase products by mass spectrometry *Proceedings of the Australian Health and Medical Research Congress 2006* (abstract #1525)for Isabella

"I cannot express strongly enough my unbounded admiration for the greatness of mind of these men who conceived [the heliocentric system] and held it to be true....in violent opposition to the evidence of their own senses....."

- Galileo, Dialogue concerning Two Principal Systems of the World (Third Day)