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The charge radii of octet-baryons obtained in quenched lattice-QCD calculations are extrapolated

within heavy-baryon chiral perturbation theory. Finite-range regularization is applied to improve the

convergence of the chiral expansion and to provide estimates of quenching artifacts. Lattice values of

quark distribution radii and baryon charge radii for m2
� in the range ð0:1; 0:7Þ GeV2 are described very

well with finite-range regularization. Upon estimating corrections for both finite-volume and quenching

effects, the obtained charge radii of the proton, neutron and �� are in good agreement with experimental

measurements. The predicted charge radii of the remaining octet-baryons have not yet been measured and

present a challenge to future experiments.

DOI: 10.1103/PhysRevD.79.094001 PACS numbers: 13.40.�f, 11.10.Gh, 12.39.Fe, 14.20.�c

I. INTRODUCTION

The study of the electromagnetic form factors of bary-
ons is of crucial importance to understanding the non-
perturbative properties of QCD. Though QCD is
accepted as the fundamental theory of the strong interac-
tion, it remains a theoretical challenge to quantitatively
probe the nonperturbative domain. There are many effec-
tive methods and phenomenological models that have been
applied to study the electromagnetic properties of baryons:
the cloudy bag model [1], the constituent-quark model
[2,3], the 1=Nc expansion approach [4], the perturbative
chiral quark model [5], the extended vector meson domi-
nance model [6], the quark-diquark model [7], and the
Schwinger-Dyson formalism [8–10]. Various formulations
of heavy-baryon chiral perturbation theory (�PT) have also
been widely applied to this problem [11–14]. It has been
observed that expansions in �PT are consistent with ex-
perimental results up toQ2 ’ 0:1 GeV2 [12]. Extensions of
�PT to explicitly incorporate vector mesons have been
demonstrated to improve the applicability to Q2 ’
0:4 GeV2 [15].

As well as the above model calculations, the past few
years have seen increased activity in lattice-QCD studies of
the electromagnetic form factors. Significant efforts to
probe baryon electromagnetic structure in lattice QCD
have been driven by the Adelaide group [16,17], the
Cyprus group [18], and the QCDSF [19–21] and LHP
Collaborations [22,23]. While lattice QCD provides the
strongest tool for studying nonperturbative phenomena in
QCD, it does come with its own challenges. In particular,
artifacts of (unitary) lattice simulations arising from dis-
cretization, finite-volume, and unphysical quark masses all
need to be carefully dealt with to extract the predictions of
QCD relevant to the real world. (There are further, more

complicated issues in dealing with nonunitary approxima-
tions: partial- and full-quenching, 4th rooting, mixed-
action etc.).
The principle focus of this manuscript is on the quark-

mass dependence of baryon charge radii and the chiral
extrapolation of lattice simulation results performed at
unphysically large quark masses. Characterizing the
quark-mass dependence of hadronic observables in QCD
can be achieved within the low-energy effective theory of
QCD, �PT—see, for example, Bernard’s recent review on
baryon phenomena [24].
A celebrated feature of such effective theories is the

model independence of leading nonanalytic contributions
to quark-mass expansions [25]. Such chiral logs are a
direct consequence of the spontaneously broken chiral
symmetry of QCD. Neglecting such behavior in chiral
extrapolations (of even high-quality lattice calculations)
can potentially render results that have less resemblance
of QCD than some of the models discussed above. While
the inclusion of such logs in chiral extrapolations is neces-
sary to maintain QCD in the extraction of physical results
[26–30], this can be a challenging task because of the poor
convergence properties of the effective field theory (EFT)
expansion at moderate quark masses [31–34].
In this manuscript we work with finite-range regulariza-

tion (FRR) to improve the convergence properties of the
quark-mass expansion of the EFT [31,32,35].
As an effective theory describing long-distance phe-

nomena, �PT can also describe the finite-volume effects
of restricting the underlying theory to finite boundary
conditions [36]. The accuracy of these corrections is also
subject to the usual conditions, being at light-enough quark
masses and large-enough volumes. In this work we impose
the finite boundary conditions on the relevant one-loop
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graphs. These provide the leading estimates of the finite-
volume corrections.

The lattice simulation results studied in this paper come
from the CSSM Lattice Collaboration [17]. These lattice
results have been evaluated with quenched gauge-field
ensembles. With the underlying dynamics modified by
neglecting the quark loops of the QCD vacuum, the effec-
tive low-energy theory is described by quenched �PT
(Q�PT). For baryons, this was first formulated by
Labrenz and Sharpe [37] and for relevant work on the
electromagnetic form factors in quenched and partially
quenched theories see Refs. [38–41].

Given quenched lattice results, we use the leading
meson-loop diagrams to estimate the corrections in going
to the fully dynamical theory [32]. This is based on the
empirical observation that the discrepancies between the
quenched and dynamical nucleon and Delta-baryon masses
are well described by the associated leading meson-loop
dressings, as evaluated with a dipole finite-range regulator
[42]. The physical picture drawn from these results is quite
intuitive, once the interquark forces are matched at an
intermediate distance scale (in this case, the Sommer scale
[43]) the differing long-range features are dominantly de-
scribed by the low-energy EFT. In this case the FRR scale
acts to separate the long from the short. Further, any
residual difference in the q �q force at quite short distances
does not appear to play a significant role in the bulk, low-
energy structure.

In Sec. II, we will briefly introduce the chiral
Lagrangian, which is used for the octet charge form fac-
tors. Charge form factors and radii are calculated in Sec. III
with quenched and full-QCD. Numerical results are pre-
sented in Sec. IV, and finally Sec. V is the summary.

II. CHIRAL LAGRANGIAN

There are many papers that deal with heavy-baryon
chiral perturbation theory. For details see, for example,
Refs. [24,44,45]. For completeness, we briefly introduce
the formalism in this section. In heavy-baryon chiral per-
turbation theory, the lowest chiral Lagrangian for the
baryon-meson interaction, which will be used in the cal-
culation of the octet-baryon charge form factors, is

L v ¼ iTr �Bvðv �DÞBv þ 2DTr �BvS
�
v fA�; Bvg

þ 2F Tr �BvS
�
v ½A�; Bv� � i �T

�
v ðv �DÞTv�

þ Cð �T�
v A�Bv þ �BvA�T

�
v Þ; (1)

where S� is the covariant spin-operator defined as

S
�
v ¼ i

2
�5���v�: (2)

Here, v� is the nucleon four velocity [in the rest frame, we

have v� ¼ ð1; ~0Þ]. We incorporate the explicit propagation
of octet and decuplet baryon states, with D, F, and C
denoting the relevant meson-baryon couplings (which, in

principle, are to be determined in the chiral limit). The
chiral covariant derivative D� is written as D�Bv ¼
@�Bv þ ½V�; Bv�. The pseudoscalar meson octet couples

to the baryon field through the vector and axial vector
combinations

V� ¼ 1
2ð�@��y þ �y@��Þ; A� ¼ 1

2ð�@��y � �y@��Þ;
(3)

where

� ¼ ei�=f; f ¼ 93 MeV: (4)

The matrix of pseudoscalar fields � is expressed as

� ¼ 1ffiffiffi
2

p
1ffiffi
2

p �0 þ 1ffiffi
6

p 	 �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p 	 K0

K� �K0 � 2ffiffi
6

p 	

0
BB@

1
CCA:

(5)

Bv and T
�
v are velocity-dependent fields, which are related

to the original baryon octet and decuplet fields B and T� by

BvðxÞ ¼ eimNv6 v�x
�
BðxÞ; (6)

T
�
v ðxÞ ¼ eimNv6 v�x

�
T�ðxÞ: (7)

In the chiral SUð3Þ limit, the octet baryons are degenerate.
As the physical strange-quark mass is significant, we in-
corporate the physical mass splittings in the evaluation of
the chiral-loop diagrams.
The explicit form of the octet-baryon matrix is written as

B ¼
1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ p

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � n

�� �0 � 2ffiffi
6

p �

0
BB@

1
CCA: (8)

The baryon decuplets are defined by the rank-3 symmetric
tensor, with unique elements given by

T111 ¼ �þþ; T112 ¼ 1ffiffiffi
3

p �þ;

T122 ¼ 1ffiffiffi
3

p �0; T222 ¼ ��;

T113 ¼ 1ffiffiffi
3

p ��;þ; T123 ¼ 1ffiffiffi
6

p ��;0;

T223 ¼ 1ffiffiffi
3

p ��;�; T133 ¼ 1ffiffiffi
3

p ��;0;

T233 ¼ 1ffiffiffi
3

p ��;�; T333 ¼ ��:

(9)

In the heavy-baryon formalism, the propagators of the
octet and decuplet baryon, j, are, respectively, expressed as

i

v � k� �jB þ i"
and

iP��

v � k��jB þ i"
; (10)
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with P�� ¼ v�v� � g�� � ð4=3ÞS�v S�v. �ab ¼ mb �ma

is the mass difference of between the two baryons. The
propagator of meson k, (k ¼ �, K, 	) is the usual free
propagator, i.e.

i

k2 �m2
k þ i"

: (11)

III. CHARGE FORM FACTORS AND RADII

In the heavy-baryon formalism, the baryon form factors
are defined as

hBðp0ÞjJ�jBðpÞi ¼ �uðp0Þ
�
v�GEðQ2Þ

þ i
����v
�S�vq�

mN

GMðQ2Þ
�
uðpÞ;

(12)

where q ¼ p0 � p and Q2 ¼ �q2. In this paper, we focus
on the charge form factors, since we will extrapolate octet-
baryon charge radii.

With the Lagrangian, the diagrams for the charge form
factors are shown in Fig. 1. Our counting is ordered in
terms of powers of the quark mass contributing to the given
electric radii. For the purposes of counting, where the
typical baryon mass splitting is small relative to the lattice
meson masses, we treat the power of the quark mass that
defines the order of a given diagram by neglecting the mass
splitting, �. The diagrams are nevertheless evaluated with
the splittings restored. In the limit m� � �, diagrams a
with the intermediate nucleon state and c give rise to the
leading-log divergence of charge radii in full QCD.
Diagram b gives a next to leading order nonanalytic term
associated with the mass difference between octet and
decuplet baryons. For the intermediate hyperson states of
diagram a, the mass difference between hyperons and
nucleon also provides a next to leading order nonanalytic
term as diagram b. In this limit, we only have a partial

contribution of next order. This is certainly one of the
places where our analysis is somewhat phenomenological.
In the quenched case, each diagram has a different coeffi-
cient from that of dynamical QCD. In particular, diagram c
has no contribution in the quenched case. Further, the
double-hairpin diagram d contributes only in the quenched
case, where the 	0 is degenerate with the pion.
Upon integration over k0, the contribution to charge

form factors of Fig. 1(a) can be expressed as

GðaÞ
E ðQ2Þ ¼ �a

E

16�3f2�

Z
d ~k

uð ~kÞuð ~k� ~qÞ ~k � ð ~k� ~qÞ
!ð ~kÞ!ð ~k� ~qÞð!ð ~kÞ þ!ð ~k� ~qÞÞ : (13)

Here, !ð ~kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ~k2

p
is the energy of the meson. We

note that a summation over the relevant intermediate states
is assumed. In our calculation we use the finite-range
regularization and uð ~kÞ is the ultraviolet regulator. Both
pion and kaon loops are included in the calculation. In the
kaon case, Eq. (13) must of course, include the mass
differences in the intermediate states. In full QCD, the
coefficients are determined from the Lagrangian. In the
quenched case, the coefficients are obtained as in Ref. [39]

using the quark flows of Figs. 2 and 3. The results are the
same as those extracted within the graded symmetry for-
malism. In Fig. 3, the diagrams with �0 loop are not
shown, since they have no contribution in the quenched
or full QCD. They do contribute to the full-QCD valence
sector and are included in our calculation for the valence
sector results.
The contribution to the charge form factors of Fig. 1(b)

can be written as

x

b

γ
meson
Decuplet
Octet

d

c

a

FIG. 1. Leading and next to leading order diagrams for the
baryon charge form factors. Diagram d contributes only in the
quenched case.
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GðbÞ
E ðQ2Þ ¼ �b

E

16�3f2�

Z
d ~k

uð ~kÞuð ~k� ~qÞ ~k � ð ~k� ~qÞ
ð!ð ~kÞ þ�Þð!ð ~k� ~qÞ þ �Þð!ð ~kÞ þ!ð ~k� ~qÞÞ ; (14)

where � is the positive mass difference between octet and
decuplet baryons. The contribution to the form factors of
Fig. 1(c) is expressed as

GðcÞ
E ðQ2Þ ¼ �c

E

16�3f2�

Z
d ~k

uð ~kÞ2
!ð ~kþ ~q=2Þ þ!ð ~k� ~q=2Þ :

(15)

In the above equations, �i
E depends on the baryon type (or

quark type), meson-loop type, and quenched or full QCD
in the calculation.

In the quenched case, the double-hairpin term from the
	0 is expressed as

GðdÞ
E ðQ2Þ ¼ ð3F�DÞ2M2

0GEðQ2Þ
96�3f2�

Z
d ~k

~k2uð ~kÞ2
!ð ~kÞ5

� GEðQ2ÞGd
E; (16)

where M0 is the double-hairpin interaction strength. As a
vertex renormalization in the heavy-baryon limit, the Q2

dependence factorizes to define a Q2-independent Gd
E. We

should mention that at the lowest order, the double-hairpin
diagram is Q2 independent. The higher-order terms arising
from the Q2 dependence of the contributions of this graph
at the masses probed in the lattice simulations are
negligible.
In the above formulas, the coefficients in quenched and

full QCD can be obtained following the methodology of
Ref. [39]. For example, the diagram Fig. 1(a) is shown in
detail with quark lines in Fig. 2. For the pion loop, in full
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FIG. 3. Feymann diagrams of Fig. 1(c) for the proton, in terms
of quark lines.
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FIG. 2. Feymann diagrams of Fig. 1(a) for the proton, in terms
of quark lines.
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QCD Figs. 2(a) and 2(c) make contributions, while in the
quenched case Figs. 2(a) and 2(b) make contributions.
Therefore, we need to get the coefficient for each diagram.
The coefficient for Fig. 2(c) is the same as Fig. 2(e), which
is known from the Lagrangian, since QCD is flavor
blind. By subtracting this known coefficient from the total
coefficient of full QCD, we can get the quenched one of
Fig. 2(a). As an example, the coefficient of each diagram of
Fig. 2 is listed in Table I. In the same way, the diagram of
Fig. 1(c) can be shown in detail in Fig. 3. Table II gives the
coefficient of each diagram of Fig. 3 for the proton. We can
see that the coefficients for the first two diagrams Figs. 3(a)
and 3(b) are zero, which means Fig. 1(c) has no contribu-
tion to the proton charge form factor in the quenched case.
In fact, for other octet baryons, this diagram has no con-
tribution either in the quenched case.

One can also concentrate on each quark contribution to
the form factors. All the coefficients for each quark are
shown in Tables III, IV, V, VI, VII, and VIII. In these
Tables, only three baryons are listed. The coefficients for

neutron, ��, �0, ��, and � can be obtained by the
following charge-symmetry relations:

un ¼ dp; dn ¼ up; sn ¼ sp; (17)

u�� ¼ d�þ ; d�� ¼ u�þ ; s�� ¼ s�þ ; (18)

u�� ¼ d�0 ; d�� ¼ u�0 ; s�� ¼ s�0 ; (19)

u�0 ¼ 1
2ðun þ u�0Þ; d�0 ¼ 1

2ðdp þ d��Þ;
s�0 ¼ 1

2ðs�þ þ s��Þ; (20)

u� ¼ d� ¼ 1
3

�
up þ dp þ u�0 þ d�0 � 1

2ðu�þ þ d��Þ
�
;

s� ¼ 1
3ð2sp þ 2s�0 � s�þÞ: (21)

We express our charge form factors as

GEðQ2Þ ¼ Z� 1

6
ða0 þ a2m

2
� þ a4m

4
�ÞQ2 þ Xd

i¼a

GðiÞ
E ðQ2Þ;

(22)

where Z is the wave function renormalization constant of

charge expressed as Z ¼ GEðQ2 ¼ 0Þ �Pd
i¼a G

ðiÞ
E ðQ2 ¼

0Þ. GEðQ2 ¼ 0Þ is the charge of the baryon. GðiÞ
E is ex-

pressed in Eqs. (13)–(16). Therefore, GEðQ2Þ can be writ-
ten as

TABLE I. Coefficient of proportionality for each diagram of Fig. 2 for the proton.

(a) (b) (c)(e)(i) (d)(f)(h) (g)

ðDþ FÞ2 � 2
3D

2 � 2F2 �ðD� FÞ2 2
3D

2 þ 2F2 ðD� FÞ2 1
2 ðDþ FÞ2 � 5

3D
2 � 3F2 þ 2DF

TABLE II. Coefficient of proportionality for each diagram of
Fig. 3 for the proton.

(a) (b) (c)(g) (d)(h) (e)(i) (f)( j)

0 0 2 �2 1 �1

TABLE III. Coefficients �a
E for quarks in the octet baryons in full and quenched QCD for Fig. 1(a). The intermediate meson is �.

QQCD FQCD

Baryon\quark u d s u d s

p 4
3D

2 � 4
3D

2 0 ðDþ FÞ2 �ðDþ FÞ2 0

�þ 0 0 0 2
3D

2�� 2F2�� � 2
3D

2�� �2F2�� 0

�0 0 0 0 ðD� FÞ2 �ðD� FÞ2 0

TABLE IV. Coefficients �a
E for quarks in the octet-baryons in full and quenched QCD for Fig. 1(a). The intermediate meson is K.

QQCD FQCD

Baryon\quark u d s u d s

p 0 0 0 1
6 ð3FþDÞ2�K
1
2 ðD� FÞ2�K

ðD� FÞ2 � 1
6 ð3FþDÞ2�K

� 3
2 ðD� FÞ2�K

�þ 1
3D

2 � F2 þ 2DF�K
ðD� FÞ2NK

0 �ðD� FÞ2NK
� 1

3D
2 þ F2 � 2DF�

ðDþ FÞ2 �ðD� FÞ2 ðD� FÞ2NK
�ðDþ FÞ2�K

�0 � 1
2 ðDþ FÞ2

þ 1
6 ð3F�DÞ2�K
�ðD� FÞ2�K

0 1
2 ðDþ FÞ2

� 1
6 ð3F�DÞ2�K
ðD� FÞ2�K

�ðDþ FÞ2 � 1
6 ð3F�DÞ2�K

� 1
2 ðDþ FÞ2�K

1
6 ð3F�DÞ2�K
� 3

2 ðDþ FÞ2�K
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GEðQ2Þ ¼ ðGEðQ2 ¼ 0Þ � Xd
i¼a

GðiÞ
E ðQ2 ¼ 0Þ

� 1

6
ða0 þ a2m

2
� þ a4m

4
�ÞQ2 þGðaÞ

E ðQ2Þ
þGðbÞ

E ðQ2Þ þGðcÞ
E ðQ2ÞÞ=ð1�Gd

EÞ: (23)

In anticipation of considering charge radii, we have defined
the contribution from the double-hairpin, Fig. 1(d), to be
proportional to the renormalized form factor using the
factorization defined in Eq. (16). This follows a similar
procedure to that outlined in Ref. [32].
The expansion in ai characterizes the nonchiral quark-

mass dependence of the electric charge radius of each
baryon. To the leading order we work in this manuscript,
a0 acts as a counterterm to the loops and thereby removing
scale dependence of the formal expansion. Previous works
have shown that including a partial contribution from the
next higher analytic order beyond which one is working
(e.g. Refs. [31,46]) can reduce the dependence on the
regularization, motivating the a2 parameter. We have also
included a4, which has simply been included to better
describe the lattice data, such that its justification is purely
empirical (and not mathematical). Its presence mirrors the
success obtained with a similar approach for the octet-
baryon magnetic moments. Thereby our form should
only be seen to incorporate the leading-logarithmic behav-
ior of the EFT with the associated counterterm.
The Sachs charge radius is defined by

hr2iE ¼ �6
dGEðQ2Þ
dQ2

��������Q2¼0
: (24)

From the expression of GEðQ2Þ, hr2iE can be written as

hr2iE ¼
�
a0 þ a2m

2
� þ a4m

4
� � 6

dðGðaÞ
E ðQ2Þ þGðbÞ

E ðQ2Þ þGðcÞ
E ðQ2ÞÞ

dQ2

��������Q2¼0

�	
ð1�Gd

EÞ: (25)

The above free parameters a0, a2, and a4 are to be deter-
mined by fitting quenched lattice results with the described
quenched loop integrals. The octet charge radii was inves-

tigated in Refs. [13,47], where the SUð3Þ symmetry was
applied. Our approach is based on an SUð2Þ framework
where the strange-quark mass is held fixed, and the light

TABLE VII. Coefficients �c
E for quarks in the octet baryons

in full and quenched QCD for Fig. 1(c). The intermediate meson
is �.

QQCD FQCD

Baryon\quark u d s u d s

p 0 0 0 1 �1 0

�þ 0 0 0 2 �2 0

�0 0 0 0 1 �1 0

TABLE V. Coefficients �b
E for quarks in the octet baryons in full and quenched QCD for

Fig. 1(b). The intermediate meson is �.

QQCD FQCD

Baryon\quark u d s u d s

p � 1
3 C

2 1
3 C

2 0 � 4
9 C

2 4
9 C

2 0

�þ 0 0 0 1
9 C

2 � 1
9 C

2 0

�0 0 0 0 2
9 C

2 � 2
9 C

2 0

TABLE VI. Coefficients �b
E for quarks in the octet baryons in full and quenched QCD for Fig. 1(b). The intermediate meson is K.

QQCD FQCD

Baryon\quark u d s u d s

p 0 0 0 1
9 C

2 2
9 C

2 � 1
3 C

2

�þ � 4
9 C

2�K 1
9 C

2��K 0 4
9 C

2�K � 1
9 C

2��K � 2
3 C

2�K 2
9 C

2��K � 2
9 C

2 � 8
9 C

2�K � 2
9 C

2��K
�0 � 1

9 C
2��K 4

9 C
2�K 0 1

9 C
2��K � 4

9 C
2�K � 2

9 C
2��K 2

3 C
2�K � 1

9 C
2 1

3 C
2��K � 2

3 C
2�K

TABLE VIII. Coefficients �c
E for quarks in the octet baryons

in full and quenched QCD for Fig. 1(c). The intermediate meson
is K.

QQCD FQCD

Baryon\quark u d s u d s

p 0 0 0 2 1 �3
�þ 0 0 0 1 �1 0

�0 0 0 0 �1 �2 3
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quarks are always degenerate. Thereby each baryon isospin
multiplet will carry independent low energy constants.
Effectively, there will be two (independent) ai for each
multiplet. We do not impose the symmetry breaking pat-
terns of SUð3Þ, as we regard the strange-quark mass as a
scale that cannot be described well by this low-order
expansion. We note it could be interesting to compare
our effective SUð2Þ low energy constants with those ex-
tracted from earlier studies. We do not do this, but we have
now included a comparison of the predictions for the radii
of the physical states. In Ref. [48], the authors have devel-
oped two-flavor �PT to describe hyperons, which are
embedded into SUð2Þ multiplets.

IV. NUMERICAL RESULTS

In the numerical calculations, the parameters are chosen
as D ¼ 0:76 and F ¼ 0:50 (gA ¼ Dþ F ¼ 1:26). The
coupling constant C is chosen to be �2D, as estimated
by SUð6Þ relations—which gives a similar value to that
obtained from the hadronic decay width of the �.

Here, the finite-range regulator is chosen to take the
dipole form

uðkÞ ¼ 1

ð1þ k2=�2Þ2 ; (26)

with � ¼ 0:8� 0:1 GeV. This selected range of � for the
dipole has been found to give good quantitative estimates
of quenching artifacts for baryon masses [42] and magnetic
moments [49].

Using a fixed strange-quark mass, we estimate the
K-meson mass to obey the relationship

m2
K ¼ 1

2m
2
� þm2

Kjphy � 1
2m

2
�jphy: (27)

We first study the u-quark contribution to the proton
charge radius. Four kinds of extrapolations are shown in
Fig. 4. The square, rhombus, triangle, and round symbols
are for the finite-volume quenched QCD, infinite volume
quenched QCD, valence sector, and full-QCD results, re-
spectively. We remind the reader that the ‘‘valence’’ result
denotes the connected current insertions in full QCD. The
quenched lattice results are described very well. For infi-
nite volume, all of them have log-divergent behavior at
m� ¼ 0, which means that the pion cloud extends to
infinity for a massless pion. For finite volume, the integra-
tion is replaced by the summation of the momentum, which
shows no log divergence in the chiral limit. Technically,
one should be cautious when considering the finite-volume
curve in the domain where m�L becomes small. Ideally,
one would like to stay in the regime of m�L > 6 (or 2�).
Ambitious lattice calculations push this down to 4 or 3, at
which point one may be approaching the limits of describ-
ing the finite-volume corrections by the one-loop EFT.
This limit, for our 2.56 fm box, is at pion masses of order
250 to 300 MeV, the lightest pion mass considered in the
lattice simulations. This is not of serious concern, as cor-
rections are performed at finite volume and extrapolations
subsequently performed at infinite volume.
Figure 5 displays the d-quark contribution to the proton

charge radius. The lines with different types have the same
meaning as in Fig. 4. For infinite volume, the charge radius
bends down as m� approaches zero, indicating that the �d
contributes more strongly to the long-ranging tail than the
d in accord with the predominant p ! n� channel. At
m� ¼ 0, the curves also have log-divergent behavior. We
note that the positive charge radius is much like a

FIG. 4 (color online). The contribution of a single u quark with
unit charge to the proton charge radius versus pion mass. The
square, rhombus, triangle, and round symbols are for the finite-
volume quenched QCD, infinite volume quenched QCD, valence
sector and full-QCD results, respectively.

FIG. 5 (color online). The contribution of a d quark with unit
charge to the proton charge radius versus pion mass. The square,
rhombus, triangle, and round symbols are for the finite-volume
quenched QCD, infinite volume quenched QCD, valence sector,
and full-QCD results, respectively.
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constituent-quark type expectation, and that the unusual
chiral features are only anticipated to become dominant far
below the physical quark mass.

We now discuss the quark distribution radius in strange
octet baryons. The u-quark contribution to the �þ charge
radius is shown in Fig. 6. In contrast to the proton case, in
quenched QCD there is no pion-loop contribution to the
�þ charge radius. The nontrivial loop contributions in-
volve the K meson. Consequently, the u-quark distribution
radius has no log divergence [as the SUð2Þ chiral limit is
approached]. In full QCD, both the valence and total
sectors exhibit log-divergent charge radii. At the physical

pion mass, the total u-quark distribution radius is found to
be very similar to that in the proton.
The singly represented quark of the �þ is a strange

quark. We show its contribution to the �þ charge radius
in Fig. 7. Since there cannot be any leading-order pion-loop
contributions to the s-quark radius, the chiral corrections
are much less dramatic than in the light-quark sector. One
may also compare K contributions at the physical point
with those of the light-quark sector as observed nearm2

� �
m2

KðphysÞ � 0:25 GeV2. Because the s quark mass is held

fixed, any variation is due to an environment effect asso-
ciated with the light quarks.

FIG. 6 (color online). The contribution of a single u quark with
unit charge to the �þ charge radius versus pion mass. The
square, rhombus, triangle, and round symbols are for the
finite-volume quenched QCD, infinite volume quenched QCD,
valence sector, and full-QCD results, respectively.

FIG. 7 (color online). The contribution of an s quark with unit
charge to the �þ charge radius versus pion mass. The square,
rhombus, triangle, and round symbols are for the finite-volume
quenched QCD, infinite volume quenched QCD, valence sector,
and full-QCD results, respectively.

FIG. 8 (color online). The contribution of a single s quark with
unit charge to the �0 charge radius versus pion mass. The
square, rhombus, triangle, and round symbols are for the
finite-volume quenched QCD, infinite volume quenched QCD,
valence sector, and full-QCD results, respectively.

FIG. 9 (color online). The contribution of a u quark with unit
charge to the �0 charge radius versus pion mass. The square,
rhombus, triangle, and round symbols are for the finite-volume
quenched QCD, infinite volume quenched QCD, valence sector,
and full-QCD results, respectively.
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The �0 is composed of two strange quarks and one up
quark. The strange-quark contribution to �0 is shown in
Fig. 8. Similar to the s quark in the �þ, all the curves
display a very mild environment dependence on the light-
quark mass.

The u-quark contribution to the�0 is shown in Fig. 9. In
full QCD, both the full and valence contributions are
divergent as m� ! 0. Here, we see that the charge radius
diverges in the positive direction, opposite to that of the d
quark in the proton. Here, the pion loop must contain a
light antiquark from the sea and thereby the valence u is
pure quark (that is, it cannot be an antiquark, or it cannot
couple to a pion through a Z-type diagram).

The single light quark and strange-quark contribution to
the � is shown in Figs. 10 and 11, respectively. It is
interesting that the light quark sector does not show
much curvature. This is consistent with the chiral coeffi-
cients for the leading-order pion dressing vanishing. The
contribution from the �þ and �� meson clouds cancel
each other. The s quark in the � couples strongly to NK,
and it looks like there is some environment dependence.
Using the charge-symmetry relations above, Eqs. (17)–

(21), one can reconstruct any desired baryon form factors
by applying the appropriate charge factors.
We now discuss the constructed octet-baryon charge

radii. The proton charge radii are illustrated in Fig. 12.

FIG. 10 (color online). The contribution of a single light quark
with unit charge to the � charge radius versus pion mass. The
square, rhombus, triangle, and round symbols are for the finite-
volume quenched QCD, infinite volume quenched QCD, valence
sector, and full-QCD results, respectively.

FIG. 11 (color online). The contribution of an s quark with
unit charge to the � charge radius versus pion mass. The square,
rhombus, triangle, and round symbols are for the finite-volume
quenched QCD, infinite volume quenched QCD, valence sector
and full-QCD results, respectively.

FIG. 12 (color online). The proton charge radius versus pion
mass. The square, rhombus, triangle, and round symbols are for
the finite-volume quenched QCD, infinite volume quenched
QCD, valence sector, and full-QCD results, respectively.

FIG. 13 (color online). �þ charge radius versus pion mass.
The square, rhombus, triangle, and round symbols are for the
finite-volume quenched QCD, infinite volume quenched QCD,
valence sector, and full-QCD results, respectively.
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At the physical pion mass, we find the proton charge radius
is about 0:69� 0:05 fm2. The u, d, and s quarks all
provide a contribution to the proton charge radii. We note
that the valence sector alone contributes a large fraction to
the total charge radius. There is a small correction by
adding all the disconnected contributions of the 3 light-
quark flavors in the process of correcting QQCD via FRR
EFT. Further, the strangeness component only constitutes a
small part of this small correction [50].

The charge radius of �þ is shown in Fig. 13. The
numerical value is observed to be a little larger than that
of proton, with the physical charge radius of the �þ being
0:75� 0:05 fm2. The primary cause of this radius being
larger than the proton is the fact that the (negatively
charged) strange quark in the � has a narrower spatial
distribution than the down quark in the proton.

In Fig. 14, the charge radii of the octet baryons at the
physical pion mass are shown. The extrapolated physical

radii of the proton, neutron, and �� are in good agreement
with the experimental data. The radius of�0 is positive, in
contrast to the neutron radius. The reason is that, for the
neutron, in full QCD, the �� cloud is the dominant con-
tribution, whereas for the�0, the pion intermediate state is
a �þ (with a �� intermediate baryon). Since both �þ and
�� contribute to the �, the radius of the� is close to zero.
This is perhaps surprising as one would expect the net
positive charge of the light quarks to dominate more.
The results of our extrapolation and unquenching are

summarized in Table IX. Here, we see a careful breakdown
of the propagation of uncertainties at the various stages of
calculation.

V. SUMMARY

We extrapolated state-of-the-art lattice results for the
quark-sector decomposition of the octet-baryon charge
radii in quenched heavy-baryon chiral perturbation theory
using FRR. All leading-loop diagrams have been incorpo-
rated, including all contributions from both octet and
decuplet baryon intermediate states. Finite-range regulari-
zation has been utilized in the one-loop calculation to
improve the convergence at moderate quark masses.
Further, the use of FRR provides a separation of scales,
which has enabled the use of a demonstrated technique to
obtain estimates of the full-QCD results from the quenched
lattice simulations. We acknowledge the phenomenologi-
cal aspects of our calculation. As such, we have an em-
pirically motivated extrapolation form, which is equivalent
to the leading one-loop heavy baryon chiral perturbation
theory form in the domain where higher-order terms are
genuinely negligible.
The individual quark contributions to the baryon charge

radii in quenched QCD have been extrapolated, with sub-
sequent predictions for the corresponding radii in both
valence and full QCD. We note that the valence predictions
will be readily confronted with the next generation of
lattice simulations of full QCD, as only connected current
insertions are required. The contribution from pion loops is

FIG. 14 (color online). Octet-baryon charge radii at the physi-
cal pion mass. The hollow square, solid rhombus, triangle, and
square symbols are for the finite-volume quenched QCD, infinite
volume quenched QCD, valence sector, and full-QCD results,
respectively. The experimental data for proton, neutron, and ��
is shown with the left-most bullet.

TABLE IX. Summary of extrapolation and unquenching results. Each major column consists of our best value (in fm2), followed by
the three dominant sources of uncertainty: statistical, lattice scale determination a ¼ 0:128� 0:006 fm and regularization scale � ¼
0:8� 0:1 GeV, respectively, all quoted relative to the final digit of the best value. The sign of the uncertainty reflects the correlation
with a or �.

QQCD Valence QCD Total Experiment

p 0.573 50 45 8 0.746 47 42 27 0.685 47 42 21 0:766� 0:012 [51]

n �0:052 31 2 �5 �0:097 29 3 �9 �0:158 29 3 �15 �0:1161� 0:0022 [51]

�þ 0.581 57 53 6 0.820 51 47 28 0.749 51 47 21

�� �0:464 41 �42 �5 �0:586 37 �38 �17 �0:657 37 �38 �24 �0:61� 0:15 [52]

�0 0.065 25 8 �1 0.113 25 8 4 0.082 25 8 �2
�� �0:400 25 �37 0 �0:471 24 �37 �12 �0:502 24 �37 �17
� 0.027 8 3 0 0.026 8 3 �2 0.010 8 3 �4
u� 0.523 47 47 6 0.703 43 42 22 0.703 43 42 22

u� 0.465 46 45 �1 0.584 46 45 16 0.584 46 45 16
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observed to generate significantly more enhancement of
the radii than that from K mesons. Further, disconnected
contributions to the radii are rather small compared with
the dominant valence contributions. One of the consequen-
ces of this is that the strange-quark disconnected contribu-
tions only represent a small component of an already small
correction.

The charge radii of the proton, neutron, and �� are in
good agreement with the experimental results. Our result
for�� is quite accurate relative to the current experimental
measurement. Further, we have presented predictions for
the remaining five baryons, for which no experimental
information exists to date. These predictions remain to be

tested by potential future measurements and future studies
in ab initio lattice QCD.
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