

Government of South Australia Central Northern Adelaide Health Service

INVESTIGATION INTO THE DOSIMETRIC CHARACTERISTICS OF MOSFETs FOR USE FOR *IN VIVO* DOSIMETRY DURING EXTERNAL BEAM RADIOTHERAPY

by

Raelene Ann Nelligan, B.Sc Associate Member ACPSEM Member APESMA

School of Chemistry and Physics The University of Adelaide South Australia

Thesis submitted for the degree of Master of Science (Medical Physics)

May 2009

This thesis is dedicated to my parents, both of whom passed away during this work.

CONTENTS

Page

Index	i
Abbreviations and symbols	iv
List of figures and tables	vi
Thesis Abstract	ix
Author's Statement	xi
Acknowledgements	xii
•	

INDEX

1	INTRC	DUCTION	1
2	GENE	RAL DESCRIPTION AND OPERATION OF MOSFETs	
	2.1	Introduction	3
	2.2	General semiconductor structure and operation	3
	2.3	MOSFET description and Threshold Shift	8
3	THE M	IOSFET AS A RADIATION DOSIMETER	
	3.1	Background12	2
	3.2	The processes subsequent to interaction of ionising radiation with a MOSFET	2

	3.2.1	Electron-hole pair creation	14
	3.2.2	Electron-hole pair separation by an applied	
		electric field	14
	3.2.3	Hopping transport of holes through SiO ₂	15
	3.2.4	Oxide electron and hole trapping	15
		3.2.4.1 Hole trapping in the oxide near the	
		Si/SiO ₂ interface	16
		3.2.4.2 Electron traps in the oxide	17
	3.2.5	Interface and border traps	
		3.2.5.1 Interface traps	17
		3.2.5.2 Border traps	18
	3.2.6	Recombination of electrons and holes	19
3.3	Dose o	determination by measurement of Threshold Shift	20
3.4	Calibra	ation and use of MOSFETs as radiation dosimeters	21
3.5	Sensiti	ivity and measurement reproducibility	22
	3.5.1	Ápplied bias during and following irradiation	23
	3.5.2	Oxide production method and thickness	24
	3.5.3	Energy of radiation	25
	3.5.4	Accumulated dose	26
	3.5.5	Angle of incidence of radiation	26
	3.5.6	Ambient temperature	27

	3.7	Linearity	/	29
	3.8	Respon 3.8.1 3.8.2 3.8.3 3.8.4	se drift. Drift following a single irradiation Creep-up Reading interval Reading delay	31 38 40 40 41
	3.9	Angular	dependence	41
4	EQUIPI	MENT AI	ND METHOD	
	4.1	MOSFE	T system description	42
	4.2	Measure	ement setup	43
	4.3	Error an	alysis	46
	4.4	Measure 4.4.1 4.4.2 4.4.3 4.4.3	ement methodsΔVth, sensitivity and saturationLinearityResponse drift4.4.3.1Drift following an irradiation4.4.3.2Creep-up4.4.3.3Reading interval4.4.3.4Reading delayAngular dependence	46 47 47 49 50 52 54 57
5	RESUL	TS AND	DISCUSSION	
	5.1	ΔV_{th} and 5.1.1	d Sensitivity Saturation	58 60
	5.2	Linearity	/	61
	5.3	Respon 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5	se drift Drift following an irradiation Creep-up Reading interval Reading delay Discussion of drift response results	63 70 71 78 80
	5.4	Angular	dependence	83
6	SUMMA	ARY AND	CONCLUSIONS	87
7	RECON	MENDA	TIONS AND FUTURE WORK	
	7.1	Recomr	nendations	90
	7.2	Future v	vork	91

Appendices

- Appendix A : Correction methods for sensitivity reduction with accumulated dose A1 Drift response A2 Linearity A3 Angular dependence
- Appendix B : Glossary of Terms
- Appendix C : Summary of results of measurements of ΔV_{th} and sensitivity over lifetime of probes
- Appendix D : Linearity/proportionality results table
- Appendix E : Drift results table

References

ABBREVIATIONS AND SYMBOLS

Symbol	Physical Constant / description	Value / unit
Ce	Concentration of electrons in conduction band	cm ⁻²
CF	Calibration factor	
C_h	Concentration of holes in valence band	cm ⁻²
CMRP	Centre for Medical Radiation Physics. University	
_	of Wollongong, New South Wales, Australia	
Cox	Oxide capacitance per unit area	F/cm ²
D	Absorbed dose	
D _{max}	Depth of maximum dose	
Drof	Reference absorbed dose	Gv
E	Energy level	1
Ē	Average energy absorbed per interaction	eV
$\overline{F_{ab}}$	Minimum energy of conduction band	eV
	Fermi energy	eV
E _F	Energy difference between conduction and	eV
-gap	valence bands in a semiconductor	
E	Energy transferred by ionising radiation	eV
	Electron-Volt	
F	Maximum energy of valence hand	eV
$\frac{L_V}{f}$	Frequency of radiation	s ⁻¹
f(E)	Charge vield	s
F(E)	Earmi-Dirac distribution function	
	Fermi Dirac distribution function	
$\Gamma(E)_e$	Fermi-Dirac distribution function for balan	
<u> Г(С)</u> h	Correction factor	
Γ _{corr}		$7.0 \times 10^{12} \text{ cm}^{3}/\text{cOv}$
<u> </u>	Hole generation rate	7.9 × 10 cm /cGy
G	Number of electron-noie pairs per second	S
Gy	Absorbed dose	$1 \text{ Gy} = 1 \text{ J kg}^{+}$
n	Planck's constant	6.62617 x 10° J.s
1	Current	ampere
10	Ion chamber	
IVD	In vivo dosimetry	
ĸ	Boltzmann's constant	8.617 x 10 ⁻³ eV/K
m_e*	Density-of-states effective mass of electron	1.08m°
<i>m_h</i> *	Density-of-states effective mass of hole	0.811m。
min	Minute	21
mo	Free electron mass	9.1095 x 10 ⁻³⁺ kg
MOS	Metal-oxide-semiconductor	
MOSFET	Metal Oxide Semiconductor Field Effect	
	Transistor	2
n	Density of electrons or holes	cm ^{-s}
N	Number of electron-hole pairs	2 . 4
N(E)	Density of quantum states per unit volume per	cm ⁻³ J ⁻¹
	unit energy	-3 -1
N(E) _e	Density of electron quantum states per unit	cm ° J '
	Density of hole quantum states per unit volume	$cm^{-3} l^{-1}$
™(<i>⊏)</i> h	per unit energy	
n.	Density of donors	cm ⁻³
$\frac{n_d}{n_{t}}$	Density of electrons at time t after irradiation	cm ⁻³
$n_{e(t)}$	Density of holes at time t after irradiation	cm ⁻³
	Density of interface states	
Ν _{SS}	Density of interface states with time ofter	cm ⁻³
$\Delta N_{SS}(l)$	irradiation	

N _T	Area density of available traps in trapping sheet	cm ⁻²
q	Electronic charge	1.60218 x 10 ⁻¹⁹ C
Q_i	Interface charge density per unit area	Cm ⁻²
S	Second	
SD	Standard deviation	
Si	Silicon	
SiO ₂	Silicon dioxide	
SSD	Source-to-surface distance	cm
Т	Temperature	kelvin
t	Time	S
T&N	Thomson Nielsen Electronics Ltd, Canada	
t _h	Time of travel for holes across SiO ₂	S
to	Time of termination of irradiation	S
t _{ox}	Oxide thickness	cm
t _{sat}	Time of MOSFET saturation	S
V	Velocity	cm s ⁻¹
V	Voltage	
V _{FB}	Flatband voltage	V
V_g	Gate voltage	V
V _{ss}	Voltage between source and substrate	V
V_{th}	Threshold voltage	V
$\Delta V_{th \ FB}$	Flatband threshold voltage shift	V or mV
ΔV_{th}	Threshold shift	V or mV
$\Delta oldsymbol{V}_{thi}$	Threshold shift for the first exposure of a new MOSFET	V or mV
$\Delta V_{th ox}$	Threshold shift due to oxide trapped charge	V or mV
$\Delta V_{th ref}$	Reference Threshold shift	V or mV
$\Delta V_{th sat}$	Threshold shift at saturation	V or mV
W	Energy to produce one electron-hole pair	> $17\pm1 \text{ eV}$ in SiO ₂
Wollongong	MOSFETs provided by University of Wollongong,	
MOSFETs	New South Wales, Australia	
X	Distance travelled by holes or electrons in SiO ₂	cm
X _h	Distance travelled by holes in SiO ₂	cm
	Angle	degree

Greek symbols

ε	Electric field strength of oxide	V cm⁻¹
ε _o	Permittivity in free space	8.854 x 10 ⁻¹⁴ F/cm
\mathcal{E}_{S}	Permittivity in silicon	11.9 F/cm
E _{OX}	Permittivity in silicon dioxide	3.9 F/cm
	Activation energy for annealing process	eV
μ	Coefficient of mobility	cm ² / V.s
μ _{en} /ρ	Mass energy absorption coefficient	cm²/g
ρ	Density of material	cm⁻³
$ ho_{ox}$	Density of oxide charge	Cm ⁻³
τ	Timescale of charge build-up, or time constant	S
$ au_{e}$	Lifetime of electrons	S
$ au_h$	Lifetime of holes	S
F	Bulk potential of silicon	V
M	Work function of metal	V
S	Work function of semiconductor	V
	Electron affinity for semiconductor	4.05 V

LIST OF FIGURES AND TABLES

Figure No.	Figure title	Page
2.1	Density of charge carriers in the valence and conduction bands of a pure semiconductor	6
2.2	Density of charge carriers in an n-doped semiconductor	7
2.3	Typical p-n junction	7
2.4	Schematic of a typical p-MOSFET	8
2.5	I-V curves prior to and following irradiation, displaying the shift in V_{th} to maintain a 160 μA current	10
3.1	Bulk oxide, border and interface traps in a MOSFET	13
3.2	Band diagram of a MOS device with a positive gate bias, illustrating the main processes subsequent to irradiation	14
3.3	Small polaron hopping model for hole transport through SiO ₂ . (a) polaron trapped in potential well; (b) quantum tunnelling to adjacent well; (c) polaron trapped in next well	15
3.4	Examples of chemical species believed to be involved in the formation of oxide and interface traps. (a) oxide species, (b) interface species in 3 types of Si.	16
3.5	Three types of border traps. (1) and (2) donor-like; (3) amphoteric	18
3.6	Sites of hole trapping and electron-hole recombination, and electric field across Si/SiO_2	20
3.7	Simple model of charge density in a SiO ₂ MOSFET	28
3.8	Processes set in motion by ionising radiation	32
3.9	Effect of gate bias on build-up of interface states	34
3.10	Effects of electron injection at different temperatures on flatband Threshold Shift. (a) 100 K, (b) 400 K	36
3.11	Determination of slope of drift function A, and intercept, C, at $t_o = 1$ min, used to determine drift function with time after irradiation	39
3.12	Drift in Threshold Voltage at long times after irradiation of 10 Gy under a +5V gate bias	39
3.13	Creep-up as found by Ramani et al	40
4.1	MOSFET reader unit with associated hardware. Readings can either be taken on-line via the cable and Interface Unit, or the Active Bias Unit can be used off-line	42
4.2	Probe in dental wax channel on solid water [®] , connected via the Interface Unit to the reader in the console area. (Build-up sheets removed to show the probe placement)	45
4.3	Custom-built perspex phantom and stand used for angular dependence measurements	45

Figure No.	Figure title	Page
5.1	(a) ΔV_{th} and (b) sensitivity over lifetime of four probes for repeated exposures of 50 cGy (#7, #8) or 20 cGy (#13, #14)	58
5.2	Average ΔV_{th} drift equations for 20 and 50 cGy doses	59
5.3	Average sensitivity drift equation for ten probes tested	60
5.4	MOSFET saturation	60
5.5	Percentage deviations from proportionality for (a) single sensitivity and (b) dual (low dose) probes	62
5.6	Drift up to 1 hour following single 4MV irradiations	63
5.7	Drift up to 20 minutes following single 4MV irradiations	65
5.8	Average drift per time interval following single 4MV irradiation	66
5.9(i)	Average drift (mV) during each time interval up to 5 minutes following single irradiations of 4MV. (a) combined, (b) "new" and (c) "old" probe	68
5.9(ii)	Drift during each interval as a percentage of initial the (data from figure 5.9(i))	69
5.10	Creep-up up to 5 minutes following irradiation	70
5.11	Drift up to 1 hour since 100 cGy irradiations of probe #5 (set 6) and #D12 (low) (sets 7 and 8), showing intervals of taking repeated readings	72
5.12	Drift up to 2.5 hours following 100 cGy irradiations	72
5.13	Drift following single irradiations of 4MV, normalised to same initial $\Delta V_{th}.$ (a) 50 cGy, (b) 30 cGy	74
5.14	Enlargement of first 3 minutes following 30 cGy irradiations of 4MV (normalised to same initial shift)	74
5.15	Drift at 5 minutes after single 4MV irradiations for Reading Interval Sets A-E (least \rightarrow most frequent). Drift vs delivered dose	76
5.16	Drift at 5 minutes after single 4MV irradiations for Reading Interval Sets A – E. Drift vs Reading Set.	77
5.17	Reading delay response – data for several probes	78
5.18	Reading delay response at various stages of probe #9's lifetime	80
5.19	Drift in ΔV_{th} during pre- or post-irradiation delays. (a) the drift from the previous irradiation contributes to the V_{th} measurement. (b) the measured drift is due mainly to the current irradiation, during the most rapid interface build up/border trap discharge period	83
5.20	Variation in ΔV_{th} as a function of angle of radiation incidence as a percentage of ΔV_{th} with epoxy bubble facing the beam	84
5.21	Mass attenuation coefficient for silicon	85
5.22	Beam attenuation depends on the angle of incidence of the beam in relation to the sensitive area of the MOSFET	86
A1-1	Method of correction for change of sensitivity with accumulated dose	A1, 1

Figure No.	Figure title	Page
A1-2	Threshold Shift measurements, real time data. Readings taken at random times after repeated irradiations of 50 cGy, 4MV. (a) Data corrected for sensitivity drift using average drift equations previously obtained for ΔV_{th} and Sensitivity. (b) Data from (a) sorted into ascending time order	A1, 2
A1-3	Various time intervals since irradiations, uncorrected for sensitivity reduction	A1, 3
A1-4	Example of correction to eliminate effect of sensitivity drift due to accumulated dose (arbitrary data)	A1, 4
A1-5	Example of calculations used for sensitivity drift correction	A1, 5
A2-1	Uncorrected data to investigate linearity	A2, 1
A2-2	(a) Correction of linearity data for sensitivity drift with accumulated dose – Method 1	A2, 3
	(b) Correction of linearity data for sensitivity drift with accumulated dose – Method 2	A2, 4
	(c) Correction of linearity data for sensitivity drift with accumulated dose – Method 3	A2, 5
	(d) Correction of linearity data for sensitivity drift with accumulated dose – Method 4	A2, 6
A3-1	Example of accumulated dose drift equation correction for angular dependence measurements	A3, 1
A3-2	Steps for correction for sensitivity reduction with accumulated dose. (a) uncorrected data; (b) data corrected with drift equation over the measurement interval; (c) second set normalised to first set; (d) average of two sets	A3, 2

Table No.	Table title	Page
1	Readings taken to investigate drift following single exposures	49
2	Reading intervals (s) up to 20 min for investigation of short-term drift following a single irradiation	51
3	Reading interval measurement sets	53
4	Probe saturation V _{th}	61
5	Characteristics of drift up to 1 hour following single 4MV irradiations	64
6	Creep-up effect. Minimum and maximum drift in ΔV_{th} between two post-irradiation readings, showing the time intervals of their occurrence	70
7	Reading interval results. Drift (mV) in ΔV_{th} at 5 min following irradiation	75
8	Range of drift with delivered and accumulated dose	79

THESIS ABSTRACT

This thesis investigates the response to ionising radiation, of p-type Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) (REM Oxford (UK)) and a reader system developed by the Centre for Medical Radiation Physics, The University of Wollongong, to determine their feasibility for measurements of dose during radiotherapy treatment (in vivo dosimetry (IVD)). Two types of MOSFET probes were used – "single sensitivity", for measuring low doses, and "dual sensitivity", to measure both high and lose doses. Sensitivity, linearity of response with dose, and response changes with accumulated dose and direction of incident radiation (angular dependence) were investigated.

The average sensitivity reduction over the lifetime of the probes was 22.37% with a standard deviation of 0.63%. This reduction in sensitivity can be corrected for by the use of "drift equations". MOSFETs have a limited "lifetime" due to saturation effects with increasing accumulated dose. Saturation occurred at an average of 40 Gray (Gy) accumulated dose, for the high sensitivity probes investigated.

The high sensitivity probes were linear within 1.6% for doses between 5 and 140 cGy, and 3.8% for the high sensitivity probes for doses between 50 and 500 cGy.

Drift (changes in readings with time since irradiation due to electronic processes) over the long-term (from hours to weeks following irradiation) has been previously well characterised in the literature. This work focuses on short-term drift, within the first few seconds or minutes following irradiation, being the most clinically relevant for in vivo measurements. Drift is investigated for various reading methods, such as reading frequency, and delays between irradiation and readings. It is shown that sensitivity, and consequently dose determination, is significantly influenced by the reading methodology.

During the first five minutes following an irradiation, drift increased inversely with delivered dose, and was greater for probes having accumulated dose of > 20 Gy (2.0 - 16.2% compared with 1.2 - 7.4% for < 20 Gy probes).

When two post-irradiation readings were taken following an irradiation, the difference between them generally increased as the time interval between the two readings increased, by up to 8.8%.

Delays in taking pre- and post-irradiation readings resulted in drift of up to 5.7% or 9.3% respectively, compared with readings without a delay.

These results emphasise the necessity for consistent methodologies between calibration and measurement in the clinical situation.

Greater sensitivity was measured with the epoxy bubble, rather than the substrate side, facing the beam. The greatest variation, for orientations other than the bubble side facing directly towards the beam, was 10%, or 5% uncertainty in dose. The variations with angle were found to be reproducible, so that appropriate correction factors could be applied to correct measurements at angles other than with the sensitive area of the probes facing directly towards the radiation beam.

AUTHOR'S STATEMENT

I hereby certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Raelene Nelligan

9 October 2008

ACKNOWLEDGEMENTS

I firstly thank my supervisors, Dr Sergei Zavgorodni and Mr Madhava Bhat, for sharing their vast experience with me, and their support and helpful advice with this work. I will try to keep in mind Mr Bhat's "story of Ramaayan".

I especially thank my husband and family for their encouragement and pride in my endeavours, and my colleague and office-mate, Dr Lotte Fog, for her forbearance throughout the throes of the thesis write-up.

Thanks also go to Dr John Patterson, who assisted me during the early experimental stage, and whose understanding during the very trying times following the deaths of my parents encouraged me to continue my studies when I was inclined to discontinue them.

The assistance of Professor Anatoly Rosenfeld, Director for Centre for Medical Radiation Physics, University of Wollongong, was greatly appreciated, as was the support provided through the Peter MacCallum Cancer Centre's Robert Sephton Educational Fellowship.