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TTHHEESSIISS  AABBSSTTRRAACCTT  
 
This thesis investigates the response to ionising radiation, of p-type Metal Oxide 

Semiconductor Field Effect Transistors (MOSFETs) (REM Oxford (UK)) and a 

reader system developed by the Centre for Medical Radiation Physics, The 

University of Wollongong, to determine their feasibility for measurements of 

dose during radiotherapy treatment (in vivo dosimetry (IVD)).  Two types of 

MOSFET probes were used – “single sensitivity”, for measuring low doses, and 

“dual sensitivity”, to measure both high and lose doses.  Sensitivity, linearity of 

response with dose, and response changes with accumulated dose and 

direction of incident radiation (angular dependence) were investigated.   

 

The average sensitivity reduction over the lifetime of the probes was 22.37% 

with a standard deviation of 0.63%.  This reduction in sensitivity can be 

corrected for by the use of “drift equations”.  MOSFETs have a limited “lifetime” 

due to saturation effects with increasing accumulated dose.  Saturation 

occurred at an average of 40 Gray (Gy) accumulated dose, for the high 

sensitivity probes investigated.  

 

The high sensitivity probes were linear within 1.6% for doses between 5 and 

140 cGy, and 3.8% for the high sensitivity probes for doses between 50 and 

500 cGy. 

 

Drift (changes in readings with time since irradiation due to electronic 

processes) over the long-term (from hours to weeks following irradiation) has 

been previously well characterised in the literature.  This work focuses on short-

term drift, within the first few seconds or minutes following irradiation, being the 

most clinically relevant for in vivo measurements. Drift is investigated for various 

reading methods, such as reading frequency, and delays between irradiation 

and readings. It is shown that sensitivity, and consequently dose determination, 

is significantly influenced by the reading methodology.   

 

During the first five minutes following an irradiation, drift increased inversely 

with delivered dose, and was greater for probes having accumulated dose of 

> 20 Gy (2.0 – 16.2% compared with 1.2 – 7.4% for < 20 Gy probes). 
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When two post-irradiation readings were taken following an irradiation, the 

difference between them generally increased as the time interval between the 

two readings increased, by up to 8.8%. 

 

Delays in taking pre- and post-irradiation readings resulted in drift of up to 5.7% 

or 9.3% respectively, compared with readings without a delay. 

 

These results emphasise the necessity for consistent methodologies between 

calibration and measurement in the clinical situation.   

 

Greater sensitivity was measured with the epoxy bubble, rather than the 

substrate side, facing the beam.  The greatest variation, for orientations other 

than the bubble side facing directly towards the beam, was 10%, or 5% 

uncertainty in dose.  The variations with angle were found to be reproducible, so 

that appropriate correction factors could be applied to correct measurements at 

angles other than with the sensitive area of the probes facing directly towards 

the radiation beam. 
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