Genes for sodium exclusion in wheat

Caitlin Siobhan Byrt B. Sc (Hons) Plant Science

A dissertation submitted to the University of Adelaide in accordance with the requirements of the degree of PhD in the Faculty of Science, School of Agriculture, Food and Wine

October 2008

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis as listed below resides with the copyright holders of those works.

Signed:.....Date:....

Acknowledgements

I would like to thank my supervisors, Rana Munns (CSIRO) and Mark Tester (University of Adelaide), for all their help, advice and support throughout my PhD, and for being fantastic supervisors. I would like to thank Richard James, Wolfgang Spielmeyer, Shaobai Huang, Evans Lagudah, Matthew Gilliham and Steve Tyerman for their help and guidance.

I am very grateful to have had the opportunity to work at Plant Industry in the Crop Adaptation building with so many brilliant people and good role models. I am thankful for the support of friends both at CSIRO and ACPFG.

I would like to thank Paul and my family for their constant support throughout my PhD.

List of publications from this thesis

Journal publications

Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na⁺ exclusion loci in wheat, *Nax2* and *Kna1*. Plant Physiology. 143:1918-1928

Byrt CS, Munns R (2008) Living with salinity. New Phytologist 179:903-905.

<u>Patents</u>

- Byrt CS, James RA, Lagudah ES, Munns R, Platten JD, Spielmeyer W (2008)
 Polynucleotides and methods for enhancing salinity tolerance in plants. Wipo Patent WO/2008/006169
- Byrt CS, Huang S, James RA, Lagudah ES, Munns R, Spielmeyer W (2006) Salt tolerant plants. Australian provisional application No. 20069047 filed 31/9/06

Conference posters

- Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2006) Is Nax2 an HKT transporter? Gordon Research Conference, Salt and water stress in plants. Sept 3-7th, Oxford, UK.
- Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) Is Nax2 an HKT transporter? 4th Annual ACPFG Research Symposium: The Genomics of Drought. 22-24 October, Adelaide, South Australia.
- Abbasov M, Byrt C, Spielmeyer W, Street K, Shavrukov, Aliyev R, Tester M, Munns R (2008) Screening diploid wheats with various eco-graphic distributions for two salt tolerance genes. 5th International Crop Science Congress. April 13-18, ICC Jeju, Korea.

Oral presentations

- Hare RA, James RA, Huang S, Byrt CS, Lagudah ES, Lindsay EP, Spielmeyer W, Rathjen AJ, Munns R (2008) Breeding for salt tolerance in durum wheat. International durum wheat symposium: From Seed to Pasta, The Durum Wheat Chain. June 30 – July 3, Bologna, Italy.
- Byrt CS, James RA, Spielmeyer W, Munns R, Gilliham M, Tester M (2008) Investigation of the function of a sodium transporter from wheat, HKT1;5. ComBio 2008, 22-25 September, Canberra, Australia.

Table of contents

Declaration	1	2
Acknowled	gements	3
List of publ	ications from this thesis	4
List of figur	res	8
List of table	25	9
List of appe	endices	9
List of abbi	reviations	11
Abstract		13
Chapter 1:	General introduction and literature review	15
1.1 Ba	ackground on wheat and saline soils	15
1.1.1 W	Theat production, globally and in Australia	15
1.1.2 E	volution and domestication of wheat	15
1.1.3 G	rowing cereals in saline soils	16
1.2 W	Theat physiology, salt tolerance and the transport of \mathbf{Na}^+ from soil to leav	ves.18
1.2.1 S	alinity imposes an osmotic stress	18
1.2.2 S	alinity imposes an ionic stress	18
1.2.3 N	a ⁺ uptake into roots	19
1.2.4 N	a^+ does not substitute for K^+	20
1.2.5 N	a^+ transport in the xylem from root to shoot	21
1.3 Ba	ackground and rationale for thesis	23
1.3.1 G	enetic variation for Na ⁺ exclusion in wheat	23
1.3.2 Q	uantifying sodium exclusion in wheat	23
1.3.3 A	ims and objectives	25
1.4 TI	nesis outline	25
Chapter 2:	Mapping and cloning <i>Nax2</i> ; a gene for sodium exclusion in wheat	26
2.1 In	troduction	26
2.2 M	aterials and methods	27
2.2.1	Plant material	27
2.2.2	Phenotyping	28
2.2.3	Genotyping	28
2.2.4	Microsatellite markers	29
2.2.5	RFLP probe development	29
2.2.6	Isolation of TaHKT1;5-D.	30
2.2.7	Isolation of RNA, RT-PCR and isolation of TmHKT1;5-A	31
2.2.8	Isolation of HKT1;5 promoters from Bacterial Artificial Chromosomes	32
2.3 R	esults	33
2.3.1	Analysis of putative Nax2 single gene lines	33
2.3.2	Genetics of Nax2	33
2.3.3	Microsatellite markers on chromosome SAL linked to Nax2 \dots	
2.3.4	Co-segregation of putative Na ⁺ transport gene, HK11;5, with Nax2	37
2.3.5	Wheat HK11;5 gene homologues	
2.3.0	<i>Nax2 is homoeologous to the major Na⁺ exclusion locus in bread wheat, 1</i> 41	Kna1
2.3.7	Isolation of full length HKT1;5 gene members	43
2.3.8	Expression of HKT1;5	45
2.3.9	Isolation of wheat HKT1;5 promoters from Bacterial Artificial Chromoso 45	omes
2.4 Di	iscussion	47
2.4.1	Mapping of Nax2	47

2.4.2	Relationship of Nax2 to the major salt tolerance gene in hexaploid whee	ıt,
Knal	48	
2.4.3	Similarity of phenotype between sodium excluding genes in rice and whe	eat48
2.4.4	Summary	50
Chapter 3:	Diversity of two genes for sodium exclusion in diploid A genome wheat	t
ancestors		51
3.1 In	troduction	51
3.1.1	Allelic variation in HKT1;5 genes	51
3.1.2	Aims	53
3.2 M	aterials and Methods	53
3.2.1	Plant material	53
3.2.2	Phenotyping method	54
3.2.3	Marker development, PCR and RT-PCR	54
3.2.4	PCR fragment analysis	55
3.3 R	esults	56
3.3.1	Presence of Nax2 in diploid species	56
3.3.2	Leaf Na ⁺ concentrations in the diploid accessions	59
3.3.3	Linkage with Nax1 and interpretation	60
3.3.4	<i>Expression of Nax1 and Nax2 may correlate with the Na</i> $^+$ <i>exclusion phe</i> 60	notype
3.4 Di	iscussion	63
3.4.1	Trends within species and sub-species	63
3.4.2	Interpreting the results for different PCR markers	63
3.4.3	<i>Expression of Nax1 and Nax2 correlates with Na⁺ exclusion in T. mono</i> 65	соссит
3.4.4	<i>New genetic variation for Na</i> ⁺ <i>exclusion</i>	65
3.4.5	<i>Eco-graphic distribution of diploid accessions and Na⁺ accumulation</i>	66
Chapter 4:	Transport properties of wheat HKT1;5 and related genes in Xenopus l	aevis
oocytes		67
4.1 In	troduction	67
4.1.1	Heterologous expression in Xenopus laevis oocytes and electrophysiolog	gy67
4.1.2	The function of HKT-type transporters in Xenopus laevis oocytes	68
4.1.3	Heterologous expression of HKT1;5 in Xenopus laevis oocytes	69
4.1.4	Aims for this study	69
4.2 M	aterials and Methods	70
4.2.1	Building constructs for expression in Xenopus laevis oocytes	70
4.2.2	Transcription of RNA	70
4.2.3	Injection of cRNA into Xenopus laevis oocytes and electrophysiology	71
4.2.4	Total moles of Na^+ and K^+ per oocyte measured using a flame photomet	ter72
4.3 Ro	esults	74
4.3.1	Transcription of RNA	74
4.3.2	Measurement of currents in water-injected oocytes	75
4.3.3	Measurement of currents in AtHKT1;1 injected oocytes	79
4.3.4	Measurement of currents in OsHKT1;5 injected oocytes	82
4.3.5	Measurement of currents in OsHKT2;2 injected oocytes	87
4.3.6	Measurement of currents in TaHKT1;5-D injected oocytes	91
4.3.7	Total amount of Na^+ and K^+ extracted from oocytes expressing TaHKTI 100	l;5-D
4.3.8	Oocytes injected with TmHKT1;5-A cRNA did not exhibit the expected N	Va^+
transpo	ort activity	102

4.3.9	Potassium transport by HKTs	106
4.4	Discussion	108
4.4.1	Transcription of RNA encoding plant HKTs	108
4.4.2	2 Currents in water-injected oocytes	108
4.4.3	<i>Currents in AtHKT1;1 and OsHKT1;5 injected oocytes</i>	108
4.4.4	Absence of activity for Pokkali OsHKT1;5 and TmHKT1;5-A	109
4.4.5	5 Does HKT1;5 transport Na ⁺ only, or Na ⁺ and K ⁺ ?	112
4.4.6	5 Summary	113
Chapter	5: RNA interference to induce silencing of <i>TaHKT1</i> ;5-D	114
5.1	Introduction	114
5.1.1	RNA interference in plants	114
5.1.2	2 Transformation of wheat by particle bombardment	117
5.1.3	3 Aims	117
5.2	Materials and Methods	118
5.2.1	Plasmid preparation	118
5.2.2	2 Gene delivery by particle bombardment	119
5.2.3	3 Tissue culture and selection of transformants	120
5.2.4	4 Phenotyping T_1 plants	120
5.2.5	5 DNA extraction and PCR	121
5.3	Results	122
5.3.1	Transformation efficiency and contamination in tissue culture	122
5.3.2	2 Analysis of primary transgenic wheat plants	123
5.3.3	3 Analysis of the T1 generation of putative transgenic wheat plants	126
5.4	Discussion	138
Chapter	6: General Discussion	140
6.1 HK	T1;5 homoeologues in wheat	140
6.2 Ma	pping of <i>Nax2</i> and <i>Kna1</i>	140
6.3 The bread wheat HKT1;5 transports Na ⁺		
6.4 Further questions and future directions		
6.5 Im	proving the salinity tolerance of wheat and other crops	145
Referenc	es	147
Appendi	x	158

List of figures

Chapter 2:

Figure 2.1: Genotype of <i>Nax2</i> single gene lines	33
Figure 2.2: Segregation of the Na ⁺ exclusion gene, <i>Nax2</i>	34
Figure 2.3: Microsatellite markers linked to Nax2	36
Figure 2.4: Cosegregation of <i>HKT1;5</i> with <i>Nax2</i>	38
Figure 2.5: Chromosomal location of the <i>HKT1</i> ;5 fragments	40
Figure 2.6: Association of <i>HKT1;5</i> with <i>Kna1</i>	42
Figure 2.7: Gene structures of TmHKT1;5-A, TaHKT1;5-D and OsHKT1;5	44
Figure 2.8: Expression of <i>HKT1</i> ;5 in wheat analysed using RT-PCR	46

Chapter 3:

Figure 3.1: Screening diploid accessions for Nax2 with gene specific primers	58
Figure 3.2: Expression of Nax1 and Nax2 in selected diploid accessions	62
Figure 3.3: Wheat ancestors and wheat evolution	64

Chapter 4:

Figure 4.1: RNA in vitro transcribed from pGEMHE	4
Figure 4.2: Currents over time in H ₂ O injected oocytes exposed to a range of solutions with	
varying Na ⁺ and K ⁺ concentrations	б
Figure 4.3: Current-voltage curves for oocytes injected with water, in solutions with different	
cations and different Na ⁺ and K ⁺ concentrations	7
Figure 4.4: Current-voltage curves for oocytes injected with water, in solutions with 10 mM	
Na ⁺ and with different pH, calcium concentrations and channel blocking solutions	8
Figure 4.5: Currents over time in <i>AtHKT1;1</i> injected oocytes exposed to a range of solutions	
with varying Na ⁺ and K ⁺ concentrations)
Figure 4.6: Current-voltage curves for AtHKT1;1 expressing oocytes in solutions with	
different Na ⁺ and K ⁺ concentrations	1
Figure 4.7: Currents over time in OsHKT1;5 (Nipponbare) injected oocytes exposed to a	
range of solutions with varying Na ⁺ and K ⁺ concentrations83	3
Figure 4.8: Current-voltage curves for OsHKT1;5 (Nipponbare) expressing oocytes in	
solutions with different Na ⁺ and K ⁺ concentrations	4
Figure 4.9: Current-voltage curves for oocytes expressing OsHKT1;5 (Nipponbare), in	
solutions with various cations, different pH, and channel blocking solutions85	5
Figure 4.10: Current-voltage curves for oocytes injected with cRNA products transcribed	
from pGEMHE containing the cDNA for OsHKT1;5 (Pokkali)80	5
Figure 4.11: Currents over time in OsHKT2;2 injected oocytes exposed to a range of solutions	S
with varying Na ⁺ and K ⁺ concentrations	8
Figure 4.12: Current-voltage curves for OsHKT2;2 (Pokkali) expressing oocytes in solutions	
with different Na ⁺ and K ⁺ concentrations	9
Figure 4.13: Current-voltage curves for oocytes expressing OsHKT2;2 (Pokkali), in solutions	
with various cations)
Figure 4.14: Currents over time in <i>TaHKT1;5-D</i> injected oocytes exposed to a range of	
solutions with varying Na ⁺ and K ⁺ concentrations	3
Figure 4.15: Cation selectivity of oocytes injected with TaHKT1;5-D cRNA94	4
Figure 4.16: Current-voltage curves for oocytes expressing TaHKT1;5-D in solutions with	
different Na ⁺ concentrations	5

Chapter 5:

Figure 5.1: A simplified diagram of the pSTARGATE vector for RNAi-induced gene
silencing in monocotyledonous plants116
Figure 5.2: Diagram of the fragments incorporated into the silencing construct in relation to
the <i>TaHKT1;5-D</i> gene
Figure 5.3: Growth of calli in tissue culture and subsequent transfer to soil124
Figure 5.4: Amplification by PCR of a fragment specific to the RNA interference constructs
from DNA from putative transgenic plants125
Figure 5.5: Putative transgenic T ₁ plants growing in hydroponics127
Figure 5.6: Leaf three Na ⁺ concentrations of Bob White non-transgenic individual plants (A)
and transgenic plants segregating for the empty pSTARGATE vector (B) from four different
tanks
Figure 5.7: Leaf three Na ⁺ concentration of putative transgenic plants compared to Bob White
controls grown in Tank 1 (A) and Tank 2 (B)132
Figure 5.8: Leaf three Na ⁺ concentration of putative transgenic plants compared to Bob White
controls grown in Tank 3 (A) and Tank 4 (B)133
Figure 5.9: K ⁺ /Na ⁺ ratio of leaf 3 from putative transgenic plants of interest, from the first
screen, compared to control Bob White plants from the respective tank
Figure 5.10: Leaf three Na ⁺ concentrations (A) and K ⁺ to Na ⁺ ratio (B) of putative transgenic
plants of interest, in the second screen, compared to Bob White controls136
Figure 5.11: Amplification by PCR of a fragment specific to the RNA interference constructs
from DNA from individual T ₁ plants of the plants of interest

List of tables

Table 3.1: Average leaf Na⁺ concentrations in selected *Triticum* spp......57

List of appendices

Appendix Table 2.1: Agarose gel electrophoresis results from PCR with microsatellite	
markers on chromosome 5AL	158
Appendix Table 3.1: Accession numbers of diploid wheat material	160
Appendix Table 3.2: Key to HKT1;5 B gene members from wheat	160

Appendix Figure 2.1: Wheat HKT1;5 RFLP probe sequence (331 bp)16	51
Appendix Figure 2.2: Wheat <i>TaHKT1;5-D</i> full length genomic sequence showing introns	
(shaded) and exons (GenBank accession DQ646342) and predicted amino acid sequence16	3
Appendix Figure 2.3: Wheat <i>TmHKT1;5-A</i> full length genomic sequence showing introns	
(shaded) and exons (GenBank accession DQ646339) and predicted amino acid sequence16	5
Appendix Figure 2.4: Alignment of TmHKT1;5-A and TaHKT1;5-D genomic sequences 16	8
Appendix Figure 2.5: Alignment of predicted amino acid sequences for <i>TmHKT1;5-A</i> and	
<i>TaHKT1;5-D</i> 16	9
Appendix Figure 2.6: Alignment of predicted amino acid sequences for <i>TmHKT1;5-A</i> ,	
TaHKT1;5-D and OsHKT1;5 using CLUSTAL 2.0.3 multiple sequence alignment17	0
Appendix Figure 2.7: TmHKT1;5-A promoter17	1
Appendix Figure 2.8: TaHKT1;5-D promoter17	2
Appendix Table 4.1: Replicates of oocytes used in various experiments	3

List of abbreviations

ABARE	Australian Bureau of Agriculture and Resource Economics
ACPFG	Australian Centre for Plant Functional Genomics
bp	base pair
cDNA	complementary DNA
CSIRO	Commonwealth Scientific and Industrial Research Organisation
cv.	cultivar
2,4-D	2,4-dichlorophenoxyacetic acid
DNA	deoxyribonucleic acid
EDTA	ethylenediaminetetraacetic acid
FAO	Food and Agriculture Organisation
GUS	β-glucuronidase
НКТ	High-affinity potassium (K ⁺) transporter
kb	kilobase
kDa	kilodalton
LB	Luria-Bertani medium
mRNA	messenger RNA
NIL	near isogenic line
NLWRA	National Land and Water Resources Audit
PCR	polymerase chain reaction
PPM	Plant preservative mixture
QTL	quantitative trait loci
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
RNAi	ribonucleic acid interference
RT-PCR	reverse-transcriptase polymerase chain reaction
SEM	standard error of the mean
spp.	species (plural)
ssp.	subspecies
TE	Tris-EDTA buffer
TRIS	tris(hydroxymethyl)methylamine
U	enzyme unit
USDA	United States Department of Agriculture

Nomenclature

The current nomenclature for HKT transporters as described by Platten et al. (2006) and Huang et al. (2008)

New	Old	QTL
AtHKT1;1	AtHKT1	
OsHKT1;5	OsHKT8	<i>SKC1</i> (Ren et al., 2005)
OsHKT2;1	OsHKT1	
TaHKT2;1	TaHKT1	
TmHKT1;4	TmHKT7	Nax1 (Huang et al., 2006)
TmHKT1;5	TmHKT8	<i>Nax2</i> (Byrt et al., 2007)
TaHKT1;5	TaHKT8	Kna1 (Byrt et al., 2007)
TaHKT1;5	TaHKT8	Kna1 (Byrt et al., 2007)

Abstract

Salinity stress limits the growth and productivity of agricultural crops in many regions of the world. Whole plant tolerance to soil salinity involves numerous processes in many different tissues and cell types. For many cereals, sensitivity to salinity is due to the accumulation of sodium (Na⁺) to toxic concentrations in the leaves. This thesis investigates a mechanism of control of Na⁺ accumulation in leaves of wheat.

Bread wheat excludes sodium from the leaves better than durum wheat. Bread wheat is hexaploid (AABBDD) whereas durum wheat is tetraploid (AABB). The D-genome in bread wheat carries a major locus for sodium exclusion, *Kna1*, which may contribute to the differences in sodium exclusion between bread wheat and durum wheat.

An unusual durum wheat, Line 149, excludes sodium to a similar degree as bread wheat. Line 149 was derived from a cross between a *Triticum monococcum* (accession C68-101; AA) and a durum wheat (*T. turgidum* ssp. *durum* cv. Marrocos; AABB). Line 149 had been found to contain two major genes for sodium exclusion, named *Nax1* and *Nax2*, which appeared to retrieve sodium from the xylem sap in the roots and so prevent it reaching the leaves. Line 149 had been crossed with the durum wheat cv. Tamaroi, which accumulates high concentrations of Na⁺ in the leaves, and near-isogenic single-gene mapping populations had been developed for *Nax1* and *Nax2*. *Nax1* had been located on chromosome 2A. The objective of this thesis was to map *Nax2* and identify a candidate gene.

Nax2 mapped to chromosome 5AL based on linkage to microsatellite markers. A <u>high-affinity potassium (K^+) transporter (HKT)-like gene, *HKT1;5* was considered as a candidate gene for *Nax2*, based on similarity of the phenotype to a rice orthologue. Sequence information from a wheat *HKT1;5*-like expressed sequence tag in the public database was used to develop a probe for use in Southern hybridsation. A *HKT1;5*-like fragment was identified in Line 149 and *T. monococcum* C68-101, but was absent in Tamaroi. The *HKT1;5*-like gene, named *TmHKT1;5*-A, co-segregated with *Nax2* in the *Nax2* single-gene mapping population. The *HKT1;5*-like gene on the long arm of chromosome 4B, and one *HKT1;5*-like gene on the long arm of chromosome 4D, in Langdon (*T. turgidum* ssp. *durum*) substitution lines, and in Chinese Spring (*T. aestivum*) ditelomeric lines. No A-genome *HKT1;5* like gene was identified in Langdon or Chinese Spring.</u>

The D-genome *HKT1;5* gene, named *TaHKT1;5-D*, was found to co-locate with *Kna1*, the gene for sodium exclusion in bread wheat, in Chinese Spring chromosome 4D deletion lines. *Nax2* (*TmHKT1;5-A*) was found to be homoeologous with the gene for sodium exclusion in bread wheat, *Kna1* (*TaHKT1;5-D*). *TmHKT1;5-A* and *TaHKT1;5-D*, and their

promoters, were 94% identical, and both were expressed in the roots of wheat plants. This is consistent with the genes being located in the stele of the roots and retrieving Na⁺ from the xylem sap as it flows towards the shoot, and so excluding Na⁺ from the leaves.

A marker for *TmHKT1;5-A* was developed to track this gene in durum wheat breeding programs. A study of the *HKT1;5* gene in diploid ancestors of wheat indicated that this gene is present in most *Triticum monococcum* accessions, some *T. boeoticum* accessions, but not present in any *T. urartu* accessions. *T. urartu* is the likely A genome ancestor of modern wheat. This may explain the absence of *HKT1;5* in the A genome of modern wheat.

The protein encoded by *TaHKT1;5-D* transported sodium when expressed in *Xenopus laevis* oocytes. The inward currents were specific to Na⁺, but at particular mole fractions of Na⁺ and K⁺ outward currents were observed that were consistent with outward K⁺ transport. These data were consistent with the putative physiological function, of retrieving Na⁺ from the xylem sap as it flows to the leaves, and resulting in a net exchange with K⁺.

A construct designed to silence the expression of TaHKT1;5-D was introduced to bread wheat cv. Bob White. Nineteen putative transgenic plants were developed. The leaf Na⁺ concentrations and genotype of the T₁ individuals were assayed. The data from two of the transgenic plants indicated that TaHKT1;5-D may have been silenced and that this may have lead to the increase in Na⁺ accumulation in the leaves. However, this data is not conclusive at this time.

The information gained from this study will assist the introduction of the Na⁺ exclusion trait into current durum cultivars, which are poor at excluding Na⁺ and are salt sensitive. This information will also contribute to the body of knowledge of ion transport in plants and salinity tolerance in wheat.