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ABSTRACT

Mixture of Gaussians (MOG) has been widely used for robustly 

modeling complicated backgrounds, especially those with small 

repetitive movements (such as leaves, bushes, rotating fan, ocean 

waves, rain). The performance of MOG can be greatly improved 

by tackling several practical issues. In this paper, we 

quantitatively evaluate (using the Wallflower benchmarks) the 

performance of the MOG with and without our modifications. 

The experimental results show that the MOG, with our 

modifications, can achieve much better results - even 

outperforming other state-of-the-art methods.

1. INTRODUCTION 

Background modeling is an important and fundamental part for 

many vision tasks such as real-time motion segmentation, 

tracking, video/traffic surveillance and human-machine 

interface.

In recent years, many background models have appeared 

[1-9]. Pfinder [6] is built upon the assumption that the scene is 

less dynamic than the object to be tracked and that the 

background is distributed according to a single Gaussian 

distribution. Although Pfinder can deal with small or gradual 

changes in the background, it fails when the background scene 

involves large or sudden changes, or has multi-modal 

distributions (such as small repetitive movements). The W4

system [9] modeled the background scene by maximum and 

minimum intensity values, and the maximum intensity 

difference between consecutive frames in training stage. 

However, the background model from W4 may be inaccurate 

when the background pixels are multi-modal distributed or 

widely dispersed in intensity.  

The pixel-level Mixture of Gaussians (MOG) background 

model has become very popular because of its efficiency in 

modeling multi-modal distribution of backgrounds (such as 

waving trees, ocean waves, light reflection, etc), its ability to 

adapt to a change of the background (such as gradual light 

change, etc.) and the potential to implement the method in real 

time. Friedman and Russell [10] modeled the intensity values of 

a pixel by using a mixture of three Normal distributions and 

applied the proposed method to traffic surveillance applications. 

Stauffer and Grimson [4] presented a method that models the 

pixel intensity by a mixture of K Gaussian distributions. 

Although many variants of the MOG background model [4, 5, 

11] have been proposed, and MOG has been reported as being 

used in a wide variety of  the systems (e.,g., for tracking [6, 7, 

12], traffic surveillance [10], etc.), few papers provide a 

quantitive evaluation of the MOG method for background 

modeling. Toyama et. al. [1] implemented MOG and compared 

the result of MOG with that of “Wallflower”, claiming 

superiority of the latter. In this paper, we show that the result of 

MOG can be greatly improved if we modify the implementation 

of MOG in some aspects: dealing with shadow removal, 

background update, and background subtraction. This paper also 

provides a re-evaluation of MOG using the same set of 

benchmarks as used in Wallflower study. 

2. MIXTURE OF GAUSSIAN MODEL  

In this section, we briefly describe the MOG model.  

The basic idea is to assume that the time series of 

observations, at a given image pixel, is independent of the 

observations at other image pixels. It is also assumed that these 

observations of the pixel can be modeled by a mixture of K 

Gaussians (K is usually set from 3 to 5). Let x be a pixel value at 

time t. Thus, the probability that the pixel value x is observed at 

time t is [4]: 
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where
,i tw is the weight,  

,i tµ  is the mean value, and 
,i tΣ is the 

covariance matrix for the ith Gaussian distribution at time t.

For computational reasons, each channel of the color space 

is assumed to be independent from the other channels. The 

covariance matrix can then be written as:  
2

,i t k IσΣ =                                  (2) 

The K distributions are sorted by /w σ and only the first B 

distributions are used to model the background, where 
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T is a threshold for the minimum fraction of the data used to 

model the background. 

3. SOME PRACTICAL ISSUES  

In a realistic environment, we find that using the MOG model is 

not enough to solve all problems met in background modeling. 

For example, a moving shadow region may be wrongly marked 

as foreground due to the illumination change, or relocation of a 

background object may result in some pixels in both the new and 

previous position of the background object being wrongly 

labeled as foreground pixels, or a quick illumination change 

such as light switched on/off will greatly change the color of the 
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background and increase the number of falsely detected 

foreground pixels, etc. Next, we will tackle these practical issues. 

3.1 Shadow removal 

Incorrectly labeling shadows as foreground pixels may cause 

failure in applications such as tracking, video surveillance, 

motion segmentation, etc.

When shadows appear or disappear, it is usually assumed 

that the chromaticity part at the pixel is not significantly 

changed. Normalized color is used in many background 

modeling methods such as [5, 7, 8] because normalized color is 

robust and less sensitive (than RGB color) to small changes in 

illumination caused by shadows.  

The normalized chromaticity coordinates can be written as: 
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Although using chromaticity coordinates can suppress 

shadows, the intensity information will be lost. Thus, we adopt 

the feature space ( r, g, I) as in [8], where r, g are scaled to the 

range [0, 255] (assuming the 8 bit image values in each channel 

are used). 

Let (rb, gb, Ib) be the expected value of a background pixel 

and (rt, gt, It) be the observed value at this pixel in frame t. If the 

background is totally static, we can expect / 1t bI Iβ ≤ ≤ when 

the pixel is covered by shadow and 1 /t bI I γ≤ ≤ when the pixel 

is highlighted by strong light. Figure 1 (c) shows an example 

where the shadow of the person is suppressed when using 

chromaticity coordinates (r, g) and the criterion that the intensity 

I is such that /t bI Iβ γ≤ ≤  (compare with figure 1(b) RGB). 

However, the background may be dynamic, i.e., multi-modal 

distributed. Let 
iµ  be the mean value and 

iσ be the standard 

variance of the ith Gaussian distribution. For the ith Gaussian 

distribution, we replace Ib in the above criterion with the mean 

value
iµ (that is: /t iIβ µ γ≤ ≤ ).

              (a)                              (b)                                (c) 

Fig. 1. (a) Image of a person and shadows; (b) Detection result 

using RGB; (c) using (r, g, I).

Another problem is that when the intensity is low, the 

normalized color (r or g) is very noisy. Consider the image 

sequence “Time of Day” (TOD) in the Wallflower dataset, 

which displays a room gradually changing from dark to bright. 

In the first several hundred frames, the intensities of image 

pixels are very low. Figure 2 (b) shows the distribution of pixel 

values of the r channel in the normalized color space and the R 

channel of RGB color space at image pixel (1, 1) in the first 200 

frames. The stand variance of the pixels values in the r channel, 

at image pixel (1, 1) for the first 200 frames, is 81.97; while the 

stand variance of the pixels values in the R channel is 0.91. To 

solve this problem we express the values of a pixel x, we use a 

mixed color space: 
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where Itd is a threshold. This modification improves the results, 

especially for video sequences including dark scenes, of 

background modeling (see section 4 for the results).  

                      (a)                                             (b) 

Fig. 2. (a) The first frame of TOD; (b) The distributions of pixel 

values in the normalized r channel and R channel of the RGB 

color space at image pixel (1,1) in the first 200 frames of TOD. 

3.2 Updating the Background 

Following [4], given a new observation xt that belongs to the ith

Gaussian distribution, the parameters of the ith Gaussian 

distribution at time t are updated as follows: 

, , 1(1 )i t i t txµ α µ α−= − +                            (6)

2 2

, , 1 , ,(1 ) ( ) ( )T

i t i t t i t t i tx xσ α σ α µ µ−= − + − −             (7) 

the weight of the ith Gaussian distribution is adjusted as 

follows:

, , 1 ,(1 )i t i t i tw wα α−= − + Μ                        (8) 

whereα is learning rate; 
,i tΜ is 1 when the new observation 

matches the ith distribution, and 0 otherwise. 

This mechanism of updating the background has several 

advantages: such as robustly adopting to gradually light 

changing. However, if a background object is relocated to a new 

place, or if a new object is inserted into the background, the 

image pixels at both the new and previous position of the 

relocated background object or at the position of the inserted 

object, will not match the estimated K Gaussians and will be 

classified as foreground pixels. Although such changes of 

relocated or inserted background object may be temporarily of 

interest, it is not desirable to maintain these as foreground for a 

very long time. One common feature of the relocated or inserted 

background object is that once the position of the object is 

changed, typically, the object will stay there for a while. Thus, 

we employ a set of counters, which we call the “foreground 

support map”(FSM). FSM represents the number of times a pixel 

is classified as a foreground pixel:

( , 1) 1
( , )

0

FSM x t if x is foreground pixel
FSM x t

if x is background pixel

− +
=    (9) 

When the FSM value of a pixel is larger than a threshold Ftd, we 

adopt this pixel to the background and use equations (6) – (8) to 

update the Gaussian model. This puts a time limit on how long a 

pixel can be considered as a static foreground pixel. 

Another issue is that of choosing the learning rateα . A 

high learning rate enables MOG to more quickly adapt to sudden 
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scene changes such as a light switching on/off, a sudden 

lightning, a sudden movement of uninteresting object, etc. 

However, a high learning rate also causes interesting foreground 

objects to quickly fade into the background. To obtain a 

satisfactory trade-off value is hard. Thus, we use extra 

information to adjust the learning rate. If the pixel number of 

detected foreground pixels is larger than a threshold (e.g., 70% 

of the whole image pixels as in Wallflower), we adjust the 

learning rate to a high value; otherwise, we set the learning rate 

to a low value.

3.3 Background Subtraction 

Let xj be the jth component of pixel x. If 
1 2j or i ix mµ σ= − >  is 

true for all i=1,…K (m is usually set 2.5), or if 

3 3/ /i ix or xµ γ µ β> <  is true for all i=1,…K, the pixel is 

labeled as a foreground pixel.

However, there are two issues that should be considered: (a) 

the estimated standard variance could be overestimated or 

underestimated because the distribution of the pixels is not an 

ideal Gaussian. (b) when the intensity of a pixel is low, the value 

of
3 / ix µ  can be very varied even when the pixel belongs to the 

ith Gaussian. Thus, to solve issue (a), we set an upwards 

threshold Smax and a downwards threshold Smin for the estimated 

standard variance. Smax and Smin are respectively set to 0.1 and 

15. To judge if the pixel is too far from the ith Gaussian, we 

check if max( , )j i ix mµ σ λ− > , where λ is a threshold and is 

empirically set to 5. To solve issue (b), we use the criterion 

3 3/ /i ix or xµ γ µ β> <  for pixels with high intensities and 

3 max( , )i ix mµ σ λ− > for pixels with low intensities. Thus, 

we label a pixel as a foreground pixel if: 
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4. EXPERIMENTAL RESULTS AND COMPARISONS 

Toyama et. al. [1] benchmarked their algorithm “Wallflower” 

using a set of image sequences where each sequence presents a 

different type of difficulty that a practical task may meet. The 

performance is evaluated against hand-segmented ground truth. 

Two terms are used in evaluation: False Positive (FP) is the 

number of background pixels that are wrongly marked as 

foreground; False Negative (FN) is the number of foreground 

pixels that are wrongly marked as background.  

A brief description of the Wallflower image sequences follows: 

Moved Object (MO) - A person enters into a room, makes a 

phone call, and leaves. The phone and the chair are left in a 

different position. Time of Day (TOD) - The light in a room 

gradually changes from dark to bright. Then, a person enters the 

room and sits down. Light Switch (LS) - A room scene begins 

with the lights on. Then a person enters the room and turns off 

the lights for a long period. Later, a person walks in the room, 

switches on the light, and moves the chair, while the door is 

closed. Waving Trees (WT) - A tree is swaying and a person 

walks in front of the tree. Camouflage (C) - A person walks in 

front of a monitor, which has rolling interference bars on the 

screen. The bars include similar color to the person’s clothing. 

Boostrapping (B) - The image sequence shows a busy cafeteria 

and each frame contains people. Foreground Aperture (FA) - 

A person with uniformly colored shirt wakes up and begins to 

move slowly.   

We have tested three different variants of  MOG: MOG 1

uses mixed color space (normalized rgb color space for pixels 

with high intensities and in RGB color space for pixels with low 

intensities). Thus, for an image pixel with high intensity, x is 

expressed by (r, g, I); for a image pixel with low intensity, x is 

expressed by (R, G, I); MOG 2 uses normalized rgb color space; 

Each image pixel value x is expressed by (r, g, I); MOG 3 uses RGB 

color space. Each image pixel value x is expressed by (R, G, I).

In each we eliminated the foreground pixels whose 4-

connected foreground pixels number less than 8.

From table 1 and figure 3, we can see that none of the 

methods achieve a lower value in both FN and FP for all seven 

image sequences. However, the modified MOG methods 

achieved best results in total error (TE) and total error excluding 

the light switch image sequence (TE*). In contrast to [1] we 

have shown that MOG, albeit with some modifications, can

achieve high accuracy in background modeling. Among the 

three variants of the MOG in this paper, we can see that the 

MOG1 and MOG 2 achieved better total results than the MOG 3 

variant (in the RGB color space). The MOG 1 relies on the 

(unstable) property of the normalized color values for pixels 

with low intensities (such as many pixels in the beginning of the 

TOD image sequence). Thus it achieves better results than MOG 2 

and achieves the best total results among the eight comparative methods. 

For the foreground aperture image sequence, Wallflower 

achieved an accurate result. However, the authors of [1] used a 

region-level processing as a post-processing step for Wallflower. 

In contrast, we did not use a region-level post-processing step. 

For the light switch image sequence, Wallflower used frames 

with both light on and light off in the training stage. In the 

training stage, we used only frames with light off.  

5. CONCLUSION 

The purpose of this paper is to re-evaluate MOG in background 

modeling in the light of some simple modifications one can 

make to tackle real world problems. The modifications can make 

MOG competitive, if not superior, to many other methods - 

including Wallflower, in contrast to the conclusions reached by 

the proponents of that algorithm [1].  
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Algorithm ET MO TOD LS WT C B FA TE TE* 

f. neg. 0 597 1481 44 106 1176 1274 
MOG 1 

f.pos. 0 358 669 288 413 134 41 
6581 4431 

f. neg. 0 170 980 43 113 1174 998 
MOG 2 

f.pos. 36 1671 1052 294 448 157 540 
7676 5644 

f. neg. 0 839 1965 97 304 1498 2290 
MOG 3 

f. pos. 0 29 772 388 1559 224 573 
10538 7801 

f. neg. 0 772 1965 191 1998 1974 2403 
Tracey LAB LP1

f. pos. 1 54 2024 136 69 92 356 
12035 8046 

f. neg. 0 1008 1633 1323 398 1874 2442 Mixture of 

Gaussian2
f. pos. 0 20 14169 341 3098 217 530 

27053 11251

f. neg. 0 1018 2380 629 1538 2143 2511 Bayesian 

decision2
f. pos. 0 562 13439 334 2130 2764 1974 

31422 15603

f. neg. 0 879 962 1027 350 304 2441 Eigen-

background2
f. pos. 1065 16 362 2057 1548 6129 537 

17677 16353

f. neg. 0 961 947 877 229 2025 320 
Wallflower2

f. pos. 0 25 375 1999 2706 365 649 
11478 10156

Table 1: Experimental results by different methods on Wallflower benchmarks. (Note 1 was reported in [2]; note 2 were reported in [1]). 

                                       MO                 TOD                LS                  WT                   C                     B                    FA         

Test

Image 

Ground

Truth

MOG 1 

MOG 2 

MOG 3 

Fig. 3: Experimental results by three variants of the MOG on the seven canonical background problems of the Wallflower benchmarks.

The top row shows the evaluated frames of each image sequences; the second row shows the hand-segmented ground truth; the third

row to the fifth row show the results of three variants of the MOG. 
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