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Abstract 

 

Neuroplasticity provides the basis for many of our most fundamental processes including 

learning, memory and the recovery of function following injury. This thesis is concerned with 

the neurophysiological and functional correlates of sensorimotor neuroplasticity in the healthy 

and focal dystonic populations. 

 

My initial experiments were conducted to determine the functional correlates of 

neuroplasticity induced in the primary motor (M1) and primary sensory (S1) cortices during a 

grip lift task. In healthy subjects these experiments further quantified the role of M1 in the 

anticipatory control of grip force scaling and demonstrated a role for S1 in triggering 

subsequent phases of the motor plan. My second series of experiments served to extend these 

findings by examining the functional correlates of neuroplasticity induced in the 

supplementary motor area (SMA). This study provided evidence for the role of left SMA in 

the control of grip force scaling and a role for left and right SMA in the synchronization of 

grip force and load force during the grip-lift synergy. 

 

Afferent input is known to be a powerful driver of cortical reorganisation. In particular, the 

timing and pattern of afferent input is thought to be crucial to the induction of plastic change. 

In healthy subjects, I examined the neurophysiological effects of applying “associative” 

(synchronous) and “non-associative” (asynchronous) patterns of afferent input to the motor 

points or digits of the hand. I observed an increase in the volume and area of the cortical 

representation of stimulated muscles when associative stimulation was applied over the motor 

points of two hand muscles. This pattern of stimulation also caused the centres of gravity of 

the stimulated muscles to move closer together, mimicking the maladaptive changes seen in 
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focal hand dystonia. Non-associative stimulation and stimulation applied to the digits did not 

produce such an effect. 

 

Task-specific focal dystonia is characterised by excessive representational plasticity resulting 

in cortical representations which are significantly larger, and demonstrate greater overlap, 

than those seen in healthy individuals. These changes are thought to be driven, in part, by 

repetitive movement patterns which promote associative patterns of afferent input over an 

extended time period. On the basis of this knowledge, I applied non-associative stimulation to 

the hand muscles of dystonic subjects. Following this intervention, I noted a contraction of 

representational maps and a separation in the centres of gravity of the stimulated muscles. 

These neurophysiological changes were accompanied by improvements on a cyclic drawing 

task.  

 

This thesis demonstrates the functional correlates of neuroplasticity in M1, S1 and SMA 

during object manipulation using a precision grasp. These findings further extend our 

knowledge on the mechanisms underlying effective grasp control and assist us in the 

development of future rehabilitation protocols for neurological conditions involving grasp 

dysfunction. In addition, this thesis is the first to demonstrate an improvement in both 

neurophysiological and functional measures in focal dystonia following a period of non-

associative afferent stimulation. These results open up exciting new avenues for the 

development of effective treatment protocols in those with focal hand dystonia. 
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Aims and general introduction 

 

In recent years our understanding of the human central nervous system has advanced 

considerably. Where the structure and function of the adult central nervous system was once 

thought to be static, it is now clear that this system retains the ability to restructure and 

reorganise throughout life. This property, known as plasticity, is of significant importance in 

learning and memory, and is likely to play a key role in recovery of motor function following 

injury. 

 

Reorganisation of the human cortex has been demonstrated using a number of experimental 

paradigms. However, evidence for a concomitant and related functional effect is limited. 

Investigation of the functional effects associated with cortical reorganisation is of critical 

importance if novel and effective rehabilitation strategies are to be developed for those with 

neurological conditions. 

 

The neurophysiological correlates of cortical plasticity may be measured using transcranial 

magnetic stimulation (TMS). Using the principles of electromagnetic induction, TMS triggers 

neuronal depolarisation and the propagation of a descending volley of action potentials in the 

corticospinal tract. This volley activates motor neurons and induces a transient 

electromyographical (EMG) response in the target muscle known as a motor evoked potential 

(MEP). Changes in MEP amplitude reflect changes in the excitability of the corticospinal 

projection to the target muscle and are used as a marker of plasticity induction.  

TMS may also be applied repetitively (rTMS) as a tool to induce cortical reorganisation. This 

approach can be used to induce a temporary “virtual lesion” that interrupts activity in a 

specific cortical region or, by altering the frequency, intensity or direction of the stimulation, 
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rTMS can be used to transiently alter synaptic strength. The functional correlates of rTMS-

induced plasticity may then be determined.  

 

In my first series of experiments I used the technique of rTMS to induce plasticity in the 

primary motor (M1) and primary sensory (S1) cortices of healthy subjects performing a grip-

lift task. The grip-lift task has been shown to be a sensitive, objective measure of hand 

dexterity in both healthy subjects and in those with neurological conditions. As one limitation 

of previous studies has been the use of functional measures with insufficient sensitivity to 

detect subtle changes in performance, a grip-lift apparatus was considered the most 

appropriate tool for this study. The results of this study, detailed in Chapter 2, demonstrate 

functional effects which are highly correlated with the induction of plasticity in M1 and S1. 

Specifically, rTMS applied over M1 disrupted the ability to accurately anticipate the grip 

force needed to lift a small object, while rTMS applied over S1 hampered the ability to 

initiate subsequent phases of the motor plan. 

 

A second series of experiments extended these findings by applying rTMS over the 

supplementary motor area (SMA) using a similar paradigm and the same grip-lift task. In 

healthy subjects, application of rTMS led to changes in the temporal and dynamic aspects of 

the grip-lift task and these changes demonstrated a hemispheric lateralisation. Disruption to 

left SMA produced a significant increase in the grip force needed to lift an object regardless 

of the hand used in the task. Conversely, disruption to right SMA reduced the synchronisation 

of the grip force to the object load force. These experiments are described in Chapter 3. 

 

In animal models, temporally coupled afferent inputs have been shown to induce cortical 

reorganisation characterised by expansion and greater overlap of representational zones. In 

human subjects, paradigms utilising this “associative input” have also been shown to induce 

plastic change. However, it is unclear whether plasticity induced by associative afferent input 
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in human subjects is characterised by representational changes analogous to those seen in 

animal studies. This question was addressed in Chapter 4. I used a period of associative 

afferent stimulation applied to two hand muscles or two digits in healthy individuals and 

contrasted these findings with a period of non-associative afferent stimulation. Subjects 

receiving associative stimulation to the motor points demonstrated cortical representations 

which were larger in both area and volume and centred closer together. These changes were 

not present following associative stimulation applied to the digits or following non-

associative stimulation. 

 

A number of neurological conditions are thought to involve abnormal cortical plasticity. In 

particular, task-specific focal hand dystonia (FHD) is a debilitating neurological condition 

characterised by aberrant and maladaptive cortical plasticity. Previous studies have shown 

that cortical representations in FHD are significantly larger and demonstrate greater overlap 

than those in healthy individuals. While the exact mechanism is unclear, it appears that a 

genetic predisposition coupled with repeated exposure to associative afferent inputs may 

trigger maladaptive cortical reorganisation. Based on this, the experiments described in 

Chapter 5 tested the hypothesis that non-associative stimulation applied to the motor points of 

affected hand muscles would promote normalisation of cortical representations and alleviate 

symptoms in FHD. All subjects performed a grip-lift and a handwriting task before receiving 

1 hour of non-associative stimulation. A decrease in the volume and area of cortical 

representations, and a separation in the centres of gravity for the stimulated muscles, was 

observed. These changes were correlated with a functional improvement in the variability of 

cyclic drawing, suggesting that the induction of plasticity using a non-associative stimulation 

paradigm may be an exciting avenue for the development of novel and effective treatment 

strategies in FHD.   
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