EXPERIMENTALLY INDUCED CORTICAL PLASTICITY: NEUROPHYSIOLOGICAL AND FUNCTIONAL CORRELATES IN HEALTH AND

DISEASE

A thesis submitted for the Degree of

DOCTOR OF PHILOSOPHY

by

Siobhan M Schabrun

B. Physio (Hons)

Research Centre for Human Movement Control

Discipline of Physiology

School of Molecular and Biomedical Science

The University of Adelaide University

April 2009

Abstract	vii
Declaration	ix
Acknowledgements	х
List of figures	xi
List of tables	xiii
Aims and general introduction	xiv

1. LITERATURE REVIEW

1.1. The neural control of movement		
1.1.1.	The human motor cortex	1
1.1.2.	The premotor cortex	4
1.1.3.	The corticospinal tract	5
1.1.4.	The somatosensory cortex	6
1.1.5.	Summary	8
1.2. Transc	eranial magnetic stimulation	8
1.2.1.	Cortical motor threshold and MEP amplitude	9
1.2.2.	Cortical mapping	11
1.2.3.	Paired-pulse techniques	12
1.3. Function	onal measures of plastic change in humans	14
1.3.1.	The grip-lift task	15
1.3.2.	Handwriting analysis	16
1.4. Cortica	al plasticity	17
1.4.1.	Mechanisms underlying plastic change	18
1.4.2.	Use-dependent plasticity in humans	21
1.5. Centra	l stimulation: repetitive transcranial magnetic stimulation	24
1.5.1.	High frequency repetitive TMS	24
1.5.2.	Low frequency repetitive TMS	26
1.5.3.	Theta-burst stimulation	28
1.5.4.	Functional correlates of cortical plasticity: the grip-lift task	29
1.6. Periph	eral stimulation: electrical somatosensory stimulation	30

1.6.1.	Associative electrical stimulation	32
1.7. Task-s	pecific focal hand dystonia	33
1.7.1.	Pathophysiology: the role of maladaptive cortical plasticity	34
1.7.2.	Novel rehabilitation strategies	36
1.7.3.	Investigation of function in focal hand dystonia	38
1.8. Summ	ary	39

2. ROLE OF THE PRIMARY MOTOR AND SENSORY CORTEX IN PRECISION GRASPING

2.1.	Abstrac	Abstract		
2.2.	Introdu	Introduction		
2.3.	Method	Methods		
	2.3.1.	Subjects	43	
	2.3.2.	Grip-lift manipulandum	43	
	2.3.3.	Electromyographic (EMG) recording	44	
	2.3.4.	Transcranial magnetic stimulation (TMS)	44	
	2.3.5.	Theta-burst stimulation (TBS)	45	
	2.3.6.	Experimental procedure	45	
	2.3.7.	Simple reaction time studies	46	
	2.3.8.	Data analysis – main experiments	47	
	2.3.9.	Data analysis – simple reaction time studies	48	
2.4.	Results		48	
	2.4.1.	Optimisation of GF _{max} following repeated lifts	49	
	2.4.2.	Effect of TBS on preload duration	49	
	2.4.3.	Effect of TBS on Timeshift _{max}	50	
	2.4.4.	Effect of TBS on a simple reaction time task	52	
2.5.	Discuss	sion	53	
	2.5.1.	Mechanisms of action of TBS	53	
	2.5.2.	Optimisation of GF _{max}	54	
	2.5.3.	Effect of TBS on preload duration	54	

ii

2.5.4	Effect of TBS on Timeshift _{max}	56
2.6. Conc	clusion	59

3. THE ROLE OF THE SUPPLEMENTARY MOTOR AREA IN GRIP FORCE SCALING DURING

PRECISION GRASPING

3.1.	Abstrac	Abstract 6		
3.2.	Introduction			
3.3.	Materia	ls and methods	63	
	3.3.1.	Subjects	63	
	3.3.2.	Grip-lift manipulandum	63	
	3.3.3.	Transcranial magnetic stimulation (TMS)	64	
	3.3.4.	Stimulation sites	64	
	3.3.5.	Experiment 1 - rTMS experiment	65	
	3.3.6.	Experiment 2 - paired pulse TMS	67	
	3.3.7.	Data analysis	67	
	3.3.8.	Statistical analysis	68	
3.4.	Results		68	
	3.4.1.	Experiment 1 – role of left SMA in grip force scaling	68	
	3.4.2.	Experiment 1 - effect of a SMA virtual lesion on preload duration	70	
	3.4.3.	Experiment 2	71	
3.5.	Discuss	ion	72	
3.6.	Conclusions		78	

4. THE INFLUENCE OF CORRELATED AFFERENT INPUT ON MOTOR CORTICAL

REPRESENTATIONS IN HUMANS

4.1. Abstract	79
4.2. Introduction	79

4.3. Methods

	4.3.1.	Electromyographic recording techniques	81
	4.3.2.	Transcranial magnetic stimulation (TMS)	81
	4.3.3.	Mapping procedure	82
	4.3.4.	Associative stimulation	82
	4.3.5.	Motor point non-associative stimulation	83
	4.3.6.	Experimental procedure	83
	4.3.7.	Data analysis	84
4.4.	Results		85
	4.4.1.	Resting motor threshold (RMT)	85
	4.4.2.	Number of active sites	87
	4.4.3.	Map Volume	87
	4.4.4.	Centre of gravity (CoG) measurements	89
4.5.	Discuss	sion	92

5. NORMALISING MOTOR CORTICAL REPRESENTATIONS IN FOCAL HAND DYSTONIA

5.1.	Abstrac	ot la	99
5.2.	. Introduction		99
5.3.	Method	ls	101
	5.3.1.	Clinical rating of focal hand dystonia	102
	5.3.2.	Electromyographic (EMG) recording	103
	5.3.3.	Transcranial magnetic stimulation (TMS)	103
	5.3.4.	Mapping procedure	104

81

	5.3.5.	Handwriting task	104
	5.3.6.	Grip-lift task	105
	5.3.7.	Non-associative stimulation	105
	5.3.8.	Experimental procedure	106
	5.3.9.	Data and statistical analysis	106
		5.3.9.1. Neurophysiological data	106
		5.3.9.2. Handwriting and cyclic drawing data	108
		5.3.9.3. Grip-lift data	108
5.4.	Results		109
	5.4.1.	EMG and resting motor threshold data	110
	5.4.2.	Neurophysiological data	110
	5.4.3.	Behavioural data	114
5.5.	Discuss	sion	116
5.6.	Conclu	sion	125

6. GENERAL DISCUSSION

6.1.	1. The induction of cortical plasticity in the human brain: paradigms and potential	
	mechanisms	126
6.2.	The functional correlates of rTMS and TBS induced plasticity in the neural	
	control of grasp	127
6.3.	The neurophysiological and functional correlates of afferent stimulation in	
	health and disease	131
6.4.	Concluding remarks	136

7. APPENDICES

7.1		Appendix I: Contribution statement Chapter 2	137
7.2		Appendix II: Contribution statement Chapter 4	138
7.3		Appendix III: Contribution statement Chapter 5	139
7.4		Appendix IV: Publications arising from this thesis	141
7.5		Appendix V: Other related publications	142
7.6		Appendix VI: Presentations and abstracts arising from this thesis	143
	7.6.1.	Presentations	143
	7.6.2.	Published abstracts	144

8. **BIBLIOGRAPHY**

145

Abstract

Neuroplasticity provides the basis for many of our most fundamental processes including learning, memory and the recovery of function following injury. This thesis is concerned with the neurophysiological and functional correlates of sensorimotor neuroplasticity in the healthy and focal dystonic populations.

My initial experiments were conducted to determine the functional correlates of neuroplasticity induced in the primary motor (M1) and primary sensory (S1) cortices during a grip lift task. In healthy subjects these experiments further quantified the role of M1 in the anticipatory control of grip force scaling and demonstrated a role for S1 in triggering subsequent phases of the motor plan. My second series of experiments served to extend these findings by examining the functional correlates of neuroplasticity induced in the supplementary motor area (SMA). This study provided evidence for the role of left SMA in the control of grip force scaling and a role for left and right SMA in the synchronization of grip force and load force during the grip-lift synergy.

Afferent input is known to be a powerful driver of cortical reorganisation. In particular, the timing and pattern of afferent input is thought to be crucial to the induction of plastic change. In healthy subjects, I examined the neurophysiological effects of applying "associative" (synchronous) and "non-associative" (asynchronous) patterns of afferent input to the motor points or digits of the hand. I observed an increase in the volume and area of the cortical representation of stimulated muscles when associative stimulation was applied over the motor points of two hand muscles. This pattern of stimulation also caused the centres of gravity of the stimulated muscles to move closer together, mimicking the maladaptive changes seen in

focal hand dystonia. Non-associative stimulation and stimulation applied to the digits did not produce such an effect.

Task-specific focal dystonia is characterised by excessive representational plasticity resulting in cortical representations which are significantly larger, and demonstrate greater overlap, than those seen in healthy individuals. These changes are thought to be driven, in part, by repetitive movement patterns which promote associative patterns of afferent input over an extended time period. On the basis of this knowledge, I applied non-associative stimulation to the hand muscles of dystonic subjects. Following this intervention, I noted a contraction of representational maps and a separation in the centres of gravity of the stimulated muscles. These neurophysiological changes were accompanied by improvements on a cyclic drawing task.

This thesis demonstrates the functional correlates of neuroplasticity in M1, S1 and SMA during object manipulation using a precision grasp. These findings further extend our knowledge on the mechanisms underlying effective grasp control and assist us in the development of future rehabilitation protocols for neurological conditions involving grasp dysfunction. In addition, this thesis is the first to demonstrate an improvement in both neurophysiological and functional measures in focal dystonia following a period of non-associative afferent stimulation. These results open up exciting new avenues for the development of effective treatment protocols in those with focal hand dystonia.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Siobhan Schabrun and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

- <u>Schabrun SM</u>, Stinear CM, Byblow WD and Ridding MC (2008): Normalising motor cortex representations in focal hand dystonia. Cerebral Cortex (*in press, accepted 28th October 2008*).
- <u>Schabrun SM</u>, Ridding MC and Miles TS (2008): Role of the primary motor and sensory cortex in precision grasping: a transcranial magnetic stimulation study. European Journal of Neuroscience 27 (3): 750-756.
- <u>Schabrun SM</u> and Ridding MC (2007): The influence of correlated afferent input on motor cortical representations in humans. Experimental Brain Research 183: 41- 49.

SIGNED.....

DATED.....

Acknowledgements

I would like to express my gratitude to my three supervisors:

Dr. Michael Ridding for his support, guidance, endless knowledge of concepts and techniques and for encouraging and developing my passion for research. I have truly enjoyed my PhD experience.

Dr. Susan Hillier for her advice, constant support and invaluable clinical perspective. Thank you for always being available to listen.

Professor Tim Miles for his expansive knowledge of neuroscience and for encouraging me to always strive for perfection.

I would also like to extend a special thank you to Dr. Cathy Stinear and Professor Winston Byblow for generously allowing me to use their lab space and for their assistance in recruiting participants with focal hand dystonia. Special thanks also to Mr. Stanley Flavel and Christie McShane for their assistance in the laboratory and to Professor Mike Nordstrom and Dr. Julia Pitcher for their helpful comments on this thesis.

Finally, thank you to all the people who volunteered as subjects in my experiments, generously giving their time in the name of research. Your contribution has been invaluable.

List of figures

Chapter 2: Role of M1 and S1 in precision grasping

FIGURE 2.1	Example of grip force and load force traces	47
FIGURE 2.2	Mean preload duration under each experimental condition	50
FIGURE 2.3	Mean Timeshift _{max} under each experimental condition	51
FIGURE 2.4	$Timeshift_{max}$ at the point of maximal correlation under each	
	experimental condition	52

Chapter 3: Role of SMA in precision grasping

FIGURE 3.1	Coil position for optimal stimulation of left and right SMA	65
FIGURE 3.2	Effect of each experimental condition on peak grip force	69
FIGURE 3.3	Effect of each experimental condition on preload duration	71
FIGURE 3.4	Time course of the SMA contribution to grip force scaling	72

Chapter 4: Correlated afferent input and M1 representations

FIGURE 4.1a	Motor maps of FDI and ADM before and after motor point	
	associative stimulation	88
FIGURE 4.1b	Motor maps of FDI and ADM before and after motor point	
	non-associative stimulation	89
FIGURE 4.2	Directional shifts in the motor maps of FDI, ADM and APB following	
	motor point associative stimulation	90
FIGURE 4.3	Distance between the centre of gravity of FDI and ADM before and	
	after each experimental condition	91

Chapter 5: Normalising representations in FHD

FIGURE 5.1	Number of active sites and map volume for each muscle before and after	
	non-associative stimulation in the dystonic and control groups	111
FIGURE 5.2	Cortical representation obtained for FDI and APB before and after	
	non-associative stimulation in one dystonic and one control subject	112
FIGURE 5.3	Distance between the centre of gravity of each muscle pair before and	
	after non-associative stimulation in the dystonic and control groups	113
FIGURE 5.4	Correlation between FDI and APB centres of gravity and improvements	
	in cyclic drawing in dystonic subjects	115

List of tables

Chapter 2: Role of M1 and S1 in precision grasping

TABLE 2.1	Mean values for grip-lift parameters analysed under each stimulation		
	condition	49	
Chapter 3: R	ole of SMA in precision grasping		
TABLE 3.1	Mean values of movement parameters gathered under each stimulation		
	condition	70	
Chapter 4: Correlated afferent input and M1 representations			
TABLE 4.1	Motor map variables for FDI, ADM and APB under each stimulation		
	condition	86	
Chapter 5: N	ormalising representations in FHD		
TABLE 5.1	Characteristics of FHD participants	102	
TABLE 5.2	Mean values for all EMG and mapping data	109	
TABLE 5.3	Mean values for all handwriting and grip-lift data	114	

Aims and general introduction

In recent years our understanding of the human central nervous system has advanced considerably. Where the structure and function of the adult central nervous system was once thought to be static, it is now clear that this system retains the ability to restructure and reorganise throughout life. This property, known as plasticity, is of significant importance in learning and memory, and is likely to play a key role in recovery of motor function following injury.

Reorganisation of the human cortex has been demonstrated using a number of experimental paradigms. However, evidence for a concomitant and related functional effect is limited. Investigation of the functional effects associated with cortical reorganisation is of critical importance if novel and effective rehabilitation strategies are to be developed for those with neurological conditions.

The neurophysiological correlates of cortical plasticity may be measured using transcranial magnetic stimulation (TMS). Using the principles of electromagnetic induction, TMS triggers neuronal depolarisation and the propagation of a descending volley of action potentials in the corticospinal tract. This volley activates motor neurons and induces a transient electromyographical (EMG) response in the target muscle known as a motor evoked potential (MEP). Changes in MEP amplitude reflect changes in the excitability of the corticospinal projection to the target muscle and are used as a marker of plasticity induction. TMS may also be applied repetitively (rTMS) as a tool to induce cortical reorganisation. This approach can be used to induce a temporary "virtual lesion" that interrupts activity in a specific cortical region or, by altering the frequency, intensity or direction of the stimulation,

rTMS can be used to transiently alter synaptic strength. The functional correlates of rTMSinduced plasticity may then be determined.

In my first series of experiments I used the technique of rTMS to induce plasticity in the primary motor (M1) and primary sensory (S1) cortices of healthy subjects performing a griplift task. The grip-lift task has been shown to be a sensitive, objective measure of hand dexterity in both healthy subjects and in those with neurological conditions. As one limitation of previous studies has been the use of functional measures with insufficient sensitivity to detect subtle changes in performance, a grip-lift apparatus was considered the most appropriate tool for this study. The results of this study, detailed in Chapter 2, demonstrate functional effects which are highly correlated with the induction of plasticity in M1 and S1. Specifically, rTMS applied over M1 disrupted the ability to accurately anticipate the grip force needed to lift a small object, while rTMS applied over S1 hampered the ability to initiate subsequent phases of the motor plan.

A second series of experiments extended these findings by applying rTMS over the supplementary motor area (SMA) using a similar paradigm and the same grip-lift task. In healthy subjects, application of rTMS led to changes in the temporal and dynamic aspects of the grip-lift task and these changes demonstrated a hemispheric lateralisation. Disruption to left SMA produced a significant increase in the grip force needed to lift an object regardless of the hand used in the task. Conversely, disruption to right SMA reduced the synchronisation of the grip force to the object load force. These experiments are described in Chapter 3.

In animal models, temporally coupled afferent inputs have been shown to induce cortical reorganisation characterised by expansion and greater overlap of representational zones. In human subjects, paradigms utilising this "associative input" have also been shown to induce plastic change. However, it is unclear whether plasticity induced by associative afferent input

in human subjects is characterised by representational changes analogous to those seen in animal studies. This question was addressed in Chapter 4. I used a period of associative afferent stimulation applied to two hand muscles or two digits in healthy individuals and contrasted these findings with a period of non-associative afferent stimulation. Subjects receiving associative stimulation to the motor points demonstrated cortical representations which were larger in both area and volume and centred closer together. These changes were not present following associative stimulation applied to the digits or following nonassociative stimulation.

A number of neurological conditions are thought to involve abnormal cortical plasticity. In particular, task-specific focal hand dystonia (FHD) is a debilitating neurological condition characterised by aberrant and maladaptive cortical plasticity. Previous studies have shown that cortical representations in FHD are significantly larger and demonstrate greater overlap than those in healthy individuals. While the exact mechanism is unclear, it appears that a genetic predisposition coupled with repeated exposure to associative afferent inputs may trigger maladaptive cortical reorganisation. Based on this, the experiments described in Chapter 5 tested the hypothesis that non-associative stimulation applied to the motor points of affected hand muscles would promote normalisation of cortical representations and alleviate symptoms in FHD. All subjects performed a grip-lift and a handwriting task before receiving 1 hour of non-associative stimulation. A decrease in the volume and area of cortical representations, and a separation in the centres of gravity for the stimulated muscles, was observed. These changes were correlated with a functional improvement in the variability of cyclic drawing, suggesting that the induction of plasticity using a non-associative stimulation paradigm may be an exciting avenue for the development of novel and effective treatment strategies in FHD.