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This paper considers a nonparametric time series regression model with a nonsta-
tionary regressor. We construct a nonparametric test for whether the regression is of
a known parametric form indexed by a vector of unknown parameters. We establish
the asymptotic distribution of the proposed test statistic. Both the setting and the
results differ from earlier work on nonparametric time series regression with sta-
tionarity. In addition, we develop a bootstrap simulation scheme for the selection of
suitable bandwidth parameters involved in the kernel test as well as the choice of
simulated critical values. An example of implementation is given to show that the
proposed test works in practice.

1. INTRODUCTION

During the past two decades or so, there has been much interest in both theoretical
and empirical analysis of long-run economic and financial time series data. Mod-
els and methods used have been based initially on parametric linear autoregres-
sive moving average representations (Granger and Newbold, 1977; Brockwell and
Davis, 1990; and many others) and then on parametric nonlinear time series mod-
els (see, e.g., Tong, 1990; Granger and Teräsvirta, 1993; Fan and Yao, 2003). Such
parametric linear or nonlinear models, as already pointed out in existing studies,
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may be too restrictive in some cases. This leads to various nonparametric and
semiparametric techniques being used to model nonlinear time series data with the
focus of attention being on the case where the observed time series satisfies a type
of stationarity. Both estimation and specification testing has been systematically
examined in this situation (Robinson, 1988, 1989; Masry and Tjøstheim, 1995,
1997; Li and Wang, 1998; Li, 1999; Fan and Linton, 2003; Fan and Yao, 2003;
Gao, 2007; Li and Racine, 2007; and others).

The stationarity assumption is restrictive because many time series are non-
stationary. There is now a large literature on linear modeling of nonstationary
time series (see, for example, Dickey and Fuller, 1979; Phillips, 1987, 1997;
Phillips and Perron, 1988; Lobato and Robinson, 1998; Phillips and Xiao, 1998;
Kapetanios, Shin, and Snell, 2003; Robinson, 2003; and others), but not much has
been done in the nonlinear situation. In parametric nonlinear and nonparametric
nonlinear time series models with nonstationarity, existing studies include Phillips
and Park (PP) (1998), Karlsen and Tjøstheim (KT) (1998, 2001), Park and Phillips
(PP) (2001), Wang and Phillips (WP) (2009), Karlsen, Myklebust, and Tjøstheim
(KMT) (2007), Phillips (2007), and Chen, Gao, and Li (CGL) (2008). The paper
by PP (1998) was among the first to discuss nonparametric kernel estimation in a
nonparametric autoregression model with integrated regressors. KT (1998, 2001)
independently discuss nonparametric kernel estimation of null recurrent time se-
ries. The paper by PP (2001) discusses estimation problems in various parametric
nonlinear models with integrated regressors. WP (2006) develop an alternative ap-
proach to nonparametric kernel estimation in both autoregression and cointegra-
tion models with integrated regressors. The KMT (2007) paper provides a class
of nonparametric versions of some of those parametric models proposed in Engle
and Granger (1987). Phillips (2007) discusses a nonparametric setting of paramet-
ric spurious time series models initially proposed in Granger and Newbold (1974)
and then Phillips (1986). More recently, CGL (2008) propose a semiparametric
estimation in a partially linear model with nonstationarity.

In the field of model specification with nonstationarity, there are some exist-
ing studies (see, for example, Hong and Phillips, 2005; Kasparis, 2007, 2008;
and Vadim, 2008). All the cited papers consider specification testing in time
series regression with unit roots. The first two papers consider model specifica-
tion testing in a cointegration setting, while the third paper discusses the appli-
cability of the Bierens test in a class of nonlinear and nonstationary models and
establishes some corresponding results. The last paper develops a functional form
test in dealing with nonlinearity, nonstationarity, and spurious forecasts. In the
original version of this paper, Gao, King, Lu, and Tjøstheim (2007) also pro-
pose using a nonparametric kernel test for nonstationarity in an autoregressive
model.

In this paper, we are interested in considering a nonlinear time series of the
form

Yt = m(Xt )+σ0 et with Xt = Xt−1 +ut , t = 1,2, . . . ,T, (1.1)
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where m(·) is an unknown function defined over R1 = (−∞,∞), σ0 > 0 is an
unknown parameter, {ut } is a sequence of independent and identically distributed
(i.i.d.) errors, and {et } is a sequence of martingale differences. We are then inter-
ested in testing the following null hypothesis:

H0 : P
(
m(Xt ) = mθ0(Xt )

)= 1 for all t ≥ 1, (1.2)

where mθ0(x) is a known parametric function of x indexed by a vector of unknown
parameters, θ0 ∈ �. Under H0, model (1.1) becomes a nonlinear parametric model
of the form

Yt = mθ0(Xt )+σ0 et with Xt = Xt−1 +ut , t = 1,2, . . . ,T . (1.3)

PP (2001) extensively discuss some estimation problems for this kind of paramet-
ric nonlinear time series model.

To the best of our knowledge, the problem of testing (1.2) for the case where
{Xt } is nonstationary has not been discussed. This paper attempts to derive a sim-
ple kernel test for this kind of parametric specification of the conditional mean
function when the regressors are integrated. In summary, the main contributions
of this paper are:

(i) We propose a new test statistic for model (1.2). Theoretical properties for
the proposed test statistic are established.

(ii) In order to implement the proposed test in practice, we develop a new sim-
ulation procedure based on the assessment of both the size and power of
the proposed test.

The rest of the paper is organized as follows: Section 2 establishes a nonpara-
metric kernel test procedure as well as its asymptotic distribution. A bootstrap
simulation scheme is proposed in Section 3. Section 4 shows how to implement
the proposed test in practice. Section 5 concludes with some remarks on ex-
tensions. Mathematical details are given in the Appendix. Additional details are
available from Appendixes B–D of the original version by Gao et al. (2007).

2. NONPARAMETRIC KERNEL TEST

Consider a test problem of the form

H0 : P(m(Xt ) = mθ0(Xt ))=1 versus

H1 : P(m(Xt )=mθ1(Xt )+�T (Xt ,θ1))=1 (2.1)

for all t ≥ 1 and some θ1 ∈ � (a parameter space), where θ0 ∈ � denotes the
true value of θ if H0 is true, and �T (·,θ1) is a sequence of unknown functions to
ensure that model (1.1) is a semiparametric time series model under H1.

Note that each �T (x,θ1) behaves like a kind of “distance” function between
the null and alternative hypotheses. Such structure allows the inclusion of either a
global alternative or a sequence of local alternatives. When �T (x,θ1) ≡ �(x,θ1),
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we are interested in testing a parametric conditional mean function versus a global
semiparametric conditional mean function. We are testing a parametric condi-
tional mean function against a sequence of local alternatives when {�T (x,θ1)} is
a sequence of semiparametric functions.

To construct a nonparametric kernel test, the main idea is to compare a para-
metric estimator of m(·) under H0 with a nonparametric kernel estimator. In order
to avoid introducing biases associated with nonparametric kernel estimation (Gao
and King, 2004), we use a smoothed version of the parametric estimator in the
construction.

Similarly to existing studies for the stationary time series case (see, for exam-
ple, Chap. 3 of Gao, 2007), we propose using a kernel-based test of the form

MT = MT (h) =
T

∑
t=1

T

∑
s=1,�=t

ε̂s Kh(Xt − Xs) ε̂t , (2.2)

where Kh(·) = K (·/h) with K (·) being a probability kernel function, h is a band-
width parameter, and ε̂t = Yt − m θ̂ (Xt ), in which θ̂ is a consistent estimator of

θ0 under H0. In this paper, we consider θ̂ as the nonlinear least squares estimator
of θ0 as defined in PP (2001).

In order to establish the asymptotic distribution for MT , we need to introduce
the following assumption.

Assumption 2.1.

(i) The sequence {ut = Xt − Xt−1} is a sequence of i.i.d. random errors with
E[ut ] = 0, E[u2

t ] = σ 2
u , and μ4 = E[u4

t ] < ∞. The marginal density func-
tion of {ut } is symmetric. The characteristic function ψ(·) of {ut } satisfies∫∞
−∞ |ψ(v)|dv < ∞.

(ii) The sequence {et } is a sequence of martingale differences satisfying E[et

|Bt−1] = 0, E[e2
t |Bt−1] = 1 a.s., E[e3

t |Bt−1] = 0 a.s., and 0 < ν4 = E[e4
t

|Bt−1] < ∞ a.s., where Bt−1 = σ{es : 1 ≤ s ≤ t −1} is the σ -field gener-
ated by {es : 1 ≤ s ≤ t −1}.

(iii) The sequences {us : s ≥ 1} and {et : t ≥ 1} are mutually independent.

(iv) The function K (·) is a symmetric and bounded probability density with
compact support C(K ). In addition, |K (x + y)− K (x)| ≤ 	(x)|y| for all
x ∈ C(K ) and any given y, where 	(x) is a nonnegative bounded function
for all x ∈ C(K ). Let K (3)(·) denote the three-time convolution of K (·)
with itself.

Let QT (θ) = 1/T ∑T
t=1(Yt − mθ (Xt ))

2. Define the nonlinear least squares es-
timator of θ0 as the minimizer of QT (θ) over θ ∈ �: θ̂ = argminθ∈� QT (θ).

Assumption 2.2.

(i) There are unknown parameters θ0 and σ0 > 0 such that model (1.3) under
H0 is the true identifiable model.
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(ii) Here, limT →∞ h = 0 and limsupT →∞ T (1/2)−δ0 h = ∞ for some 0 < δ0 <
1/5.

(iii) The function mθ (x) is differentiable with respect to θ for each fixed x . In
addition, under Hi (i = 0,1) the following equations hold in probability:
for 0 < δ0 < 1/5 (τ denotes the transposed),

lim
T →∞

Rij(T )h√(
T (3/2)−2δ0 h

) j

(
(θ̂ − θi )

τ (θ̂ − θi )
) j = 0, (2.3)

where, for i = 0,1, j = 1,2, and Rij(T ) = ∑T
t=2 ∑t−1

s=1
1√
s

1√
t−s

rij(s) with

rij(s) =
∫ {(

∂mθi (x)

∂θ

)τ (∂mθi (x)

∂θ

)} j

φ

(
x√
s

)
dx,

in which φ(·) is the density function of the normal random variable N (0,1).

Remark 2.1.
(i) Assumption 2.1(i) requires {ut } to be i.i.d. in order to ensure that St =

∑t
i=1 Xi have independent increments for all t ≥ 1. The last sentence of Assump-

tion 2.1(i) imposes a mild condition on the characteristic function, and it holds
in many cases. The condition

∫∞
−∞ |ψ(v)|dv < ∞ ensures certain convergence

results. Let φT (x) be the density function of 1/
√

T σu ∑T
t=1 ut . Then Assumption

2.1(i) implies supx |φT (x)−φ(x)| → 0 as T → ∞, where φ(x) = 1/
√

2πe−x2/2

is the density function of the standard normal random variable N (0,1). The proof
is standard (see, for example, Chaps. 8 and 9 of Chow and Teicher, 1988).

Assumption 2.1(ii) is quite standard in this kind of problem (see, for example,
Ass. 2.1 of PP, 2001). Obviously, Assumption 2.1(ii) covers the case where {et } is
a sequence of i.i.d. errors. Assumption 2.1(iii) imposes the independence between
{es} and {ut } for all s, t ≥ 1. Such an independence assumption is somewhat re-
strictive but may not be too unreasonable in this kind of nonstationary problem.
Assumption 2.1(iv) is also quite standard in this kind of nonstationary situation.

(ii) Assumption 2.2(i) ensures that the true model (1.3) under H0 is identifi-
able. Assumption 2.2(ii) imposes some minimum conditions on the bandwidth.
Assumption 2.2(iii) imposes some technical conditions involving both the form
of mθ0(·) and the rate of convergence of θ̂ to θ0. For example, when mθ0(x) =
α0 +β0x and the rate of convergence of θ̂ to θ0 is of oP (T 3/8+δ0/2h1/4)−1, As-
sumption 2.2(iii) holds with i = 0. In the case where mθ1(x) = α1 +β1x +γ1x(1−
exp(−λ1x2)) and the rate of convergence of θ̂ to θ1 is of oP(T 7/8+δ0/2h1/4)−1,
Assumption 2.2(iii) holds with i = 1.

We state the main theorem of this section; its proof is given in the Appendix.

THEOREM 2.1. Consider model (1.1). Suppose that Assumptions 2.1–2.2 hold
with i = 0 in Assumption 2.2(iii). Then, under H0,
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L̂T = L̂T (h) = MT (h)

σ̂T
→D N (0,1) as T → ∞,

where σ̂ 2
T = 2∑T

t=1 ∑T
s=1,�=t ε̂

2
s K 2

h (Xs − Xt ) ε̂2
t .

Theorem 2.1 shows that L̂T (h) converges in distribution to standard normality
as T → ∞. Existing studies for the stationary time series case already discuss
the small sample performance of this type of nonparametric kernel-based test.
When using a normal distribution to approximate the exact finite-sample distribu-
tion of this kind of test, the performance of both the size and power functions is
not good. In order to improve the finite sample performance of L̂T (h), we pro-
pose using a bootstrap simulation method. Such a method is known to work quite
well in the stationary case. For each given bandwidth satisfying certain theoretical
conditions, instead of using an asymptotic value of l0.05 = 1.645 at the 5% level,
for example, we use a simulated critical value for computing the size function
and then the power function. An optimal bandwidth is chosen such that the power
function is maximized at the optimal bandwidth. Our finite-sample studies show
that there is little size distortion when using such a simulated critical value. Such
issues are discussed in detail in Section 3.

3. BOOTSTRAP SIMULATION SCHEME

Section 3 discusses how to simulate a critical value for the implementation of
L̂T (h) in each case. We then examine its finite sample performance using one
example in Section 4, below.

Before we look at how to implement L̂T (h) in practice, we propose a simulation
scheme.

Simulation Scheme 3.1

The exact α-level critical value, lα(h) (0 < α < 1), is the 1 − α quantile of the
exact finite-sample distribution of L̂T (h). Because there are unknown quantities,
such as parameters and functions, we cannot evaluate lα(h) in practice. We there-
fore suggest choosing an approximate α-level critical value, l∗α(h) by using the
following simulation procedure:

(i) For each t = 1,2, . . . ,T , generate Y ∗
t = m θ̂ (Xt )+ σ̂0 e∗

t , where the orig-
inal sample (X1, . . . , XT ) acts in the resampling as a fixed design, {e∗

t }
is sampled independently either from a prespecified distribution or using
a nonparametric bootstrap method, σ̂0 is an initial consistent estimator
of σ0, and θ̂ is the nonlinear least squares estimator of θ0 based on the
original sample.

(ii) Use the data set {(Y ∗
t , Xt ) : t = 1,2, . . . ,T } to reestimate (θ0,σ0). Denote

the resulting estimate by (θ̂∗, σ̂ ∗). Compute the statistic L̂∗
T (h) that is the

corresponding version of L̂T (h) by replacing (θ̂ , σ̂ ) and {(Yt , Xt ) : 1 ≤
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t ≤ T } with (θ̂∗, σ̂ ∗) and {(Y ∗
t , Xt ) : 1 ≤ t ≤ T } on the right-hand side of

L̂T (h).

(iii) Repeat the above steps M times and produce M versions of L̂∗
T (h),

denoted by L̂∗
Tm(h) for m = 1,2, . . . , M . Use the M values of L̂∗

Tm(h)
to construct their empirical bootstrap distribution function. The bootstrap
distribution of L̂∗

T (h) given WT = {(Xt ,Yt ) : 1 ≤ t ≤ T } is defined by
P∗(L̂∗

T (h) ≤ x) = P(L̂∗
T (h) ≤ x |WT ). Let l∗α(h) satisfy P∗(L̂∗

T (h) ≥
l∗α(h)) = α and then estimate lα(h) by l∗α(h).

(iv) Define the size and power functions by

α(h) = P(L̂T (h) ≥ l∗α(h)|H0) and β(h) = P(L̂T (h) ≥ l∗α(h)|H1).

In practice, both α(h) and β(h) may be approximated using Edgeworth expan-
sions similarly to (3.23) and (3.24) of Gao (2007).

In order to study both the size and power functions, we specify the form of a
sequence of alternatives as

H1 : P
(
m(Xt ) = mθ1(Xt )+�T (Xt ,θ1)

)= 1, (3.1)

where {�T (x,θ1)} is a sequence of unknown functions satisfying certain condi-
tions in Assumption 3.2 below. Under H1, model (1.1) becomes

Yt = m(Xt )+ εt = mθ1(Xt )+�T (Xt ,θ1)+ εt , (3.2)

where �T (x,θ1) can be estimated by �̂T (x, θ̂1), in which θ̂1 minimizes

T

∑
t=1

(
Yt −mθ1(Xt )− �̂T (Xt ,θ1)

)2
, (3.3)

and �̂T (x,θ1) = (∑T
t=1 Kb̂cv

(Xt − x)(Yt −mθ1(Xt ))
)
/
(

∑T
t=1 Kb̂cv

(Xt − x)
)
, with

b̂cv being chosen by a conventional cross-validation estimation method.
Similarly to the proof of Proposition 3.1 of Gao and Gijbels (2008) for the

stationary case, it may be shown that limT →∞ (�̂T (x, θ̂1))/(�T (x,θ1)) = 1 in
probability for each given x . Since both the establishment and the proof of such a
consistency result require more detailed discussion, we wish to leave such details
for future research.

Let HT = {h : α−ε0 < α(h) < α+ε0} for some 0 < ε0 < α. Choose an optimal
bandwidth ĥtest such that

ĥtest = arg max
h∈HT

β(h). (3.4)

Since {et } is stationary, existing results (Sect. 3 of Gao and Gijbels, 2008) sug-
gest using an approximate version of the form

ĥtest = â−1/2Ĉ−3/2
T , (3.5)
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where Ĉ2
T = ∑T

t=1 �̂2(Xt ,θ̂1) p̂(Xt )

μ̂2

√
2ν̂2

∫
K 2(v)dv

and â =
√

2K (3)(0)

3
(√∫

K 2(u)du
)3 ĉ(p) with ĉ(p) =

1
T ∑T

t=1 p̂2(Xt )(√
1
T ∑T

t=1 p̂(Xt )
)3 , in which μ̂2 = 1

T ∑T
t=1(Yt − m θ̂ (Xt ))

2, ν̂2 = 1
T ∑T

t=1 p̂2(Xt ),

p̂(x) = 1√
T ĥcv

∑T
t=1 K ( Xt −x

ĥcv
) with ĥcv being chosen by a conventional cross-

validation selection method, and K (3)(·) is the three-time convolution of K (·)
with itself.

We then use l∗α(ĥtest) in the computation of both the size and power values of
L̂T (ĥtest) for each case.

Note that, as shown in the Appendix, the leading term of L̂T (h) is given by

L̃T (h) = ∑T
t=1 ∑T

s=1,�=t εs Kh(Xt − Xs) εt

σT 1

+ ∑T
t=1 ∑T

s=1,�=t �T (Xs) Kh(Xt − Xs) �T (Xt )

σT 1
, (3.6)

where σ 2
T 1 is proportional to T 3/2h as explicitly given in Lemma A.1 of the

Appendix.
Equation (3.6) shows that the first term contributes to the asymptotic normality

under H0 and the second term contributes to the asymptotic consistency of the
test under H1. Thus, in order to ensure that the test statistic is asymptotically
consistent, we need to impose Assumptions 3.1 and 3.2 below.

Assumption 3.1.

(i) There are consistent estimators σ̂ ∗ and σ̂ such that, as T → ∞, σ̂ −σ0 →P

0 and σ̂ ∗ − σ̂ →P 0.

(ii) Let H0 be true. Then the following equation holds in probability: for 0 <
δ0 < 1/5,

lim
T →∞

R̂j (T )h√(
T (3/2)−2δ0 h

) j

(
θ̂∗ − θ̂

)τ (
θ̂∗ − θ̂

) j = 0, (3.7)

where, for j = 1,2, R̂j (T ) = ∑T
t=2 ∑t−1

s=1
1√
s

1√
t−s

r̂j (s) with

r̂j (s) =
∫ {(

∂m θ̂ (x)

∂θ

)τ (∂m θ̂ (x)

∂θ

)} j

φ

(
x√
s

)
dx.

Assumption 3.2. Let H1 be true. Suppose that Assumption 2.2(iii) holds with
i = 1. In addition, the following equation holds for 0 < δ0 < 1/5:

lim
T →∞

D(T )
√

h

T (3/4)−δ0
= ∞, (3.8)

where D(T ) = ∑T
t=2 ∑t−1

s=1
1√
s

1√
t−s

CT (s) with CT (s) = ∫ �2
T (x,θ1)φ

( x√
s

)
dx.
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Assumption 3.1(i) imposes only mild consistency conditions on σ̂ ∗ and σ̂ to
ensure that the bootstrap critical value l∗α(h) is an asymptotically correct α-level
critical value under any model in H0. Similarly to Corollary 4.4 of PP (2001),
one may impose conditions on the local integrability or the integrability of mθ (·)
to ensure that Assumption 3.1(i) holds. Assumption 3.1(ii) corresponds to As-
sumption 2.2(iii) with i = 0. Similarly to Remark 2.1(iii), it can be verified that
Assumption 3.1(ii) holds when mθ (x) belongs to a class of parametric functions.

Assumption 3.2 requires that the “distance” between H0 and H1 is large enough
to ensure that the test is consistent under H1. Similarly to Assumption 2.2(iii),
Assumption 3.2 involves both the form of mθ1(·) under H1 and the rate of conver-
gence of θ̂ to θ1 when the form of m(x) is chosen as m(x) = mθ1(x)+�T (x,θ1).
In both theory and practice, various forms may be considered for mθ0(·) and m(·).
For example, we consider the following forms:

H0 : mθ0(x) = α0 +β0x versus

H1 : m(x) = mθ1(x)+�T (x,θ1) = α1 +β1x +γ1x2, (3.9)

where θ0 = (α0,β0) is estimated by θ̂ , and −∞ < α1,β1,γ1 < ∞ are unknown
parameters. In this case, in order to verify Assumption 3.2, it suffices to show that,
as T → ∞,

E
[

∑T
t=2 ∑t−1

s=1 X2
s Kh(Xt − Xs) X2

t

]
T 3/4−δ0

→ ∞, (3.10)

which follows from (letting Xst = Xt − Xs)

T

∑
t=2

t−1

∑
s=1

E

[
X2

s K

(
Xt − Xs

h

)
X2

t

]

=
T

∑
t=2

t−1

∑
s=1

E

[
X2

s K

(
Xt − Xs

h

)
(Xs + Xt − Xs)

2
]

=
T

∑
t=2

t−1

∑
s=1

∫ ∫
x2

s K
( xst

h

)
(xs + xst)

2 fs(xs) fst(xst)dxs dxst

(letting ys = xs and yst = xst/h)

= h
T

∑
t=2

t−1

∑
s=1

∫ ∫
y2

s K ( yst)( ys + ysth)2 fs( ys) fst( ysth)dys dyst

= h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

∫ ∫
x4 K ( y)gs

(
x√
s

)
gst

(
yh√
t − s

)
dxdy
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= φ(0) h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

(∫
x4φ

(
x√
s

)
dx

) ∫
K ( y)dy

= φ(0) h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

∫
x4φ

(
x√
s

)
dx

= C T 7/2 h(1+o(1)), (3.11)

which follows by using the normal distribution approximation method as outlined
in the proof of Lemma A.1 in the Appendix, where fs(·) denotes the density func-
tion of Xs fst(·) denotes the density function of Xt − Xs , gs(·) denotes the density
function of Xs/

√
s, and gst(·) denotes the density function of (Xt − Xs)/

√
t − s.

This shows that Assumption 3.2 holds.
In general, we may consider testing various classes of parametric functions un-

der H0 against nonparametric and/or semiparametric alternatives under H1. This
is both theoretically justifiable and practically implementable, because, as demon-
strated by PP (2001, Thms. 5.1 and 5.2), the rate of convergence for one class can
be different from that for another class.

We state the following results of this section.

THEOREM 3.1.

(i) Assume that the conditions of Theorem 2.1 hold. In addition, if Assumption
3.1 holds, then under H0, we have limT →∞ P(L̂T (h) ≥ l∗α(h)) = α.

(ii) Assume that the conditions of Theorem 2.1 hold. In addition, if Assumptions
3.1 and 3.2 hold, then under H1, we have limT →∞ P(L̂T (h) ≥ l∗α(h)) = 1.

The proof of Theorem 3.1 is given in the Appendix. Theorem 3.1(i) implies that
each l∗α(h) is an asymptotically correct α-level critical value under any model in
H0, and Theorem 3.1(ii) shows that L̂T is asymptotically consistent. In Section 4
we illustrate Theorem 3.1 using a simulated example.

4. AN EXAMPLE OF IMPLEMENTATION

This section studies the finite-sample properties of the size and power functions
of the proposed test.

Example 4.1

Consider a nonlinear time series model of the form

Yt = m(Xt ,θ)+ et and Xt = Xt−1 +ut , t = 1,2, . . . , (4.1)

where {et } is a sequence of i.i.d. N(0,1), {ut } is also a sequence of i.i.d. N(0,1),
X0 = 0, and the forms of m(x,θ) are given as follows:

H0 : m(x,θ0) = θ0 x versus H1 : m(x,θ1) = θ11x + θ12 x2 and (4.2)

H0 : m(x,θ0) = θ0 x versus H1 : m(x,θ1) = θ21x + θ22x (1− e−θ23 x2
), (4.3)
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where the θ ’s are chosen as follows: Case 1: θ0 = θ11 = θ21 = 1 and θ12 = θ22 =
θ23 = 0.08; Case 2: θ0 = θ11 = θ21 = 1 and θ12 = θ22 = 0.05. Note that Assump-
tions 2.2 and 3.2 both hold in this case. The form of m(x,θ1) in (4.3) has been
used in Kapetanios et al. (2003).

In this section, we use an ordinary least squares (OLS) method to estimate the
unknown parameters involved in the models under H0 and the proposed estima-
tion method in (3.3) for the unknown parameters and functions under H1. In order
to compare the performance of the proposed test based on different bandwidths,
we evaluate the finite-sample performance of the proposed test associated with
both the power-based optimal bandwidth ĥtest in (3.4) and an estimation-based
optimal bandwidth of the form ĥcv = argminh∈HT

1
T ∑T

i=1(Yi − m̂−i (Xi ; h))2, in

which m̂−i (Xi ; h) = (∑T
j=1,�=i K

( X j −Xi
h

)
Yj
)
/
(

∑T
l=1,�=i K

( Xl−Xi
h

))
with K (x) =

|x |I[−1,1](x) and HT = [T −1,T −(1−δ)] is chosen such that both small and rela-
tively large bandwidth values may be selected, where 0 < δ < 1.

Note that ĥtest and ĥcv each has one version under H0, but both have two ver-
sions for Cases 1 and 2 under H1. To use some simple notation, we introduce
hi test = ĥtest and hicv = ĥcv for i = 0,1,2 to represent h0test and h0cv
under H0, and hi test and hicv under H1 for Cases i with i = 1,2. We then de-
fine Li test = L̂T (hi test) and Licv = L̂T (hicv) for i = 0,1,2. For i = 0,1,2, let
fi test denote the frequency of Li test > l∗α(hi test) and ficv denote the frequency
of Licv > l∗α(hicv). We consider cases where the number of replications in each
of the sample versions of the size and power functions was M = 1,000, with
B = 250 bootstrapping resamples {e∗

t } (involved in Simulation Scheme 3.1) from
the standard normal distribution N (0,1); the simulations were done for the cases
of T = 80, 200, 500, and 800.

Tables 4.1 and 4.2 show that both the proposed test and the proposed simulation
scheme are implementable and work well numerically for the cointegration case.
First, the augmented test based on ĥtest is more powerful than that associated
with ĥcv in each case. Second, Tables 4.1 and 4.2 show that the proposed test is
applicable to both linear and nonlinear alternatives. Third, Table 4.2 shows that
the proposed test still has power even when the “distance” between the null and
an alternative is made deliberately close. For example, when θ12 and θ22 are made

TABLE 4.1. Simulated sizes at the 1%, 5%, and 10% levels

1% level 5% level 10% level

T f0cv & f0test f0cv & f0test f0cv & f0test
80 0.0090 0.0080 0.0400 0.0420 0.0930 0.0920

200 0.0080 0.0060 0.0560 0.0530 0.1050 0.1060
500 0.0110 0.0160 0.0480 0.0540 0.0930 0.0970
800 0.0130 0.0090 0.0520 0.0460 0.1090 0.0990
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TABLE 4.2. Simulated power values at the 1%, 5%, and 10% levels

Model (4.2) Model (4.3)

T f1cv f2cv f1test f2test f1cv f2cv f1test f2test

1% level
80 0.0120 0.0100 0.0090 0.0090 0.0230 0.0200 0.0400 0.0290

200 0.0460 0.0380 0.0580 0.0410 0.2300 0.1370 0.2680 0.1580
500 0.3180 0.2300 0.3940 0.2960 0.7740 0.6600 0.8290 0.7320
800 0.6160 0.5230 0.7120 0.6300 0.9350 0.8880 0.9610 0.9290

5% level
80 0.0580 0.0550 0.0590 0.0540 0.1190 0.1010 0.1240 0.1030

200 0.1230 0.0990 0.1320 0.1120 0.4220 0.3200 0.4580 0.3520
500 0.4990 0.4070 0.5850 0.4920 0.8830 0.8070 0.9070 0.8530
800 0.7520 0.6740 0.8360 0.7700 0.9660 0.9380 0.9810 0.9680

10% level
80 0.1110 0.1030 0.1150 0.1120 0.1880 0.1660 0.1970 0.1610

200 0.2130 0.1730 0.2240 0.1790 0.5340 0.4410 0.5630 0.4690
500 0.6150 0.5300 0.6850 0.6050 0.9120 0.8620 0.9320 0.9010
800 0.8220 0.7610 0.8860 0.8390 0.9790 0.9630 0.9920 0.9780

as small as 5% and the sample is as medium-sized as T = 80, the proposed test
still has a power value greater than the nominal level in each case. Finally, Tables
4.1 and 4.2 also show that the power increases when the “distance” between the
null hypothesis and an alternative increases.

5. CONCLUSION AND EXTENSIONS

We have proposed a new nonparametric test for the conditional mean function
when the regressors are integrated. The asymptotic normal distribution of the pro-
posed test statistic has been established. In addition, we have proposed a simula-
tion scheme to implement the proposed test in practice. The finite-sample results
show that both the proposed test and the simulation scheme are practically appli-
cable and implementable.

As briefly mentioned in Section 1, we may also consider testing the conditional
variance nonparametrically. Furthermore, both the conditional mean and the con-
ditional variance functions may be specified simultaneously. The main idea is that
to test

H01 : P(m(Xt ) = mθ0(Xt ) and σ(Xt ) = σθ0(Xt )) = 1, (5.1)

we may use a kernel-based test of the form

LT (h) =
T

∑
t=1

T

∑
s=1,�=t

[
Us Kh1(Xs − Xt ) Ut + Vs Gh2(Xs − Xt ) Vt

]
, (5.2)
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where h = (h1,h2) is a pair of bandwidth parameters, K (·) and G(·) are both
probability kernel functions, Ut = Yt − m θ̂ (Xt ), Vt = U 2

t − σ 2
θ̂
(Xt ), and θ̂ is an

estimator of θ0 under H01. Analogously to Theorem 2.1, we may establish a cor-
responding theorem for LT (h). As the detail for this case is extremely lengthy
and technical, we leave this issue for future study.

Another important extension would be to the case where Xt = (Xt1, . . . , Xtd)
in (1.1) is a vector of d-dimensional nonstationary sequences. In this case, we are
interested in testing

H02 : P

(
m(Xt ) =

d

∑
i=1

miθ0(Xti )

)
= 1 for all t ≥ 1, (5.3)

where each miθ0(·) is a known function indexed by θ0. Detailed construction of
such a test would involve some estimation procedures for additive models as used
in Gao, Lu, and Tjøstheim (2006) in the stationary spatial case. Since such an
extension is not straightforward, we leave it as a future topic.
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APPENDIX

This appendix provides mathematical details for the proofs of the main theorems and their
associated lemmas. Additional derivations are available from Appendixes B–D of the orig-
inal version by Gao et al. (2007).

To avoid notational complication, we introduce the following notation: Let ast = Kh(Xt

− Xs), εt = σ0et , and ηt = 2∑t−1
s=1 astεs . Recall λt (θ0) = mθ0(Xt )−m

θ̂
(Xt ).

Observe that, under H0,

MT (h) =
T

∑
t=1

T

∑
s=1,�=t

ε̂s Kh(Xt − Xs) ε̂t =
T

∑
t=1

T

∑
s=1,�=t

εs Kh(Xs − Xt ) εt

+
T

∑
t=1

T

∑
s=1,�=t

λs(θ0) Kh(Xt − Xs) λt (θ0)+2
T

∑
t=1

T

∑
s=1,�=t

εs Kh(Xt − Xs) λt (θ0)

≡ MT 1 + MT 2 + MT 3, (A.1)

σ̂ 2
T = 2

T

∑
t=1

T

∑
s=1,�=t

ε̂2
s K 2

h (Xt − Xs) ε̂2
t = 2

T

∑
t=1

T

∑
s=1,�=t

ε2
s K 2

h (Xt − Xs) ε2
t

+2
T

∑
t=1

T

∑
s=1,�=t

λ2
s (θ0) K 2

h (Xt − Xs) λ2
t (θ0)+ R̂T , (A.2)

where R̂T is the remainder term given by

R̂T = σ̂ 2
T −2

T

∑
t=1

T

∑
s=1,�=t

ε2
s K 2

h (Xt − Xs) ε2
t −2

T

∑
t=1

T

∑
s=1,�=t

λ2
s (θ0) K 2

h (Xt − Xs) λ2
t (θ0).

In view of (A.1) and (A.2), to prove Theorem 2.1 it suffices to show that, as T → ∞,

MT 1

σ̃T
→D N (0,1), (A.3)

MT i

σ̃T
→P 0 for i = 2,3, (A.4)

σ̂ 2
T − σ̃ 2

T

σ̃ 2
T

→P 0, (A.5)

where σ̃ 2
T = 2∑T

t=1 ∑T
s=1,�=t ε2

s a2
stε

2
t .

We will return to the proof of (A.4) and (A.5) in the second half of this Appendix after
having proved Lemmas A.1–A.3. In order to prove (A.3), we need to introduce a stochastic
normalization procedure before we may apply Corollary 3.1 of Hall and Heyde (1980,
p. 58) to our case.

Let C10 = 2σ 4
0
∫

K 2(u) du and define a random variable of the form

σ 2
10 = C10 N (T ) T h, (A.6)
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in which N (T ) has the same definition as T (n) in Karlsen and Tjøstheim (2001). It is the
number of regenerations for the Markov chain {Xt }. Note that we use σ 2

10 to express the
explicit function of the random variable N (T ) for notational simplicity. More details about
the definition of N (T ) are available from Appendix B of the Gao et al. (2008). In addition,
it follows from Appendix B that the inequality

T 1/2−δ0 ≤ N (T ) ≤ T 1/2+δ0 (A.7)

holds almost surely for large enough T and all 0 < δ0 < 1/5.
As shown in Lemma A.3 below, we have, as T → ∞,

σ̃ 2
T

σ 2
10

→P 1. (A.8)

In view of (A.8), to prove (A.3) it suffices to show that, as T → ∞,

MT 1

σ10
→D N (0,1). (A.9)

We now start to prove (A.9). Before verifying the conditions of Corollary 3.1 of Hall
and Heyde (1980), we introduce some notation.

Let UTt = ηt εt/σ10 and �T,s = σ{UT t : 1 ≤ t ≤ s} be the σ–field generated by {UTt : 1 ≤
t ≤ s}. Since N (T ) is independent of {et : 1 ≤ t ≤ T } by construction, E[UTt|�T,t−1] = 0.
By Corollary 3.1 of Hall and Heyde (1980), in order to prove (A.9), it suffices to show that
for all δ > 0,

T

∑
t=2

E
[
U2

Tt I{[UTt|>δ]}|�T,t−1

]
→P 0, (A.10)

T

∑
t=2

E
[
U2

Tt|�T,t−1

]
→P 1. (A.11)

Given the definition of {UTt}, in order to verify (A.10) and (A.11) it suffices to show
that, as T → ∞,

1

σ 4
10

T

∑
t=2

η4
t →P 0, (A.12)

1

σ 2
10

T

∑
t=2

η2
t →P 1. (A.13)

The proofs of (A.12) and (A.13) are given in Lemmas A.2 and A.3, respectively.

A.1. Lemmas. Assumption 2.1(i) already assumes that {ui } is a sequence of i.i.d.
random variables and has a symmetric probability density function. Now we let f (x)
and fst(x) be the density functions of ui and Xst = Xt − Xs , respectively, and gst(x)
be the density function of Vst = Xst/

√
t − s. Clearly, fst(x) = gst (x/

√
t − s)1/

√
t − s,

and by utilizing the usual normal approximation of Vst →D N (0,1) as t − s → ∞ under
the conventional central limit theorem conditions, it follows from Assumption 2.1(i) that
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supx∈R1 |gst(x)−φ(x)| → 0 as t −s → ∞. Thus, supx∈R1 |gst(x/
√

t − s)−φ(x/
√

t − s)|
→ 0 as t − s → ∞, where φ(x) = 1/

√
2π exp{−x2/2}.

Another key condition used in the following proofs is that {es} and {ut } are assumed to
be mutually independent for all s, t ≥ 1. In order to complete the proof of Theorem 2.1 we
need to evaluate σ 2

T 1 = var(MT 1(h)). Recall εs = σ0 es , Xst = Xt − Xs = ∑t
i=s+1 ui , and

define

ξst = Kh(Xst) εs εt with λs(θ0) = mθ0(Xs)−m
θ̂
(Xs). (A.14)

We assume without loss of generality that σ 2
u = E[u2

t ] ≡ 1 and σ 2
0 = E[e2

1] ≡ 1 through-
out this Appendix. For i = 1, . . . ,4, 1 ≤ s < t ≤ T , and 1 ≤ s2 < s1 < t ≤ T , we introduce
the following notation:

Bi (s, t) = E
[
K i

h(Xst)
]= h

∫
K i (x) fst(xh)dx

= h√
t − s

∫
K i (x) gst

(
xh√
t − s

)
dx, (A.15)

Bi (s1,s2, t) = E
[

K i
h(Xs1t )K i

h(Xs1t + Xs2s1)
]

= h2
∫

K i (x)K i (x + y) fs1t (xh) fs2,s1(hy)dx dy

= h√
t − s1

h√
s1 − s2

∫
K i (x)K i (x + y)

× gs1t

(
xh√
t − s1

)
gs2,s1

(
yh√

s1 − s2

)
dx dy, (A.16)

Ccdpq(s, t) = E
[
ec

s ed
t (e2

s −1)p(e2
t −1)q]

=

⎧⎪⎪⎨⎪⎪⎩
1 if c = d = 2, p = q = 0,

(ν4 −1)2 if c = d = 0, p = q = 2,

0 if c = d = p = q = 1,

(A.17)

where ν4 = E[e4
t ].

Since {et } and {us} are assumed to be mutually independent for all s, t , we can obtain
that, for large enough T ,

σ 2
T 1 = var

[
MT 1(h)

]= 4(1+o(1))
T

∑
t=2

t−1

∑
s=1

E
[
ξ2

st

]

= 4σ 4
0 (1+o(1))

T

∑
t=2

t−1

∑
s=1

B2(s, t) C2200(s, t).

Lemma A.1 below derives the order of σ 2
T 1 and shows that the rate of σ 2

T 1 diverging to

∞ is slower than T 2h, which is the corresponding rate for the stationary case.
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LEMMA A.1. Assume that the conditions of Theorem 2.1 hold. Then, as T → ∞,

σ 2
T 1 = var

[
MT 1(h)

]= C0T (3/2) h (1+o(1)), (A.18)

where C0 = 16σ 4
0
∫

K 2(u)du/3
√

2π .

Proof. Choose some positive integer �T ≥ 1 such that �T → ∞ and �T√
T h

→ 0 as

T → ∞. Observe that

T

∑
t=2

t−1

∑
s=1

E[a2
st] =

T −1

∑
s=1

T

∑
t=s+1

E[a2
st] = A1T + A2T , (A.19)

where A1T = ∑T −1
s=1 ∑1≤(t−s)≤�T E[a2

st] = O(T �T ) = o(T 3/2h), using the fact that

E[a2
st] ≤ k2

0 due to the boundedness of the kernel K (·) by a constant k0 > 0.
Using (A.15), we have

A2T =
T −1

∑
s=1

∑
�T +1≤(t−s)≤T −1

E[a2
st]

=
T −1

∑
s=1

∑
�T +1≤(t−s)≤T −1

h√
t − s

∫
K 2(x)gst

(
xh√
t − s

)
dx

= d0 h(1+o(1))

∫
K 2(x)dx

T −1

∑
s=1

∑
�T +1≤(t−s)≤T −1

1√
t − s

= 4
∫

K 2( y)dy

3
d0T 3/2h(1+o(1)), (A.20)

where d0 = 1/
√

2π .
Equations (A.19) and (A.20) imply that, for large enough T ,

T

∑
t=2

t−1

∑
s=1

E[a2
st] = 4

∫
K 2( y)dy

3
√

2π
T 3/2h(1+o(1)). (A.21)

Therefore, it follows that, for T → ∞,

4
T

∑
t=2

t−1

∑
s=1

E
[
ξ2

st

]
= 4σ 4

0

T

∑
t=2

t−1

∑
s=1

B2(s, t) C2200(s, t) = C0 T 3/2h(1+o(1)), (A.22)

where C0 = 16σ 4
0
∫

K 2(u)du

3
√

2π
. Thus the proof of Lemma A.1 is completed. n

For 0 < δ0 < 1
5 , recall C10 as defined in (A.6) and let σ 2

20 = C10 T 1/2−δ0 Th. We now
have the following lemma.

LEMMA A.2. Under the conditions of Theorem 2.1, we have, as T → ∞,

1

σ 4
10

T

∑
t=2

η4
t →P 0. (A.23)
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Proof. In view of (A.7), we have, for large enough T and any given δ > 0,

P

(
1

σ 4
10

T

∑
t=2

η4
t > δ

)
≤ P

(
1

σ 4
10

T

∑
t=2

η4
t > δ, T 1/2−δ0 ≤ N (T ) ≤ T 1/2+δ0

)

+ P
(

N (T ) < T 1/2−δ0 or N (T ) > T 1/2+δ0
)

≤ P

(
1

σ 4
20

T

∑
t=2

η4
t > δ

)
+o(1) ≤ 1

σ 4
20 δ

T

∑
t=2

E
[
η4

t

]
+o(1). (A.24)

Thus, in order to prove (A.23), we only need to show that

1

σ 4
20

T

∑
t=2

E
[
η4

t

]
→ 0. (A.25)

Observe that

E
[
η4

t

]
= 16

t−1

∑
s1=1

t−1

∑
s2=1

t−1

∑
s3=1

t−1

∑
s4=1

E
[
as1t as2t as3t as4t εs1εs2εs3εs4

]
. (A.26)

Since Assumption 2.1 imposes mutual independence on {us} and {et } for all s, t ≥ 1, in
order to prove (A.23), it suffices to show that, as T → ∞,

1

σ 4
20

T

∑
t=2

t−1

∑
s1=1

t−1

∑
s2=1,�=s1

E
[
a2

s1t a
2
s2t

]
→ 0, (A.27)

1

σ 4
20

T

∑
t=2

t−1

∑
s=1

E
[
a4

st

]
→ 0. (A.28)

To prove (A.27), using (A.16) we have

T

∑
t=2

t−1

∑
s1=1

t−1

∑
s2=1,�=s1

E
[
a2

s1t a
2
s2t

]

= 4h2
T

∑
t=3

t−1

∑
s1=2

s1−1

∑
s2=1

1√
t − s1

1√
s1 − s2

∫
K 2(x)K 2(x + y)

× gs1t

(
xh√
t − s1

)
gs2,s1

(
yh√

s1 − s2

)
dx dy

= 4h2(1+o(1))J 2
02 d2

0

T

∑
t=3

t−1

∑
s1=2

s1−1

∑
s2=1

1√
t − s1

1√
s1 − s2

= C T 2 h2 = o(T 3−2δ0 h2) = o
(
σ 4

20
)
, (A.29)

using the assumption that limT →∞ T 1/2−δ0 h = ∞ for 0 < δ0 < 1/5, where C > 0 is some
constant, J02 = ∫ K 2(u)du, and d0 = 1/

√
2π .
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Similarly to (A.20), using (A.15) we have

T

∑
t=2

t−1

∑
s=1

E[a4
st] =

T

∑
t=2

t−1

∑
s=1

h√
t − s

∫
K 4(x) gst

(
xh√
t − s

)
dx

= C0 h(1+o(1))

∫
K 4(x)dx ·

T

∑
t=2

t−1

∑
s=1

1√
t − s

= C T 3/2h (1+o(1)) = o
(

T 3−2δ0 h2
)

= o
(
σ 4

20

)
, (A.30)

using the assumption that limT →∞ T 1/2−δ0 h = ∞, where C > 0 is some constant.
Equations (A.29) and (A.30) complete the proofs of (A.27) and (A.28). This completes

the proof of Lemma A.2. n

LEMMA A.3. Let the conditions of Theorem 2.1 hold. Then, as T → ∞,

1

σ 2
10

T

∑
t=2

η2
t →P 1. (A.31)

Proof. Observe that

T

∑
t=2

η2
t =

T

∑
t=2

(
2

t−1

∑
s=1

astεs

)2

= 4
T

∑
t=2

t−1

∑
s=1

a2
stε

2
s +4

T

∑
t=2

t−1

∑
s1=1

t−1

∑
s2=1,�=s1

εs1 as1t as2t εs2 .

(A.32)

We first show that, as T → ∞,

4

σ 2
10

T

∑
t=2

t−1

∑
s=1

a2
stε

2
s →P 1. (A.33)

Similarly to the proofs of Lemmas A.1 and A.2, it can be shown that

T

∑
t=2

(
t−1

∑
s=1

a2
st

(
ε2

s −1
))

= oP

(
σ 2

10

)
, (A.34)

using the assumption that {εt } is independent of {us} for all s, t , and E[ε2
1] = 1.

In view of (A.34), in order to prove (A.33), it suffices to show that, as T → ∞,

4

σ 2
10

T

∑
t=2

t−1

∑
s=1

a2
st = 2

σ 2
10

T

∑
t=1

T

∑
s=1

a2
st →P 1. (A.35)

Let Q(u) = K 2(u)/
∫

K 2(u)du. Then Q(·) is a probability kernel. According to
Lemma C.1 in Appendix C of Gao et al. (2007), we have that, as T → ∞,

1

N (T )h

T

∑
s=1

Q

(
Xs − x

h

)
→P 1 (A.36)

uniformly in x ∈ R1, where we have used the result that the invariant measure of the
random walk {Xt } can be taken to be a Lebesgue measure with corresponding density
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p(x) ≡ 1. The uniform convergence in (A.36) strengthens the pointwise convergence of
Theorem 5.1 of Karlsen and Tjøstheim (2001) in the random walk case. For more details,
refer to Gao et al. (2007) and its Appendixes B–D.

Thus, the proof of (A.35) follows from (A.36) and

2

σ 2
10

T

∑
t=1

T

∑
s=1

a2
st = 1

T

T

∑
t=1

(
1

N (T )h J02

T

∑
s=1

K 2
(

Xs − Xt

h

))

= 1

T

T

∑
t=1

(
1

N (T )h

T

∑
s=1

Q

(
Xs − Xt

h

))
→P 1 (A.37)

as T → ∞.
In view of (A.31) and (A.32), in order to complete the proof of (A.31) we need to show

that

1

σ 2
10

T

∑
t=2

t−1

∑
s1=1

t−1

∑
s2=1,�=s1

εs1 as1t as2t εs2 →P 0 as T → ∞. (A.38)

Similarly to (A.24), the proof of (A.38) follows from

1

σ 4
20

E

[
T

∑
t=2

t−1

∑
s1=1

t−1

∑
s2=1,�=s1

εs1 as1t as2t εs2

]2

→ 0, (A.39)

which, using the same arguments as in (A.25)–(A.30) and the fact that {εs} is a sequence
of martingale differences and also independent of {ut }, follows from

T

∑
t1=2

T

∑
t2=1

T

∑
s1=1

T

∑
s2=1

E
[
as1t1 as2t1 as1t2 as2t2

]= O
(

T 5/2h3
)

= o
(
σ 4

20

)
. (A.40)

This therefore completes the proof of Lemma A.3. n

A.2. Proofs of Theorems.

Proof of Theorem 2.1. In view of (A.3), to complete the proof of Theorem 2.1 it suffices
to prove (A.4) and (A.5). We only give the proof of (A.4), since the proof of (A.5) is very
similar.

Taylor expansions of mθ (x) with respect to θ at θ0 imply

mθ (x)−mθ0(x) =
(

∂mθ0(x)

∂θ

)τ

(θ − θ0)+oP (||θ − θ0||) (A.41)

for each given x . Thus, in order to prove (A.4), using the same arguments as in (A.24),
it suffices to show that

(θ̂ − θ0)τ
T

∑
t=1

T

∑
s=1

(
∂mθ0(Xs)

∂θ

)
K

(
Xt − Xs

h

)(
∂mθ0(Xt )

∂θ

)τ

(θ̂ − θ0) = oP (σ10).

(A.42)

Note that using the same arguments as in (A.24), the proof of (A.42) follows when (A.42)
holds with σ10 replaced by σ20.
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To do so, we first evaluate the following quantity. Straightforward calculations imply
that, for large enough T (letting Y1 = Xs and Y12 = Xt − Xs and then x1 = y1 and x2 =
y2/h),

T

∑
t=2

t−1

∑
s=1

E

[(
∂mθ0(Xs)

∂θ

)τ

K

(
Xt − Xs

h

)(
∂mθ0(Xs + Xt − Xs)

∂θ

)]

=
T

∑
t=2

t−1

∑
s=1

∫ ∫ (
∂mθ0( y1)

∂θ

)τ

K
(y12

h

)(∂mθ0( y1 + y12)

∂θ

)
fs( y1) fst( y12)dy1 dy12

= h
T

∑
t=2

t−1

∑
s=1

∫ ∫ (
∂mθ0(x1)

∂θ

)τ

K (x2)

(
∂mθ0(x1 + x2h)

∂θ

)
fs(x1) fst(x2h)dx1 dx2

= h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

∫ ∫ (
∂mθ0(x1)

∂θ

)τ

K (x2)

(
∂mθ0(x1)

∂θ

)

× gs

(
x1√

s

)
gst

(
x2h√
t − s

)
dx1 dx2

= d0 h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

∫ (
∂mθ0(x)

∂θ

)τ (∂mθ0(x)

∂θ

)
φ

(
x√
s

)
dx.

(A.43)

This, along with Assumption 2.2(iii) with j = 1 and the Markov inequality, implies that
(A.42) holds, with σ10 replaced by σ20. This therefore proves (A.4) for i = 2.

Meanwhile, it follows from (A.3) that

1

σ10

T

∑
t=1

T

∑
s=1

εs K

(
Xt − Xs

h

)
εt = OP (1). (A.44)

Thus, the proof of (A.4) for i = 3 follows from (A.42)–(A.44) and∣∣∣∣∣ T

∑
t=1

T

∑
s=1

εs

√
K

(
Xt − Xs

h

)√
K

(
Xt − Xs

h

)
λt (θ0)

∣∣∣∣∣
2

≤
T

∑
t=1

T

∑
s=1

εs K

(
Xt − Xs

h

)
εt

T

∑
t=1

T

∑
s=1

λs(θ0) K

(
Xt − Xs

h

)
λt (θ0)

= OP (σ10) ·oP (σ10) = oP

(
σ 2

10

)
. (A.45)

Similarly to (A.41)–(A.43), using Assumption 2.2(iii) with j = 2, one may verify (A.5).
n

Proof of Theorem 3.1. Using

ε̂∗
t ≡ Y ∗

t −m
θ̂∗(Xt ) = m

θ̂
(Xt )−m

θ̂∗(Xt )+ σ̂0 e∗
t ,
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we have

M∗
T (h) ≡

T

∑
t=1

T

∑
s=1,�=t

ε̂∗
s Kh(Xs − Xt ) ε̂∗

t =
T

∑
t=1

T

∑
s=1,�=t

σ̂0 e∗
s Kh(Xs − Xt ) σ̂0 e∗

t

+
T

∑
t=1

T

∑
s=1,�=t

λ∗
s Kh(Xs − Xt ) λ∗

t +2
T

∑
t=1

T

∑
s=1,�=t

σ̂0 e∗
s Kh(Xs − Xt ) λ∗

t ,

(A.46)

where λ∗
t = m

θ̂
(Xt )−m

θ̂∗(Xt ).

Using Assumptions 2.1, 2.2, and 3.1, in view of the notation of L̂∗
T (h) introduced in

Simulation Scheme 3.1 as well as the proof of Theorem 2.1, we may show that, as T → ∞,

P∗(L̂∗
T (h) ≤ x

)
→ �(x) for all x ∈ (−∞,∞) (A.47)

holds in probability with respect to the distribution of the original sample {(Xt ,Yt ) : 1 ≤
t ≤ T }. In detail, in order to prove (A.47), using the fact that {e∗

s } and {(Xt ,Yt )} are inde-
pendent for all s, t ≥ 1, we may show that the proofs of Lemmas A.2 and A.3 remain true
by successive conditioning arguments.

Let zα be the 1 − α quantile of �(·) such that �(zα) = 1 − α. Then it follows from
(A.47) that, as T → ∞,

P∗(L̂∗
T (h) ≥ zα

)
→ 1−�(zα) = α in probability. (A.48)

This, together with the construction that P∗(L̂∗
T (h) ≥ l∗α

)= α, implies that, as T → ∞,

l∗α − zα →P 0. (A.49)

Using the conclusion of Theorem 2.1 and (A.47) again, we have, as T → ∞,

P∗(L̂∗
T (h) ≤ x

)
− P
(

L̂T (h) ≤ x
)

→P 0 for all x ∈ (−∞,∞). (A.50)

This, along with the construction that P∗(L̂∗
T (h) ≥ l∗α

)= α again, shows that, as T → ∞,

lim
T →∞ P

(
L̂T (h) ≥ l∗α

)
= α (A.51)

holds. Therefore, the conclusion of Theorem 3.1(i) is proved.
To prove Theorem 3.1(ii), we need to decompose MT (h) as follows:

MT (h) =
T

∑
t=1

T

∑
s=1,�=t

ε̂s K (Xst) ε̂t =
T

∑
t=1

T

∑
s=1,�=t

εs(θ1) Kh(Xst) εt (θ1)

+
T

∑
t=1

T

∑
s=1,�=t

λs(θ1) Kh(Xst) λt (θ1)+2
T

∑
t=1

T

∑
s=1,�=t

λs(θ1) Kh(Xst) εt (θ1),

where εt (θ1) = Yt −m(Xt ) and λt (θ1) = m(Xt )−m
θ̂
(Xt ) under H1.
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By the proof of Theorem 2.1, in order to prove Theorem 3.2(ii) it suffices to show that,
under H1,

∑T
t=1 ∑T

s=1,�=t λs(θ1) Kh(Xt − Xs) λt (θ1)

σ10
→P ∞. (A.52)

Using Taylor expansions to mθ (·) with respect to θ , we have

m(Xt )−m
θ̂
(Xt ) = �T (Xt ,θ1)+mθ1(Xt )−m

θ̂
(Xt )

= �T (Xt ,θ1)+
(
θ1 − θ̂

)τ ∂mθ (Xt )

∂θ
|θ=θ1 . (A.53)

In view of (A.52), using Assumption 2.2(iii) with i = 1, in order to prove (A.52) it
suffices to show that

∑T
t=1 ∑T

s=1,�=t E
[
�T (Xs ,θ1) Kh(Xt − Xs) �T (Xt ,θ1)

]
σ20

→ ∞. (A.54)

Note that (letting Xst = Xt − Xs )

T

∑
t=2

t−1

∑
s=1

E

[
�T (Xs ,θ1)K

(
Xt − Xs

h

)
�T (Xt ,θ1)

]

=
T

∑
t=2

t−1

∑
s=1

[
�T (Xs ,θ1)K

(
Xt − Xs

h

)
�T (Xs + Xt − Xs ,θ1)

]

=
T

∑
t=2

t−1

∑
s=1

∫ ∫
�T (xs ,θ1)K

( xst

h

)
�T (xs + xst,θ1) fs(xs) fst(xst)dxs dxst

(
letting ys = xs and yst = xst

h

)

= h
T

∑
t=2

t−1

∑
s=1

∫ ∫
�T ( ys ,θ1)K ( yst)�T ( ys + ysth) fs( ys) fst( ysth)dys dyst

= h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

∫ ∫
�2

T (x,θ1)K ( y)gs

(
x√
s

)
gst

(
yh√
t − s

)
dx dy

= φ(0) h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

(∫
�2

T (x,θ1)φ

(
x√
s

)
dx

) ∫
K ( y)dy

= φ(0) h(1+o(1))
T

∑
t=2

t−1

∑
s=1

1√
s

1√
t − s

CT (s). (A.55)

The proof of Theorem 3.1(ii) therefore follows from Assumption 3.2 and equations
(A.53)–(A.55). n


