ASSESSMENT OF OMEGA-3 LONG CHAIN POLYUNSATURATED FATTY ACID INCORPORATION IN BROILER CHICKEN MEAT FOLLOWING THE CONSUMPTION OF OMEGA-3 RICH VEGETABLE OILS

LILIK RETNA KARTIKASARI

M. Ag.Sc. (Gadjah Mada University, Indonesia)

A thesis submitted in fulfilment of the requirements for the Degree of Master of Agricultural Science (M.Ag.Sc.)

> Discipline of Plant and Food Science School of Agriculture, Food and Wine Faculty of Sciences University of Adelaide Adelaide, South Australia, Australia

> > February 2009

TABLE OF CONTENTS

LIST O	OF TABLES	vi
LIST O	OF FIGURES	viii
ABSTR	RACT	X
DECLA	ARATION	xiii
POSTE	ER AND ABSTRACT ARISING FROM THIS THESIS	xiv
ACKN	OWLEDGEMENTS	XV
ABBRE	EVIATIONS	xvii
UNITS	••••••	xviii
СНАРТ	TER 1	
Literatı	ure Review	1
1.1	INTRODUCTION	1
1.2	FATS	3
1.3	THE HEALTH BENEFITS OF N-3 PUFA	6
1.4	THE RECOMMENDED INTAKE OF N-3 PUFA	8
1.5	DIETARY SOURCES OF N-3 PUFA	10
1.5	5.1 Sources of 18 Carbon n-3 PUFA: Vegetable oils and nuts	10
1.5	5.2 Sources of 20/22 Carbon n-3 LCPUFA: Fish, fish oil, eggs an	d meat 11
1.6	THE RATIO OF N-6 TO N-3 FATTY ACIDS IN DIETS	13
1.7	STRATEGY TO INCREASE N-3 LCPUFA IN CHICKEN MEAT	[.] 15
1.8	PROBLEMS WITH USING FISH OIL IN CHICKEN DIETS	16
1.9	CONVERSION OF ALA TO N-3 LCPUFA	17
1.9	0.1 Vegetable Oils High in ALA as an Alternative Source of LCP	UFA17

1.9.	2 C	urrent Evidence	19
1.10	CO	NCLUSION	26
1.11	AIM	IS AND HYPOTHESES	27
1.11	.1	Aims	27
1.11	.2	Hypotheses	27

CHAPTER 2

The Effect of Chicken Diets Varying in ALA on n-3 LCPUFA levels in Chicken		
Tissues		28
2.1 I.	NTRODUCTION	28
2.2 N	MATERIALS AND METHODS	29
2.2.1	Ethical Considerations	29
2.2.2	Location	29
2.2.3	Experimental Design	30
2.2.4	Birds, Rearing and Management	30
2.2.5	Diets	32
2.2.6	Sample Collection	36
2.2.7	Fatty Acid Methyl Ester (FAME) Extraction Method	37
2.2.	.7.1 Fatty acid analysis of oils	37
2.2.	.7.2 Fatty acid analysis of feeds	37
2.2.	.7.3 Fatty acid analysis of blood	38
2.2.	.7.4 Fatty acid analysis of tissues	39
2.2.8	Gas Chromatograph Analysis of FAME	41
2.2.9	Statistical Analysis	42
2.3 K	RESULTS	45
2.3.1	Blood Fatty Acids	45
2.3.2	Tissue Fatty Acids	53
2.3.3	Performance Parameters	65
2.4 L	DISCUSSION	66
2.5 C	CONCLUSION	71

CHAPTER 3

The Effect of Chicken Diets High in LA Level on n-3 LCPUFA in Chicken

Tissues		
3.1 I.	NTRODUCTION	73
3.2 N	MATERIALS AND METHODS	
3.2.1	Experimental Design	74
3.2.2	Birds, Rearing and Management	74
3.2.3	Diets	74
3.2.4	Sample Collection and Fatty Acid Analysis	
3.2.5	Statistical Analysis	
3.3 R	RESULTS	
3.3.1	Blood Fatty Acids	
3.3.2	Tissue Fatty Acids	
3.3.3	Performance Parameters	
3.4 L	DISCUSSION	
3.5 C	CONCLUSION	

CHAPTER 4

The Effect of a Diet High in ALA on Heart n-3 LCPUFA	
4.1 INTRODUCTION	
4.2 METHODS	
4.2.1 Experimental Design	
4.2.2 Birds and Diets	
4.2.3 Sample Collection and Fatty Acid Analysis	94
4.3 RESULTS	
4.3.1 Heart Tissue Fatty Acids	
4.3.2 Heart analysis	95
4.4 DISCUSSION	97
4.5 CONCLUSION	

CHAPTER 5

Genera	l Discussion and Conclusions	
5.1	STUDY LIMITATIONS	
5.2	FUTURE DIRECTIONS	
5.3	CONCLUSIONS	
REFER	RENCES	
APPEN	DIX 1	
APPEN	DIX 2	

LIST OF TABLES

Table 1.1 Recommended intakes of n-3 LCPUFA	9
Table 1.2 Recommended intakes of alpha-linolenic acid (ALA)	9
Table 1.3 The ALA and LA content of some common oils (g/100g)	11
Table 1.4 Levels of n-3 fats in different types of fish	12
Table 1.5 Summary of studies of dietary fats in chickens	23
Table 2.1 Composition of experimental diets from 1-28 days post-hatch	32
Table 2.2 Fatty acid composition of oils added in the diets	33
Table 2.3 Ingredient composition and nutrient content of experimental diets	34
Table 2.4 Fatty acid content of the diets	36
Table 2.5 Fatty acid composition of erythrocytes phospholipids from chickens experimental diets varying in LA to ALA ratio for 28 days ¹	
Table 2.6 Fatty acid composition of plasma phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹	47
Table 2.7 Fatty acid compositions of liver phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹	53
Table 2.8 Fatty acid composition of breast phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹	54
Table 2.9 Fatty acid composition of thigh phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹	55
Table 2.10 Performance parameters from chickens fed experimental diets varying in LA to ALA ratio for 28 days	
Table 3.1 Composition of experimental diets from 1-28 days post-hatch	75
Table 3.2 Ingredient composition and nutrient content of basal diet	75
Table 3.3 Fatty acid composition of oils added in the diets	76
Table 3.4 Fatty acid contents of the diets	77

Table 3.5 Fatty acid composition of erythrocytes phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹)
Table 3.6 Fatty acid composition of plasma phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹	1
Table 3.7 Fatty acid composition of liver phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹ 83	3
Table 3.8 Fatty acid composition of breast phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹ 84	1
Table 3.9 Fatty acid composition of thigh phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹ 84	5
Table 3.10 Performance parameters from chickens fed experimental diets varying in LA to ALA ratio for 28 days	3
Table 4.1 Fatty acid contents of the diets 94	1
Table 4.2 Ventricular characteristics and fatty acid composition of heart phospholipids from chickens fed experimental diets varying in LA to ALA ratio for 28 days ¹	5

LIST OF FIGURES

Figure 1.1 Chemical structures of saturated, monounsaturated and polyunsaturated fatty acids
Figure 1.2 The metabolic pathway of the n-3 and the n-6 fatty acids
Figure 1.3 The effect of decreasing LA to ALA ratio on the accumulation of breast n-3 LCPUFA
Figure 2.1 Layout of raised rearing pens
Figure 2.2 Chromatogram of standards obtained from Nucheck Prep Inc. (Elysian, MN)
Figure 2.3 A chromatogram of FAMEs derived from a breast sample fed high in ALA content (blue colour) compared to a control sample (red colour)
Figure 2.4 Effects of lowered LA to ALA ratio of diets on n-3 LCPUFA of erythrocyte (A) and plasma (B) samples
Figure 2.5 Effects of increasing levels of dietary ALA on n-3 LCPUFA of erythrocyte (A) and plasma (B) samples
Figure 2.6 The balance of erythrocyte (A) and plasma (B) MUFA, n-6 and n-3 fatty acids of birds fed different dietary levels of ALA
Figure 2.7 Effects of lowered LA to ALA ratio of diets on n-3 LCPUFA of breast (A) and thigh (B) tissue
Figure 2.8 Effects of increasing levels of dietary ALA on n-3 LCPUFA of breast (A) and thigh (B) tissue
Figure 2.9 The balance of MUFA, n-6 and n-3 fatty acids of breast tissues of birds fed with different dietary levels of ALA
Figure 2.10 A: Relationship between erythrocyte phospholipids (PL) EPA and breast PL EPA and B: Relationship between plasma PL EPA and breast PL EPA
Figure 2.11 A: Relationship between erythrocyte phospholipids (PL) DHA and breast PL DHA and B: Relationship between plasma PL DHA and breast PL DHA
Figure 2.12 A: Relationship between plasma phospholipids (PL) EPA and thigh PL EPA

Figure 2.13 Effects of increasing levels of dietary ALA on arachidonic acid (AA) of breast (A) and thigh tissues (B)
Figure 2.14 Comparison of the effects of varying LA to ALA ratio on fatty acid composition of EPA (A) and DHA (B) in breast tissues in various studies68
Figure 3.1 Effects of increasing levels of dietary LA on the n-3 LCPUFAs in breast (A) and thigh (B) tissues

ABSTRACT

Dietary omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), have beneficial health effects and hence increasing the consumption of these fatty acids is recommended by health authorities. The most common dietary source of EPA, DPA and DHA is seafood, but few Australians habitually consume fish and on average eat less than one meal of fish per week. Thus if Australians are to meet the dietary guidelines for n-3 fatty acid intake, there is a need to develop a source of n-3 rich foods that fit into a typical Australian diet. Feeding fish oils rich in n-3 LCPUFA to chickens has proven problematic due to alteration in organoleptic properties. The incorporation of vegetable oils rich in n-3 PUFA, alpha-linolenic acid (ALA, 18:3n-3) into the diet of chickens is potentially an alternative way to provide meat rich in n-3 LCPUFAs as ALA is the precursor of EPA and DHA. However, most vegetable oils also contain the n-6 (n-6) PUFA, linoleic acid (LA, 18:2n-6) which competes with ALA for the same enzymes in their metabolism to LCPUFA.

This thesis addressed two crucial issues relating to the conversion of ALA into EPA, DPA and DHA of chicken tissues. The objectives of the first experiment were to examine the effects of increasing the ALA content of diets on the conversion of ALA into EPA, DPA and DHA by measuring their accumulation in chicken meat (breast and thigh) and to determine if there was an optimum level of ALA (at a fixed level of LA) in this process. The ratio of LA to ALA of the diets ranged from 10.5:1 to 0.6:1.

The findings in this study demonstrated that there was no optimum level of dietary ALA and as indicated by the observation that EPA, DPA and DHA continued to increase in breast and thigh as the ratio of LA to ALA decreased in the diet. In general, DPA achieved higher levels than DHA. The experimental diets with the lowest LA to ALA ratio elevated the incorporation of EPA and DHA into breast and thigh meat to levels 5 and 4-fold, respectively relative to birds fed the highest LA to ALA ratio. In contrast, arachidonic acid (AA, 20:4n-6) in all groups reduced with decreasing LA to ALA ratio in the diets. The results indicated that the dietary treatments did not significantly change the growth performance of chickens.

The objective of the second experiment was to assess the regulatory effect of dietary LA on the conversion of ALA into EPA, DPA and DHA. While in the first experiment the diets varied in the level of ALA but had a constant LA level, in this experiment the level of ALA in the diets was held constant and the level of LA was varied. The LA to ALA ratio of experimental diets ranged from 1.4:1 to 2.1:1. The results of this study indicated that the highest LA to ALA ratio (2.1:1) resulted in the lowest n-3 LCPUFAs, EPA, DPA and DHA in meat samples. For example, the total n-3 LCPUFA levels in the breast meat of birds fed with the lowest LA to ALA ratio was 16% higher than the n-3 LCPUFA in the breast of birds fed the highest LA to ALA ratio. This study indicated that the strongest influence on EPA, DPA and DHA accumulation in chicken tissues was the level of ALA in the diet. The experimental diets did not appear to affect the growth performance of chickens.

In conclusion, increasing the ALA content of chicken diets may result in a meat source high in n-3 LCPUFAs that may reduce pressure on diminishing marine stocks as well as offering health benefits to Australians.

DECLARATION

I declare that this thesis is a record of original work and contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to a copy of my thesis being made available in the University Library.

Lilik Retna Kartikasari

Date 12 February 2009

POSTER AND ABSTRACT ARISING FROM THIS THESIS

POSTER/ORAL PRESENTATION

Lilik R Kartikasari, Robert J Hughes, Mark S Geier and Robert A Gibson. Effect of Vegetable Oils on Omega-3 Long Chain Polyunsaturated Fatty Acid (LCPUFA) Levels in Broiler Chicken Meat. School of Agricultural, Food and Wine, Research Day. The University of Adelaide, November 2008.

ABSTRACT

Lilik R Kartikasari, Robert J Hughes, Mark S Geier and Robert A Gibson. Effect of Vegetable Oils on Omega-3 Long Chain Polyunsaturated Fatty Acid Levels in Broiler Chicken Meat (Experiment I and II). Postgraduate Symposium. The University of Adelaide, September 2008.

Lilik R Kartikasari, Robert J Hughes, Mark S Geier and Robert A Gibson. Effect of Vegetable Oils on Omega-3 Long Chain Polyunsaturated Fatty Acid Levels in Broiler Chicken Meat (Experiment I). School of Agricultural, Food and Wine, Research Day. The University of Adelaide, November 2008.

ACKNOWLEDGEMENTS

I am very grateful to my supervisors Professor Robert A Gibson and Dr. Robert J Hughes for their support, encouragements, constructive comments and guidance throughout my M.Ag.Sc candidature. In particular, I would like to thank Professor Robert A Gibson for his continuously support, advice and patience.

I would like to thank Professor Maria Makrides, Professor Martine Boulianne and Dr. Mark S Geier for their support, suggestions and comments throughout my study.

I thank David Apps for guiding me in the learning of experimental techniques and Ella Zielinski for technical assistance and advice in the fatty acid analysis. I would also like to thank Varunika Ruwanpura for her assistance in document editing

My gratitude to all the people who in one way or another have helped and supported me during my study, especially Niranjala Seimon, Margaret Cargill, Trevor Hancock, Lisa Smithers, Jo Zhou Derek Schultz, Evelyn Daniels, Kylee Swanson, Natasha Edwards, Sue Walker, Jennifer Washington, and Wei-Chun Tu.

I thank my colleagues in fatty acid group and my fellow postgraduate students and Honours in Functional Food Group for their friendship, comments and help in rearing cultures. I would like to thank the University of Adelaide and South Australian Research Development Institute (SARDI) for their supports throughout my study. I would also like to thank Sebelas Maret University (UNS), Indonesia for giving me the opportunity to experience studying at Adelaide University.

I gratefully acknowledge the financial support of the Australian Agency for International Development (AusAID/APS) during my studies in Australia, I would also like to thank Directorate General of Higher Education, Jakarta, Indonesia for granting me study leave.

I would also like to express my appreciation to my mother (in memorial, 9 February 2007) and parents in law for their continuous support. Finally my sincere thanks to my dear husband Feri Satria and my lovely daughter Geraldin Noverina for their patience, love and support during my studies.

ABBREVIATIONS

AA	Arachidonic acid (20:4n-6)
ALA	Alpha (α)-linolenic acid (18:3n-3)
ANOVA	Analysis of variance
BHA	Butylated hydroxyanisol
CHD	Coronary Heart Disease
CVD	Cardiovascular diseases
DHA	Docosahexaenoic acid (22:6n-3)
DPA	Docosapentaenoic acid (22:5n-3)
EFA	Essential fatty acid
EPA	Eicosapentaenoic acid (20:5n-3)
FAME	Fatty acid methyl ester
GLA	γ-linolenic acid
GC	Gas chromatograph
Н	Hydrogen
H_2SO_4	Sulphuric acid
ISSFAL	International Society for the Study of Fatty Acids and Lipids
LA	Linoleic acid (18:2n-6)
MUFA	Monounsaturated fatty acid
NS	Not significant
n-3	Omega 3
n-6	Omega 6
n-9	Omega 9
Na_2SO_4	Sodium sulphate
NHMRC	National Health and Medical Research Centre
NNS	National Nutrition Survey
PUFA	Polyunsaturated fatty acid
LCPUFA	Long chain polyunsaturated fatty acid
RVH	Right ventricle hypertrophy
SARDI	South Australia Research and Development Institute
SFA	Saturated fatty acid
SDA	Stearidonic acid
TLC	Thin layer chromatography
UV	Ultraviolet

UNITS

°C	Celcius
cm	Centimetre
d	Day
et al.	and others
g	Gram
h	Hour
kg	Kilogram
L	Litre
mg	Milligram
mL	Millilitre
m^2	Square metre
μ	Micro
\mathbf{v}/\mathbf{v}	Volume by volume