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CHAPTER 8:

CHARACTERISATION OF THE EFFECTS OF

NEUROPEPTIDE DEPLETION WITH CAPSAICIN

FOLLOWING ACUTE ISCHAEMIC STROKE
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8.1 Introduction

Chapter 3 demonstrated that there was an increase in the neuropeptide SP following

stroke, and that this was associated with neurogenic inflammation and subsequent

BBB dysfunction, cerebral oedema and functional deficits. Chapter 4 subsequently

demonstrated that blocking the action of SP with a NK1 receptor antagonist was

highly efficacious in improving post-stroke outcome through reduction of BBB

permeability, cerebral oedema and functional deficits. These studies specifically

focused on the SP pathway following stroke and it is therefore unclear what role

other neuropeptides may play following stroke. The current study will examine the

role of total neuropeptide depletion, using capsaicin, on outcome following stroke.

Capsaicin, an agent isolated from chilli peppers, is able to stimulate the release of

sensory neuropeptides, including SP and CGRP, to the point of depletion

(Wimalawansa, 1996; Kashiba et al., 1997). In neonatal animals, capsaicin pre-

treatment produces permanent sensory neuropeptide depletion, whereas in adults it

produces transient sensory neuropeptide depletion, reported to last for at least 4

weeks. Thus, capsaicin treatment is an extremely useful experimental tool enabling

researchers to study the functions of various neuropeptides. Previous studies from

our laboratory (Nimmo et al., 2004; Vink et al., 2003) have shown that pre-

treatment with capsaicin markedly improved outcome following diffuse traumatic

brain injury by reducing BBB dysfunction, cerebral oedema and functional deficits.

The fact that the protection conferred by capsaicin was almost identical to that

conferred by NK1 receptor antagonists confirmed a dominant role for SP following

injury to the brain. As such, the aim of the present study was to determine whether
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the depletion of all neuropeptides by capsaicin similarly conveys any protection

from the development of functional deficits following ischaemic stroke.

8.2 Study Design

Animals (n=14) were randomly assigned to treatment and control groups. Capsaicin

(Sigma) was dissolved in 20% Tween 80, 20% ethanol and 60% saline. Capsaicin,

or equal volume of vehicle, was then administered subcutaneously over a 3 d period

at a dose of 125 mg/kg (50 mg/kg on day 1, 50 mg/kg on day 2 and 25 mg/kg on

day 3). From our previous trauma studies this regime was found to be effective in

ablating neuropeptides (Nimmo et al., 2004; Vink et al., 2003). Previous studies

have reported that the level of SP in sensory nerves remains depleted for more than

four weeks using this protocol. 14 d after capsaicin pre-treatment animals were

subject to 2 h MCAO followed by reperfusion (as described in Chapter 2.2.2).

Following surgery, animals were assessed for functional and histological outcome

(as described in Chapters 2.4-2.5). Results were compared with those obtained for

the NAT treatment at 4 h after stroke study in Chapter 4.

8.2.1 Functional Outcome

Commencing at 24 h after surgery, functional outcome testing was carried out daily

for a 7 d period. Functional outcome was assessed using the rotarod, bilateral

asymmetry test, neuroscore, open field and angleboard tests, as previously described

(Chapter 2.4).
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8.2.2 Histological Outcome

At 7 d following stroke, animals were perfused with 10% formalin under isoflurane

anaesthesia, as described in detail in chapter 2. Brains were then removed and

processed for immunohistochemistry. Slides were stained for H&E, SP, APP, FJC,

GFAP and ED-1. Sections were then assessed using light microscopy or

fluorescence microscopy as appropriate.

8.2.3 Statistical Analysis

All parametric data was analysed using analysis of variance followed by Bonferroni

post-tests. The neuroscore data was analysed using the Kruskal Wallis ANOVA

followed by Dunn’s multiple comparisons test. All parametric data are expressed as

mean +/- SEM, while the neuroscore data is expressed as the median.

8.3 Results

8.3.1 Functional Outcome

There was no significant difference observed between the vehicle pre-treatment or

post-treatment groups (p>0.05; results not shown), demonstrating that untreated

animals perform similarly, regardless of the time of vehicle administration. As

such, the data for these groups was combined and they are represented as the

“vehicle” group on all of the functional outcome measures.

Motor Function - Rotarod

Sham animals recorded no motor deficits for the 7-day assessment period,

indicating that the MCAO surgical procedure without the arterial occlusion had no

effect on motor function. Following stroke, the vehicle group showed marked
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functional deficits (Figure 8.1), scoring an average of 31 s on day 1, and only

improving to 57 s by day 7. The performance of the vehicle-treated group was

significantly worse than shams on all days post-stroke (p<0.001). Capsaicin-treated

animals scored 51 s on day one, they gradually improved over the assessment

period, such that by day 7 their performance was comparable to shams (p>0.05).

Nonetheless, significant motor deficits compared to shams (p<0.001) were observed

on days 1-6 post-stroke. NAT-treated animals demonstrated a more rapid recovery

in motor function than capsaicin-treated animals. Animals in the NAT group

recorded a rotarod score of 69 s on day 1 post-stroke and rapidly improved to

normal functional levels by day 3 post-stroke. The rotarod performance of this

group was significantly better (p<0.001) than vehicles on days 2-7 post-stroke.

Although demonstrating the same pattern of recovery, capsaicin animals scored

consistently lower (p<0.001) on the rotarod compared to NAT-treated animals on

days 2-6 post-stroke, and recovery of motor function was accelerated in the NAT-

treated group compared to the capsaicin-treated group.

Sensory Function: Bilateral Asymmetry Test

Sham animals showed no sensory deficits, rapidly removing the tape on their

forepaws on each of the assessment days. Following stroke, vehicle animals

displayed profound sensory deficits, as demonstrated by their difficulty in removing

the tape on any assessment day. As such, time to removal was significantly greater

(p<0.001) than shams on all days post-stroke. Conversely, both the capsaicin-

treated group and the NAT-treated group demonstrated a recovery of sensory

function over the assessment period. Specifically, the capsaicin animals recorded

improved latencies over time, performing significantly better than vehicles on days



330

Figure 8.1 Capsaicin pre-treatment – Motor function as assessed by the
rotarod.

Sham animals had no motor deficits (green). Following stroke, vehicle animals
(aqua) demonstrated profound motor deficits that persisted for the 7 d assessment
period. In contrast, NAT-treated animals (navy) showed a steady improvement in
motor function, such that by day 3 post-stroke they were performing at normal
levels. Similarly, capsaicin-treated animals (purple) showed improved motor
function over time, performing at normal levels by day 7 post-stroke (** denotes
p<0.01 versus vehicle; *** denotes p<0.001 versus vehicle) (sham n= 6; vehicle
n=12; NAT n=6; capsaicin n=8).
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Figure 8.2 Capsaicin pre-treatment – Sensory function as assessed by the
bilateral asymmetry test.

No sensory deficits were observed in sham animals (green). Following stroke,
vehicle animals (aqua) demonstrated profound sensory deficits that persisted for the
entire assessment period. In contrast, NAT-treated animals (navy) showed a
recovery of sensory function over time, recording latencies significantly better than
vehicles on days 1 and 3-6 post-stroke. Capsaicin-treated animals (purple) showed
a similar pattern of recovery in sensory function, scoring significantly better than
vehicles on days 1 and 3-6 post-stroke (** denotes p<0.01 versus vehicle; ***
denotes p<0.001 versus vehicle) (sham n= 6; vehicle n=12; NAT n=6; capsaicin
n=8).
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1 and 3-7 post-stroke (0.001<p<0.01), reaching normal functional levels by day 3

post-stroke. Similarly, NAT-treated animals showed improved sensory function

over the 7 d assessment period. Animals in this group had reached normal

functional levels by day 3 post-stroke, recording latencies significantly better than

vehicles on days 3-7 post-stroke. NAT-treated animals also demonstrated a more

rapid recovery in sensory function, as compared to the capsaicin-treated animals,

although this trend was not statistically significant.

Spontaneous Exploratory Behaviour: Open Field

Sham animals demonstrated normal activity levels in the open field. However, a

decline in spontaneous exploratory behaviour was noted over time, and this is most

likely to be due to habituation, a well-described event in uninjured animals

(McIlwain et al., 2001; Paylor et al., 2006; Stohr et al., 1998). Following stroke,

vehicle animals consistently travelled through less than 50 squares on all assessment

days (Figure 8.3), which was significantly reduced compared to shams on days 1

and 3 (0.01<p<0.05) post-stroke. No improvement in spontaneous exploratory

behaviour was observed in this group. The capsaicin treated group was significantly

worse than shams on day 1 post-stroke (p<0.05) and then demonstrated an increase

in open field activity as reflected by an improved score that was not significantly

different from shams (days 3-7; p>0.05). However, despite a trend towards

increased exploratory behaviour compared to vehicles, these differences were not

significant. In contrast, the level of spontaneous exploratory behaviour in the NAT-

treated group was not significantly different that shams on any day post-stroke. As

such, NAT-treated animals consistently demonstrated spontaneous exploratory

behaviour levels in the open field significantly higher than vehicle-treated animals
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on all assessment days (0.001<p<0.05). This difference was significantly (p<0.05)

greater than capsaicin pre-treated animals only on day 3 post-stroke. On all other

days there was no significant (p>0.05) difference between the activity level of the

two groups despite a trend towards an increased number of squares by the NAT

treated group.

Neurological Function: modified Neuroseverity Score

Sham animals displayed no neurological deficits on any of the assessment days,

confirming that the surgical procedure had no effect on neurological function.

Following stroke, vehicle animals consistently recorded an mNSS ranking of 6 or

more, indicative of moderate injury (Figure 8.4). No improvement in neurological

function was observed in this group following stroke and as such, their neurological

function was significantly (p<0.001) worse than shams at all time-points. In

comparison, both the NAT and capsaicin-treated groups demonstrated a recovery of

neurological function over the 7 d assessment period, recording a neurological score

not significantly different from shams (p>0.05). The NAT performed at levels

significantly better than vehicle treated animals (p<0.05), while the capsaicin treated

group did not perform significantly better than vehicle treated animals (p>0.05).

Despite this, there was no significant difference between the NAT- and capsaicin-

treated groups, largely because of the within group variation.

Hemiparesis: Angleboard

No hemiparesis was observed in sham animals, indicating that the surgical

procedure had no effect on balance and muscle strength. Following stroke, vehicle

animals demonstrated profound hemiparesis that persisted for the 7 d assessment
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Figure 8.3 Capsaicin pre-treatment – Spontaneous exploratory behaviour, as
assessed by the open field test.

Normal levels of spontaneous exploratory behaviour were observed in sham animals
(green). Following stroke, vehicle animals (aqua) demonstrated a significant
decline in spontaneous exploratory behaviour. In contrast, NAT-treated animals
(navy) showed a recovery in spontaneous exploratory behaviour with an increase
(p<0.05) in the number of squares transversed compared to vehicles. Capsaicin-
treated animals did not record open field scores significantly different from vehicles
on any assessment day, despite a trend towards increased spontaneous exploratory
behaviour (* denotes p<0.05 versus vehicle; • denotes p<0.05 versus sham) (sham

n= 6; vehicle n=12; NAT n=6; capsaicin n=8).
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Figure 8.4 Capsaicin pre-treatment – Neurological function, as assessed by the
modified neuroseverity score.

No neurological deficits were observed in sham animals (green). Following stroke,
vehicle animals (aqua) showed profound neurological deficits (p<0.001 versus
shams), which persisted for the 7 d assessment period. In contrast, NAT-treated
animals (navy) recovered from mild neurological deficits to no observable deficit by
day 5 post-stroke (p<0.05 versus vehicles). Capsaicin-treated animals (purple) also
showed a recovery of neurological function over the assessment period, but were
still ranked as having a mild injury by day 7 post-stroke (sham n= 6; vehicle n=12;
NAT n=6; capsaicin n=8).
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Figure 8.5 Capsaicin pre-treatment – Hemiparesis, as assessed by the
angleboard.

Sham animals showed no signs of hemiparesis (green). Following stroke, vehicle
animals (aqua) showed profound hemiparesis that persisted for the entire assessment
period (p<0.001 versus shams). In contrast, NAT-treated animals (navy) showed a
recovery in hemiparesis over the assessment period, recording angleboard scores
significantly better (0.05<p<0.001) than vehicles on all days post-stroke. Similarly,
capsaicin-treated animals (purple) demonstrated improved angleboard function over
time and scored significantly better (0.01<p<0.001) than vehicles on all assessment
days (* denotes p<0.05 versus vehicle; ** denotes p<0.01 versus vehicles; ***
denotes p<0.001 versus vehicles) (sham n= 6; vehicle n=12; NAT n=6; capsaicin
n=8).
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period (Figure 8.5). No improvement in angleboard performance was observed

over time, with scores significantly worse (p<0.001) than shams on all assessment

days. In contrast, a reduction in hemiparesis was observed over time in the NAT

group, as evidenced by improved angleboard scores. This group performed

significantly better (0.001<p<0.05) than vehicles on all assessment days, reaching

normal functional levels. Similarly, the capsaicin-treated group showed improved

angleboard performance over time, scoring significantly better than vehicles and

comparable to shams on all assessment days. There was no significant difference

between the capsaicin and NAT-treated groups.

8.3.2 Histological outcome

General Pathology - H&E

As reported in previous chapters, no abnormalities were observed in sham tissue.

At 7 d following stroke, extensive reactive gliosis occupied the cortex (Figure 8.6),

accompanied by a complete loss of normal cortical architecture. However,

treatment with either NAT or capsaicin was able to reduce the extent of the reactive

gliosis, such that regions of tissue preservation were observed. Specifically, there

was a modest reduction in reactive gliosis with both NAT and capsaicin treatment.

Within the white matter of vehicle animals, extensive tissue destruction was

observed (Figure 8.7), characterised by tissue vacuolation and the influx of

inflammatory cells. NAT or capsaicin treatment did not affect the extent of tissue

damage within the white matter.
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Figure 8.6 Capsaicin pre-treatment –Cortex at 7 d following stroke. H&E
stained sections (Bar = 100 µm).

No abnormalities were observed in sham tissue (A). Following stroke (B),
extensive reactive gliosis was observed to occupy the cortex, along with the influx
of macrophages (red arrowheads). Treatment with NAT (C) or capsaicin (D)
resulted in a modest reduction in reactive gliosis and a degree of tissue preservation
was observed.
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Figure 8.7 Capsaicin pre-treatment –White matter at 7 d following stroke.
H&E stained sections (Bar = 100 µm).

No abnormalities were observed in sham tissue (A). Following stroke (B),
extensive tissue destruction was observed within the white matter, along with the
influx of macrophages (red arrowheads) and this was largely unaffected by NAT
(C) or capsaicin (D) treatment.



340

SP response: SP Immunohistochemistry

Light SP immunoreactivity was observed within the perivascular tissue of sham

animals. At 7 d following stroke in vehicle animals, little perivascular SP

immunoreactivity was observed, due to the extensive reactive gliosis that occupied

the infarct (Figure 8.8). Treatment with either NAT or capsaicin did not affect the

perivascular SP response, as observed at 7 d following stroke. Light SP

immunoreactivity was observed within the cortex (Figure 8.9), consistent with

previous reports. Following stroke, extensive reactive gliosis occurred by day 7

within cortical tissue and as a result, little cortical SP immunoreactivity was evident.

Treatment with either NAT or capsaicin did not appear to affect the level of cortical

SP immunoreactivity observed at 7 d post-stroke.

Axonal Injury: APP Immunohistochemistry

No axonal injury was observed within the white matter of sham animals, indicating

that the surgical procedure had no effect of white matter tissue integrity. At 7 d

following stroke, florid axonal injury was observed in vehicle tissue (Figure 8.10),

with large retraction balls observed throughout the white matter. NAT treatment

resulted in a reduction in axonal injury, with the appearance of fewer retraction

balls. Capsaicin treatment also reduced the degree of white matter axonal injury,

with fewer and smaller retraction balls observed. Faint APP immunoreactivity was

observed within the cortex of sham animals (Figure 8.11). Following stroke, an

increase in cortical APP immunoreactivity was observed in vehicle animals.

Treatment with NAT or capsaicin did not appear to affect the degree of cortical APP

immunoreactivity.
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Figure 8.8 Capsaicin pre-treatment –Perivascular SP immunoreactivity at 7 d
post-stroke. SP stained sections (Bar = 100 µm).

Faint SP immunoreactivity was observed in the perivascular tissue of sham animals
(A). At 7 d following stroke, reactive gliosis occupied the infarct and as a result
little perivascular SP immunoreactivity was observed in vehicle (B), NAT (C) or
capsaicin-treated (D) tissue.
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Figure 8.9 Capsaicin pre-treatment – Cortical SP immunoreactivity at 7 d
following stroke. SP stained sections (Bar = 100 µm).

Faint SP immunoreactivity was observed in sham tissue (A). At 7 d post-
reperfusion (B), reactive gliosis occupied the cortex and little SP immunoreactivity
(arrowheads) was observed. This was largely unaffected by NAT (C) or capsaicin
(D) treatment.
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Figure 8.10 Capsaicin pre-treatment – Axonal injury within the white matter
at 7 d following stroke. APP stained sections (Bar = 100 µm).

No axonal injury was observed in sham tissue (A). At 7 d post-reperfusion (B),
florid axonal injury (arrowheads) was observed. Treatment with NAT (C) or
capsaicin (D) reduced the axonal injury observed within the white matter at 7 d
post-stroke, with fewer and smaller retraction balls seen.
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Figure 8.11 Capsaicin pre-treatment – Cortical APP immunoreactivity at 7 d
following stroke. APP stained sections (Bar = 100 µm).

Faint APP immunoreactivity was observed in sham tissue (A). At 7 d post-
reperfusion (B), increased neuronal APP immunoreactivity (arrowheads) was
observed. Treatment with NAT (C) or capsaicin (D) did not affect neuronal APP
immunoreactivity.
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Degenerating Neurons: FJC

No degenerating neurons were observed in sham tissue, confirming that the surgical

procedure had no significant effect on neuronal survival. At 7 d following stroke,

extensive reactive gliosis occupied the cortex (Figure 8.12) and as such, no

degenerating neurons could be observed. However, a modest reduction in reactive

gliosis was observed in NAT- and capsaicin-treated animals, such that some

degenerating neurons were observed. Within the white matter of vehicle animals, a

marked loss of normal tissue architecture was observed (Figure 8.13), characterised

by reactive gliosis and tissue vacuolation. As a result, few degenerating neurons

were observed. Treatment with either NAT or capsaicin produced a modest

reduction in the reactive gliosis within the white matter.

Astrocyte Response: GFAP Immunohistochemistry

Faint GFAP immunoreactivity was observed within sham tissue (Figure 8.14). At 7

d following reperfusion, an increase in GFAP immunoreactivity was observed

within the infarct border zone of vehicle animals. This response to ischaemia was

further increased with NAT treatment, as evidenced by marked astrocyte

hypertrophy and hyperplasia. In contrast, the GFAP response within the infarct

boundary zone of capsaicin-treated animals was comparable to that of vehicle

animals. Within perivascular tissue, an increase in GFAP immunoreactivity was

also observed following stroke (Figure 8.15) in vehicle animals. Once again, NAT

treatment was observed to further increase this response to ischaemia, with

profound GFAP immunoreactivity observed in perivascular tissue. Capsaicin

treatment produced a pattern of perivascular GFAP immunoreactivity that was

comparable to that observed in vehicle-treated animals.
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Figure 8.12 Capsaicin pre-treatment – Degenerating neurons within the cortex
at 7 d following stroke. FJC stained sections (Bar = 100 µm).

No degenerating neurons were observed in sham tissue (A). At 7 d post-reperfusion
(B), extensive reactive gliosis occupied the cortex and no degenerating neurons
(arrowheads) were observed. Treatment with NAT (C) or capsaicin (D) resulted in
a modest reduction in the degree of reactive gliosis and some degenerating neurons
were observed.
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Figure 8.13 Capsaicin pre-treatment – Degenerating neurons within the white
matter at 7 d following stroke. FJC stained sections (Bar = 100 µm).

No degenerating neurons were observed in sham tissue (A). At 7 d following
reperfusion (B), marked loss of white matter architecture was observed with
reactive gliosis occupying the tissue, few degenerating neurons (arrowheads) were
seen. Treatment with NAT (C) or capsaicin (D) treatment resulted in a modest
reduction in reactive gliosis and some degenerating neurons were observed.
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Figure 8.14 Capsaicin pre-treatment – GFAP immunoreactivity within the
infarct border zone at 7 d following stroke. GFAP stained sections (Bar = 100
µm).

Faint GFAP immunoreactivity was observed in sham tissue (A). At 7 d following
stroke (B), an increase in GFAP immunoreactivity (arrowheads) was observed in
the infarct border zone. Treatment with NAT exacerbated this response to injury
(C) (arrows). Treatment with capsaicin (D) produced GFAP immunoreactivity
within the infarct border zone comparable to vehicles.
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Figure 8.15 Capsaicin pre-treatment – Perivascular GFAP immunoreactivity
at 7 d following stroke. GFAP stained sections (Bar = 100 µm).

Faint GFAP immunoreactivity was observed in sham tissue (A). At 7 d following
reperfusion (B), an increase in GFAP immunoreactivity (arrowheads) was observed
within perivascular tissue in NAT-treated animals (C). Capsaicin treatment (D)
produced a perivascular GFAP response comparable to vehicles.
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Macrophage/Activated Microglia Response: ED-1 Immunohistochemistry

In sham tissue, no macrophages/activated microglia were observed within cortical

tissue or in association with blood vessels, indicating that the surgical procedure did

not elicit a significant inflammatory response (Figure 8.16). At 7 d following

stroke, a profound influx of ED-1 positive cells was observed within the cortex of

vehicle animals. NAT treatment produced a marked reduction in the number of

macrophages/activated microglia observed within the cortex. A modest reduction in

ED-1 positive cells within the cortex was also observed in capsaicin animals. With

respect to the perivascular response, an increase in the number of

macrophages/activated microglia observed in close association with blood vessels

was seen at 7 d post-stroke (Figure 8.17) in vehicle-treated animals. This

perivascular response to injury was not affected by treatment with either NAT or

capsaicin.
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Figure 8.16 Capsaicin pre-treatment – Macrophage/Activated Microglia
response within the infarct at 7 d post-reperfusion. ED-1 stained sections (Bar
= 100 µm).

No macrophages/activated microglia were observed within the cortex of sham
animals (A). At 7 d post-reperfusion (B), a profound influx of ED-1 positive
macrophages/activated microglia (arrowheads) was observed within the cortex.
Treatment with NAT (C) markedly reduced the number of ED-1 positive cells
within the cortex. Treatment with capsaicin (D) resulted in a modest reduction in
the number of ED-1 positive cells observed within the infarct.
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Figure 8.17 Capsaicin pre-treatment – Perivascular Macrophage/Activated
Microglia immunoreactivity at 7 d following stroke. ED-1 stained sections (Bar
= 100 µm).

No macrophages/activated microglia were observed in association with blood
vessels in sham tissue (A). At 7 d post-reperfusion (B), ED-1 positive
macrophages/activated microglia (arrowheads) were observed in close association
with blood vessels. This response was largely unaffected by treatment with NAT
(C) or capsaicin (D).
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8.4 Discussion

In the present study, we demonstrate that depletion of neuropeptides prior to

cerebral ischaemia results in attenuation of functional deficits and a reduction in

histological abnormalities. These findings represent one of the first investigations

of the role of sensory neuropeptides in stroke. A role for neuropeptides and

neurogenic inflammation in BBB dysfunction, cerebral oedema and functional

deficits following TBI has recently been demonstrated (Donkin et al., 2007; Nimmo

et al., 2004; Vink et al., 2003).

Although many studies have used capsaicin as an experimental tool to study

neuropeptides (Dembinski et al., 2003; Turchanyi et al., 2005), few studies have

investigated behavioural outcome end-points following capsaicin pre-treatment

(Nimmo et al., 2004; Vink et al., 2003), and even fewer have studied cerebral

ischaemia (Pegorini et al., 2005). Administration of capsaicin 5 mins after

recirculation completely protected against global cerebral ischaemia, as indicated by

a recovery in spontaneous motor activity, memory and hippocampal CA1 neuron

density (Pegorini et al., 2005). However, these authors were unsure of the

mechanism whereby capsaicin treatment provided protection but speculated that

following ischaemia the release of neuropeptides from sensory nerves could be

involved. Yet, the findings of the present thesis have clearly demonstrated a

deleterious role for the neuropeptide SP following cerebral ischaemia. Our findings

are consistent with those previously reported in TBI that reveal that capsaicin-

induced neuropeptide depletion prior to injury is protective (Nimmo et al., 2004;

Vink et al., 2003).
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In the present study, pre-treatment with capsaicin was associated with an

improvement in motor, sensory and neurological function and reduced hemiparesis.

However, NAT treatment produced a more rapid recovery in motor and sensory

function and a complete recovery in spontaneous exploratory behaviour following

stroke, albeit not significantly in all tests when compared to capsaicin. Nonetheless,

the overall trend was that NAT-treated animals demonstrated superior functional

recovery when compared to capsaicin-treated animals. The fact that the functional

recovery of the capsaicin group was not comparable to the NAT group in all tests of

functional outcome suggests that one or more of the neuropeptides that was depleted

with capsaicin pre-treatment may have been beneficial to outcome following stroke.

As such, the removal of this neuropeptide by capsaicin pre-treatment may have

negatively affected outcome. One candidate neuropeptide is CGRP, the most potent

endogenous vasodilator, which acts to increase local blood flow (Dray, 1995).

Intravenous administration of CGRP in a rat produces a transient increase in mean

arterial blood pressure (Wimalawansa, 1996). However, CGRP is also involved in a

number of other biological processes other than vascular regulation, including

sensory transmission, neuromodulation at the neuromuscular junction and

nociception (Wimalawansa, 1996). Indeed, protective roles for CGRP in ischaemia

have previously been reported (Kjartansson, 1987). In a model of pancreatic

ischaemia/reperfusion injury, the ablation of neuropeptides was found to aggravate

the ischaemic damage (Dembinski et al., 2003), with the authors hypothesising that

the lack of CGRP was detrimental to ischaemic tissue. CGRP has also been found

to improve the survival of ischaemic surgical flap tissue (Kjartansson, 1987;

(Bucinskaite et al., 1998). The proposed mechanism of CGRP-induced protection

was the promotion of angiogenesis, new blood vessel formation within the tissue.
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Proliferation of endothelial cells and the migration of endothelial cells to injured

monolayers of human microvascular endothelium has also been reported in response

to CGRP (Datta et al., 1990). The release of CGRP has been proposed to be a

generalised response of cerebral tissue to injury (Dragunow et al., 1992; Gherardini

et al., 1996) and may directly promote the survival of damaged neurons (Bulloch et

al., 1998; Dragunow et al., 1992) and nerve regeneration (Wimalawansa, 1996).

Furthermore, CGRP immunoreactivity within the CA1 neurons of the hippocampus

was associated with increased neuronal survival (Bulloch et al., 1998). In

experimental SAH, infusion of CGRP prevented vasospasm and reduced the extent

of the ischaemic lesion (Holland et al., 1994; Inoue et al., 1996). Taken together,

these studies suggest a potential protective function for CGRP following ischaemia.

In the context of the present study, this protective function may be quite modest.

When SP and CGRP are present in concert, CGRP may potentiate the effects of SP-

induced neurogenic inflammation (Holzer, 1998). As such, antagonism of the SP

pathway alone, through administration of an NK1 receptor antagonist, may provide

a favourable cerebral environment following stroke. Specifically, the action of SP

is blocked so that deleterious neurogenic inflammation is circumvented, but the

released CGRP may nonetheless have some favourable effects on the cerebral

vasculature. This has not been observed in previous studies of TBI, although one

could hypothesise that an improved vascular response would have little efficacy in

TBI injuries without an ischaemic component. Nonetheless, similar findings have

been reported following ischaemia/reperfusion injury in peripheral tissues. The

absence of sensory neuropeptides was found to be beneficial in long durations of

ischaemia (2 h) of skeletal muscle due to inhibition of neurogenic inflammation



356

(Turchanyi et al., 2005), whereas the absence of neuropeptides in shorter durations

of ischaemia (1 h) was found to be unfavourable. This group suggested that this

was due to a lack of vasodilator neuropeptides that improve microcirculation.

Similarly, tissue damage following ischaemia/reperfusion injury of the pancreas was

aggravated by neuropeptide depletion, presumably because of the lack of CGRP

(Dembinski et al., 2003).

Recently the transient receptor potential V1 (TRPV1) receptor, where capsaicin is

the ligand, has gained a lot of interest. Activation of TRPV1 leads to disruption of

the BBB following cerebral ischemia/reperfusion injury (Hu et al., 2005).

Capsazepine, a TRPV1 antagonist, reduced permeability levels, suggesting that

TRPV1 is involved in BBB dysfunction in ischaemia. The fact that TRPVI receptor

activation stimulates neurogenic inflammation supports a neuropeptide-based

mechanism for these events.

Axonal injury was a consistent feature of stroke in the present study, and as

observed in the previous chapters, treatment with NAT was able to reduce the extent

of axonal injury within the white matter. Similarly, capsaicin treatment also

markedly reduced axonal injury, such that fewer and smaller retraction balls were

observed. A reduction in axonal injury may have been one mechanism whereby

treatment with capsaicin was able to convey some protection from the ischaemic

insult. Although the mechanism whereby capsaicin was able to reduce axonal

injury is unknown, this may partially account for improvement in functional

outcome, and in particular motor deficits, observed in these animals.
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A reduction in the influx of macrophages was also observed in both NAT- and

capsaicin-treated animals, as evidenced by a reduced number of ED-1 positive cells

within the infarct. The reduced macrophage response may be partially explained by

the role of SP as a chemotactic factor for monocytes (Ruff et al., 1985). In addition,

SP may induce the release of cytokines, eg IL-6, Il-1� and TNF-� from

inflammatory cells such as neutrophils and macrophages (Delgado et al., 2003).

Therefore, NAT and capsaicin reduced the SP signal following stroke, thereby

reducing the chemotactic signal for monocyte recruitment into the tissue. A

reduced number of macrophages may have been beneficial as these inflammatory

cells are major sources of pro-inflammatory cytokines such as IL-1� (Mabuchi et

al., 2000).

8.5 Conclusions

Ablation of neuropeptides by treatment with capsaicin provided protection from the

ischaemic insult. Specifically, functional deficits were markedly reduced and

histological abnormalities were reduced in the capsaicin group compared to

vehicles. However, the overall trend was that NAT treated animals performed

superior to the capsaicin pre-treated group, indicating that NAT administration is

more effective in reducing functional deficits than capsaicin. These results

indicated that one or more of the neuropeptides may have a beneficial role post-

stroke, and this is most likely to be CGRP. Nevertheless, depletion of

neuropeptides provides a degree of protection from the development of functional

deficits and histological abnormalities following ischaemic stroke, confirming that

sensory neuropeptides play a significant role in the post-ischaemic secondary injury

process and may offer a novel target for development of interventional
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pharmacological strategies. The further investigation of the role of CGRP in stroke

is beyond the scope of the present thesis.
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CHAPTER 9:

GENERAL DISCUSSION



360

The present thesis characterises the effects of an NK1 receptor antagonist on BBB

permeability, cerebral oedema, infarct volume, histological abnormalities and

functional deficits following reversible ischaemic stroke. Few previous studies

have examined the role of SP in cerebral ischaemia (Bruno et al., 2003; Stumm et

al., 2001; Yu et al., 1997), and accordingly, the findings presented in this thesis

represent the most extensive characterisation to date of an NK1 receptor antagonist

in stroke.

Initially, we were able to demonstrate that an increase in SP immunoreactivity

occurred within the infarct border zone following stroke. Such an increase in SP

immunoreactivity was a feature of ischaemic stroke with reperfusion and was not

observed in permanent stroke where there was no reperfusion of the ischaemic

territory. The latter finding was consistent with a previous study of cerebral

ischaemia (Fu et al., 2004), where a lack of SP immunoreactivity was observed

following pMCAO. The authors suggested that SP is not directly involved in the

injury process that occurs following stroke without reperfusion, and our findings

support this hypothesis. However, there was a striking difference in the pattern of

SP immunoreactivity between the pMCAO and tMCAO groups that has not

previously been reported. The increase in SP within the infarcted and reperfused

hemisphere was observed as early as 5 h post-reperfusion, but was most pronounced

at 24 h post-reperfusion. Specifically, increased SP was observed within glial and

neuronal tissue within the cortex, but was particularly apparent at the perivascular

level, with increased SP immunoreactivity observed around blood vessels within the

ischaemic penumbra. The increase in SP levels was quantitatively confirmed using

ELISA. These results indicated that the increase in SP observed by
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immunohistochemistry was due to a significant increase in SP protein. These novel

findings were consistent with previous studies (Bruno et al., 2003), which reported

increased SP levels in the serum of SP patients with TIA or stroke, and suggesting

that the cellular source of increased SP in cerebral ischaemia was the perivascular

fibres. An increase in SP levels at 24 h following stroke is consistent with BBB

opening and cerebral oedema at this time-point (Preston et al., 1993), supporting a

role for SP in these events. Indeed, increased SP levels are associated with the

development of neurogenic inflammation in peripheral tissues, characterised by

increased vascular permeability and tissue swelling. Furthermore, previous studies

from our laboratory have shown that SP release is a consistent feature of brain

injury and that the NK1 receptor contributes to BBB dysfunction, cerebral oedema

and functional deficits (Donkin et al., 2007; Nimmo et al., 2004; Vink et al., 2003).

Having established that SP release was a feature of stroke with reperfusion, we next

characterised the effects of antagonism of the SP pathway. As such, an NK1

receptor antagonist (NAT) was used, with specific attention paid to its’ effects on

BBB permeability, cerebral oedema, functional outcome and histological

abnormalities. Notably, NAT treatment was able to decrease brain SP levels to

levels comparable to shams. Such findings prompted consideration of an

autoreceptor for SP, documented by several research groups in the skin (Lever et al.,

2003), gastrointestinal tract (Patacchini et al., 2000), spinal cord (Lever et al., 2003)

and brain (Levesque et al., 2007). Autoreceptors are those neuronal receptors that

respond to their agonist with alterations in transmitter release (Kalsner et al., 2000).

For example, the NK1 autoreceptor may respond to increased SP levels within the

synapse by reducing SP release through negative feedback (Malcangio and Bowery,
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1999). Consistent with this, the release of SP has been reported to be greater in NK1

receptor knockout mice compared to wild type mice (Malcangio and Bowery,

1999). It has therefore been proposed that NK1 autoreceptors may be relevant to the

modulation of neurogenic inflammation and may participate in pathological events

(Lever et al., 2003). The fact that an NK1 receptor antagonist also modulated SP

release in our studies supports the concept of an NK1 autoreceptor. However, given

that the NK1 receptor antagonist decreases SP release suggests that it may not

necessarily be a strictly negative feedback loop, and this requires further study.

A profound disruption of the BBB was observed at 24 h post-reperfusion and this

was associated with significant cerebral oedema. These events also correlated with

the increased SP seen at 24 h post-stroke. Administration of the NK1 receptor

antagonist completely ameliorated BBB dysfunction and cerebral oedema.

Furthermore, these improvements in BBB status and brain water content were

observed in the setting of reduced SP levels, as evidenced by the ELISA results,

suggesting that SP is integral to these events post-stroke, and furthermore, that the

oedema observed was of the vasogenic type. Studies in NK1 receptor knockout

mice have also shown that they are unable to produce oedema (Cao et al., 1999),

confirming a potential role of the NK1 receptor in oedema formation. Our findings

represent the first investigation of an NK1 receptor antagonist on cerebral oedema

and BBB following stroke, and confirm the hypothesis that activation of NK1

receptors on the vascular endothelium may contribute to tissue swelling (Stumm et

al., 2001).



363

In addition to measurement of BBB permeability and oedema, we also characterised

the effects of the NK1 receptor antagonist on functional outcome. To date, no other

studies have extensively evaluated functional outcome after stroke following NK1

receptor antagonist administration. Functional outcome was assessed using a

battery of functional outcome tests, purported to be the most effective means of

assessing the functional capacity of animals following stroke (Corbett and Nurse,

1998; DeVries et al., 2001; Rogers et al., 1997; Schallert, 2006). The rotarod was

used as the primary measure of motor function. The rotarod has been used with

great success in models of TBI and stroke (Hunter et al., 2000; Nimmo et al., 2004;

Smith et al., 1997; Vink et al., 2003; Zausinger et al., 2000) and is considered the

most sensitive motor test due to its’ incorporation of both gross and fine motor

components (Hamm et al., 1994). NAT administration produced a profound

recovery from rotarod deficits following stroke.

The bilateral asymmetry test was used as a measure of sensory function following

stroke. This “sticky label” test is effective because it is resistant to practice (Modo

et al., 2000b), and assesses tactile extinction while probing sensory neglect

(Schallert et al., 1982). It is suitable for use in stroke since animals subject to right-

side MCAO frequently experience sensory deficits on the contralateral (LHS) side

(Modo et al., 2000b), as was consistently observed in the present study. NAT

treatment produced a marked improvement in sensory function. Such an effect on

sensory function has never before been documented following NK1 receptor

antagonist treatment in stroke. Another outcome test used in the present study was

the open field test of spontaneous exploratory behaviour, as modified from that of

Guilian and Silverman (Giulian and Silverman, 1975). Spontaneous exploratory
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behaviour is an important indicator of the general well being of the animal. NAT

produced a complete recovery in spontaneous exploratory behaviour. A modified

neuroseverity score was also used to assess overall neurological function following

stroke (Li et al., 2000b). Many experimental stroke studies use a basic neuroscore

to assess animals (Bederson et al., 1986b; Mary et al., 2001; Yu et al., 1997; Zhang

et al., 2003), and the present study also demonstrated that the NK1 receptor

antagonist was effective in significantly improving this outcome parameter. Finally,

the angleboard was used to assess hemiparesis, which was particularly pronounced

following stroke. Treatment with an NK1 receptor antagonist completely

ameliorated hemiparesis, which is a common long-term complication of human

stroke (Plummer et al., 2007; Rijntjes, 2006). All of the behavioural measures used

in the studies outlined in this thesis were easy to carry out, required no pre-training,

were cost-effective and were not stressful to the animals. Taken together, they

provided an accurate picture of the functional capacity of the animals, with respect

to motor, sensory and neurological function, and the effectiveness of an NK1

receptor antagonist to improve functional outcome following ischaemic stroke.

The attenuation of functional deficits following antagonism of the NK1 receptor was

observed in association with improvement in histological outcome. In particular, a

marked reduction in the extent of axonal injury within the white matter was

observed. APP is a particularly sensitive marker of axonal injury, as documented in

many studies of TBI (Blumbergs et al., 1995; Povlishock, 1992; Povlishock, 1993;

Van Den Heuvel et al., 1999; Van Den Heuvel et al., 1998). NAT treatment

markedly reduced the number of axonal swellings within the white matter.

Although the mechanism whereby the NK1 receptor antagonist was able to afford a
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degree of protection from axonal injury following stroke is unclear, it may partially

account for the improvements in functional outcome observed.

Increases in GFAP immunoreactivity within the infarct border zone and within

perivascular tissue were also apparent following stroke. Interestingly, NAT

treatment further increased this response to ischaemia. Although the interpretation

of this result is not readily apparent, given that the role of astrocytes following

stroke is ill defined, it suggests a potential protective function of astrocytes. An

increase in GFAP staining within the infarct boundary zone may be a protective

function whereby the brain is trying to re-establish the integrity of the BBB. The

more immature phenotype displayed by these astrocytes, as evidenced by their

elongated processes, may provide an environment that is conducive to regeneration

and neurogenesis (Cramer and Chopp, 2000). Also, astrocytes are able to produce a

number of trophic factors that may facilitate neuronal survival, such as bFGF, TGF-

�, NGF and VEGF, amongst others (Chen and Swanson, 2003).

The inflammatory response following stroke has been well characterised and

involves the complex interaction of inflammatory cells and mediators. ED-1

staining revealed a profound macrophage/activated microglia response to ischaemia,

which was markedly reduced in NAT-treated animals. This was not altogether

surprising seeing as SP in known to initiate and regulate the immune response (Guo

et al., 2004). As such, a dampened SP response in the setting of an NK1 receptor

antagonist would reduce inflammatory cell recruitment and pro-inflammatory

cytokines within the brain tissue. This may have been reflected in the modest

preservation of tissue observed in these animals.
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No reduction in infarct volume was observed in these studies despite functional

improvement across a number of behavioural measures. However, this is not an

unusual observation. Many experimental studies have now reported remarkable

improvements in functional outcome which were not accompanied by a reduction in

lesion volume or histological abnormalities (Grotta et al., 1988; Grotta et al., 1990;

Aronowski et al., 1994; Aronowski et al., 1996; van der Staay et al., 1996). This is

despite the extensive reporting of infarct volume as an outcome parameter in the

early stroke literature. As such, ischaemic lesion volume may not be as accurate a

predictor of functional capacity as the early literature suggests. Hence, many

researchers are now suggesting that it is the synaptic plasticity of the peri-lesional

area that is important for functional recovery, rather than salvage of the tissue

volume per se (Gladstone et al., 2002). Indeed, one could argue that it is the

functional capacity of an individual that is most important following stroke.

Consistent with this, clinical studies use functional measures and quality of life

scales to determine the functional capacity of individuals following stroke, not

infarct volumes (Foell et al., 2003; Jennett and Bond, 1975; Panicker et al., 2003).

Accordingly, it was extremely important to extensively evaluate the functional

capacity of animals following stroke throughout the present studies.

Taken together, the findings of chapter 4 clearly demonstrated that an NK1 receptor

antagonist can improve functional outcome following stroke, presumably through

maintenance of normal BBB status, brain water content and by improving a number

of histological abnormalities. Although these findings were extremely encouraging,

it was essential to determine whether an NK1 receptor antagonist was suitable for

use in conjunction with thrombolytic agents, as thrombolysis with tPA is currently
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the only approved therapy for ischaemic stroke (Kwiatkowski et al., 1999). As

such, chapter 5 evaluated the efficacy of combination treatment using an NK1

receptor antagonist with tPA. These studies demonstrated that adjunctive therapy

with NAT was a highly efficacious therapeutic intervention following ischaemic

stroke. Profound improvements in functional outcome were observed in association

with a reduction in the extent of histological abnormalities. As NK1 receptor

antagonists have not previously been investigated in conjunction with tPA, the

mechanism of action is unknown. However, it is likely that NAT was able to afford

protection from the neurotoxic actions of tPA, including those involving MMPs at

the level of the BBB (Kaur et al., 2004). Indeed, previous studies have reported on

the efficacy of adjunctive therapies on reducing the toxicity of tPA (Asahi et al.,

2000; Lapchak et al., 2002; Wang and Lo, 2007), although the mechanism of such

actions were also unknown. The present study demonstrated effects on axonal

injury, reactive gliosis and reversible cellular injury. In particular, the combination

therapy of NAT/tPA markedly reduced the degree of cortical and white matter

damage, as evidenced by a reduction in axonal injury, less extensive reactive gliosis

and a preservation of normal cerebral architecture. Furthermore, the risk of

haemorrhagic transformation and death were markedly reduced, common

complications of thrombolytic therapy.

Having established that NAT was effective in improving outcome following stroke

and that it could be used safely and effectively in conjunction with tPA, it was

essential to determine the therapeutic window for administration, and this was

addressed in chapter 6. Many other potential neuroprotective agents have been

investigated in experimental stroke (Gladstone et al., 2002; Heiss et al., 1999).
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Unfortunately, none of these have been successful in the setting of clinical stroke.

Functional and histological outcome studies showed that NAT could be

administered up to 8 h after the onset of ischaemia with significant improvements in

motor, sensory and neurological outcome, as well as histological outcome. This 8 h

treatment window represents a significant therapeutic window, that is 2.5 times

greater than that of the current therapy, tPA. It is essential for any potential

neuroprotective agent to have a clinically relevant treatment window. Despite this,

some previous studies have only demonstrated efficacy of a compound when

administered before or shortly after the onset of ischaemia (Green, 2002). Indeed,

tPA is often criticised for its’ short therapeutic window and the increased incidence

of ICH associated with its’ use (Hill and Hachinski, 1998; Lees, 2000). However,

with advanced imaging and the use of effective adjunctive treatments, many of

these problems may be overcome. Whether an NK1 receptor antagonist can increase

the window for tPA therapy remains to be seen, and this was beyond the scope of

the present study. The effects on BBB status, cerebral oedema and functional

outcome are likely to account for the efficacy of the NK1 receptor antagonist

adjunctive therapy.

As stroke is an extremely heterogenous condition, encompassing many sub-types

and severities, it was important to ascertain whether an NK1 receptor antagonist was

effective in different severities of stroke. As such, chapter 7 evaluated the

administration of NAT following mild, moderate and severe ischaemia. In these

studies, NAT was administered at the upper end of the therapeutic window, 8 h after

stroke onset. Consistent with previous studies (Garcia et al., 1995a), mild ischaemia

produced only minor histological abnormalities and modest functional deficits. As
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such, NAT treatment did not produce a profound improvement, due to the relatively

benign level of injury observed in these animals. However, a modest reduction in

the number of degenerating and injured cells was observed in the mild ischaemia

group following NAT treatment. The most profound histological abnormalities

were observed in the moderate and severe ischaemia groups, indicating that 1.5 h is

the duration of ischaemia where the ischaemic injury becomes more severe in

nature. Similar findings have been reported in other studies of MCAO (Li et al.,

1999). Significant improvements in motor, sensory and neurological function were

observed in the moderate and severe groups following NK1 receptor antagonist

administration, indicating that the NK1 receptor antagonist was particularly

beneficial in stroke of a moderate to severe grade. Moreover, the NK1 receptor

antagonist was significantly effective in improving outcome at these levels of

injury, even when administered 8 h after stroke onset.

Having clearly established a role for SP in stroke we were curious to determine

whether other neuropeptides were involved. As such, in chapter 8 capsaicin pre-

treatment was used to deplete all neuropeptides prior to MCAO, and observe the

effect on post-stroke outcome. Depletion of sensory neuropeptides by capsaicin

pre-treatment was found to be protective following stroke. However, treatment with

the NK1 receptor antagonist was generally superior in improving outcome following

stroke, in regards to functional and histological outcome. Previous, studies of

ischaemia/reperfusion injury in peripheral tissues have shown that ablation of all

neuropeptides can exacerbate injury (Dembinski et al., 2003; Turchanyi et al.,

2005). Depletion of all neuropeptides was not as effective as an NK1 receptor

antagonist in the present study and this may be due to the beneficial effects of one
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or more of the neuropeptides in cerebral ischaemia acting via the NK2 or NK3

receptor (Figure 9.1). Although, previous studies from our laboratory have shown

that neuropeptide depletion with capsaicin pre-treatment completely ameliorated the

BBB dysfunction, cerebral oedema and functional deficits observed following TBI

(Nimmo et al., 2004; Vink et al., 2003), a protective role for CGRP following

ischaemia has previously been proposed (Gherardini et al., 1996). CGRP is a potent

vasodilator with the capacity to increase cerebral blood flow (Wimalawansa, 1996).

Although CGRP alone cannot induce neurogenic inflammation, in the presence of

SP it is able to potentiate this process (Black, 2002; Richardson and Vasko, 2002).

Thus, antagonising the SP response following stroke with the NK1 receptor

antagonist is preferable to ablation of all neuropeptides for several reasons. As our

results have conclusively demonstrated, SP is deleterious following ischaemia and

blocking its’ action is beneficial. In contrast, CGRP may produce valuable

vasodilatory actions in stroke without potentiation of neurogenic inflammation.

Consistent with this, CGRP was found to improve the survival of ischaemic surgical

flap tissue (Kjartansson, 1987; (Bucinskaite et al., 1998). Furthermore, the release

of CGRP has been proposed to be a generalised response of cerebral tissue to injury

(Dragunow et al., 1992; Gherardini et al., 1996) that may directly promote the

survival of damaged neurons (Bulloch et al., 1998; Dragunow et al., 1992), as well

as nerve regeneration (Wimalawansa, 1996). Finally, CGRP immunoreactivity

within the CA1 neurons of the hippocampus has been associated with increased

neuronal survival (Bulloch et al., 1998).

Heretofore, the findings of this thesis clearly demonstrate the efficacy of NK1

receptor antagonists following stroke. It is apparent that SP has pleiotropic actions
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Figure 9. 1 The involvement of SP and neurogenic inflammation in CNS injury

(Turner and Vink, 2007).
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beyond that of neurogenic inflammation and increased vascular permeability at the

BBB level, as evidenced by the improvements in functional outcome and

histological abnormalities observed across the studies. Although the exact

mechanisms whereby an NK1 receptor antagonist was able to convey

neuroprotection following stroke is unknown, there are a number of possibilities.

With regard to the inflammatory response after ischaemia, it is well known that SP

plays a role in the initiation and modulation of inflammation. Many studies have

documented the effects of SP on inflammatory cells and their actions, including the

fact that SP is a chemotactic factor for inflammatory cells including neutrophils

(Braun et al., 1996) and monocytes (Ruff et al., 1985). As such, SP may be

involved in the recruitment of inflammatory cells into the infarct, thus contributing

to the inflammatory response. SP also induces the dose-dependent release of pro-

inflammatory cytokines from inflammatory cells, such as IL-1, TNF-� (Lotz et al.,

1988) and IL-6 (Brain, 1997; Yamaguchi et al., 2004), thereby potentiating the

inflammatory response. SP has also been shown to stimulate superoxide production

(Serra et al., 1988; Hafstrom et al., 1989), lysosomal enzyme release and phagocytic

activity by polymorphonuclear cells (Bar-Shavit et al., 1980), thus exacerbating

injury (Siesjo et al., 1996). As such, SP may play an important role in orchestrating

the immune response following stroke.

Although a role for SP in the regulation of MMPs has not been proposed in the

brain, a role for SP in extracellular matrix metabolism has previously been reported

in peripheral tissues. In lung tissue, SP produces an upregulation of MMP-1

expression (Ramos et al., 2007) and has also been correlated with increased MMP-

12 levels in chronic obstructive pulmonary disease (Xu et al., 2007). SP can also
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induce the secretion of MMP-2 from human synovial fibroblasts, whilst increasing

overall MMP activity. It is feasible that SP may also have similar effects on MMPs

within the brain as it does in peripheral tissues, further implicating SP release in the

barrier dysfunction observed following stroke. Any potential interaction of SP with

these extracellular matrix proteases has implications for the stability and integrity of

the blood vessels, and therefore on cerebrovascular permeability and haemorrhagic

transformation, as these proteases are integral to BBB integrity. Interestingly, in

lung tissue, infusion of SP induced a dose-dependent increase in tPA release and

activity, accompanied by increased blood flow (Newby et al., 1999; Newby et al.,

2001). Although there are no published reports of an association between SP and

tPA within the brain, it is tempting to speculate that similar events may occur in the

brain as in peripheral tissue, thus linking the later infusion of tPA to an increased

incidence of haemorrhage. Clearly, the effects of SP on tPA and the plasminogen

system, and their interaction in haemorrhagic transformation, requires further study.

In the present study, cell death pathways were clearly activated or potentiated by

increased SP levels. It has recently been shown that SP induces a non-apoptotic

form of programmed cell death (Castro-Obregon et al., 2002), and that this cell

death pathway is mediated by the NK1-SP receptor-ligand pair. Therefore, excess

SP may have contributed to cell loss following cerebral ischaemia. SP and the

excitatory neurotransmitter glutamate are closely linked (Afrah et al., 2001;

Malcangio et al., 1998; Benoliel et al., 2000; Lieberman and Mody, 1998; Marvizon

et al., 1997; Stacey et al., 2002). SP is able to exert feedback to promote glutamate

release and therefore potentiate excitotoxicity (Lieberman and Mody, 1998; Stacey

et al., 2002). Excessive glutamate release is associated with markedly increased
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Ca2+ flux into cells and over-activation of the NMDA receptor, culminating in cell

death (Choi, 1992; Rothman and Olney, 1987). The effects of the NK1 receptor

antagonist on neuronal cell death in the present study are consistent with these

observations.



375

9.1 Conclusions

In the present thesis, I have demonstrated that an NK1 antagonist is beneficial in

reducing blood brain barrier permeability, cerebral oedema, functional deficits and

neuronal damage following ischaemic stroke. In addition, combination of the NK1

receptor antagonist with tPA reduced the haemorrhage and neurotoxicity associated

with tPA administration, whilst also markedly improving functional and histological

outcome. The NK1 receptor antagonist was highly efficacious even when

administered up to 8 h following stroke of moderate or severe grades. Nonetheless,

as has become apparent in the study of many other neurological conditions, there is

unlikely to be a single “magic bullet” that can result in significant improvement in

outcome. Successful treatment strategies will be those that target a number of

aspects of the injury (Ginsberg, 2003; Heiss et al., 1999). Future stroke treatments

may include thrombolysis in conjunction with neuroprotective agents administered

at various time points along the post-stroke course, followed by active rehabilitation

programs. In the present study adjunctive therapy of an NK1 receptor antagonist

with tPA was able to reduce the neurotoxicity associated with tPA administration by

reducing the risk of haemorrhage and death, reducing reperfusion injury,

maintaining barrier integrity and improving functional outcome. As such,

administration of an NK1 receptor antagonist with tPA may represent a novel

adjunctive therapy for the clinical management of acute ischaemic stroke.
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