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Abstract 
 
 
Transmission lines of any voltage level are subject to faults. To speed up repairs and 

restoration of power, it is important to know where the fault is located. A fault location 

algorithm’s result is influenced by a series of modeling equations, setting parameters and 

system factors reflected in voltage and current inputs. The factors mentioned are subject 

to sources of uncertainty including measurement and signal processing errors, setting 

errors and incomplete modeling of a system under fault conditions. These errors have 

affected the accuracy of the distance to fault calculation. Accurate fault location reduces 

operating costs by avoiding lengthy and expensive patrols. Accurate fault location speeds 

up repairs and restoration of lines, ultimately reducing revenue loss caused by outages. In 

this thesis, we have reviewed the fault location algorithms and also how the uncertainty 

affects the results of fault location.  

 

Sensitivity analysis is able to analyze how the variation in the output of the fault location 

algorithms can be allocated to the variation of uncertain factors. In this research, we have 

used global sensitivity analysis to determine the most contributed uncertain factors and 

also the interaction of the uncertain factors. We have chosen Analysis of Variance 

(ANOVA) decomposition as our global sensitivity analysis. ANOVA decomposition 

shows us the insight of the fault location, such as relations between uncertain factors of 

the fault location. 
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Quasi regression technique has also been used to approximate a function. In this research, 

the transmission line fault location system is fitted into the ANOVA decomposition using 

quasi regression. From the approximate function, we are able to get the variance of the 

sensitivity of fault location to uncertain factors using Monte Carlo method. In this 

research, we have designed novel methodology to test the fault location algorithms and 

compare the fault location algorithms. In practice, such analysis not only helps in 

selecting the optimal locator for a specific application, it also helps in the calibration 

process. 
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Chapter 1. Introduction 
 

 

 

 

Chapter 1. 

 
Introduction 
 
Unexpected faults can occur in power system transmission lines and obstruct the correct 

operation of the system. As these incidents are unforeseeable, electric utilities use 

protection systems to prevent these faults from being propagated as well as to avoid 

anomalous consequences in the line operation. With these targets in mind, the protection 

systems are provided with devices which isolate the faulty line if any voltage or current 

disturbance is detected. However, the service must be urgently restored as the 

transmission line in which a fault occurs cannot be kept isolated indefinitely. As 

designing a totally reliable system is not possible, for both technical and economic 

reasons, it has been necessary to develop a number of technologies aimed at locating 

faults in transmission lines and making the network operate correctly. 

 

New technological developments in such fields as telecommunications, tele-control and 

electronics applied to data acquisition and electric protection devices are having an 

increasing influence on fault location procedures. It is also possible to receive 

information on voltage values, current values, operation of protection devices and electric 

equipment, etc. from substations located at line terminals. This makes it interesting to 

develop data processing algorithms which may be implemented using microprocessors at 

the control centre of the electric utility, at remote terminals located in substations and at 
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the protection devices themselves. This enables a fault to be located without requiring a 

visual inspection of the line. 

 

To speed up repairs and restoration of power, it is important to know where the fault is 

located. A fault location algorithm’s result is influenced by a series of modeling 

equations, setting parameters and system factors reflected in voltage and current inputs. 

The factors are subject to sources of uncertainty including measurement and signal 

processing errors, setting errors and incomplete modeling of a system under fault 

conditions. These errors have affected the accuracy of the distance to fault calculation. 

Accurate fault location reduces operating costs by avoiding lengthy and expensive patrols. 

Accurate fault location speeds up repairs and restoration of lines, ultimately reducing 

revenue loss caused by outages. 

 

In general, the techniques can be classified as follows [8]: 

-microprocessor devices with different input signals and principle of operation: 

• Impedance techniques: one-terminal, two-terminal (or multi-terminal), 

• Traveling wave techniques, 

-short circuit analysis software, 

-customer calls, 

-line inspection, 

-lightning detection system, 

-terminal and tracer methods for cables. 

 

Hence, the objective of my research is to assess the uncertainties associated with the 

influencing factors by applying sensitivity analysis on fault location algorithm. From the 

sensitivity analysis, we are able to determine which uncertain factor that mostly 

contributes to the fault distance estimation. Such analysis can help in the calibration 

process. In practice, the electricity utilities are able to compare all different fault locator 

devices using sensitivity analysis, and select the robust, less sensitive fault locator in 

specific fault cases.  

 13



Chapter 1. Introduction 
 

Sensitivity analysis (SA) is popular in financial applications, risk analysis, signal 

processing, neural networks and any area where models are developed [17]. Sensitivity 

analysis can also be used in model-based policy assessment studies. Sensitivity analysis 

is the study of how the variation (uncertainty) in the output of a mathematical model can 

be apportioned, qualitatively or quantitatively, to different sources of variation in the 

input of a model. In more general terms uncertainty and sensitivity analyses investigate 

the robustness of a study. 

There are two types of sensitivity analysis, local and global. In the first approach, the 

local response of the fault location output, obtained by varying input factors one at the 

time, is investigated while holding the others fixed to some fixed value [17]. This 

involves calculation of partial derivatives. The second global sensitivity analysis, 

analyzed the whole set of potential input factors and aim to give an overall indication of 

the way that the outcome varies, and in particular how the output varies in response to the 

input variations within the range of parameter uncertainty [17]. 

 

In this research project, global sensitivity analysis (SA) is applied in evaluation of the 

fault location algorithms. Global SA is able to determine not only the factor that mostly 

contributes to the distance to the fault result but also interactions between the factors. 

Analysis of Variance (ANOVA) decomposition has been chosen as a tool for global 

sensitivity analysis of the fault location [26]. The ANOVA allows us to quantify the 

notion that some variables and interactions are much more important than others. It is a 

sampling based process which the fault simulator and fault location algorithm are 

executed repeatedly for the values sampled of the input factors. ANOVA decompositions 

are actually a form of structure which decomposes the model function [16] which in our 

case, the function consists of fault simulator and fault location algorithm. Chapter 3 

describes how we use the ANOVA decomposition in our research. 

 

In order to fit our systems into the ANOVA decomposition, we choose Quasi Regression 

technique and Quasi Monte Carlo methods [28]. Quasi-regression is a technique for 

constructing approximation of function, based on observations sampled from the domain 
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of the function to be approximated. In quasi-regression, the function is expanded in an 

orthogonal basis with an infinite number of coefficients [29, 30]. If we knew the 

coefficients, we are able to describe the extent to which the function depends on several 

of its input factors. We use Monte Carlo methods to estimate these coefficients. Monte 

Carlo methods are a class of computational algorithms that rely on repeated random 

sampling [33]. Monte Carlo methods are often used when simulating physical and 

mathematical systems. Because of their reliance on repeated computation and random or 

pseudo-random numbers, Monte Carlo methods are most suited to calculation by a 

computer. Monte Carlo methods tend to be used when it is infeasible or impossible to 

compute an exact result with a deterministic algorithm. In our research, we have chosen 

quasi-Monte Carlo method because it is more efficient at numerical integration compared 

to Monte Carlo method [19]. In chapter 4, we discussed the quasi regression and Monte 

Carlo methods in detail.   

 
 

1.1.   Description of the Fault Location Sensitivity  

        Analysis Procedure 
 
 
Figure 1.1 shown below illustrates the methodology of the sensitivity analysis. In the first 

stage, the samples of system factors (fault location, fault resistance, source impedance, 

etc) are generated with sampling strategy [33]. The points that have been generated are 

used to run the power system fault simulator to produce voltages and currents (Vs, Is in 

Figure 1.1) at fault locator installation position. 

 

These voltages and currents are then sent to the fault locator device. The setting factors 

are also sampled and send to the fault locator. In the last stage, the fault locator calculates 

the fault location value for each point in the factor space. 

 

Function between the collected fault location values and the corresponding system factors 

is formulated using ANOVA decomposition [26]. The ANOVA is able to determine 
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which system factors contribute the most and also determine the interaction between the 

system factors that influence the location result. 

Fault 
Location 

Value 

Fault 
Resistance 

Value 

Source 
Impedance 

Value 

Fault Simulator

Figure 1.1: Methodology of the Sensitivity Analysis 

 

There are research results that use similar statistical algorithms to analyze the distance 

protection algorithm [24, 25]. Their objectives are to increase the efficiency of the 

protection operation and to obtain more accurate fault location. There are no references 

that up to my knowledge uses global SA techniques and ANOVA in fault location testing 

and calibration.  

 

 

 

 

 

 

 

 

Fault Locator

Fault Location

    Is Vs

System 
Factors 

Setting 
Factors 
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Chapter 2:  
 
Review of Fault Location 
Algorithms 
 
Fault location techniques are used in power systems for accurate pinpointing of the fault 

location. Benefits of accurate fault location are considered as follows [1]: 
-fast repair to restore power system, 

-improves system availability and performance as well as reduces operating costs, 

-saves time and expense of crew searching in bad weather and tough terrain, 

-aids crew in disturbance diagnostics by: 

• Identifying temporary faults, 

• Detecting weak spots. 

 

Variety of fault location techniques is used to achieve the aim and the above-specified 

benefits. In our research, we used impedance based techniques: one-terminal and two-

terminal. Fault location algorithms are based on current and voltage data from one 

substation only, as well as algorithms, which make use of the information from the 

substations at both ends of the line. The single ended approach to transmission line fault 

location is important, as it is less expensive than the double-ended approach (no 

communication link required between the ends of the transmission line) and more reliable 

(the ability to operate requires only that the local end equipment is in operation). The 

one-terminal data algorithms determine the impedance and, as a result, distance to the 
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fault. However, several factors affect the accuracy of the distance to the fault calculation. 

One of the main factors result from the combined effect of the load, fault resistance and 

equivalent impedances of the power systems connected to the ends of transmission line. 

The value of the fault resistance may be high, especially for ground faults and, 

accordingly, the accuracy of fault location may be insufficient. 

 

The operation experience of one terminal data based fault locators shows that in the 

majority of cases ( ) the accuracy of fault location may be considered as 

satisfactory [9]. The fault location error may comprise 1-2% of the monitored line length. 

In relatively infrequent cases (

%80≈

%10≈ ) the error may reach 5% and even more. Fault 

location error is the percentage error in fault location estimate based on the total line 

length. The possibility of appearance of considerable errors weakens the confidence in 

the results of the measurements and causes the necessity to search fault location on the 

long line segments. 

 

In real practice of power systems operation the length of the segment subjected to the 

inspection takes into account the possibility of considerable errors even in those cases 

when it is not likely that the error will appear. Various methods were developed during 

the recent years to detect the location of fault on a transmission line [8]. In this research, 

we focus on certain impedance-based fault location methods and provide fault location 

results from simulated faults. 

 

2.1.   Faults on Transmission Line 
 

Short circuits occur in three-phase power systems as follows, in order of frequency of 

occurrence: single line-to-ground, line-to-line, double line-to-ground, and balanced three-

phase faults. Other types of faults include one-conductor-open and two-conductors-open, 

which can occur when conductors break or when one or two phases of a circuit breaker 

inadvertently open. This section describes the symmetrical and unsymmetrical faults in 

three-phase power system. We have implemented a simulation program that simulate the 

faults in power system.  
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Symmetrical Fault 

 

In power engineering, the symmetrical fault is a fault which affects each of the three-

phases equally. Although the three-phase short circuit occurs the least, it was considered 

first, because of its simplicity. When a balanced three-phase fault occurs in a balanced 

three-phase system, there is only positive-sequence fault current; the zero-, positive-, and 

negative-sequence networks are completely uncoupled. 

 

Unsymmetrical Faults   

 

When an unsymmetrical fault occurs in an otherwise balanced system, the sequence 

networks are interconnected only at the fault location [4]. As such, the computation of 

fault currents is greatly simplified by the use of sequence networks. All faults have two 

components of fault currents; an ac or symmetrical component, including subtransient, 

transient, and steady-state currents; and a dc component.  

 

System Representation 

 

A three-phase power system is represented by its sequence networks. I make the 

following assumptions [3]: 

1. The power system operates under balanced steady-state conditions before the fault 

occurs. Thus the zero-, positive-, and negative- sequence networks are uncoupled 

before the fault occurs. During unsymmetrical faults they are interconnected only 

at the fault location. 

2. Prefault load current is neglected. Because of this, the positive- sequence internal 

voltages of all machines are equal to the prefault voltage FV . Therefore, the 

prefault voltage at each bus in the positive-sequence network equals FV . 

3. Transformer winding resistances and shunt admittances are neglected. 

4. Transmission-line series resistances and shunt admittances are neglected. 

5. Synchronous machine armature resistance, saliency, and saturation are neglected. 

6. All nonrotating impedance loads are neglected. 
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7. Induction motors are either neglected (especially for motors rated 50hp or less) or 

represented in the same manner as synchronous machines. 

 

Note that these assumptions are made for simplicity, and in practice should not be made 

for all cases.  

 

2.1.1.   Three Phase Short Circuit 
 

Z1

Vf V1 = 0

I1  

 

 

 

 

Figure 2.1: Positive Sequence Networks Representing the Three Phase Short Circuit  

 

The fault currents are balanced in three-phase faults and have only a positive-sequence 

component. Therefore we work only with the positive-sequence network when 

calculating three-phase fault currents.  

 

The positive-sequence fault current: 

1
1 Z

VI F=                                                              (2.1) 

 

 

Also, the zero-sequence current and negative-sequence current are both zero. Therefore, 

the subtransient fault currents in each phase are, 
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The sequence components of the line-to-ground voltages at the fault terminals are, 
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The sequence fault voltages are 0210 === VVV , which must be true since 

. 0=== cgbgag VVV

 

2.1.2.   Single Line-to-Ground Fault 
 

Consider a single line-to-ground fault from phase a to ground at the general three-phase 

bus shown in Figure 2.2(a). For generality, we include a fault impedance . In the case 

of a bolted fault, = 0, whereas for an arcing fault,  is the arc impedance [6, 7]. In 

the case of a transmission-line insulator flashover,  includes the total fault impedance 

between the line and ground, including the impedances of the arc and the transmission 

tower, as well as the tower footing if there are no neutral wires. 

fZ

fZ fZ

fZ

 

 

       Fault conditions in phase domain: 

        afag IZV =  

        

ZF 

0== cb II  

 

 

 

Figure 2.2(a): Single Line-to-Ground Fault 

 

The relations to be derived here apply only to a single line-to-ground fault on phase a. 

However, since any of the three phases can be arbitrarily labeled phase a, we do not 

consider single line-to-ground faults on other phases [3]. 
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 Z0 
 

       Fault conditions in sequence domain: 

                                                     210 III ==  

                                                    1210 3)( IZVVV f=++  

 

 

 

 

 

 

 

Figure 2.2(b): Interconnected Sequence Networks 

 

From Figure 2.2(a): 

 

Fault conditions in phase domain    0== cb II                                           (2.4) 

Single line-to-ground fault    afag IZV =                                           (2.5) 

 

We now transform (2.4) and (2.5) to the sequence domain. 
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where 
2
3

2
11201 ja +

−
=°∠=  

 

Also, using equation below: 

)()( 210210 IIIZVVV f ++=++                                           (2.7) 
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From (2.6) and (2.7): 

Fault conditions in sequence domain    210 III ==                                              (2.8) 

Single line-to-ground fault   1210 )3()( IZVVV f=++                            (2.9) 

 

Equations (2.8) and (2.9) can be satisfied by interconnecting the sequence networks in 

series at the fault terminals through the impedance  as shown in Figure 2.2(b). 

From this figure, the sequence components of the fault currents are: 
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Transforming (2.10) to the phase domain, 
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The sequence components of the line-to-ground voltages at the fault are determined from 

the equation below, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

2

1

0

2

1

0

2

1

0

00
00
00

0

0

I
I
I

Z
Z

Z
V

V
V
V

f                                        (2.14) 

 

The line-to-ground voltages at the fault can then be obtained by transforming the 

sequence voltages to the phase domain. 
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2.1.3.   Line-to-Line Fault 
 

Consider a line-to-line fault from phase b to c, shown in Figure 2.3(a). Again, we include 

a fault impedance  for generality. From Figure 2.3(a): fZ

Fault conditions in phase domain  0=aI                    (2.15) 

Line-to-line fault    bc II −=                   (2.16) 

      bfcgbg IZVV =−                   (2.17) 

 

         

       Fault conditions in phase domain: 

V0 

                                                                                 0=aI  

    

bfcgbg IZVV =−                   

   

c 
Ic b

 

Figure2.3(a) Line-to-Line Fault 

 

       

Fault conditions in sequence domain: 

                                                                        00 =I  

                                                                        12 II −=  

                                                  121 )( IZVV f=−  

 

 

 

 

 

 

Figure2.3(b) Interconnected Sequence Networks 
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We transform (2.15) – (2.17) to the sequence domain. 
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                    (2.18) 

Using equation below, 

)()()( 21
2

02
2

1021
2

0 aIIaIZVaaVVaVVaV f ++=++−++                 (2.19) 

 

Noting from (2.18) that  and 00 =I 12 II −= , (2.19) simplifies to 

1
2

2
2

1
2 )()()( IaaZVaaVaa f −=−−−  

or 

121 IZVV f=−                                                   (2.20) 

 

Therefore, from (2.18) and (2.20): 

Fault conditions in sequence domain              00 =I                   (2.21) 

Line-to-line fault     12 II −=                  (2.22) 

121 )( IZVV f=−                 (2.23) 

Equation (2.21) – (2.23) are satisfied by connecting the positive- and negative-sequence 

networks in parallel at the fault terminals through the fault impedance , as shown in 

Figure 2.3(b). From this figure, the fault currents are: 

fZ

)( 21
21

f

f

ZZZ
V

II
++

=−=   00 =I             (2.24) 

Transforming (2.24) to the phase domain and using the identity 3)( 2 jaa −=− , the 

fault current in phase b is 

1
2

21
2

0 )( IaaaIIaIIb −=++=  

    
)(

3
3

21
1

f

f

ZZZ
Vj

Ij
++

−
=−=                              (2.25) 

Note also, 
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0210 =++= IIIIa                          (2.26) 

and 

bc IIaaIaaIII −=−=++= 1
2

2
2

10 )(                         (2.27) 

which verify the fault conditions given by (2.15) and (2.16). 

 

2.1.4.   Double Line-to-Ground Fault 
 

A double line-to-ground fault from phase b to phase c through fault impedance Z  to 

ground is shown in Figure 2.4(a). From this figure: 

f

 

Fault conditions in phase domain  0=aI                    (2.28) 

Double Line-to-ground fault   bgcg VV =                   (2.29) 

      V )( cbfbg IIZ +=                  (2.30) 

       

Fault conditions in phase domain: 

       0=aI  

       )( cbfcgbg IIZVV +==  

 

 

 

c 
Ic b

Ib 

Figure 2.4(a) Double Line-to-Ground Fault 

 

Fault conditions in sequence 

domain: 

0210 =++ III  

010 )3( IZVV f=−  

21 VV =  
 

Figure 2.4(b) Interconnected Sequence Networks 
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Transforming (2.28) to the sequence domain, 

0210 =++ III                                      (2.31) 

Also, 

)()( 21
2

02
2

10 aVVaVVaaVV ++=++  

Simplifying: 

1
2

2
2 )()( VaaVaa −=−  

or 

12 VV =                                 (2.32) 

Now, 

)()( 2
2

1021
2

021
2

0 IaaIIaIIaIZaVVaV f +++++=++            (2.33) 

 

Using (2.32) and the identity  in (2.33), 12 −=+ aa

)2()( 21010 IIIZVV f −−=−                (2.34) 

From (2.31), ; therefore, (2.34) becomes )( 210 III +−=

010 )3( IZVV f=−           (2.35) 

From (2.31), (2.32) and (2.35), we summarize: 

Fault conditions in sequence domain  0210 =++ III                  (2.36) 

Double line-to-ground fault   12 VV =                    (2.37) 

      010 )3( IZVV f=−                  (2.38) 

Equation (2.36)-(2.38) are satisfied by connecting the zero-, positive-, and negative-

sequence networks in parallel at the fault terminal; additionally, is included in 

series with the zero-sequence network. The positive-sequence fault current is, 

)3( fZ
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Using current division, the negative- and zero-sequence fault currents are 
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These sequence fault currents can be transformed to the phase domain via, 
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 Also, the sequence components of the line-to-ground voltages at the fault are given by, 
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2.2.   One-Terminal Fault Location Methods 
 

2.2.1.   Impedance-Based Fault Location Methods and 
            Requirements 
 
Impedance-based methods require the following approach [8]: 

1. Measure the voltage and current signals. 

2. Extract the fundamental components. 

3. Determine the fault type. 

4. Apply impedance algorithm. 

One-ended impedance methods of fault location are a standard feature in most numerical 

relays. One-ended impedance methods use a simple algorithm, and communication 

channels and remote data are not required (except when a channel is required to bring the 

fault location estimate to an operator). 

 

 28 



Chapter 2. Review of Fault Location Algorithms 
 

One-ended impedance-based fault locators calculate the fault location from the apparent 

impedance seen by looking into the line from one end. To locate all fault types, the 

phase-to-ground voltages and currents in each phase must be measured. (If only line-to-

line voltages are available, it is possible to locate phase-to-phase faults; if the zero-

sequence source impedance, , is known, we can estimate the location for phase-to-

ground faults). 

0Z

 

If the fault resistance is assumed to be zero, we can use one of the impedance calculations 

in Table 2.1 to estimate the fault location. 

Fault Type Positive-Sequence Impedance Equation ( ) =1LxZ

A-ground aV /( 0a 3kII + ) 

B-ground bV /( 0b 3kII + ) 

C-ground cV /( 0c 3kII + ) 

a-b or a-b-g abV / abI  

b-c or b-c-g bcV / bcI  

c-a or c-a-g caV / caI  

a-b-c abV / abI or or bcV / bcI caV / caI  

 

Table 2.1: Simple Impedance Equations 

 k   = / , )ZZ( 1L0L − 1LZ3

0LZ

1LZ
= Zero-sequence line impedance, 
= Positive-sequence line impedance, 

 x   = Per unit distance to fault 
  = Zero-sequence current 0I
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Figure 2.5: Circuit Representation of Line Fault 

 

2.2.1.1.   Reactance Method 
 
Reactance Method works reasonably well for homogeneous systems when the fault does 

not involve significant resistance and load current [9]. Large errors are introduced to the 

fault location estimate by remote-end current feed, load impedance, power transmission 

angle, and different impedance angles of line and power system source impedances. 

 

From Figure 2.6, the voltage drop from the S end of the line is: 

LZZ =1  

FFSs IRIxZV += 1             (2.44) 

 

For an A-phase to ground fault, a-gS VV =  and 03kIII as += . 

The goal is to minimize the effect of the  term. FF IR

The reactance method divides all terms by  (measured at the fault locator)  SI

To do this, save the imaginary part, and solve for x, 

⎟⎟
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⎞
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SS I

IR
xZIV Im)Im()/Im( 1  
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If 
S

f

I
I

 = Real Number,  

)Im()/Im( 1xZIV SS =  

1

Im

X
I
V

x S

S
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=                            (2.45) 

Error is 0 if FS II ∠=∠ or 0=FR  

 

Although a reactance-based algorithm provides sufficient accuracy for many protective 

relaying applications, it is not accurate enough, in general, for use as a fault-locating 

algorithm. 

 

2.2.1.2.   Takagi Method 
 
Takagi 1 

 

Takagi Method is a method which uses prefault current as well as fault current and 

voltage [10]. The approach is to find a quantity which, when multiplied by the fault-

voltage term, yields a purely real result. Then, when the imaginary components are 

selected and compared, an estimate of the distance to the fault is obtained, which is 

independent of the fault resistance. 

 

The key is to find a quantity which is locally observable, and which is proportional to the 

complex conjugate of the fault voltage [11]. Consider conditions at the fault. The fault 

current is the sum of the currents from bus S and bus R. It may also be expressed as the 

sum of the superposition currents from buses S and R, which would flow if a 

superposition source of - is placed at the fault location, and if all other sources are set 

to zero. The superposition current component from bus S is the difference between the 

fault and prefault currents from bus S. That is, 

0FV

pffS III −=Δ            (2.46) 
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where the subscripts f and pf denote fault and prefault conditions, respectively. sIΔ is a 

part of the fault current, we would expect sIΔ and to be in close phase relationship, 

especially when most of the fault current comes from the S side of the system. I define 

the ratio of the fault current to the S-side superposition current component as: 

FI

S

F

I
IA

Δ
=   and    AT ∠=           (2.47) 

 

When SIΔ is known, distance to a fault is calculated using [8]: 

[ ]
)]exp(*Im[

)exp(*Im

1 jTIIZ
jTIVx

SS

SS

−Δ
−Δ

=         (2.48) 

 

Takagi then sets T equal to zero, giving the final result: 

*)Im(
)Im(

1 SS

SS

IIZ
IVx
Δ
Δ

=          (2.49) 

 

As will be seen, this method offers substantial improvements over Reactance Method, in 

most cases, by accounting for load flow. 

The angle T can be determined from the circuit model. The angle T is zero if all 

impedances share the same angle. The angle T is constant if and have equal angles. 

The accuracy of the Takagi algorithm is very dependent on the system conditions that 

affect the angle T. That is, the error is very sensitive to changes in T. Accuracy can be 

guaranteed only if it is known that the system is nearly homogeneous. 

1Z RZ

 

Takagi 2 

 

Takagi Method 2 is a modified version of Takagi Method 1 [8]. It requires difference of 

positive sequence fault and pre-fault currents called the positive sequence superposition 

current. 

pffS III −=Δ 1     (2.50) 

 

 32 



Chapter 2. Review of Fault Location Algorithms 
 

where the subscripts f1 and pf denote the positive sequence fault current and prefault 

conditions, respectively.  

The distance to fault calculation is the same as Takagi 1. 

 

Takagi 3 

 

Takagi Method 3 uses zero-sequence current for ground faults instead of the 

superposition current [8]. Therefore, this method requires no pre-fault data. 
 

                                                                 (2.51) }Im{
}Im{

*x =
01

*
0

ss

ss

IIZ
IV

 

Takagi 3 also allows for angle correction. If the user knows the system source 

impedances, the zero-sequence current can be adjusted by angle T to improve the fault 

location estimate for a given line [8]. 
 

2.2.1.3.   ABB Method 
 

ABB Method implemented in ABB REL 5xx series of relays [12]. The distance-to-fault 

locator (DFL) in the REL 5xx line protection terminal is an essential complement to the 

distance protection function. The used calculation algorithm takes into consideration the 

effect of load currents, double end infeed and additional fault resistance. 

 

The accuracy of the distance-to-fault measurement depends, to a certain extent, on the 

accuracy of the system parameters as entered into REL 5xx (e.g., source impedances at 

both ends of the protected line). If some parameters have actually changed in a significant 

manner relative to the set values, new values can be entered, locally or remotely, and a 

recalculation of the distance to the fault, using particular disturbance values, can be 

performed. This way a more accurate location of the fault can be determined and faster 

service can take place. 

 

The influence of the zero sequence mutual impedance on the distance-to-fault calculation 

in case of faults on double circuit lines is compensated for by transferring the residual 
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current from the healthy line to a separate input current transformer in the REL 5xx on a 

faulty line. This current is used only for purposes of a fault location function, but not for 

purposes of a distance protection function. 

 

For transmission lines with voltage sources at both line ends, the effect of double end 

infeed and additional fault resistance must be taken into consideration when calculating 

the distance to the fault from the currents and voltages at one line end [13]. If this is not 

done, the accuracy of the calculated figure will vary with the load flow and the amount of 

additional fault resistance. 

 

The calculation algorithm used in the distance-to-fault locator in REL 5xx line protection 

relay includes the effect of double-end infeed and additional fault resistance. 

 

From Figure 2.5, the voltage drop from the S end of the line is: 

FFSLs IRIxZV +=         (2.52) 

The fault current is expressed in measurable quantities by: 

S

FS
F D

II =                (2.53) 

where: 

FSI  is the change in current at the point of measurement, terminal S 

SD is a fault current distribution factor, i.e. the ratio between the fault current at line end 

      S and the total fault current 

 

For a single line, 

RLs

RL
S ZZZ

ZZxD
++
+−

=
)1(              (2.54) 

In case of phase short circuits, the change in the line currents is used directly while for 

earth faults, the better defined positive sequence quantities of the network are used. 
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From the theory of symmetrical components for the single phase to the earth-faults it 

follows that: 

03IIF =              (2.55) 

RSRS IIIII 22110 +=+=             (2.56) 

210 IIII phase ++=          (2.57) 

 

Since  represents a change due to the short circuit, it follows that FI

S

S
RS D

III 1
11 =+      (2.58) 

and 

S

S
RS D

III 2
22 =+                (2.59) 

 

If the positive and negative sequence impedances are equal, i.e. 

S

Sphase
F D

II
II 0

0 2
33

−
==         (2.60) 

The expressions for and  for different types of faults are given in table: SS IV , FSI

Fault Type SV  SI  FSI  

A-ground ASV  SGNAS IKI +  )(
2
3

0SAS II −Δ×  

B-ground BSV  SGNBS IKI +  )(
2
3

0SBS II −Δ×  

C-ground CSV  SGNCS IKI +  )(
2
3

0SCS II −Δ×  

a-b-c or a-b or a-b-g BSAS VV −  BSAS II −  BSAI −Δ  

b-c or b-c-g CSBS VV −  CSBS II −  CSBI −Δ  

c-a or c-a-g ASCS VV −  ASCS II −  ASCI −Δ  

 
Table 2.2: Expressions for and  SS IV , FSI
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Where the complex quantity  for zero sequence compensation is equal to: NK

L

LL
N Z

ZZK
1

10

3
−

=           (2.61) 

Δ  is the change in current, i.e. the current after the fault less the current before the fault. 

In the following, the positive sequence impedance for  and is inserted into the 

equations, since this is the value used in the algorithm. 

RS ZZ , LZ

 

For double lines, the fault equation will be: 

MPF
S

FS
LSS ZIR

D
IxZIV 001 ⋅+⋅+⋅=           (2.62) 

where: 

PI0  is a zero sequence current of the parallel line. 

MZ0  is a mutual zero sequence impedance 

SD  is the distribution factor of the parallel line, which is 

  

                                                                  (2.63)           

 

The compensation factor  for the double line becomes: NK

S
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L
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Z
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10

33
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−
=            (2.64) 

From these equations, it can be seen that if 00 =MZ , the general fault location equation 

for single line is obtained. Only the distribution factor differs in these two cases. 

 

Since the distribution factor  according to equation (2.54) or (2.63) is a function of x, 

the general equation (2.62) can be written in the form: 

SD

0321
2 =−+− FRKKxKx  

where: 
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and: 

RSADD ZZZ 11 +=  for parallel lines 

FSS II ,  and are given in the above table SV

NK  is calculated automatically according to equation (2.2.1.3.13) 

LLRS ZZZZ 0111 ,,, and are setting parameters MZ0

 

For a single line, and 00 =MZ 0=ADDZ . Hence, equation (2.64) is applicable to both 

single and parallel lines. 

Equation (2.64) can be divided into a real part and an imaginary one: 

0)Re()Re()Re( 321
2 =⋅−+⋅− KRKKxx F               (2.68) 

0)Im()Im()Im( 321 =⋅−+⋅− KRKKx F           (2.69) 

If the imaginary part of  is not zero or close to zero,  is solved according to 

equation (2.69), and inserted into equation (2.68). According to equation (2.68), the 

relative distance to the fault is solved as the root of a quadratic equation. 

3K FR

 

Equation (2.69) gives as a solution two different values for the relative distance to the 

fault. A simplified load compensated algorithm that gives an unequivocal figure for the 

relative distance to the fault, is used to establish the value that should be selected. If the 

load compensated algorithms according to the above do not give a reliable solution, a less 

accurate, non-compensated impedance model is used to calculate the relative distance to 

the fault. 

 

The accuracy of the distance-to-fault calculation, using the non-compensated impedance 

model, is influenced by the pre-fault load current. Therefore, this method is used only if 

the load compensated models do not function and it indicates whether the non-

compensated model was used when calculating the distance to the fault. 
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2.3.   Two-Terminal Fault Location Method 
 
Two-terminal methods can be more accurate than one-terminal method but data must be 

captured from both ends before an algorithm can be applied [14]. Many of the existing 

algorithms require the transfer of large amounts of data, alignment of the data sets, and 

iterative solutions to calculate the distance to the fault point. This makes their application 

limited to processing the data offline and adds considerable amount of time in the fault 

location process. In addition, some of the existing two-terminal methods cannot 

adequately handle mutual coupling and tapped loads with zero-sequence current infeeds, 

and are not applicable to more than two- terminal lines. 

 

2.3.1.   Two-Ended Negative-Sequence Impedance Method 
 
It uses negative-sequence quantities from all line terminals for the location of unbalanced 

faults [15]. By using negative-sequence quantities, we negate the effect of prefault load 

and fault resistance, zero-sequence mutual impedance, and zero-sequence infeed from 

transmission line taps. Precise fault type selection is not necessary. Data alignment is not 

required because the algorithm employed at each line end uses the following quantities 

from the remote terminal (which do not require phase alignment). 

• Magnitude of negative-sequence current, 2I  

• Calculated negative-sequence source impedance, °∠ 22 θZ  

An observation from figure 2.6 below is that the negative-sequence fault voltage ( ) is 

the same when viewed from all ends of the protected line. 

FV2
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Source S Source R 

))1(( 222 LRRF ZxZI 2V −+−=

 
Figure 2.6: Connection of Sequence Networks for a Single Line-to-Ground Fault at x 
 
 
At Relay S: 
                    (2.69)  
 
 
 
At Relay R: 

                                       (2.70)                  
                                    

           
Eliminate  from Equation 8 and 9 and rearrange the resulting expression as follows: FV2

))1((
)(
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22
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+
=      (2.71) 

 

Relay S Relay R

Relay S 

Relay RRelay S 

Relay R

SZ1 LxZ1
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 40 

To avoid alignment of Relay S and R data sets, take the magnitude of both sides of 

Equation above as follows: 

                        (2.72)                              
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=

 

Equation above is then simplified to Equation below. 

                                           (2.73)                              
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R xZZZ
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To further simplify Equation above, define the following variables: 

                     (2.74) jbaZI SS = +22

                     (2.75) jdcI LS xZ +=22

                     (2.76) jfeZZ LR +=+ 22

                (2.77) jhgZ L = +2

Substituting these variables into Equation above, we obtained: 

                      (2.78)                               
)()(
)()(

2 jhgxjfe
jdcxjbaI R +−+

+++
=

 

Taking the square of both terms of Equation above, expanding and rearranging terms 

results in a quadratic equation of the form: 

                                                                   (2.79)                              A 02 =+⋅+⋅ CxBx
Equation above is solved for x. The coefficients of Equation above are given below. 

)()( 22222
2 dchgIA R +−+⋅=       (2.80) 

)(2)(2 2
2 dbcahfgeIB R ⋅+⋅−⋅+⋅⋅−=                (2.81) 

)()( 22222
2 bafeIC R +−+⋅=        (2.82) 
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Chapter 3. 
 
Uncertainty & Sensitivity Analysis 
 
3.1.   Introduction 
 

Sensitivity analysis (SA) is the study of how the variation (uncertainty) in the output of a 

mathematical model can be apportioned, qualitatively or quantitatively, to different 

sources of variation in the input of a model [16]. In more general terms uncertainty and 

sensitivity analyses investigate the robustness of the fault location algorithms. While 

uncertainty analysis studies the overall uncertainty in the results of the algorithms, 

sensitivity analysis tries to identify which uncertain factors weights more on the fault 

location results. In sensitivity analysis we look at the effect of varying the uncertain 

factors of the algorithms on the fault location results. In both disciplines we strive to 

obtain information from the system with a minimum of physical or numerical 

experiments. In uncertainty and sensitivity analysis there is a crucial trade off between 

how scrupulous an analyst is in exploring the input assumptions and how wide the 

resulting inference may be [17]. 

 

The understanding of how the algorithm behaves in response to changes in its uncertain 

factors is of fundamental importance to ensure a correct use of the algorithm. In our 

research, the fault location algorithm is defined by a series of equations, uncertain factors, 
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parameters, and variables aimed to characterize the process of finding fault location on 

the line. 

 

The uncertain factors are subject to many sources of uncertainty including errors of 

measurement, absence of information and poor or partial understanding of the driving 

forces and mechanisms [21]. This uncertainty imposes a limit on our confidence in the 

response or the output of the algorithm. Uncertainty and sensitivity analysis offer valid 

tools for characterizing the uncertainty associated with the fault location algorithm. 

Uncertainty analysis quantifies the uncertainty in the outcome of our algorithm. 

Sensitivity analysis has the complementary role of ordering by importance the strength 

and relevance of the uncertain factors in determining the variation in the fault location 

results. In the fault location algorithm that involves many uncertain variables, sensitivity 

analysis is an essential ingredient of algorithm building and quality assurance. 

 

There are several possible procedures to perform uncertainty and sensitivity analysis. The 

most common sensitivity analysis is sampling-based [17]. A sampling-based computation 

of sensitivity is one in which the algorithm is executed repeatedly for combinations of 

values sampled from the distribution (assumed known) of the uncertain factors. Sampling 

based methods can also be used to decompose the variance of the output of the algorithm 

[21]. From the variance we are able to find out the most contributing uncertain factor and 

also the contribution of the uncertain factors’ interactions. The steps to perform 

sampling-based sensitivity analysis can be listed below [17]: 

1. Specify the target function which in our case is the fault location algorithm and 

select the uncertain factors of interest. 

2. Assign a probability density function to the selected factors. 

3. Generate a matrix of the uncertain factors with that distribution(s) through an 

appropriate design. In this research, we have used quasi-random sequence to 

generate the samples of all the uncertain factors. In the next chapter, we review 

the quasi-random sequence and also the advantages of using it. 

4. Evaluate and compute the distribution of the fault location algorithm outputs. 
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5. Select a method for assessing the influence or relative importance of each 

uncertain factor on the output of fault location algorithm. We have chosen 

ANOVA decomposition as the method which will be discussed in the next chapter. 

3.2.   Global Sensitivity Analysis 
 
In this research, we have used global sensitivity analysis because we want to analyze the 

whole set of influential factors and give us an overall indication of the way that the fault 

location results varies. Most SA methods found in the literature and in practical 

applications are local SA. A global sensitivity analysis can display a non-linear response, 

and thus it can be incorrect to globally extrapolate the local results [18]. The analysis 

requires a quantitative assessment of the uncertainty around some best estimate value for 

Y (uncertainty analysis). Monte Carlo methods and variety of sampling strategies are 

implemented in global sensitivity analysis [19]. Furthermore, regression techniques are 

introduced. In this case, standardized regression coefficients (SRC) are used [17]. The 

regression algorithm with model input and output values are implemented in regression 

techniques. The output of the algorithm is a regression meta-model and the regression 

coefficient provides information about the sensitivity measure for the model factors. The 

sign of a regression coefficient is a measure of the effect of input factors on Y (output). 

Furthermore, the absolute value of the regression coefficient is used to order the factors 

by importance [17].  

 

When discussing sensitivity with respect to factors, we shall interpret the term “factor” in 

a very broad sense [17]: “a factor is anything that can be changed prior to the execution 

of the model, possibly from a prior or posterior, continuous or discrete distribution.” 

Factors can be “triggers”, used to select one versus another model structure, one mesh 

size versus another or altogether different conceptualizations of the system. The input 

factors space is introduced to analyze nonlinear model with global sensitivity analysis.  
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3.3.   Variance-based Sensitivity Measures 
 

3.3.1.   Properties of the variance based methods 
 

An ideal sensitivity analysis method should cope with the influence of scale and shape. 

The influence of the input should incorporate the effect of the range of input variation 

and the form of its probability density function (pdf). It matters whether the pdf of an 

input factor is uniform or normal, and what are the distribution parameters. Variance 

based methods meet this demand [16]. 

 

A good method should allow for multidimensional averaging, contrary, for example, to 

what is done in computing partial derivatives, where the effect of the variation of a factor 

is taken when all others are kept constant at the central (nominal) value [17]. A sensitivity 

measure should be model independent. The method should work regardless of the 

additivity or linearity of the test model. A global sensitivity measure must be able to 

appreciate interaction effect, especially important for non-linear, non-additive models [21, 

22]. The property is evident with the variance based measures. 

 

An ideal measure should be able to treat grouped factors as if they were single factors. 

This property of synthesis is useful for the agility of the interpretation of the results. One 

would not want to be confronted with an SA made of dense tables of input-output 

sensitivity indices. Variance based methods are capable of grouping the factors. 

 

In this research, we measure the uncertainty of the fault location using variance (precision 

error measure). The fault location variance is contributed by a total series of uncertain 

factors that we select. For example, the importance measure of a factor x1 is equal to part 

of the fault location variance that is contributed by uncertainty of the factor x1. 
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3.4.   Introduction of ANOVA 
 

Analysis of Variance (ANOVA) decomposition has been chosen as a tool for global 

sensitivity analysis of the fault location algorithm [23, 26]. The ANOVA for square 

integrable function is becoming a widely used tool for the exploratory analysis of 

functions. is the d-dimensional hypercube where the function is defined. The 

ANOVA allows us to quantify the notion that some variables and interactions are much 

more important than others. The result is a form of global sensitivity analysis, distinct 

from local methods based on partial derivatives. Within the ANOVA formulation, we 

may answer questions about variable importance. The ANOVA of a function in the 

domain involves  effect [28]. For moderately large d  it becomes difficult to 

estimate them all.  

d]1,0[

d]1,0[ 12 −d

The ANOVA decomposition is a representation of the form 

∑=
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u xfxf )()(                                                     (3.1) 
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There are 8 functions in (3.3), one for each subset of {1,2,3}. Each of these functions 

integrates to zero over the range of any of the variables in it. 

 

Since we are dealing with multi-dimensional problems, special care must be taken in 

selecting the computational method to perform ANOVA decomposition. Computing 

ANOVA decomposition is a sampling based process in which the power system 

simulator and a fault locator are both executed repeatedly for combinations of values 

sampled from the assumed distribution of the input factors. The main goal here is to 

achieve desired accuracy in computing the ANOVA model with a minimal number of 

samples and corresponding simulator and locator executions. The obvious practical 

benefit is reduction of the time required to perform the analysis.  

 

3.5.   Sensitivity and Variable Importance 
 

The variance of is )(xf

∑
≠

=
0

22 ))((
u

uxf σσ                                                 (3.4) 

Where is the variance of .  2
uσ )(xfu

 

Sensitivity measure for the factor x1  
 

First take the average over all factors except x1 as follows: 

]|)([ 1xxfE ,       (3.5) 

and then calculate variance over x1 

])|)([( 1
22

1 1
xxfExσσ = .             (3.6) 

Sensitivity measure for x1 is 

))((2

2
1

1 xf
S x σ

σ
=            (3.7) 

A sum of variances iσ  (individual effects) smaller than the total variance means that 

additional effects resulting from interactions between the influencing factors exists. 
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For the ANOVA decomposition written in form (3.2), the variance of has a very 

useful structure (equivalent to (3.4)): 
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The first decomposition expression,          represents the total variance of all the input 

factors. The second expression,              represents the total variance of all interaction 

between two input factors. The last expression represents the total variance of all 

interaction between all input factors.  
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The sensitivity measure of the main effects and interactions are defined as the ratio 

below: 

 

One factor effect: 
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2
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xi σ
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=                                                    (3.9) 

Two factors interaction: 

))((2

2

xf
S ij

xx ji σ

σ
=          (3.10) 

Three factors interaction: 
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And etc. 
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Sensitivity Analysis using  
Quasi Regression 
 

4.1.   Monte Carlo 
 

Monte Carlo (MC) methods are the most widely used means for uncertainty analysis [34]. 

These methods involve random sampling from the distribution of inputs and successive 

model runs until a statistically significant distribution of outputs is obtained [35]. They 

can be used to solve problems with physical probabilistic structures, such as uncertainty 

propagation in models or solution of stochastic equations, or can be used to solve non-

probabilistic problems, such as finding the area under a curve. Monte Carlo methods are 

also used in the solution of problems that can be modeled by the sequence of a set of 

random steps that eventually converge to a desired solution. Since these methods require 

a large number of samples (or model runs), their applicability is sometimes limited to 

simple models. In case of computationally intensive models, the time and resources 

required by these methods could be prohibitively expensive. In our research, Monte Carlo 

method is used in quasi-regression to estimate coefficients.  
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The Monte Carlo method normally solves the problem with large dimension d. There are 

two types of methods: Monte-Carlo and Quasi Monte-Carlo [36]. In Monte-Carlo 

methods, the points are chosen randomly. The procedure converges almost surely and 

there is a probabilistic error bound [39]. In Quasi Monte-Carlo methods, the points come 

from deterministic multidimensional sequences with very low irregularities of 

distribution. In particular it is common for the Quasi Monte-Carlo method to produce 

much more accurate answers than the Monte Carlo method does in a short period of time 

[35]. These two methods mainly have the same working techniques; the only difference is 

the sampling method. Quasi-random sequences are more evenly scattered throughout the 

region. Quasi Monte-Carlo can improve the accuracy of solving the integral. In order to 

see this, let the integral of one function  being evaluated using simulation. The idea 

is to use random points for the numerical evaluation of an integral. This is equivalent to 

determining the area under the function, see Figure 4.1 below. 

)(xf

 

 

 

     )(xf

∫ dxxf )(
 

 

 

Figure 4.1: The Monte Carlo Integral 

The integral of the function f(x) is approximately the total area times the fraction of 

points that fall under the curve of f(x). Naturally this method for evaluation of an integral 

(using "random" points) is competitive only for the multi-dimensional case and/or 

complicated functions. Note that the integral evaluation is better if the points are 
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uniformly scattered in the entire area or, for the multi-dimensional case, in the hypercube 

volume. 

An example is shown below.  

If we wish to evaluate the integral, 

∫=
a

b

f(x)dxI                            (4.1) 

We put a bounding box around the function , then the integral of  can be 

understood to be the fraction of the bounding box that is also within . So if we choose 

a point at random uniformly within the bounding box, the probability that the point is 

within  is given by the fraction of the area that  occupies. The integration 

scheme is then to take a large number of random points within the box and count the 

numbers that are within  to get the area.   

)(xf f(x)

f(x)

f(x) f(x)

f(x)

V
n
*nI ≈         (4.2) 

Where, is the number of points within ,  is the number of points generated, and 

 is the volume of the bounding box. 

*n f(x) n

V

A more efficient approach, 

∫∫ ==
b

a

b

a

Vdxxfxg
V

dxxfxgI )()(1)()(     (4.3) 

Where 

1=g(x)    If x  is in the domain 

0=g(x)   Otherwise 
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4.2.   Quasi-Monte Carlo 
 

The Quasi-Monte Carlo (QMC) method is used for this research, as this method is faster 

and more accurate compared to the Monte Carlo method. The quasi-Monte Carlo method 

is also called the low discrepancy sequences method [34]. In order to improve the 

convergence rate for the integral, one looks for quasi-random sequences with the lowest 

possible discrepancy, as for example Halton sequences, Faure sequences, Sobol’ 

sequences etc [34]. The Sobol’ sequences have been chosen for our research as the Sobol 

has more advantages than the others. It distributes the points uniformly as N . It has 

good distribution for fairly small initial sets. In addition, the Sobol is a very fast 

computational algorithm [39].  

∞→

 

4.3.   Sobol Sequence 
 

The Sobol sequence has the same base for all dimensions and proceeds a reordering of 

the vector elements within each dimension [33]. The Sobol sequence is simpler (and 

faster) than the Faure sequence in the aspect that Sobol sequence uses base 2 for all 

dimensions. So, there is some computational time advantage due the shorter cycle length.  

However the simplicity of Sobol sequence compared with the Faure sequence, ends at 

this point because the reordering task is more complex. Sobol reordering is based on a set 

of "direction numbers", { . The  numbers are given by the equation }iV iV i
i

i
mV
2

=  where 

the mi are odd positive integers less than , and  are chosen so that they satisfy a 

recurrence relation using the coefficients of a primitive polynomial in the Galois filed 

[33]. 

i2 iV

In other words, Sobol sequence uses the coefficients of irreducible primitive polynomials 

of modulo 2 for its complex reordering algorithm.  
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The points plotted below are the first 100 and 1000 elements in the Sobol sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: The first 100 points in a low-discrepancy sequence of the Sobol’ type 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The first 1000 points in a low-discrepancy sequence of the Sobol’ type 
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4.4.   Monte Carlo vs. Quasi-Monte Carlo  
         Integration. Test Function. 
 
Integration of a torus in three-dimensional space has been achieved using the Monte 

Carlo and Quasi Monte Carlo.  

The following is the function, 

)cos(1),,(f 2

2

a
rzyx π

+=   0rr ≤

0),,(f =zyx     0rr >

Where  

22
0

22 )(
2

zRyxr +−+=  

0R is the major radius of the torus. r is the minor radial. 

With the parameter 3.0  ,3.0  ,6.0 00 === arR  

The integration result is  066.16.0 32 ≈= πI

 

MC 

Sobol 
(QMC) 

Figure 4.4: Monte Carlo vs. Quasi-Monte Carlo 
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Figure 4.4 compares the result of Monte Carlo, quasi-Monte Carlo and the actual result as 

a function of number of samples. From the figure, we can observe that speed of 

convergence favor quasi-Monte Carlo over Monte Carlo. Quasi-Monte Carlo has superior 

asymptotic accuracy compared to Monte Carlo. Hence, quasi-Monte Carlo is preferable 

for our research.  

 

4.5.   Quasi-Regression 
 

Quasi regression is a method that is used to approximate a function on the hypercube in d 

(number of variables in the particular function) dimensions [28]. It is very useful for 

those methods that require a large number of function evaluations. In practice, we want to 

apply sensitivity analysis on the fault locator which consists of unknown complex 

computational models. Hence, we have chosen the quasi-regression in the research 

because it works well for black box functions. In the quasi-regression method, we 

approximate an unknown function (f) with another function (f^). Fast computation time 

and ANOVA decomposition are the advantages of quasi-regression. 

 

From the definition of quasi-regression, we know that all integrals are done on [0 1]d 

interval (unit cube). Thus, all the basis functions used in the model are understood to be 

over the unit cube. All the univariate basis functions are low order orthogonal 

polynomials. For the function with d dimensions, its approximate function is equal to 

tensor products of univariate basis functions. 

 

Jiang, T. and A.B.Owen [29] state that the approximate function f^ will be expanded in 

an orthonormal basis form with an infinite number of coefficients. If we knew these 

coefficients we could use them to analyze which uncertain factor contributes the most to 

the fault location results and also the interactions between the uncertain factors. In the 

article [30], the authors stated that we can approximate the coefficients using Monte 

Carlo methods. I am following this approach in my development. 
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4.5.1.   One dimension  
 

Consider a sequence ),...(),(),(}0:)({ 210 xxxmxm φφφφ =≥ of functions defined over [0,1] 

and possessing the following properties: 

 

• Orthonormal: 

mmllm dxxx ∀=∫ ,)()(
1

0

δφφ                   (4.4) 

• And contain a special element 

].1,0[,1)(0 ∈∀= xxφ             (4.5) 

where mlδ is Kronecker symbol: 

,1=mlδ  if ,lm =           (4.6) 

,0=mlδ if ,lm ≠           (4.7) 

Note, that from properties (4.4) and (4.5) follows that functions { })(xmφ  are mean 

centered for positive indices: 

N,0)(
1

0

∈∀=∫ mm dxxφ              (4.8) 

Univariate orthonormal basis functions, meeting above requirements can be constructed, 

for example, from orthogonal polynomials, trigonometric functions etc. 

 

In our work we make use of basis function constructed from Legendre polynomials by 

appropriate rescaling of its argument (remind that Legendre polynomials are defined over 

the interval [-1,1]) and after that appropriate normalization. Omitting an intermediate 

derivation, let us give the final result. Thus, the orthonormal polynomials can be obtained 

with the help of the following recurrent formulae: 

 

,)(
32
)1()()12(1212)( 21 ⎥

⎦

⎤
⎢
⎣

⎡

−
−

−−−
+

= −− x
m

mxxm
m
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        ,                   (4.10) )12(3)(1 −= xxφ ,1)(0 =xφ
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Introducing for convenience an auxiliary variable 12 −= xz  we can rewrite above 

expressions 

,)(
32
)1()(1212)( 21 ⎥

⎦

⎤
⎢
⎣

⎡
−
−

−−
+

= −− z
m

mzzm
m
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z 3)(1 =φ z      (4.12) ,1)(0 =zφ

The explicit expressions for first five terms of the basis sequence are 

                                    (4.13) ,1)(0 =zφ
                                                 ,3)(1 zz =φ        (4.14) 

                                                 ),13(
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2 −= zxφ        (4.15)     

                                                 ),35(
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)3)3035((
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Link with Monte Carlo integration 

 

The orthonormal basis { })(xmφ  allows representing an arbitrary function in the following 

form 

,)()(
0
∑
∞

=

=
m

mm xxF φβ                                           (4.18) 

where coefficients mβ  can be found from 

∫=
1

0

)()( dxxxF mm φβ            (4.19) 

Hence the problem of calculating the coefficients can be solved using numerical 

integration, which can be solved using among others standard Monte Carlo techniques 

(Monte Carlo and quasi-Monte Carlo integration). In practice, when the dimensionality of 

the problem is large it is difficult to find a competitor to Monte Carlo technique. 
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4.5.2.   Multi-dimension  
 

Let  be a real valued function defined over a unit hypercube F dΙ . We consider a 

problem of approximation of this function by a finite set of orthonormal functions. 

 

4.5.2.1.   Tensor product basis 
 
We construct our basis function over Ι  by taking tensor products univariate basis 

function. Let  be a vector of d non-negative integers, and denote d  

components of u  by  for . To each such index vector 

),...,,( 21 drrrr =

ix i = d,...,1 r  there corresponds a 

unique tensor product function 
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It is easy to prove that 1)(0,...,0,0 =xψ  and 

∫ =
I

rssr duuu δψψ )()(           (4.21) 

Therefore,{ })(xrψ  form an orthonormal basis on Ι . In term of this basis we can write 

(4.22) 

Where the sum is assumed over the whole infinite set. The coefficients of this expansion 

rβ  are defined by 

)()( xxF
r

rr∑
∈

=
U

ψβ

∫=
I

rr dxxxFβ )()( ψ          (4.23) 

 

4.5.2.2.   Approximation by a finite set of basis functions 
 

In practice we can estimate only finitely many coefficients. We truncate the infinite set to 

a finite set [28] 
∞∞∞∞ ≤≤≤== BBBBBB BBB ,,1100,1,0 10

R},r,r,r:r{RR , for problem-
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dependent values  and . Here 10 , BB ∞B
10

r,r  and 
∞

r are different ways to measure the 

size of r  defined as 
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and called rank, degree and order, respectively [28]. 

 

)(xF  can be written in the form: 
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where )x(ε  is deterministic truncation error: 
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The above expression can be written in matrix notations. Assume that that the number of 

basis functions used in approximation is p . In mathematical language  

is the cardinality of the set . The finite set  can be mapped to a finite set 
of univariate indices with 
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be a column vector of multivariate base functions and be a column vector of coefficients 

correspondingly. Then it can be written as, 

),(x)()( xxF T εβ +Ψ=             (4.28) 

where  is the row vector. x)(TΨ

The integrated square error (ISE), 

dxxxF T 2))()(ISE βΨ−                (4.29) 

qualifies error due to truncation of the infinite set  to a finite set . It can be 

shown that the optimal 

U
∞BBB ,, 10

R

β  leading to the minimal ISE is, 

∫∫ Ψ=Ψ−= dxxxFdxxxF T )()())()((min arg 2* ββ
β

       (4.30) 
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Let 
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be the quasi-regression estimate of rβ  based on samples   ).u,...,u( 1 n

 

It can be rewritten in vector form as follows 
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The approximating function 
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)(
r
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nn xxxF βψβ == ∑
∈

        (4.33) 

We mention that the coefficient βr is equal to the expected value of )()f( xx rψ  where ~ 

U(0, 1)d. A.B.Owen [28] presents quasi-Monte Carlo sampling to estimate βr. He defines 

x

∑
=

=
n

i
iin, f

n 1
)()(1~ xx rr ψβ              (4.34) 

∑
=

−
−

=
n
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2
n,iin, )~)()(f(

1n
1SV rrr xx βψ                    (4.35) 

Both n,rβ
~ and can be updated simultaneously via n,SVr

)ˆ)()((
n
1ˆˆ )1n(

kk
)1n()n( −− −+= rrrr xxf βψββ         (4.36) 

 

2)1n(
kk

)1n()n( )ˆ)()((
n

1nSVSV −− −
−

+= rrrr xxf βψ                      (4.37) 

 

The significance of the above updating formulas is that they require only a single pass 

over the data, and are numerically stable [28, 29]. 
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Sensitivity Measure via Functional ANOVA 

 

From the quasi Monte Carlo integration, we can use the betas, rβ  to calculate the 

variance of each component of the ANOVA decomposition [26] 

∑
∈

=
uQr

2
r

2
u )( βσ f  

Hence, the sensitivity measures of the component, 

)(/)()( 22
uu fffS σσ=  

 

We can estimate the error of approximation, using the calculated function values, via the 

following formula [28]: 

 

∑
+−=

−Ψ−=
n

1Mnk

2)1k(
k

T
k )ˆ)()(F(

M
1)n(MSE βuu           (4.38) 

 

And the average ISE is estimated using the Mean Squared Error (MSE) over nM 2=  [4] 

or 3
2

nM =  [29] recent observations. 

The Lack of Fit (LOF) is 

])(Var[
ISELOF

uF
=            (4.39) 

and describes the fraction of variance of the function not explained by the 

regression ANOVA model. The LOF value can be estimated in practice by the following 

formula: 

)(uF

2

)(MSE)LOF(
nSV

nn =               (4.40) 

where  is the sample variance of the function . 2
nSV )(uF
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Figure 5.1: The Experimental Setup for the Sensitivity Analysis 

 

Figure 5.1 illustrates the experimental setup for the sensitivity analysis on the fault 

locator. First, we identify the uncertain factors in the fault calculation and fault location 
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algorithm. In this research, we have chosen a few of the system factors and setting factors 

which will be mention in the next section. All the factors will be scaled into specific 

intervals. The intervals of the factors will affect the result of the sensitivity analysis.  

 

The sample points of system factors and setting factors is generated with Sobol’s 

sampling strategy. The inputs of the Sobol [32] are dim and seed. Dim are the number of 

system and setting factors that I want to generate using i4_sobol function [33]. In our 

case, dim is equal to 9. Seed is for the initial sequence.  

 

The system factors that have been generated are used to run power system simulator. The 

samples are then analyzed by the power system simulator, which produces the 

information that is required by the fault locator. The power system simulator simulates 

the different faults in the power system. 

 

The results from the power system simulator and the setting factors are then sent to the 

fault location algorithm. The setting factors that have been generated are used as samples 

to be analyzed in the fault locator. In this research, I have tested 6 different fault location 

algorithms, which are Reactance method, Takagi 1 method, Takagi 2 method, Takagi 3 

method,ABB method and Two-Ended Negative Sequence Impedance Method. The fault 

location algorithm is able to analyze and calculate the fault distance. I have compared the 

accuracy of the different algorithms which will be discussed later. 

 

In the last stage, the fault location algorithm calculates the fault location value for each 

point in the factor space. The final fault location value and the system factors are 

analysed using ANOVA decomposition. The ANOVA is able to determine which system 

factors contribute the most and also determine the interaction between the system factors 

that influence the location result. 

 

The goal of this study is to analyze in the systematic way how sensitive are the fault 

location algorithms to the selected factors and their interactions. The sensitivity measures 

are calculated using coefficients of the fitted approximating function (ANOVA 
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decomposition) that is linking selected factors and their interactions to a fault location. 

The functions used in the tensor product basis where Legendre polynomials up to the 

order 5 but other orthogonal polynomials, wavelets or Fourier series can be used as well 

[5, 6]. 

 

5.1.   Setup  
 

Specification: 

Uniform distribution for all factors in the intervals specified in the Table below. 
 
Factors Interval Description 

System Factors 

x1 0 to 0.1 pu Fault Resistance 

x2 -40 to 40 degrees Load Flow Angle 

Setting Factors 

x3 -20 to 20 % Percentage error of zero sequence setting 

x4 -10 to 10 % Percentage error in line zero-sequence 

resistance Re{Z0} 

x5 -10 to 10 % Percentage error in line zero-sequence reactance 

Im{Z0} 

x6 -10 to 10 % Percentage error in s-source resistance Re{Z S0} 

x7 -10 to 10 % Percentage error in s-source reactance Im{Z S0} 

x8 -10 to 10 % Percentage error in r-source resistance Re{Z r0} 

x9 -10 to 10 % Percentage error in r-source resistance Im{Z r0} 

x10 -4 to 4 % Percentage error in receiving end current (Ir2) 

x11 -4 to 4 % Percentage error in sending end current (IS2) 

 
Table 5.1: Intervals for all the Factors  
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5.2. Comparison between Takagi 3 and ABB 
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Figure 5.2: Comparison between Takagi 3 (transparent histogram) and  

ABB (blue histogram)  

 

Figure 5.2 compares the accuracy of Takagi 3 and ABB methods. The distance to the 

fault that we are testing is 0.5 pu. We have used 12000 samples from the factor space to 

compare both of the algorithms. In this comparison we have chosen factors from x1 to x9. 

Figure 5.2 shows that Takagi 3 has larger variance compare to ABB method. Takagi 3 

method has a bias of -0.0432 pu while ABB has a bias of 0.0286 pu. The ABB algorithm 

is more accurate than Takagi 3 method because ABB has a narrower variance and a 

smaller bias compared to Takagi 3. The reason is the ABB method is not sensitive to the 

source impedances and also zero sequence components. The sensitivity measures of the 

factors are listed in the Table 5.2. 
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Sensitivity Measures for the Takagi 3 Algorithm 

x1 x2 x3 x4 x5 x6 x7 x8 x9 SM 

1 0 0 0 0 0 0 0 0 0.022545 

0 1 0 0 0 0 0 0 0 0.000309 

0 0 1 0 0 0 0 0 0 0.101792 

0 0 0 1 0 0 0 0 0 0.000004 

0 0 0 0 1 0 0 0 0 0.000145 

0 0 0 0 0 1 0 0 0 0.000092 

0 0 0 0 0 0 1 0 0 0.000028 

0 0 0 0 0 0 0 1 0 0.000002 

0 0 0 0 0 0 0 0 1 0.000045 

Sensitivity Measures for the ABB Algorithm 

x1 x2 x3 x4 x5 x6 x7 x8 x9 SM 

1 0 0 0 0 0 0 0 0 0.006905 

0 1 0 0 0 0 0 0 0 0.000148 

0 0 1 0 0 0 0 0 0 0.000001 

0 0 0 1 0 0 0 0 0 0.000006 

0 0 0 0 1 0 0 0 0 0.000011 

 

Table 5.2: Sensitivity Measures for Takagi 3 and ABB 
 

The sensitivity measures in Table 5.2 can be used to quantify and understand influence of 

uncertain factors on fault location. Table 5.2 does not contain the interaction but only the 

significant factors are included. The sensitivity measures for single phase to ground are 

calculated at fault distance 0.5 pu. The sensitivities give us the following conclusions: 

 

a) Takagi 3 algorithm is more sensitive to zero sequence setting (x3). 

b) ABB algorithm is not sensitive to zero sequence components such as x3, x4 and x5. 

c) ABB algorithm is not sensitive to source impedances at all such as x6, x7, x8 and 

x9. The sensitivity measures are zero. 
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Figure 5.3: Comparison between Takagi 3 and ABB (x3 interval decreased) 

 

Figure 5.3 compares the accuracy of Takagi 3 and ABB methods with x3 interval 

decreased. I have used the same system and setting factors. I have decreased the interval 

for the percentage error of zero sequence setting from [-20 to 20] to [-5 to 5]. We 

decrease the interval to see the effect on both of the algorithms. Accuracy improvement is 

more significant for Takagi 3 because it is sensitive to zero sequence setting. ABB 

method has the similar sensitivity measures as in the previous discussion. This is because 

ABB method is not sensitive to zero sequence setting. 
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Sensitivity Measures for the Takagi 3 Algorithm 

x1 x2 x3 x4 x5 x6 x7 x8 x9 SM 

1 0 0 0 0 0 0 0 0 0.025175 

0 1 0 0 0 0 0 0 0 0.000252 

0 0 1 0 0 0 0 0 0 0.007054 

0 0 0 1 0 0 0 0 0 0.000005 

0 0 0 0 1 0 0 0 0 0.000195 

0 0 0 0 0 1 0 0 0 0.000113 

0 0 0 0 0 0 1 0 0 0.000033 

0 0 0 0 0 0 0 1 0 0.000003 

0 0 0 0 0 0 0 0 1 0.000058 

Sensitivity Measures for the ABB Algorithm 

x1 x2 x3 x4 x5 x6 x7 x8 x9 SM 

1 0 0 0 0 0 0 0 0 0.006941 

0 1 0 0 0 0 0 0 0 0.000235 

0 0 1 0 0 0 0 0 0 0.000006 

0 0 0 1 0 0 0 0 0 0.000002 

0 0 0 0 1 0 0 0 0 0.000037 

 

Table 5.3: Sensitivity Measures for Takagi 3 and ABB (x3 interval decreased) 
 

The sensitivity measures for single phase to ground are calculated at fault distance 0.5 pu. 

The sensitivities give us the following conclusions: 

 

a) Takagi 3 algorithm is more sensitive to zero sequence setting (x3) but the 

sensitivity measures reduces compare to Table 5.2. 

b) ABB algorithm is not sensitive to zero sequence components such as x3, x4 and 

x5. 
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c) ABB algorithm is not sensitive to source impedances at all such as x6, x7, x8 and 

x9. The sensitivity measures are zero. 

d) Both of the methods are not sensitive to the impedances. 

 

5.3.   Comparison between  
Takagi 2 and Two-Ended Negative-   
Sequence Impedance Method  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Comparison between Takagi 2 (transparent histogram) and Two-Ended 

Negative-Sequence Impedance Method (blue histogram) 

 

Figure 5.4 compares the accuracy of Takagi 2 and two-ended negative-sequence 

impedance method. The distance to the fault that we are testing is 0.9 pu. In this 

comparison, we have included two more extra input factors which are negative sequence 
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of receiving-end current and negative-sequence of sending-end current. We have 

included these two factors because the two-ended impedance method is not sensitive to 

any of the factors in Table 5.1 except the negative sequence currents. Figure 5.4 shows 

that Takagi 2 has a larger variance than the two-ended impedance method. In this 

comparison, the two-ended negative-sequence impedance method is more reliable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Comparison between Takagi 2 and Two-Ended Negative-Sequence 

Impedance Method (x10 & x11 interval increased) 

 

Figure 5.5 compares the accuracy of Takagi 2 and two-ended negative-sequence 

impedance methods with x10 and x11 interval increased. I have used the same system and 

setting factors. I have increased the interval for the percentage error of negative sequence 

currents from [-4 to 4] to [-8to 8]. We increase the interval to see the effect on both of the 

algorithms. Takagi2 method has the similar distribution as the Figure 5.4. This is because 

Takagi2 method is not very sensitive to negative sequence currents. The two-ended 

impedance method has much larger variance compare to Figure 5.4. From both of the 
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figures, we conclude that the two-ended negative-sequence impedance method is accurate 

when the percentage error of negative sequence currents is small. When the percentage 

error increases, Takagi 2 method is more reliable than the two-ended impedance method. 

 

5.4.   Lack of Fit (LOF) 
 

The LOF estimate determines the approximation accuracy achieved in the latest update. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: LOF for the Takagi 1 Method at Fault Distance 0.1 pu 

 

Figure 5.6 shows LOF as a function of sample size for Takagi 1 method at fault distance 

0.1pu. When the fault distance increases, LOF increases too. In order to decrease the LOF, 

sample size has to be increased but this will consume time. The LOF for Reactance, 

Takagi 2 and Takagi 3 methods are very similar. 
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5.5.   Single Phase to Ground Short Circuit  
  Case Study 

 

We can observe in Figure 5.7 that as the fault distance increases, the sensitivity of fault 

resistance for Takagi’s methods decrease exponentially. While the sensitivity measures 

on fault resistance for Reactance Method is not significant compared to Takagi’s methods. 

Takagi’s methods are more sensitive than Reactance Method to fault resistance factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Fault Resistance (Rf) Sensitivity Measures for 4 Methods with Fault Distance 

varying from 0 to 1pu 
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Figure 5.8: Zero Sequence Sending End Source Impedance Angle (Alpha0) Sensitivity 

Measures for 4 Methods with Fault Distance varying from 0 to 1pu 

 

 

Figure 5.8 shows how the fault location result will be affected by the sensitivity to zero 

sequence sending end source impedance angle. The sensitivity measures for 4 methods 

shown in Figure 5.8 are decreasing exponentially when the fault distance increases. 

Takagi 3 method is the most sensitive to the zero sequence sending end source impedance 

angles because the method uses of zero sequence current. Takagi 2 is not sensitive 

because the method does not use any zero sequence information. 
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Figure 5.9: Positive Sequence Sending End Source Impedance Angle (Alpha1) 

Sensitivity Measures for 4 Methods with Fault Distance varying from 0 to 1pu 

 

Figure 5.9 shows how the fault location result will be affected by the sensitivity to 

positive sequence sending end source impedance angle. The sensitivity measures for 4 

methods shown in Figure 5.9 are decreasing exponentially when the fault distance 

increases. Takagi 2 method is the most sensitive to the positive sequence sending end 

source impedance angle because the method uses of positive sequence current. Takagi 3 

is not sensitive because the method does not use any positive sequence information. 
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Figure 5.10: Percentage Error of Zero Sequence Setting Sensitivity Measures for 4 
Methods with Fault Distance varying from 0 to 1pu 

 

We can observe in Figure 5.10 that the sensitivity of percentage error of zero sequence 

setting for 4 different methods increases as the fault distance increases. Takagi 1 method 

is the most sensitive to the percentage error of zero sequence setting, and follows with 

Takagi 3, Takagi 2 and Reactance methods. The sensitivity measures for all 4 methods 

are similar. 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5.11: Load Flow Angle Sensitivity Measures for 4 Methods with Fault Distance 
varying from 0 to 1pu 
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Figure 5.11 shows the sensitivity measures on load flow angle for 4 methods. Reactance 

method is the most sensitive. The Reactance method sensitivity is decreasing gradually 

when the fault distance increases. It has a significant sensitivity value compared to 

Takagi’s methods. Takagi’s methods have similar sensitivity values and they increase 

gradually when the fault distance increases. The Reactance method is the most sensitive 

because it is not compensating for the pre-fault load flow current. 

Main 

Effects 

Reactance 

Method 

Takagi 

Method 

1 

Takagi  

Method 

2 

Takagi  

Method 

3 

x1 0.001401 0.090125 0.085048 0.087147 

x2 0.079933 0.000783 0.000714 0.000665 

x3 0.016260 0.037654 0.076595 0.000316 

x4 0.029110 0.006083 0.000564 0.060551 

x5 0.661947 0.720518 0.684806 0.697948 

Interaction     

x1x2 0.043223 0.001778 0.001717 0.001707 

x1x3 0.006815 0.013019 0.028482 0.000733 

x1x4 0.014126 0.005216 0.001304 0.032062 

x1x5 0.004015 0.003207 0.003100 0.003006 

x2x3 0.001259 0.001111 0.001051 0.001199 

x2x4 0.001498 0.001097 0.000983 0.001356 

x2x5 0.006364 0.001210 0.001166 0.001137 

x3x4 0.002196 0.001969 0.001935 0.001797 

x3x5 0.001443 0.001170 0.001289 0.001506 

x1x2x4 0.012656 0.011240 0.010793 0.010701 

x1x3x5 0.025243 0.022969 0.021829 0.022299 

x2x3x5 0.023636 0.020318 0.020013 0.018361 

x2x4x5 0.012704 0.010990 0.010949 0.009767 

x2x3x4x5 0.014962 0.013518 0.013036 0.012713 

 
Table 5.4: Sensitivity Measures (Fault Location is 0.5pu) 
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x1 – Fault Resistance, 

x2 – Load Flow Angle, 

x3 – Positive Sequence Sending-End Source                                                          

Impedance Angle, 

x4 – Zero Sequence Sending-End Source Impedance Angle, 

x5 – Percentage Error of Zero Sequence Setting 

 

Based on the achieved ANOVA decomposition, assessing of the influence or relative 

importance of each factor on the fault location accuracy can be delivered. Sensitivity 

measures [8] which are normalized variances, for the fault location methods tested, are 

presented in Table 5.4. The sensitivity measures in Table 5.4 can be used to quantify and 

understand influence of uncertain factors on fault location. Table 5.4 does not contain all 

the interactions but only the significant interactions are included. The sensitivity 

measures for single phase to ground are calculated at fault distance 0.5pu. The 

sensitivities give us the following conclusions: 

 

a) Reactance Method is more sensitive to load flow angle (x2). 

b) Takagi 1 Method is more sensitive to fault resistance (x1) and percentage error of 

zero sequence setting (x5).  

c) Takagi 2 Method is more sensitive to positive sequence sending-end source                               

impedance angle (x3). 

d) Takagi 3 Method is more sensitive to zero sequence sending-end source 

impedance angle (x4). 

e) The combination of fault resistance and positive sequence sending-end source 

impedance angle (x1x3) can influence considerably Takagi 2 method while the 

other methods are not sensitive. 

f) The combination of fault resistance and zero sequence sending-end source 

impedance angle (x1x4) can influence considerably Takagi 3 method while the 

other methods are not sensitive. 
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g) Reactance method is more sensitive to the combined effect of 3 factors, x1x2x4 

(0.012654), x1x3x5 (0.025243), x2x3x5 (0.023636), x2x4x5 (0.012704). The other 

methods are not sensitive. 

 

5.5.   Three Phase Short Circuit Case Study 
 

In three phase short circuit case, I only analyze positive sequence network. Takagi 3 

method is not suitable for this case because it uses zero sequence current. The sensitivity 

measures using Takagi 2 method is the same as Takagi 1 method because the phase A 

current in Takagi 1 is equal to the positive sequence current in Takagi 2. The sensitivity 

measures for three phase short circuit case are set at fault distance 0.5pu. 

 

The sensitivities in Table 5.5 lead us to the following conclusion: 

a) Reactance Method is more sensitive to load flow angle (x2) and positive sequence 

sending-end source impedance angle (x3). 

b) Takagi 1 Method is more sensitive to fault resistance (x1) and positive sequence 

sending-end source impedance angle (x3). 

c) The combination of fault resistance and load flow angle (x1x2) can influence 

considerably Reactance method while Takagi 1 method is not sensitive. 

d) The combination of fault resistance and positive sequence sending-end source 

impedance angle (x1x3) can influence considerably Takagi 1 method while 

Reactance method is not sensitive. 
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Main 

Effects 

Reactance 

Method 

Takagi 

Method 1 

x1 0.006820 0.330659 

x2 0.351501 0.000256 

x3 0.262641 0.326960 

x4 0.000222 0.000275 

x5 0.000139 0.000150 

Interaction   

x1x2 0.120738 0.002735 

x1x3 0.083725 0.104496 

x1x4 0.001671 0.002386 

x1x5 0.007038 0.009560 

x1x3x5 0.030805 0.041855 

x2x3x5 0.015035 0.019654 

x2x4x5 0.018641 0.025347 

x2x3x4x5 0.011496 0.015609 

 

Table 5.5: Sensitivity Measures (Fault Location is 0.5pu) 
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Chapter 6. 

 
Conclusion 
 

6.1.   Fault Location Algorithms 
 

Overview of fault location techniques for power transmission lines is presented. 

Distinctive features of different fault location algorithms classified as the impedance 

techniques are discussed.  

 

One-end fault location for traditional uncompensated transmission lines compensating for 

the infeed effect under resistive faults is presented. The issue of the location accuracy and 

its improvement is discussed. Measurements from impedance relays at the line terminals 

can be processed. The accuracy of the fault location algorithms has been tested and 

compared. The accuracy is mainly affected by the system and setting factors that I have 

chosen. In this research, I have tested one-ended fault location algorithm and negative-

sequence two-ends impedance method. The two-end fault location algorithm can be more 

accurate but data must be captured from both ends before the algorithm can be applied. 
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6.2.   Uncertainty & Sensitivity Analysis 

Sensitivity Analysis is popular in financial applications, risk analysis, signal processing, 

neural networks and any area where models are developed. Sensitivity analysis can also 

be used in model-based policy assessment studies. Global sensitivity analysis, proposed 

in this thesis, analyzed the whole set of potential input factors and aim to give an overall 

indication of the way that the outcome varies, and in particular how the output varies in 

response to the input variations within the range of parameter uncertainty. Monte Carlo 

methods and variety of sampling strategies are implemented in global sensitivity analysis.  

Quasi regression is a method that is used to approximate a function on the unit cube in d 

(number of variables in the particular function) dimensions. Fast computation time and 

ANOVA decomposition are the advantages. As statistical approaches to the approximate 

function, univariate basis functions, tensor products and orthogonal polynomials are 

introduced. 

Analysis of Variance (ANOVA) decomposition has been chosen as a tool for global 

sensitivity analysis of the fault location. The ANOVA allows us to quantify the notion 

that some variables and interactions are much more important than others. Computing 

ANOVA decomposition is a sampling based process in which the power system 

simulator and a fault locator are both executed repeatedly for combinations of values 

sampled from the assumed distribution of the input factors.  

I had compared the sensitivity measures of all the uncertain factors for the fault location 

algorithms. In chapter 4, I had discussed the sensitivity measures which can be used to 

quantify and understand the influence of uncertain factors on fault location. The 

interaction of the uncertain factors is discussed in this chapter. Based on the achieved 

ANOVA decomposition, assessing of the influence or relative importance of each factor 

on the fault location accuracy can be delivered.  
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6.3.   Future Work 

The uncertainty and sensitivity analysis study of fault location algorithms had shown the 

idea of such analysis can help in selecting the optimal locator for a specific application 

and also can help in the calibration process in practice. It is therefore to think promisingly 

that the global sensitivity analysis can be implemented for testing the practical fault 

locator in future.  
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