Global Sensitivity Analysis of Fault Location Algorithms

by

Hoong Boon Ooi

A thesis submitted to the School of Electrical and

Electronic Engineering of the University of Adelaide in

partial fulfillment of the requirements for the degree of

Master of Engineering Science

In

Electrical Engineering

Adelaide, Australia November, 2008

Contents

Contents	1
Abstract	4
Statement of Originality	6
Acknowledgement	7
List of Tables	8
List of Figures	9
Nomenclature	11
1. Introduction	12
1.1. Description of the Fault Location Sensitivity Analysis Procedure	15
2. Fault Location Algorithms	17
2.1. Faults on Transmission Line	18
2.1.1. Three Phase Short Circuit	20

	2.1.2. Single Line-to-Ground Fault	21
	2.1.3. Line-to-Line Fault	24
	2.1.4. Double Line-to-Ground Fault	26
2.2.	One-Terminal Methods	28
	2.2.1. Impedance-Based Fault Location Methods and	
	Requirements	28
	2.2.1.1. Reactance Method	30
	2.2.1.2. Takagi Method	31
	2.2.1.3. ABB Method	33
2.3.	Two-Terminal Methods	38
	2.3.1. Two-Ended Negative-Sequence Impedance	
	Method	38
3. Unc	ertainty & Sensitivity Analysis	41
3.1.	Introduction	41
3.2.	Global Sensitivity Analysis	43
3.3.	Variance-based Sensitivity Measures	44
	3.3.1. Properties of the Variance based Methods	44
3.4.	Introduction of ANOVA	45
3.5.	Sensitivity and Variable Importance	46
4. Sen	sitivity Analysis using Quasi Regression	48
4.1.	Monte Carlo	48
4.2.	Quasi-Monte Carlo	51
4.3.	Sobol Sequence	51
4.4.	Monte Carlo vs. Quasi-Monte Carlo Integration (Test	
	Function)	53

4.5.	Quasi	-Regress	ion	54
	4.5.1	. One Di	mension	55
	4.5.2.	Multi-Dii	mension	57
		4.5.2.1.	Tensor Product Basis	57
		4.5.2.2.	Approximation by a Finite Set of Basis	
			Functions	57

5. Uncertainty and Sensitivity Analysis Study of Fault Location Algorithm 5.1. Setup.......63 5.2. Comparison between Takagi 3 and ABB

5. Z.	Companson between Takayi 5 anu ADD	.04
5.3.	Comparison between Takagi 2 and Two-Ended	
	Negative-Sequence Impedance Method	68
5.4.	Lack of Fit	70
5.5.	Single Phase-to-Ground Fault Case Study	71
5.6.	Three Phase Short Circuit Case Study	77

6. Conclusion

79

6.1.	Fault Location Algorithms	79
6.2.	Uncertainty & Sensitivity Analysis	.80
6.3.	Future Work	81

Bibliography

82

Abstract

Transmission lines of any voltage level are subject to faults. To speed up repairs and restoration of power, it is important to know where the fault is located. A fault location algorithm's result is influenced by a series of modeling equations, setting parameters and system factors reflected in voltage and current inputs. The factors mentioned are subject to sources of uncertainty including measurement and signal processing errors, setting errors and incomplete modeling of a system under fault conditions. These errors have affected the accuracy of the distance to fault calculation. Accurate fault location reduces operating costs by avoiding lengthy and expensive patrols. Accurate fault location speeds up repairs and restoration of lines, ultimately reducing revenue loss caused by outages. In this thesis, we have reviewed the fault location algorithms and also how the uncertainty affects the results of fault location.

Sensitivity analysis is able to analyze how the variation in the output of the fault location algorithms can be allocated to the variation of uncertain factors. In this research, we have used global sensitivity analysis to determine the most contributed uncertain factors and also the interaction of the uncertain factors. We have chosen Analysis of Variance (ANOVA) decomposition as our global sensitivity analysis. ANOVA decomposition shows us the insight of the fault location, such as relations between uncertain factors of the fault location.

Quasi regression technique has also been used to approximate a function. In this research, the transmission line fault location system is fitted into the ANOVA decomposition using quasi regression. From the approximate function, we are able to get the variance of the sensitivity of fault location to uncertain factors using Monte Carlo method. In this research, we have designed novel methodology to test the fault location algorithms and compare the fault location algorithms. In practice, such analysis not only helps in selecting the optimal locator for a specific application, it also helps in the calibration process.

Statement of Originality

I hereby declare that this is an original thesis and is entirely my own work under the guidance and advice of my supervisor Dr. Rastko Zivanovic. This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the Adelaide University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Hoong Boon Ooi Nov 2008

Acknowledgements

To begin with, I would like to thank my family, especially my Dad and Mom for supporting me financially and morally. They have encouraged me whenever I have tough time working on this thesis. You could not have given any more than you have done to me. Your love, support and trust is the invaluable wealth that I have. It has carried me for the years I lived through, and will continue to be the source of my encouragement and strength for my whole life.

I am indebted to many people who helped during the planning and writing of this thesis. I am grateful to my supervisor, Dr. Rastko Zivanovic for his broad knowledge and skills. You have shown me what patience means throughout the whole time of my study of this degree. Thank you for your million and one acts of service.

I would also like to thank many colleagues who had generously helped me out in this thesis and also giving me so many valuable comments. Especially, I would like to thank Ms. Debra James who explained to me a lot in mathematics and statistics which helped me so much in this degree. You have also encouraged me not to give up easily during the time I worked on the thesis.

In conclusion, I am grateful to the people that had helped me through the whole time of my study.

List of Tables

2.1.	Simple Impedance Equation	27
2.2.	Expressions for V_S , I_S and I_{FS}	34
5.1.	Intervals for all the Factors	64
5.2.	Sensitivity Measures for Takagi 3 and ABB	74
5.3.	Sensitivity Measures for Takagi 3 (<i>x</i> ₃ interval decreased)	76
6.1.	Sensitivity Measures in Single Phase to Ground Fault (Fault Location is 0.5pu)	83
6.1.	Sensitivity Measures in Three Phase Fault (Fault Location is 0.5pu)	86

List of Figures

1.1.	Methodology of the Sensitivity Analysis	16
2.1.	Positive Sequence Networks representing the Three Phase Short Circuit	20
2.2(a)	Single Line-to-Ground Fault	21
2.2(b)	Interconnected Sequence Networks (Single Line-to-Ground Fault)	22
2.3(a)	Line-to-Line Fault	24
2.3(b)	Interconnected Sequence Networks (Line-to-Line Fault)	24
2.4(a)	Double Line-to-Ground Fault	26
2.4(b)	Interconnected Sequence Networks (Double Line-to-Ground Fault)	26
2.5.	Circuit Representation of Line Fault	30
2.6.	Connection of Sequence Networks for a Single Line-to-Ground Fault at x	39
4.1.	The Monte Carlo Integral	49
4.2.	The first 100 points in a low-discrepancy sequence of the Sobol' type	52
4.2.	The first 1000 points in a low-discrepancy sequence of the Sobol' type	52
4.4.	Monte Carlo vs. Quasi-Monte Carlo	53
5.1.	The Experimental Setup for Sensitivity Analysis	61
5.2.	Comparison between Takagi 3 and ABB	64

5.3.	Comparison between Takagi 3 and ABB (x_3 interval decreased)66
5.4.	Comparison between Takagi 2 and Two-Ended Negative-Sequence Impedance Method
5.5.	Comparison between Takagi 2 and Two-Ended Negative-Sequence Impedance
	Method ($x_{10} \& x_{11}$ interval increased)
5.6.	LOF for the Takagi 1 Method at Fault Distance 0.1 pu70
5.7.	Fault Resistance (R _f) Sensitivity Measures for 4 Methods with Fault Distance varying from 0 to 1pu71
5.8.	Zero Sequence Sending End Source Impedance Angle (Alpha0) Sensitivity Measures for 4 Methods with Fault Distance varying from 0 to 1pu72
5.9.	Positive Sequence Sending End Source Impedance Angle (Alpha1) Sensitivity Measures for 4 Methods with Fault Distance varying from 0 to 1pu73
5.10.	Percentage Error of Zero Sequence Setting Sensitivity Measures for 4 Methods with Fault Distance varying from 0 to 1pu74
5.11.	Load Flow Angle Sensitivity Measures for 4 Methods with Fault Distance varying from 0 to 1pu74

Nomenclatures

SA	Sensitivity Analysis
FLA	Fault Location Algorithm
DFL	Distance-to-Fault Locator
GSA	Global Sensitivity Analysis
SRC	Standardized Regression Coefficients
PDF	Probability Density Function
FP	Factor Prioritization
FF	Factor Fixing
VC	Variance Cutting
FM	Factors Mapping
ANOVA	Analysis of Variance
MC	Monte Carlo
QMC	Quasi Monte Carlo
ISE	Integrated Square Error
MSE	Mean Squared Error
LOF	Lack of Fit