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Membrane organization describes the orientation of a protein with respect to the membrane and can be determined
by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum
signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified
into one of five membrane organization categories: soluble intracellular proteins, soluble secreted proteins, type I
membrane proteins, type II membrane proteins, and multi-spanning membrane proteins. Generation of protein
isoforms with variable membrane organizations can change a protein’s subcellular localization or association with the
membrane. Application of MemO, a membrane organization annotation pipeline, to the FANTOM3 Isoform Protein
Sequence mouse protein set revealed that within the 8,032 transcriptional units (TUs) with multiple protein isoforms,
573 had variation in their use of signal peptides, 1,527 had variation in their use of transmembrane domains, and 615
generated protein isoforms from distinct membrane organization classes. The mechanisms underlying these transcript
variations were analyzed. While TUs were identified encoding all pairwise combinations of membrane organization
categories, the most common was conversion of membrane proteins to soluble proteins. Observed within our high-
confidence set were 156 TUs predicted to generate both extracellular soluble and membrane proteins, and 217 TUs
generating both intracellular soluble and membrane proteins. The differential use of endoplasmic reticulum signal
peptides and transmembrane domains is a common occurrence within the variable protein output of TUs. The
generation of protein isoforms that are targeted to multiple subcellular locations represents a major functional
consequence of transcript variation within the mouse transcriptome.

Citation: Davis MJ, Hanson KA, Clark F, Fink JL, Zhang F, et al. (2006) Differential use of signal peptides and membrane domains is a common occurrence in the protein
output of transcriptional units. PLoS Genet 2(4): e46. DOI: 10.1371/journal.pgen.0020046

Introduction

Recently, the murine transcriptome was redefined based on
the sequences generated from the RIKEN FANTOM3 full-
length mRNAs combined with the full-length mRNA sequen-
ces available in GenBank [1]. These transcripts were grouped
into 43,539 transcriptional units (TUs), where a TU is a group
of transcripts arising from a single genomic locus [1,2]. Of
these TUs, 18,802 (38.6%) contained at least two variable
spliced transcripts generated via alternative splicing and/or
the use of alternative transcriptional initiation or termina-
tion sites. This level of transcript variation is consistent with
previous studies that estimate that 30%–60% of mammalian
genes are alternatively spliced [1,3], although there is
evidence indicating that the true level of alternative splicing
may be greater than 60% [4]. Significantly, because the

FANTOM3 murine transcriptome is based on full-length
cDNA transcripts and excludes partial or hypothetical tran-
scripts, it becomes possible to systematically study the effects
of transcript variation across an entire proteome—as
opposed to elucidating the functional impact on proteins of
transcript variation on a gene-by-gene basis [5]. Here we
systematically search the mouse proteome for variation in
protein features that define membrane organization.
Biological membranes partition eukaryotic cells into func-

tional organelles and are themselves important functional
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components of the cell. The membrane organization of
individual proteins represents the relationship of a protein to
a membrane, that is, whether the protein is integral to a
membrane, as opposed to secreted or cytoplasmic. Variation
of membrane organization among the protein isoforms
generated from the same TU will likely result in different
subcellular localizations, and therefore functions, of those
protein isoforms [5]. For example, a recent analysis of
alternative splicing of 464 single pass transmembrane
proteins proposed that 188 had a splice variant that created
a soluble protein isoform [6].

We recently developed a membrane organization predic-
tion pipeline, MemO (M. J. Davis, F. Zhang, Z. Yuan, and R. D.
Teasdale, unpublished data), that classifies proteins based on
the identification of alpha-helical transmembrane domains
(TMDs) and the N-terminal endoplasmic reticulum signal
peptide (SP) [7,8]. Briefly, to construct the MemO pipeline we
first optimized the prediction of the SP and TMD features for
eukaryotes using consensus approaches. We then incorpo-
rated a discrimination program to resolve conflicting
predictions at the N-terminus [9] and established a set of
annotation rules based on biological observations. The

FANTOM3 Isoform Protein Sequence (IPS) sequences were
clustered into TUs, and the application of MemO to these
data enabled analysis of the way and extent that membrane
organization changes between protein isoforms. This re-
vealed candidate genes (or TUs) where transcript variation
serves as a mechanism for regulating protein functionality by
altering the membrane organization of the protein isoforms
generated. Further analysis revealed common mechanisms of
transcript variation used to modulate the inclusion of both
signal peptides and transmembrane domains.

Results

Membrane Organization Classification
The membrane organization annotation pipeline MemO

was applied to the IPS mouse protein set created by the
RIKEN FANTOM3 project [1]. Before application of MemO,
protein sequences derived from protein-coding transcripts
were filtered to remove putative non-full-length sequences.
Protein sequences without an initial methionine or with
coding sequences clearly annotated as truncated were
removed. Protein sequences shorter than 30 residues long
or including nonstandard amino acid symbols were also
removed. The remaining 33,451 IPS protein sequences were
annotated using the pipeline. Transcript sequences had
previously been clustered into 19,538 TUs [1,2]. In the IPS
dataset, 5,116 protein sequences (15.3%) were predicted to
contain signal peptides and 8,238 protein sequences (24.6%)
were predicted to contain TMDs. Of 2,029 sequences with
feature prediction conflicts in the N-terminal sequence, 1,638
were resolved as signal peptides and 391 as transmembrane
domains. The inclusion of multiple protein isoforms within
the IPS dataset did not alter the proportional distribution of
these protein features when compared with the results
observed in previously analyzed representative proteins sets
from mouse and other species [10]. A summary of the
annotation of the IPS dataset into the five membrane
organization classes is provided in Table 1.
Within the IPS set, there were 8,032 TUs that contained two

ormore nonidentical protein products, representing a total of
21,913 protein-coding transcripts. To determine the impact of
transcript variation on membrane organization within TUs,
we analyzed the variation of each region of the transcript

Table 1. Distribution of IPS Proteins between Five Membrane Organization Classes

Membrane Organization Classification Criteria IPS Proteins in Class Percentage of IPS

Proteins in Class

Soluble intracellular protein No signal peptide or

transmembrane domains predicted

22,265 66.6%

Soluble secreted protein Signal peptide predicted and no

transmembrane domains predicted

2,948 8.8%

Type I membrane protein Signal peptide predicted and a single

transmembrane domain predicted

1,548 4.6%

Type II membrane protein No signal peptide predicted and

a single transmembrane domain predicted

2,869 8.6%

Multi-spanning membrane protein Multiple transmembrane domains predicted 3,821 11.4%

Total proteins analyzed 33,451

These classifications were produced by combining the features predicted in each protein’s sequence according to the classification criteria. The MemO annotation results for the IPS
dataset are available in full at http://locate.imb.uq.edu.au/downloads.shtml.
DOI: 10.1371/journal.pgen.0020046.t001
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Synopsis

Many genes produce only a single protein; however, others are
known to produce a number of proteins with different functions in
the cell. The function of a protein within the cell is influenced by its
location; for example, proteins that are secreted can act as
messengers, whereas proteins embedded in the membrane may
act as receptors or channels. Features that determine the eventual
location of a protein are found in the protein sequence. The authors
identified two such features, the signal peptide that targets a
protein for secretion, and the transmembrane domain that embeds
a protein in the membrane, predicting their occurrence in mouse
protein sequences. The authors then searched the entire mouse
genome for genes that vary in the use of these features in protein
isoforms. They found a large number of genes that produce proteins
with variation in these features; for example, they identified genes
producing proteins that are both secreted and intracellular, and
genes producing proteins that are both membrane bound and
soluble. This process is likely to be a major source of functional
variation in the output of mammalian genes.



encoding the predicted features. As 5,036 multi-protein TUs
did not contain either feature they were excluded from the
analysis. The resulting set of 2,996 multi-protein TUs
contained 8,157 protein-coding transcripts. Variable features
are those that do not share the same genomic region while
ubiquitous features are present in all transcripts of the TU
and use the same genomic region to encode the feature. Each
TU was then examined to discover the degree of variability in
the genomic location of SPs and TMDs.

Feature Variation: Signal Peptides
A total of 1,475 TUs contained one or more transcripts

where the protein product was predicted to encode a SP, of
which 760 (51.5%) used a SP arising from one genomic
location in all transcripts produced from the TU. An
additional 142 TUs (9.6%) lacked sufficient data in the
genomic alignment of transcripts to determine the pattern of
SP usage. The remaining 573 TUs (38.8%) showed some
variation in SP usage among transcripts. We refer to this set
as the variable signal peptide (VarSP) set (TUs with gene
identifiers are listed in Table S1).

From the VarSP set, 511 TUs were found to have a SP
arising from one genomic location that was used in some
transcripts but was absent in others. We first examined the
mechanisms of signal peptide exclusion in these TUs (Figure
1). The most common mechanism of variation was the use of
an alternative initial exon that did not encode a SP (58.5%).
The use of alternative transcriptional start sites (7.8%) and
internal cassette exons (6.8%) was also observed. Signal
peptide exclusion was also caused by intron retention, donor
site isoforms, acceptor site isoforms, and alternative terminal
exons (see Figure 1). There were 36 cases where the cause of
signal peptide exclusion appeared to be the selection of an
alternative initiation codon within the transcript that
resulted in the exclusion from the coding sequence of the
region of transcript encoding a signal peptide in other
isoforms. No variation was observed in the splicing of the
transcripts from these TUs, so the selections of alternative
initiation codons most likely represent incorrect annotations.
Alternatively, they may be caused by polymorphisms within
the genome rather than transcript variation.

A second type of variation observed in the VarSP set was
signal peptide replacement, where some protein-coding
transcripts used a SP arising from one genomic location,
while other transcripts used a SP encoded by an alternative
genomic region. From the VarSP set, 78 TUs were observed
with this type of variation (Figure 1). Alternative initial exon
usage was the most common mechanism for replacing one
signal peptide with another (57.7%). One striking example,
TU71446, encoded 48 isoforms of protocadherin using 34
different signal peptides, each encoded by its own initial
exon. Variation of the signal peptide through alternative
transcriptional start site usage was also observed (14.1%).

These data collectively indicate that for TUs with multiple
protein products and predicted signal peptide features, approx-
imately 40% show variation of the signal peptide through
transcript variation, while over half contain a signal peptide that
doesnotvary, arising fromonegenomic location inall transcripts.

Feature Variation: Transmembrane Domains
Within the multi-protein, feature-positive TU set described

above, 2,329 TUs contained one or more transcripts where

the protein product was predicted to encode a TMD. A total
of 885 TUs (38.0%) were found to have the same number of
transmembrane domains in all transcripts produced. In the
vast majority of these (802), all transcripts used the same
region of the genome to encode the TMD, however 83 TUs,
while maintaining the same number of TMDs, used alter-
native TMDs encoded by different regions of the genome, or
contained genomic regions not predicted as TMDs in all
transcripts. In the remaining 62.0% of the TMD-positive set,
the number of TMDs in protein isoforms varied. Together, a
total of 1,527 TUs, representing ;66% of the TMD-positive
set, were found to have variable transmembrane domain
usage; these are collectively referred to as the variable TMD
(VarTM) set (TUs with gene identifiers are listed in Table S1).
The VarTM set was examined to determine the mecha-

nisms used to vary transmembrane domain usage. Around
45% of TUs in the VarTM set contained protein-coding
transcripts predicted to contain a single TMD lacking in
other protein-coding transcripts. For the vast majority of
these TUs (;98%), the TMD-positive transcripts used the
same feature; however, the remaining 17 contained addi-
tional variation of the TMD feature by use of an alternative
genomic region to encode it. Most commonly, these TUs used
two mutually exclusive alternative regions to encode the
TMD, although the use of up to four alternative mutually
exclusive regions was observed. Variability was also observed
in the number of TMDs predicted in each protein-coding
transcript. Nearly half of the VarTM set contained at least
one transcript predicted to code a multi-spanning membrane
protein as well as other transcripts predicted to have
different numbers of the TMD feature. The range of major
mechanisms producing variation of the predicted TMDs was
broader than that observed for signal peptides (see Figure 2).
Alternative initial exons, internal cassette exons, and alter-
native terminal exons were the most common mechanisms
observed to generate transcripts with variable TMDs. Also,
combinations of mechanisms were frequently observed to
generate variation.
These data collectively indicate that for TUs with multiple

protein products and predicted transmembrane domain
features, 65% undergo some kind of variation of the
transmembrane domain through transcript variation. The
remaining 35% contain a single set of ubiquitously used
transmembrane domains.

Alternative Splicing in the VarSP and VarTM Sets
To classify the alternative splicing events within TUs,

independent of the individual protein features, we applied a
modified computational classification scheme developed by
Clark and Thanaraj [11]. Within the 8,032 TUs with two or
more nonidentical protein products, 71 TUs did not have
complete genomic mappings available and were excluded
from this analysis. The results are presented in Table 2. A chi-
square statistical test was applied to the VarSP and VarTM
sets in order to determine if the distribution of the
alternatively spliced events observed in those sets was
significantly different to that seen in the global multi-protein
TU set. Both the VarSP and VarTM sets had significantly
different patterns of alternative splicing events compared to
the global set, with p , 0.0001 for both comparisons. This
indicates that the TUs that make up the VarSP and VarTM
sets represent different populations with respect to their
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alternative splicing properties. We compared the proportions
of alternative splicing events observed in each set to those
observed in the global multi-protein TU set. The use of
cassette exons was the only overrepresented alternative
splicing event within both the VarSP (1.34-fold) and VarTM
(1.26-fold) sets. Intron retention (1.24-fold) and transcrip-

tional start sites (1.11-fold) were overrepresented in the
VarSP set, while other events showed a proportional variation
of less than 10%. These overrepresented alternative splicing
events, based on all transcript variation, corresponded to the
major mechanisms of transcript variation identified for the
individual features (see Figures 1 and 2).

Figure 1. Variation of Signal Peptide by Transcript Variation and Alternative Splicing

Sixteen TUs are represented in both categories. These TUs contain multiple transcripts using signal peptide coding regions generated from distinct
regions of the genome while alternative transcripts within the same TU exclude these signal peptide coding regions altogether. Thin green and red bars
across exons represent the location of the start and stop codons respectively. An orange dot following the start codon represents the presence of N-
terminal signal peptide, while green blocks show the genomic localization of the predicted transmembrane domain features within exons.
DOI: 10.1371/journal.pgen.0020046.g001
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Variable Membrane Organization

Within the set of 2,996 multi-protein, feature-positive TUs,
1,380 were identified with variation in the predicted
membrane organization categories as outlined in Table 1.
In addition, 319 TUs classified as multi-spanning membrane
proteins were identified with variation in the number of
transmembrane domains. This resulted in a set of 1,699 TUs

with variable membrane organization (Table S1), which were
manually reviewed. First, we ensured that there was some
overlap in protein sequence between isoforms showing
divergent membrane organization. Second, transcripts were
identified in this set that had exons with identical genomic
coordinates but were annotated with different protein-
coding sequences. Frequently, several transcripts from the
same TU were observed to contain identically located

Figure 2. Variation of TMDs by Transcript Variation and Alternative Splicing

DOI: 10.1371/journal.pgen.0020046.g002
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genomic exons, but had a small number of base pair
inconsistencies when aligned to the genome. These incon-
sistencies may represent sequencing errors or mouse strain
polymorphisms, and could result in frame shifts in the
corresponding protein sequence or disruption of the coding
sequence region, causing the observed variation of the
membrane organization features. Third, annotation of
membrane organization features by MemO was influenced
by the presence of variable protein sequences outside the
sequence encoding the feature. The result of this sometimes
included splitting of a single predicted transmembrane
domain into two smaller predicted domains, thus altering
the count of TMDs. Finally, transcripts that showed no
evidence of splice variation and may represent truncated
versions of full-length transcripts were critically evaluated for
inclusion in a high-confidence set. Only transcripts that
contained independent support for the alternative transcrip-
tional initiation and termination sites were included, thus not
all transcripts present in each TU were included in the high-
confidence set. Supporting evidence for the alternative
transcriptional start and end sites was evaluated using the
Genomic Elements Viewer (http://fantom32p.gsc.riken.jp/
gev-f3/gbrowse/mm5). This database includes all 59 and 39

boundaries of the 181,047 independent transcripts within the
mouse transcriptome and their frequency of use based on
evidence from full-length cDNA sequencing and cap analysis
gene expression (CAGE) and related methodologies [1]. The
resulting set of 782 TUs that passed this manual curation
process will subsequently be referred to as the variable
membrane organization (VarMO) set (Figure 3; Table S1).

Within the VarMO set, 586 TUs had two different
membrane organization classifications annotated, while 29
TUs had more than two membrane organization classifica-
tions observed for the encoded protein isoforms. The
remaining 167 TUs possessed transcripts ubiquitously classi-
fied as multi-spanning membrane proteins, but with variable
numbers of transmembrane domains.

While all pairwise combinations of membrane organization
classes are observed within the VarMO set, several combina-
tions were more frequent. For example, 376 TUs contained at
least one protein-coding transcript encoding a soluble
intracellular protein. Other protein-coding transcripts in
these TUs were mainly predicted to contain either type II
membrane proteins (46.8%) or soluble secreted proteins
(37.0%). Furthermore, for TUs containing a protein-coding
transcript predicted to be a soluble secreted protein, a bias
towards soluble intracellular proteins (46.1%) and type I
membrane proteins (27.9%) was observed.

The VarMO set was compared to multi-protein TUs in the
IPS set, and the general properties of both sets were found to
be similar. For example, VarMO contains 782 TUs with an
average of 3.0 transcripts per TU, and the whole multi-
protein TU set contains 8,032 TUs with an average of 2.7
transcripts per TU. The proportion of membrane organiza-
tion classes in the IPS set and the subset of TUs with multiple
proteins varied from those seen in the VarMO set. For
example, soluble secreted proteins are present in only 11%–
12% of TUs in the larger sets, but are present in 38% of TUs
from the VarMO set, while 5%–7% of TUs in the larger sets
contain type I membrane proteins, compared to 22% of TUs
from the VarMO set (see Tables 3 and S1).
To better understand the composition and biological

nature of these data subsets, we generated a set of Gene
Ontology (GO) terms significantly overrepresented in each
combination of membrane organization classes. We looked
for terms overrepresented in the variable categories when
compared with sets of each individual membrane organiza-
tion taken from the IPS set as a whole (Table S2). Individual
TUs encoding type I membrane proteins, particularly trans-
membrane kinase receptors associated with signal trans-
duction, cell communication, and cell adhesion, frequently
generated soluble protein products encoding the extracel-
lular ligand-binding domains or the intracellular kinase/
signaling domains. In addition, truncated membrane-anch-
ored variants (i.e., type II membrane proteins) of these type I
transmembrane receptors were also generated. These variant
protein products will clearly influence the outcomes of cell
signaling events. This highlights the importance of determin-
ing which protein variant is generated when examining the
role these proteins play in various biological signaling
processes. Likewise, TUs encoding multi-spanning membrane
proteins, particularly those associated with ion transport and
receptor activities also generate soluble intracellular and
extracellular protein products. Numerous TUs encoding
soluble enzymes associated with cellular catabolism generate
both intracellular and extracellular variants. Critically, the
identification of sets of TUs associated with particular
biological processes and containing protein isoforms from
multiple membrane organization classes validates the selec-
tivity of the computational approach used to identify them.

Discussion

Changes to the membrane organization of individual
proteins will modulate the function of a protein by altering
the cellular environment with which it is associated. Post-

Table 2. Comparison of Events Causing Transcriptional Variation

Sample Total TUs Start

Variation

Donor

Isoform

Cassette

Exon

Acceptor

Isoform

Intron

Retention

Not

Classified

End

Variation

Multi-protein TUs 7,961 20,440 2,809 9,104 4,057 1,743 35,498 19,402

VarSP 573 1,630 188 879 276 156 2,718 1,462

VarTM 1,516 4,147 553 2,194 771 361 7,138 3,919

The number of alternative splicing events observed in TUs with multiple proteins, and in the subsets with signal peptide variation (VarSP) and transmembrane domain variation (VarTM)
were calculated as described in the Materials and Methods. Only TUs with complete genomic alignments for all transcripts were considered.
DOI: 10.1371/journal.pgen.0020046.t002
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translational proteolysis, including regulated intercellular
proteolysis [12] and ectodomain shedding [13], represents
one mechanism used to achieve variation in membrane
organization. We have reported here that variable transcript
output from the same gene or TU is another mechanism
commonly used to vary the membrane organization of
proteins. Previously, others have used computational ap-
proaches for examining genes that highlighted specific
aspects of this variation, including the identification of
soluble proteins from single-spanning membrane proteins
[6], the study of removal of transmembrane domains and
signal peptides in theoretical proteins re-created from public
cDNA sequences [14], and the identification of putative
soluble variants of membrane proteins through annotations
in UniProt [15]. Our study represents a more comprehensive
approach that systematically analyzed the entire mouse
transcriptome, as defined by Carninci et al. [1].

Our analysis of the mouse transcriptome identified 8,032
TUs that encoded multiple protein isoforms. A question
raised by the high numbers of mammalian genes undergoing
alternative splicing is the extent to which this splicing results
in functional variation of the protein products. By focusing
on protein variants that have different membrane organiza-
tions, we identified a set of genes where alternative splicing
has a direct functional consequence, as changes in membrane
organization are frequently associated with changes in
subcellular localization, or availability of the protein for
protein–protein interaction [5].
From 19,538 TUs, we identified 2,996 (15%) that contained

multiple proteins and are predicted to contain at least one
signal peptide or transmembrane domain. Of these, 1,475
(49%) contained at least one predicted signal peptide, while
2,329 (78%) contained at least one transmembrane domain.
These proportions correspond with 8% and 12%, respec-

Figure 3. Categories of Membrane Organization Observed in the 782 High-Confidence Variable TUs

In total, 753 TUs occurred in two different membrane organization classes, while 29 TU’s occurred in more than two membrane organization classes,
and are present in a number of variation categories.
DOI: 10.1371/journal.pgen.0020046.g003
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tively, of the total number of protein-coding TUs in our
filtered IPS set. Within the set of 1,475 TUs encoding signal
peptides, 39% were found to vary their use of signal peptides.
In the vast majority of cases this variation caused the
exclusion of the predicted signal peptide from one or more
protein products. In other cases, variation involved the
replacement of one signal peptide with another encoded by
a different genomic region. Within the set of 2,329 TUs with
multiple proteins and one or more transmembrane domains,
only 802 (34%) were found to contain identical complements
of ubiquitously used transmembrane domains in all protein
products, while 35% showed variations that would result in
the generation of a variant soluble form of the TMD-
containing protein. The remainder produced proteins with
a variable complement of transmembrane domains.

Characterization of the mechanisms used to generate the
transcript variation relative to the predicted feature revealed
that a number of common strategies were utilized. Signal
peptides are only present at the N-terminus of a protein’s
coding sequence and are, therefore, typically encoded within
the first or second exon. Consistent with this, we observed a
predominant use of alternative initial exons or alternative
transcriptional initiation sites in cases of SP variation. In
contrast, the mechanisms used to vary individual trans-
membrane domains were more diverse. Alternative initial
exons, internal cassette exons, and alternative terminal exons
were all frequently exploited to generate transcripts with
variable numbers of transmembrane domains. Variations of
the exon boundaries (donor site isoform, acceptor site
isoform, and intron retention) were also observed for both
signal peptides and transmembrane domains but at a lower
frequency than the mechanisms exploiting mutually exclusive
regions of the genome.

The datasets used and generated in this analysis are of a
high quality. The IPS set has been systematically reviewed
[1,16], and protein sequences were further filtered prior to
submission to the MemO pipeline. This two-stage removal of
any apparently suspect non-full-length protein sequences
provides increased confidence that the events described here
represent true biological events rather than artifacts created
by incomplete transcripts. Other problems that can occur
with expressed sequence tag clustering and/or mapping to the
genome [3] are also avoided. Furthermore, for the high-
confidence VarMO set, we established strict, conservative
criteria for inclusion, including manual curation of this set.

A criticism sometimes made of computational approaches
for the identification of alternative splicing has been that
these approaches do not place predicted events in a
biological context in the same way that experimentally
characterized gene-specific alternative splicing events are
framed [17]. In this computational analysis we provide
biological context to the observed events by focusing on
genes with variable membrane organization, rather than
cataloging alternative splicing events in the whole IPS set.
That is, the VarMO set contains TUs that produce protein
isoforms that are annotated to be in more than one
membrane organization category. We have focused our
analysis on this high-confidence set and because of our
conservative criteria for inclusion, we are likely to be
underestimating the number of TUs with variable membrane
organization.
Critically, in this computational study we identified a

number of experimentally validated genes where alternative
splicing is known to cause variation in the membrane
organization of encoded protein isoforms. Across the
observed combinations, these include soluble intracellular
proteins and soluble secreted proteins—sialic 9-O-acetyles-
terase [18]; soluble intracellular proteins and type I mem-
brane proteins—protein tyrosine phosphatase [19]; soluble
intracellular proteins and type II membrane proteins—
CUTL1 [20], protein tyrosine phosphatase [21], and bcl-x
[22]; soluble intracellular proteins and multi-spanning mem-
brane proteins—Lmbr1 [23]; soluble secreted proteins and
type I membrane proteins—IL-4 receptor [24], CD40 [25],
inhibin binding protein [26], neuropilins 1 and 2 [27],
epidermal growth factor receptor [28], Flt-1 [29], granulo-
cyte-macrophage colony stimulating factor [30], 4–1BB [31],
Flt-3 ligand [32], Fit-1 [33], IL-2 receptor [34], and the leptin
receptor [35]; soluble secreted proteins and multi-spanning
membrane proteins—thyroid stimulating hormone receptor
[36]; type I membrane proteins and type II membrane
proteins—protein tyrosine phosphatase Ptprr [37]; multi-
spanning membrane proteins with different numbers of
domains—mercurial-insensitive water channel 3 [38], cystic
fibrosis transmembrane conductance regulator [39], porcu-
pine-D [40], X transporter protein 2 [41], urea transporter
isoform UT-A1 [42], and Atp2a2 [43].
Within the VarMO set all possible combinations of

membrane organization class switching were observed. From
most common to least, themajormembrane organization class

Table 3. Analysis of Membrane Organization Variation at the Level of TUs for 33,451 Protein Sequences Belonging to 19,538 TUs

MO Category TUs Containing

MO Category

(19,538 Total TUs)

TUs with Single

Protein Product

TUs with Multiple

IPS Protein Products

(8,032 Total TUs)

TUs with Multiple

IPS Protein Products

and Single MO

Category

TUs with Multiple

IPS Protein Products

and Multiple MO

Categories

(1,380 Total TUs)

Soluble intracellular protein 13,100 7,187 5,913 5,036 883

Soluble secreted protein 2,187 1,242 945 424 525

Type I membrane protein 1,038 482 556 176 381

Type II membrane protein 2,147 1,129 1,018 307 713

Multi-spanning membrane protein 2,535 1,470 1,065 709 360

MO, membrane organization.
DOI: 10.1371/journal.pgen.0020046.t003
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variations observed were as follows: multi-spanning mem-
brane proteins with different numbers of domains soluble
intracellular proteins and type II membrane proteins, soluble
intracellular proteins and soluble secreted proteins soluble
secreted proteins and type I membrane proteins, and type II
membrane proteins and multi-spanning membrane proteins.
While to date the majority of experimentally validated
examples are within the sets (1) soluble secreted proteins
and type I membrane proteins and (2) multi-spanning
membrane proteins with different numbers of domains,
support does exist for the occurrence of the other classes.

Based on our analysis of the 8,032 TUs with variable
protein-coding transcripts, we conservatively estimate that
approximately 10% contain differentially encoded signal
peptides and/or transmembrane domains. This indicates that
variation of membrane organization is a major outcome of
alternative splicing and/or transcript variation. All of these
observations have been incorporated into the LOCATE
database (http://locate.imb.uq.edu.au), which also provides
further biological context for these proteins through inte-
gration with domain predictions, subcellular localization data
collected from the literature and high-throughput experi-
ments, and links to other database resources [44].

Materials and Methods

Datasets. The IPS dataset created by the RIKEN FANTOM3
Consortium from novel and public protein-coding transcripts [1]
was the base dataset for this work. The sequences in the IPS set were
generated exclusively from direct sequencing of full-length tran-
scripts and do not include any hypothetical transcripts. The data have
been clustered into TUs, that is, groups of transcripts arising from a
single genomic locus, defined as sharing at least one nucleotide
having the same genomic location and orientation [1,2]. Protein
isoforms generated from each TU are available, and all sequences in
the IPS set have some variation at the protein level. This dataset is
accompanied by the genomic alignments of the spliced transcripts.
This dataset is available at ftp://fantom.gsc.riken.jp/RTPS/
fantom3_mouse/primary_rtps/IP [1].

Membrane organization annotation. Membrane organization of
proteins within the IPS dataset was annotated using the pipeline
method MemO (M. J. Davis, F. Zhang, Z. Yuan, and R. D. Teasdale,
unpublished data), which classifies proteins into five major classes of
membrane organization: soluble intracellular proteins, soluble
secreted proteins, type I membrane proteins, type II membrane
proteins, and multi-spanning membrane proteins. MemO generates
predictions of two main features, signal peptides and transmembrane
domains, using consensus methods to achieve greater accuracy [45].
Five methods contribute to the consensus prediction of trans-
membrane domains: SVMtm [46], TMHMM [47], HMMTOP [48],
Memsat [49], and DAS [50]. In order to be annotated as a
transmembrane domain, regions of protein sequence must have
positive transmembrane domain predictions from at least three of
the predictors used. Regions shorter than five residues are discarded,
and regions separated by gaps of less than four residues are joined
into a single region. Three methods contribute to the prediction of
signal peptides: SPScan [51] and the two Signal P V.2 methods of
neural-network-based [52] and hidden-Markov-model-based [53]
prediction. Conflicting predictions in the first 45 residues are
resolved using a previously published method [9]. Features are
predicted at the protein sequence level.

Analysis of transcript variation. Predicted protein features (SPs
and TMDs) were mapped to genomic coordinates. Genome align-
ments of the transcripts were used to generate exon-splicing graphs
for each TU [54]. These graphs are presented within LOCATE [44] at
http://locate.imb.uq.edu.au, and links to these graphs are presented in
Table S1. The splicing graphs shown in LOCATE have been generated
from the primary data, and do not reflect confirmed transcript
variations in our high-confidence VarMO set. These graphs were
classified using a previously described system [54] (http://proline.bic.
nus.edu.sg/dedb/methodology.html).

Alternative splicing events within a TU were identified and

classified computationally. Within a given TU, observed exons were
compared with observed introns, and any overlap was taken to
indicate alternative splicing. An exon encoded entirely within an
intron was labeled as a cassette exon. Exons were also compared to
other exons; if two exons shared a donor splice site but differed at the
acceptor splice site, an acceptor site isoform was recorded—and vice
versa for a donor site isoform. In the case that two exons overlapped
but differed at both ends, those exons were recorded as alternatively
spliced but not classified. Intron retention was recorded when an
intron was entirely contained within an exon. Variation in the
transcriptional start and end points of the transcript was also
recorded. All exons identified as alternatively spliced were recorded
according to genomic coordinates and the category of splice
variation observed.

GO analysis. Mouse Genome Informatics accession numbers
[55,56] associated with the IPS set were used to conduct GO analysis.
The GOstat application, available at http://gostat.wehi.edu.au [57], was
used to retrieve GO terms and to determine which were significantly
over or under represented in the datasets. Across the membrane
organization categories, the numbers of TUs that had GO annota-
tions are as follows: 7,088 TUs containing soluble intracellular
proteins, 1,494 TUs containing soluble secreted proteins, 728 TUs
containing type I membrane proteins, 1,150 TUs containing type II
membrane proteins, and 1,685 TUs containing multi-spanning
membrane proteins. Of the TUs within the VarMO set, 715 had GO
annotations.

Supporting Information

Table S1. Results for 8,032 Multi-Protein TUs from the IPS Set

Gene names, Mouse Genome Informatics identifiers, and EntrezGene
identifiers are presented for the listed TUs. GenBank accession
numbers, or, where these are not available, RIKEN accession
numbers, for the transcripts clustered in each TU are also listed.
Presence of each TU in the VarSP, VarTM, and VarMO sets is
indicated, as are the classes of membrane organization predicted in
each TU. Links to the LOCATE database (http://locate.imb.uq.edu.au)
and the splicing graphs generated for each TU are also provided.

Found at DOI: 10.1371/journal.pgen.0020046.st001 (5.7 MB XLS).

Table S2. GO Terms Overrepresented in VarMO

Lists were created for the variable sets corresponding to ten types of
membrane organization variation present in the VarMO set of TUs.
These lists were each compared with the two membrane organization
class sets corresponding to each individual category observed in the
variable type. For these ten comparisons, p¼ 0.01 was used.

Found at DOI: 10.1371/journal.pgen.0020046.st002 (16 KB PDF).
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