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Abstract

In this Thesis we present a comprehensive study of perturbative and non-perturbative
non-Abelian gauge theories in the light of gauge-fixing procedures, focusing our
attention on the BRST formalism in Yang-Mills theory. \Me propose first a

model to re-write the Faddeev-Popov quantisation method in terms of group-

theoretical techniques and then we give a possible way to solve the no-go theorem

of Neuberger for lattice Yang-Mills theory with double BRST symmetry. In the
final part we present a study of the Batalin-Vilkovisky quantisation method for
non-linear gauges in non-Abelian gauge theories.
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L

lntroduction

Since the seminal work by Yang and Mills in 1954 [YM54], non-Abelian gauge

theories have been indisputably of enormous importance in particle, and most

generally, in theoretical physics. It is well known that all the four forces discov-

ered so far (electromagnetic, weak, strong and gravitation force) are mediated by
bosons or simply gauge fields (respectively photons, W+ and Z, gluons, gravi-

tons): apart from the photon, all the other vector particles belong to a specific

representation of non-Abelian gauge theory. The fundamental property of these

theories, regardless of their commutativity, lies in the fact that the Lagrangian

of the model is invariant under a local redefinition of the gauge field, known

as a gauge transformation for gauge (or general coordinate transformation for
gravity), as Dirac noticed in the light of quantum electrodynamics (QED) many
years ago.

This local gauge invariance is responsible for one of the most challenging
problems to solve in current theoretical physics: the understanding of the non-

perturbative regime of non-Abelian theories. As pointed out by Gribov in the
late 70-s [Gri78], quantum chromodynamics (QCD), the most accurate model

for the strong interaction, suffers from a topological obstruction whenever one

deals with low energies. This is due to the fact that the QCD Lagrangian,

described by a Yang-Mills interaction, being left unchanged by a local gauge

transformation, contains an infinite overcounting of physically equivalent gauge

configurations, grouped together in different gauge orbits (equivalence classes).

To take into account only gauge inequivalent configurations, ideally one would
need to find an unambiguous procedure to consider only one representative per

gauge orbit: such a method is called gauge-fixing. Unfortunately, as Gribov
discovered and explained first in the physics language, and then Singer [Sin7S]
in a more mathematical manner, there is no analytic gauge-fixing procedure

which guarantees the non-perturbative regime of QCD to be free of such an

ambiguity, called the Gribov ambiguity. The topological obstruction can be

easily understood if one considers the gauge-fixing term as a hypersurface which
intersects the functional space of gauge orbits. If the fixing procedure were

correct, then the surface would intersct only once per orbit. This is the case

only for high-energy or perturbative QCD. Beyond this regime, when u¡e are

entitled to move far from configurations around the trivial gauge field Á, : g
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(and thus infinitesimal gauge transformations), even finite gauge transformations
play a decisive role: consequently, many intersections are found along the orbit.

Surprisingly, a very interesting consequence of gauge-fixing had been already
observed by four physicists three years before the paper of Gribov: Becchi, Rouet
and Stora [BRS76], and independently Tyutin [Tyu], using the Faddeev-Popov
quantisation method [DN67] to integrate out the infinite gauge redundancy in
the path integral representation of QCD, discovered a new global structure, now
called BRST formalism. To exponentiate the Faddeev-Popov operator appearing
in the integrand of the path integral due to a functional change of variabìes,
they introduced a pair of anticommuting fields, the ghost fields. These fields
were the ones Kac and Feynman were looking for to guarantee the unitarity of
the .S-matrix in non-Abelian scattering processes. Alongside the ghost fields,
a Nakanishi-Lautrup field was used to rewrite the gauge-fixing term, such that
the QCD path integral was constituted by a quartet of fields. However, this
formalism was only fully understood some years later. In fact, mainly due to
the extensive works of Atiyah [AJ7S], Witten [Wit82] and Schwarz [Sch78], it was
noticed that the theory of invariant polynomials, namely Donaldson theory and
knot theory, could be reformulated in more physical terms: this was the birth
of topological quantum field theory (TQFT). Within this theory, the BRST
formalism was regarded as the most trivial example of supersymmetry, and the
BRST charge, generator of the new global symmetry, regarded as a nilpotent
supersymmetric operator.

All of a sudden, QCD, and generally speaking non-Abelian gauge theories,
started being studied and analyzed from many different angles: Kugo and Ojima

[KO79] first interpreted the BRST transformations as the quantum version of
the classical gauge transformation. Then, they discovered the generalisation to
non-Abelian gauge theory of the Gupta-Bleuler formalism in QED. They were
thus able to give a prescription for confinement of quarks (known as the Kugo-
Ojima criterion): this non-perturbative mechanism is responsible for avoiding
quarks as free particles at low energies and therefore confining them into the
hadrons such as nucleons and pions observed in nature, via the action of QCD
self-interacting gauge fields, the gluons.

Moreover, mathematicians realised that the well-known theory of principal
bundles could be re-expressed in terms of supersymmetric structures. The clas-
sical geometry of gauge theory started being enriched with ghost fields, extended
coordinates and Grassmann manifolds. In [8T81], [QdUH+81] and [BTM82] it
was pointed out how the classical theory of gauge geometry had as a logical
implementation that of superfields and superconnections.

Schwarz and Witten constructed two different theories involving BRST for-
malism to study non-Abelian theories as supersymmetric ones by means of
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topological path integrals: mathematical/geometrical theorems such the Hodge

decomposition of connections, the Poincaré-Hopf and Gauss-Bonnet theorems

became soon familiar to many physicists. The connection between the Gri-
bov ambiguity and topological field theory then naturally emerged through this
massive quantity of work: at the non-perturbative level, all of the equivalent

configurations (Gribov copies) sum up to give a vanishing topological páth inte-

gral [Fuj79,BBRTgl]. This result is regarded as the vanishing Euler character

of the gauge-group manifold on which QCD is evaluated [Sch99].

Although much important work has been carried out, in the understand-

ing of non-perturbative gauge theories, some fundamental questions still remain

to be answered: in particular, the mechanism responsible for quark confine-

ment seems to be the hardest and most challenging of all. Nowadays the study

of non-perturbative QCD is performed through different approaches: Dyson-

Schwinger equations [AvS01] and lattice gauge theory [Wil74] perhaps are the

more succesful ones for practical purposes. In the former, functional and oper-

ator identities are pursued by the observabion that the path integral of a total
functional derivative with respect to one of the fields involved vanishes. In this

scenario, the BRST formalism is largely adopted to facilitate highly compli-

cated computations. However, the Gribov ambiguity is not fully avoided or

solved: Dyson-Schwinger calculations are performed in the region where the

Faddeev-Popov operator is positive definite, and thus the complication of going

beyond this region is thus by-passed. On the other side, in lattice QCD, the

discretisation of the space-time manifold determines a natural regularisation of
the path integral, and therefore no gauge-fixing procedure is required. It is the

stochastic nature of the numerical computation of the path integral (e.g. by

means of Monte-Carlo algorithms) which self-consistently guarantees to have an

insignificant probability to generate two gauge configurations on the same orbit.
It is for instance not fully understood yet how the BRST formalism can be im-
plemented on the lattice: this is due to a no-go theorem discovered in mid 80-s

by Neuberger [Neu87]. In this paper, he noticed that because of the underlying

BRST invariance, the gauge/fixing Y-M partition function can be shown to be

independent of any gauge parameter. The consequence of this property is that
the lattice path integral of the gauge-fixing action ratios turns out to be ex-

actly zero. It seems then that the BRST formalism cannot be straightforwardly
adopted at low energies. Yet, if we wish to construct a complete and organic

theory of the strong force, it is then required to comprehend why the BRST
formalism apparently only works in perturbative QCD. The motivation behind
this Thesis is then to comprehend much more clearly the topological nature of
the BRST algebra, both perturbatively and non-perturbatively in non-Abelian
gauge theories.
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This Thesis is structured as follows: Chapter I is dedicated to the intro-
duction of constrained systems, first starting from the classical point of view of
Lagrangian and Hamiltonian systems. We then adopt the covariant formalism
to provide the quantum version of Maxwell theory and Y-M theory in the light
of functional contraints. Chapter II is entirely devoted to the path integral rep-
resentation of non-Abelian gauge theories. We also analyze the structure of the
functional configuration space of the Y-M path integral both from the analytic
and topological point of view. Special emphasis is given to the Gribov problem.
In Chapter III starting from the Faddeev-Popov quantisation method, we de-
scribe how the BRST formalism emerges in non-Abelian gauge theories, focusing
our attention on the supersymmetric structure of it and on the Kugo-Ojima cri-
terion as the generalisation of the Gupta-Bleuler formalism. We give a detailed
explanation of the BRST algebra with respect to linear and non-linear gauges.

Chapter IV is dedicated to our first work conducted on the interpretation of the
Faddeev-Popov quantisation method in terms of group-theoretical techniques.
We proposed a supersymmetric manner to re-write the Faddeev-Popov oper-
ator, entering the Y-M path integral through a functional determinant, using
the Nicolai map. In Chapter V, we move to lattice gauge theory, on which we
present a model to circumvent and possibly solve the Neuberger problem, which
so far prevented us from using the BRST formalism in lattice gauge theory. To
conclude this Thesis, in Chapter VI we present the Batalin-Vilkovisky formal-
ism both in continuum and lattice Yang-Mills theory in the light of non-linear
gauges. We will then re-propose the same methodology of Chapter V in this
framcwork.
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Symmetries and
Euclidian Gauge

Constraints in
Theories

In this chapter, we will present the theory of constrained systems, starting with
a Euclidian classical theory: in this framework, we will first deal with the Hamil-
tonian formalism and then we will move to the one commonly adopted in this
Thesis, the Lagrangian formalism. Gauge theories will be analyzed, considering
first the Abelian gauge theory of electromagnetism and then its non-Abelian
generalisation, Yang-Mills theory.

2.L Classical constrained systems: Hamiltonian

and Lagrangian formalism

Generally speaking, all the possible physical information we require and need

to extract from a theory is encoded into the action ^9. This can be expressed

either through the Lagrang\an L or, by appropriate Legendre transformations,
through the Hamiltonian Il, leading to two different formalisms: the former is
of the covariant formalism, whereas the latter the canonical one. Regardless of
the particular type of formalism one wishes to adopt, one of the fundamental
questions to answer in complex physical systems is how we proceed in the case

of one or more constraints affecting the action and consequently, either the La-
grangian or the Hamiltonian. This problem can be immediately addressed at the
classical level: we shall show how such constraints affect the dimensionality of
the configuration space, how they will enter the equations of motion and further-
more, how they influence Noether's theorem. Consider for this purpose a local
Euclidian Lagrangian [IZ, NO90] over a finite-dimensional space of generalised

commuting (bosonic) variables q, whose base space is t € IR: we call lhe free
Lagrangian, ,L6, the part of ,L which is being described only by the generalised

coordinates q(¿), and their first derivatives ci(ú) at most quadratically (this for
the canonical formalism to be applicable). The remaining part of .L contains
higher-order terms in q(ú) and it is called the interactionLagrangian, -L¡. The
classical action of the system is then defined as the integral over the base space



6 2. Symmetries and Constraints in Euclidian Gauge Theories

of L(t)

s: - dt L(t) : dt L(q^(t),d"Q))

Consider now a local variation of both q(t) and Q(ú) in the action

(2.1)

(2.2)

(2.4)

á,S :

d¿

d

AL dAL
)qn üAq"

aL_ aL_ l
a^òø" * uuu1")

õqn

AH
n-Yn
oQn

t

where the sum over n is understood and we performed an integration by parts to
obtain the last line, once appropriate boundary conditions on q.(t) are imposed.
The action principle, or Hamilton principle of least action, states that the path
satisfying the classical equations of motion is the one extremising ,S, such that
ô,S : 0. Because of the variations õqn are independent, we obtain the Euler-
Lagrange equations

aL daL _n
aq.-- d, aq.-: 

o' (2'3)

which are a set of n de-coupled second-order differential equations. In the case

when we deal with fields, they will be also called f"eld equations. To reduce
(2.3) to first-order differential equations, we introduce the canonical momentum
conjugate

OL
m:-
Pn 

- 
n. ¡
oQ,

and we suppose we can invert this relation, i.e. expressing velocities in terms
of positions and momenta. The Hamiltonian is obtained through a Legendre
transformation as

H(pn,q,) = pnQn(p,q) - L(q",q"(p,q)). (2.5)

The Euler-Lagrange equations are being translated into the symplectic space of
the Hamiltonian formalism: they now become the Hamilton equations. To see

this, insert (2.5) into the action and vary both momenta and positions to get

ut : I at(ø,õr,- i¡n6qn-#ur^- Hr"), Q.6)

AH
^ - UTt,
oPn

with

(2.7)
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These are the Hamilton equations, which determine a symplectic structurel over

the configuration space: the dimensionality of this space becomes then twice the
original one because of the presence of momenta p. In this phase-space, it is

convenient to introduce a way to associate elements at different points: this is
achieved by the Poisson Brackets (PB) [VH05], defined as

{F,G}:H#-##, (28)

where repeated indices are understood to be summed. Any transformation of
the canonical variables (p, q) which leaves these brackets unchanged is called

canonical. The importance of such an analytic operator lies in the fact that it
determines immediately if there is a symmetry. In fact, any function F(p,q),
whose total derivative vanishes, is a constant of motion if it has vanishing Brack-
ets with ,F1,

dF AF AF. AF.
dú 

: 
at + ônn* ùo'

=+

At the quantum level, (2.9) describes the Heisenberg equation of motion, whereas

we shall see that the Poisson Brackets will become, according to the formalism
adopted, either the Lie Brackets in the language of gauge theories or the BV
Brackets in the case of supersymmetry. With respect to the two canonical vari-
ables, q,, and pn, the PB with 11 read

{q., H} : qn {p^, H} : p*. (2.10)

To introduce the fundamental concept of a constraint, we start with a pedagog-

ical summary in the Hamiltonian formalism, and then we will present it in the
light of the covariant Lagrangian formalism.
Therefore, expand the time derivative in the Euler-Lagrange equations as

aL a2L .^_ ðrL äm_^ú,- aa'6na^ ad,ad*q"' - u' (2'11)

This is a set of n coupled second-order differential equations in g- with functional
coefficients, whose Lipschitz condition of solvability depends on the invertibility
of the matrix coefficient of (i*

^"(ffi):0., (ffi)r, et2)
1A symplectic vector space is a vector space V equipped with a nondegenerate, skew-

symmetric, bilinear form, called the symplectic form. Its dimension must necessarily be even
since every skew-symmetric matrix of odd size has determinant zero.

:T+{F'H} {H,F}:o:T (2.s)
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Whenever such relation does not hold, it means that there are one or more
momenta, sa"y rrù, which can be expressed in terms of the remaining momenta as

po:po(p¡,Qn) 1( a ( m1i, 1n,

and that for each momentum po, there is a velocity r]" which cannot be solved in
terms of p¿ or en. We will indicate the set of aÌl these constraints as óo(pn,qn) :
0, The corresponding constrained Hamiltonian .Il is obtained in the same formal
way as for the unconstrained one: such Hamiltonian has the peculiarity that it
does not depend on the constrained velocities

(2.13)

(2.r4)

implying that we can aÌways add to H any function of such velocities without
affecting the Hamilton equations. The unconstrained Hamiltonian will be then
expressed in terms of I/ as

H:H-^"(t)ô", (2.15)

with Ào being a Lagrange multiplier, generally depending on ú, whose role is to
enforce the constra\nt þ": 0. For the dynamics of such a system, in order to
be consistent with the symplectic structure thus determined, not only have the
canonical variables to respect the constraints, but aìso the constraints themselves
in a self-consistent way such that

dó" t
Ë : {ó",H} - 0, (2.16)

where by - 0 \4/e mean "weakly zero", provided the constraints are enforced. In
the case in which such a condition does not hold, then we keep going by enforcing
a new constraint, sãV po, defined 6 po = {ó", H}, until we find PB consistent
with the condition (2.16). All these new constraints should be added a posteri-
oriinto the Hamiltonian, associated with the appropriate Lagrange multiplier as

H : H - DT Àoþo, for.ly' constraints. The difference between the Hamiltonian
formalism and the Lagrangian is that the Lagrange multipliers plugged into 1/
immediately manifest the condition of a constraint, to which we must associate
arbitrary trajectories to the coordinates whose dynamics is undetermined by
the equations of motion. This assigning goes under the name of gauge.fixing.
Though in the Lagrangian formalism such a procedure is unavoidable in the
presence of constraints, in the case of the Hamiltonian formalism, what is actu-
ally needed is .I/ and to specify the constraints. Even in this classical theory, we



can introduce the concept of a gauge transformation: by this we mean a map of
phase space coorindates as

pn + p^ -l 6p.(p^,e^,t) : pn - ,"þ)#: ,*

Qn + Qn * õqn(p,n,q^,t) : e, * e"(t)9!9 : n*, Q.l7)

such that the action S (and the equations of motion) should be left invariant
under these transformations. In general, the action is not invariant under these

gauges, and so we have to enforce the symmetry through an appropriate trans-
formation rule for all the Lagrange multipliers and the Hamiltonian, respectively

ôÀo : -$.' õH : €"{H,ó"}. (2.18)
d¿

Together with (2.17), (2.18) leave the entire system invariant.

2. 1 Classical constrained systems: Hamiltonian and Lagrangian formalism g

2.L.L Noether's theorem and charge algebra

The Noether theorem is a crucial theorem to understand how both external
and internal symmetries play a decisive role in field theories. It states that to
any continuous one-parameter set of invariances of the Lagrangian is associated

a local conserved current. Integrating the fourth component of this current
over three-space generates a conserved charge. From this charge, one can then
construct a Lie charge algebra. In the case \4¡e have also internal symmetries,
as it will be the case in gauge theories, this internal charge algebra will play a

fundamental role in the quantisation procedure: it will give rise to the Lie charge

algebra of BRST, a special case of a supersymmetric algebra. In this section we

present the appearance of a charge algebra in the canonical formalism: consider a
functional G over the finite-dimensional phase.spac e (p, q): suppose {G , n¡ : g

is satisfied, then we know from previous arguments that vr'e are dealing with a

symmetry over the time, whose infinitesimal generator is the Hamiltonian. The
Hamiltonian itself is left invariant (6 H : 0) under the following transformations

6qi : [ni al : AG 
6po: {po,G} : -ôG-- Iq',cI : ap, 6po: {po,c} : - a(' (2.19)

The difference from the Lagrangian formalism is that here constants of motion
generate symmetries, and not viceversa, and moreover we have explicit expres-
sion for the variations (ôq, ôp). This is the inverse Noether theorem. The algebra
spanned by these symmetries is obtained by using the Jacobi identity

{{G., Gp},H} + {{H,G"},GB} + {{GB,H},Go} :0, (2.20)
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provided {G"} is a complete set of generators. In fact, we have the identity

{G",GB} - Poþ - -PBo, (2.21)

with P"B an antisymmetric polynomial in the constants of motion G*

Poþ: coþ I foB'G-, +|s,u'u G.rG¿ + . .. (2.22)

All the coefficients of the Taylor expansion are constants, and therefore we have
vanishing PB's with .Ff at all orders of the expansion. coB is called the central
charge of the expansion. Calling the generic infinitesimal variations (2.19) ð*,
for any functional F over the phase-space

6"'F : {F,Go},

the commutation relations yield

lõ",õp)F : {{4 GB},G.} - {{F, G"},GB}

Due to the Jacobi identity, we can write

[6",õplF : {F, {G",Gp}} : CoBl õ",F

- 
oPoP 

- fop' * goþ1 Ga* ....oG, - '
where we made use of the antisymmetry of the coefficients of the Taylor ex-
pansion. It is clear that in order to have (2.25) fulfilled in the case of local
symmetries, the central charge has to vanish identically¡ cqg:0,Vo, þ, gen-

erating a first c/øss constraint [HT]. We shall only deal with closed algebras,
so only the linear term in the Taylor expansion will be considered, whereas for
more general algebras, such open ones, one can consider an arbitrary number of
powers in G.
Algebraically speaking, whenever we have a vector space, with an antisymmet-
ric product and Jacobi identity fulfilled, we are in the presence of a Lie algebra
(For a more formal definition see Appendix A). So, whenever we have a local
symmetry Go: {G.,H}:0 with time-dependent parameters, the generators

{G"} turn into a constraint
Go(q,P) : o' (2'26)

Defining on the hypersurface, spun by the generators of the symmetry, a set of
equivalence classes, the constraints commute with the Hamiltonian through the
corresponding PB over these classes. This is a necessary condition only on-shell
(on the physical hypersurface), whereas off-shell this is no longer true. When

(2.23)

(2.24)

(2.25)
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we deal with BRST algebra, we will introduce the concept of cohomology and

the means to select the correct physical subspace, thanks to the Kugo-Ojima
criterion [NO90]. To anticipate such a criterion, in the light of the canonical for-
malism, we can assert that the condition for selecting only the physical subspace

is achieved by the two simultaneous conditions

(2.27)

2.2 Covariant formalism in Abelian

ga uge-theories: M axwell theory

As a further example of constrained theories, we now focus on gauge theories.

First we will start with an Abelian case and then we will treat non-Abelian
theories.
The electromagnetic theory invented by Maxwell in 1864 can be regarded as

the prototype of Abelian gauge theories. It contains two symmetries: Lorentz
invariance and gauge symmetry. The first was recognised only after the discovery
of special relativity by Einstein in 1905, whereas the second one needed bo wait
for quantum mechanics and general relativity to be fully appreciated. The work
of Yang and Mills in mid 50's shed light to more insights of this symmetry. The
quantisation of electromagnetism led Dirac first, and then Feynman, through
the path integral representation, to set up the bases of quantum electrodynamics
(QED) It is therefore not surprising to use this theory of commuting c-numbers
as a starting framework to study and appreciate all the subtleties of gauge

theories.
The covariant formulation of electromagnetism starts by considering the electric
field ,E and the magnetic field B not as isolated fields, but put together into a
four-dimensional antisymmetric tensor Fp, : -Frþ, the electromagneti,c tensor

or fi,eld-strength tensor, such that E¿ : F¿o and B¿ : e¿¡¡F¡n. The Lagrangian
density of the theory is L : -lItt" Fp, : I{È'- 62), and the Maxwell equations

of motion take the compact form

or(Fu") : g

}rFu' : -i' (2.28)

wilh Fp' - |euuoo Foo the dual of Ft"" and, eþ'po is the four dimensional total
antisymmetric tensor. Current conservation appears as a natural compatibility
condition )rju :0. To make Lorentz invariance appear more naturally, let us

{G",GB} : P.B(G) :0
{G", H} : Z.(G) : o

<+ G:0
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transform the first-order equations of motion into equivalent second-order ones:
this can be achieved by introducing a four-potential A¡", the photon field, such

that .d : -i Ao - ff and Ë : curl,4-. B.ing Maxwell theory an Abelian theory,
the photon field -4¡,, called also the ga,uge or uector boson potential, does not
self-couple. Therefore , F* can be covariantly expressed as

Ft"r: 0*A, - 0rA¡", (2.29)

and the equations of motion become written in terms of A, onìy as

EA, - ApA" A, : - jp, (2.30)

with ! being the D'Alambertian operator Z : 0Pgr,0" and g* being the metric.
In Euclidian space, the metric is trivial, such that its signature simply reads
gp,: (1,1,1,1). In Maxwell theory there are two first-class constraints: first, in
the Lagrangian there is no time-derivative of the gauge potential .4s. Therefore,
its conjugate momentum is vanishing

no : 2! : g. (2.g1)
0Ao

The momentum field zr¿ conjugate to ,4¿ is the electric field and it has the equal
time PB with.4¿ as follows

{An(r), E¡(y)} : õ¿¡õ(r - a), (2.32)

The fields E¡ are not all independent, but are also subject to the Gauss law
constraint

0¿E¿: g' (2'33)

These two constraints have also mutual vanishing PB.
The most important feature of this Abelian theory is the invariance of the La-
grangian under a local redefinition of. A¡", called gauge transformation, defrned
AS

Ar(") ---+ A'r(r) : Ap(r) + â.rlt(r)
: nAu, 

Q.34)

with Â(u) any smooth function defined on IRa2. This local invariance was fully
discove¡ed in the case of QED, when the electromagnetic field is coupled to

2The gìobat gauge-invariance of ,C is straightforward, and in a more accurate language is
called gauge invariance of the fi,rst åind, whereas the local invariance is called on the second
kind.

ro:ao
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electrons, through the Dirac Lagrangian. Though, in the course of this Thesrs

we will only consider pure gauge theories, where the only degrees of freedom

are the gauge potentials, and therefore we will not bother about the presence of
physical fermions3.

Having defined our classical covariant electromagnetic theory, we would wish
now to quantise it, keeping the covariance manifest. This quantisation procedure

presents three fundamental problems to overcome [NO90]

1. the incompatibility between classical equations and quantum principles;

2. appearance of an indefinite metric;

3. subsidiary conditions to select the physical subspace

1.: this incompatibility derives from the fact that if one wishes to quantise

Maxwell theory, the equations of motion have to be modified if A, is a nontriv-
ial field.
2.: since ,4,, is supposed to be a massless field, it is impossible to avoid negative

norm without violating manifest covariance. This has to do with the com-

pactness of the little group of the Poincaré group. One can show [NO90] the
impossibility of covariantly quantizing A, in the positive-metric Hilbert space
't1. To solve this problem, Gupta [Gup50] and Bleuler [Ble50] proposed a formal-
ism in the case of indefinite norm. This method will be then translated in the
language of cohomological BRST, when we will deal with BRST quantisation of
non-Abelian gauge theory in the course of the next chapter.

3.: if an indefinite-metric is necessary to quantise Maxwell theory, and a positive-

definite metric is indispensable for the probabilistic interpretation of quantum

states, some subsidiary conditions have to be imposed on the subspace, called

"physical", of the entire configuration space with indefinite metric. It is possible

to select such a physical subspace, independently of the time and with positive

norms.

The fundamental postulate for these three conditions to be valid is the separabil-

ity of the Hilbert physical subspace, isomorphic to the space of square-integrable

functions, called .L2-space, i,e. functions rapidly decrease at infinitya. As ex-

sWe will nonetheless encounter other types of fermions, which will turn out to be unphysical,
called g/r.ost fields, generated by the quantisation procedure a Ia Faddeev-Popov in the case of
Y-M theory. These unphysical degrees of freedom will play a decisive role in Topological Field
Theory (TFT), Supersymmetry (SUSY) and BRST.

aWe will moreover see that, in the case of non-Abelian gauge transformations, we will have

to further restrict the functional space to be Sobolev [STSF82,Ada,Maz], where even the first
derivative has to be taken square-integrable.
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plained in [NO90], without this postulate, quantum field theory could not be
properly formulated.

2.2.1 Dirac quantisation method

We wish here to briefly present a very useful quantisation procedure in the pres-
ence of first and second-class constraints, developed by Dirac [NO90]. As we
saw in (2.4) and (2.12), these equations are solvable but only partially, leaving
some variables undefined, our constraints. They can be either of first-class, if
the PB between the constrainL S" and any quantity A can be expressed entirely
in terms of linear combinations of /o's, otherwise they are second-class. In quan-
tum field theory, it is better if we can avoid dealing with first-class constraints:
being always possible to find a quantity ¡, such that (þ'o,Ð + 0, this can be
interpreted as an annihilation condition for certain state vectors (i.e. ö'll) :0)
and consequently inconsistent with the existence of the quantum vacuum. As
we previously saw in the language of the Hamiltonian formalism, first-class con-
straints are the generators of gauge transformations, and therefore they become
second-class by adding gauge-fixing constraints. In the Lagrangian formalism,
if we gauge-fix, losing the local gauge-invariance, then no first-class constraint
remains left, and we will only deal with second-class constraints. To manage
these second-class constraints into the quantisation procedure, Dirac proposed a
way to deal with them: he introduced a generalisation of the Poisson Brackets,
named after him as Dirac Brackets, defined as follows

(A, B)n = (A, B), - (A,ó")p)(A-t)"u(ö¡,8)p, (2.35)

where "4 is the matrix of Poisson Brackets among the constraints @¿, A and B are
two general function. These new brackets have the same analytic and algebraic
properties of PB, such as antisymmetry, Leibniz rule and Jacobi identity, but
with the additional property that (Q",C)o :0, for any C. Quantisation is
carried out by replacing the Dirac Brackets by -i times a commutator

(A, B)o -) -ilA, Bl. (2.36)

The Dirac method therefore does not bother whether or not there is constraint
in the theory, and for this reason it is a very useful method in quantizing theories
with constraints.

2.2.2 Covariant Quantum Theory of Maxwell Theory

Following the works of Gupta [Gup50] and then Bleuler [Ble50], we can now
define the covariant operator formalism of the electromagnetic field: by intro-
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ducing an additional field b, called the Nakanishi-Lautrup field,',¡/e can quantise

the theory by means of a covariant gauge-fixing. This term, though spoiling the

local gauge invariance, allows to invert the differential operator g*z - 0rô,,
which governs the two-point function of A¡", otherwise non invertible because it
is a projector operator. The gauge-fixed Lagrangian density becomes

Ler : Lo * b}t AP + |ab', (2.37)

where a is a positive real number, called gauge parameter. According to its
particular value we can define different covariant gauges, for instance a : 1 is

the Feynman (or Fermi) gauge, a : 0 is the Landau gauge, and for generic

positive a we have the Lorentz gauge. The field equations then read

}rFr, - a,b: -i'
APA,+ab:0, (2.38)

also called the quantum Maxwell equations. What is remarkable in this frame-

work is that, by taking a total divergence of the first equation in (2.38), due

to the anti-symmetry of the field-strength tensor and to the conservation of the

Noether current, we obtain an additional condition

!b: 0, (2.3e)

implying b is massless, despite the fact that A, is an interacting freld. Eq.

(2.39) is a central feature of Abelian gauge-theory in covariant gauges, and it is
exactly the generalisation of this condition which will establish the appearance

of the Ojima criterion in non-Abelian gauge theory for selecting the appropriate
Hilbert physical subspace.

The quantisation procedure in canonical formalism elevates A, to a canonical

variable: its canonical momentum conjugate is

*r : 
æ,: 

FoP r gorb

: gottb, (2.40)

where the last line is due to the antisymmetry of Ft". The canonical commu-

tation relation at zero-time will be [zrp(ø), A"(ùlo: i6l6(i - g] and otherwise

vanishing. As a consequence, Ax (k : I,2,3) and b are directly expressible in
terms of np, whereas Ae and ö are not. As mentioned before, the appearance

of the Þfield into covariant Maxwell theory sets up the basis for the Gupta-
Bleuler condition: it can be derived by the observation that ô, satisfying the
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free-field equation (2.39), can be represented through a conserved local current,
from which the following integral representation of b follows

b(a) -- dzl1(,D(z - a) .b(z) - D(a - z)}sb(z)l (2.41)

By taking the various commutation relations at equal time (ETCR) with respect
to the other fields of the theory and making use of (2.47), one observes that

[o("), b(s)] : -iL(a) D(* - y), (2.42)

where tÞ is any local quantity and ,C is a differential operator. Thus, b can be re-
garded as a generator of local gauge transformations. Splitting the contribution
of negative/positive frequency part in b, the Gupta-Bleuler condition yields

b(+)(r)l/) :0 b(-) : (A{+l¡t , e.4B)

implying that the physical subspace Von"" (time-independent and Poincaré in-
variant) of the total Hilbert space is constituted by the totality of states l/)
satisfying (2.43).

2.3 Non-Abelian gauge theories: a survey into
Ya ng- M ills theory

Once the canonical formalism for the electromagnetic force is being translated
in the quantum language, elevating all the canonical variables to quantum oper-
ators by means of a suitable quantisation procedure, the theory of constrained
systems with gauge symmetry that interests us the most is Yang-Mills (Y-M)
theory. Originally proposed by Yang and Mills in 1954 [YM54] in the con-
text of isospin structures for SU (2) theories, after some initial reluctance in the
physics community, it soon became the fundamental model to establish a con-
nection between electromagnetism and the weak force as a unified theory. It
then circumvented parton models, and today it is believed the best candidate
for the description of the strong force, especially after the brilliant and success-
ful work in the 70's and 80's devoted to the proof of its renormalisation at all
orders [tHV72], asymptotic freedom [Gw73,Pol7a] and to the understanding of
non-perturbative phenomena such quark confinement [\¡iil74]. The reason why
gauge theories are so important in particle physics is due to the fact that the 4
fundamental forces existing in nature are believed to be mediated by exchang-
ing particles, called vector bosons. These integer-spin particles are subjected to
dynamics described by gauge theories, being either Abelian, as in the case of
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photons, or non-Abelian, as in the case of W+ or Z bosons, as well gluons and

gravitons.
In this Thesis we will focus only on Y-M theory as the preferred model for

describing quantum chromo-dynamics (QCD), which can be regarded as the
generalisation of QED: while in the latter the underlying Lie (gauge) group is
the Abelian Lie group t/(1), in the former the Lie group is a non-Abelian gauge

group, the special unitary Stl(¡ú). This is a crucial difference, as \Me will see,

because now the gluons, matrix-valued vector bosons of the theory, are self-

interacting, differently from the case of photons. This will be clear once we

will show the Y-M field-strength tensor. To begin with, let us introduce some

concepts of Lie group and algebra theory (for more details we remind the reader

to see Appendix A): consider the semi-simple 5, compact Lie group SU(.n/):

given a complete set of anti-Hermitian generators Xo for the algebra of ^9U(.n/),
sz(.N), a group element of ^9tl(,n/) can be written through the local exponential
(analytic) map as

/N \
e : exp lD,t"(r) *"1 , e.44)

\o:t /

where the various Xo satisfy the following commutation and anti-commutation
relations 

I
lX", Xol : f 'obX. {X", Xu} : -fü 

"Uoo 
- id"obx., (2.45)

with /"", : -l"bo and do, - d'bo. The local functions 0"(r) are taken to be

smooth over the manifold under consideration. The normalisation condition
depends on the specific representation 6 we use for the Lie group: for a generic

representation p we obtain

t(X" Xu): -põou. (2.46)

In the fundamental representation p : ll2 and in the adjoint p : N.. The di-
mension of this algebra is relevant only if gauge fields are coupled with fermions.

Each gluon field is then a matrix-valued Lorentz vector 7, defined in terms of

sSemi-simplicity is equivalent to that for the Killing form [NO90], entering the Lagrangian
density as Lv¡ø: -IK*Fl,Ft'"b, and defined as Ko6: -TÌ(ad(f")ad(Tö)) : -f:dfbd.
to be non-degenerate. The Killing form can be diagonalised as Kob : ó¿6, and w.r.t. this
diagonalizing basis, upper and lower indexes in the structure constants do not make any
difference any more, as long as we are concerned with compact Lie groups.

6We remind that a representation p of a Lie group G on a vector space I/ is a homeomor-
phismof Liegroups p:G- Aut7.

TAccording to [CR,STSF82,Ada,Maz], the gauge fields A, have to be matrix-valued func-
tions belonging to the space L2, the space of square-integrable functions, but the gauge trans-
formations rather to the more restrictive Wl , the space of Sobolev norm. Being f e W!, then

lll, = I {,+l¡1, + [ ddrlôfl2 < æ.
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the algebra generators through the adjoint map as

Ar("): Afi(r)X". (2.47)

In Appendix B we shall briefly explain the geometric interpretation of the gauge
field as the component of a Lie algebra-valued differential l-form ø, called the
connection form over a principal bundle, which determines the profund rela-
tion between Y-M theory and the theory of principal bundles [Nab, CR]. This
algebraic and geometric structure appears in the four-dimensional free Euclid-
ian action of YM theory, also called in a more geometric language the Y-M
functional, as

dax F*FP",Svvr

1

4

darL(r) : 
To l,

(2.48)

where the trace over the gauge group ensures S to be a scalar quantity. The
manifold M, is generally supposed to be oriented, compact, without boundary
and endowed with a metric (in our case we have the flat, trivial Eucìidian metric
õ¡"r). The field-strength tensor Fr,, component of a differential 2-form 0, is
formally generated from ar, (and therefore from the potenti al Ar) by the Maurer-
Cartan equation

CI: d¿¿ +|lr,r)
Frrdrq A dr'

lron* 
Fi,Fl',

1

2
(2.4e)

It can be geometrically interpreted as the Riemannian curvature in the prin-
cipal bundle (also denoted as F¿), where the parallel transport along a curve
is not commutative. In Maxwell theory, being the Lie group Abelian, we have

[A, A) : 0 and this is the reason why the curvature is simply F¡ : dA. Ac-
cording to the particular representation of SIl(¡/) we choose, F* can assume
different expressions: among the various i¡reducible representations, usually the
fundamental and the adjoint are preferred. In the course of this Thesis we will
adopt generally the adjoint representation, unless otherwise specified 8, In this

sThe difference between these two commonly used representations lies in the fact that in the
fundamental representation ìve use standard N x N matrices, where N is the dimensionality
of the Lie group and these matrices form a complete set of generators of the algebra. In the
case of the adjoint reresentation, the matrices representing the basis elements are formed from
the structure constants /"ò", defined through the commutation relations among the generators
(2.45). Therefore, each matrix has now a dimensionality N2-lxN2-1, and this representation
provides an overcomplete set of generators.
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representation, the covariant derivative is written as Dr: 0t,* g[,4r,.], with
g the coupling constant of the theory; consequently, the field-strength tensor

becomes

Ft", : )WA,l I glA, A"]

: !¡Du,D,1
crt t

: io(t,) : Ff,,xo. (2.50)

In electromagnetism, the field-strength satisfies the relation P()rFu") : 0,

where P stands for cyclic permutation of Lorentz indices. In Y-M, however,

this identity generalises to

0 : lD¡", F"rl + lDp, Fp,l + lD,, Fpp]

- 
l.r,¡n', t,ñ: 
rPlrr,lD",Do]1, (2.51)

as a consequence of the Jacobi's identity and (2.50). This is the analogue of the
homogeneous Maxwell equations. It must be stressed that if F* and,4, satisfy
(2.51), F* is not necessarily the strength tensor associated with,4r. This implies
that, differently from the Abelian case, here F* does not determine uniquely
all gauge-invariant quantities.

2.3.L Local gauge invariance

Requiring the action (2.48) to be invariant under a local gauge transformation
(being the pull-back of the connection form ø through a local section d over

the principal bundle), we have a prescription for the transformation law of the
gauge field as

sAt, -- st Apg + ld org, (2.52)
g

where g : g@) is a nonsingular local group element e of Stl(lü) (cf. (2.44)).

Given an infinitesimal group element g(r) e=-o1-]-0"(r)X"* o(02), the infinites-
imal version of (2.52), is reminiscent of the canonical formalism of symmetries
6oq¿ : {qn,Go}"ot..o,,, lvhere Go are the generators of the symmetry (cf. 2.27),
is

6nA7" : ap6"b0b - gf"b' 0b A:r: Di,o7u. (2.53)

This invariance requirement is probably the most important property of Y-M
theory and of any other local gauge theory. Comparing with electromagnetism,

eln a non rigorous language, we indicate S(ø) as the gauge transformation, but actually it
is only a group element. The proper gauge transformation we refer to is (2.52).
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we remember that the two fundamental physical fields of the theory, the magnetic
field B" and the electric field .8" can be arbitrarily defined through the introd-
cution of an unphysical vector-gauge potential Ap. If we demand the system not
to change under a rotation in gauge space, then B and E are left unchanged by a
suitable redefinition of the vector potential, The Lagrangian, which encodes all
the physical information of the system, must not change as well: to be precise,

under the aforementioned redefinition of. Arby (2.52),.C changes only by total
derivative modulo boundary terms which vanish if the fields vanish sufficiently
fast at spatial infinity. The field-strength tensor transforms covariantly under
the action of g

sF¡r, : gI Frrrg. Q.54)

An other interesting property of the field-strength tensor is that if it is vanishing
in a neighbourhood of a point (flat connections), then the gauge field is a pure
gauge

Ft",:0 <+ I g(r) : Ar(") : gI@) 0rg(r). (2.5b)

It follows that if Ar is a pure gauge, then we have vanishing curvature. In
topological field theory, flat connections are studied in great details in BF the-
ories [BBRT9l]. The field equations become

Lt: o,Fl" - sfiuA!,F!' :0, (2.56)

and are covariant, in the sense that if A, is a solution, so is eAr. Because of the
invariance of the action under (2.52), the E-L equations are not independentlo
but rather ftrlfill non-Abelian Bianchi identities

d¡.F:0
xd4 x .F: 0,

(2.57)

with * the Hodge operator 11 and da the covariant derivative [Nab] (see Appendix
B). As usual, we introduce the momenta conjugate

rry: 9^! : Fgt,. (2.58)--a AA", -a,,

lolt must be stressed here that the canonical enerry momentum tensor Op' :
-2'I}(FPPA,A. - f,gu"FpoFpo) is noü gauge invariant. By subtracting a term AO :
-2ôoTr(FuoA),we can restore the g¿,uge invariance of Õ: O - 

^O, 
This gaue-invariant

energ:y momentum tensor is equal to @: FlPFi" - f,gF"F"uoFoop called the Beltrami ten-
sor [IZ].

rrThe action of r. on F¡,, determines its dual *F,r, : F¡,r, fundamental to study instantons
and solitons. For instance, a more geometric expression for the Y-M action is ^9: llI'yn¡ll2 :
-i L F A *.F [Nab]. The existence of a norm ll, ll is guaranteed by the fact that we have
a metric on the space of gauge configurations .4, denoted by ,4. In the next chapter we will
study the analytic and algebraic properties of this functionaì space.
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from which we immediately see, as in the case of the Abelian Maxwell theroy,

that II! is a primary constraint, and Afi is its canonical conjugated variable.

Though, more insight can be obtained from the equations of motion directly:
consider for instance the action (2.a8) re-expressed in terms of the Y-M electric

and magnetic fields E and B as lIZl

dar L(r)

a', 
faoa " 

*;(n' + B') - ,40(v ' E + [A, rl)] , (2.5e)

1
n

64r2

the instanton winding number. This quantity is called "topological" because,

differently from the Y-M functional (2.48), it does not depend on the metric.

t:ïr, I
:},, 

T
where T@'+ 82) is the free energy. The canonical variables p and q become

A and E, whereas A0 plays the role of a Lagrange multiplier for the constraint
identified with V.E*[,A., E] : 2[A]E. This constraint comes from the equations

of motion (2.57) by setting the Lorentz index u : 0. In the Hamiltonian language

we would say that, given a constraining manifold, whose constraints having

vanishing PB with .tI or among themselves, they determine equivalent pairs of
canonical variables if

#: {r,a} d,dE: {f,E}
(2.60)

f:V.E+[A,E] :0.
Even though this has been shown in a non-covariant way, it is interesting to see

how the Y-M electric field and the gauge field play a decisive part in the canon-

ical formalism of constraints. The next step is then to gauge-fix the action: in
the Hamiltonian formalism, this is achieved by selecting a gauge and then taking
the PB with respect to (2.60) one constructs the appropriate path integral. In
the Lagrangian formalism, we consider the method proposed by Faddeev and

Popov [DN67]: we will dedicate the entire next chapter in analyzing this proce-

dure, the appearence of the ghost fields into the Y-M path integral and of course

we will give extensive details on the Gribov problem [Gri78].

Euclidian solutions to the classical equat¡ons of motion

lnstantons

In a four dimensional manifold M we can define the quantity

I dn""r'o"Ffr,Fopo: -firi,rt" (2.61)
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writing (2.61) as n: -Tr/darF A.F and comparing with (2.48), we notice
that there is no Hodge operator *: it is this operator which endowes the Y-M
functional a metric and not n. An other important property of n is that it does
not depend on A, but only on the algebraic structure of the manifold and of the
principal bundle. The importance of working on a four dimensional manifold lies
in the fact that applying the Hodge operator to .t', which is a differential 2-form,
gives an other differential 2-form. In particular, we have these two particular
case 

Fe: L x F,q, (2.62)

respectively calìed self-dual and anti self-dual curvatures. Moreover, Fa can be
decomposed into its dual and anti self-dual part as Ft: FÀd+Fffd. It is possible
to show that

TI darF n F (2.63)

and that (2.63) is minimised when

Tf darFaÂ xFo :1 darFa A Fa Fffd:o

Fåd: oTI darFnAxFa - -Tr darF¡ A Ft (2.64)

The first case implies that F¡ : FÀd, called instanton, whereas the second case

F¡ : Ffd , called anti,-i,nstanúon. These two minimizing solutions of the action
are also solutions of the Y-M eqrra,tions of motion (2.57). The solution proposed
by Belavin, Polyakov, Schwartz and Tyupkin [BPST75] for n: II reads

12
(2.65)Ap lors(r\st @),

lt I aarPA xF. )
.l

12+À2

with 9(r) : "ffi
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Path integrals in Y-M theory

We present here a very powerful tool in theoretical physics, known as the path

integral formalism (in Euclidean space), which we will largely adopt in the next

chapters. For a more detailed description, consult for example [IZ,Riv]. The con-

ceptualisation of path integrals in physics is mainly due to three scientists: Dirac,

Feynman and Kac. In the 30's Dirac proposed the idea and Kac and Feynman

established the mathematical basis to provide us with a unified view of quantum

mechanics, field theory and statistical models. The basic idea behind the path

integral approach to QFT is rather simple: at the quantum mechanical level,

instead of pretending to solve the Schröedinger equation at general times ú, one

may first attempt to solve the easier problem at infinitesimal time ôú. The time-

evolution operator, decomposed into its potential and kinetic part, is divided in

,lú discrete time intervals ôú : tlN. The exponential of the time-operator can

then be factorised into ,ô/ parts, such that the eigenstates of each component are

known independently. One then considers the amplitude of the time-evolution

operator, split into.lú time intervals, between initial and final state: inserting the

completeness relation of the eigenstates of the position and momentum operator,

the potential and kinetic operators thus act (to the left and to the right respec-

tively) on the corresponding eigenstates. In this way, the matrix element of

the time-evolution operator has been expressed as 21/ - 1 dimensional integrals

over eigenvalues. At each time step tn : n6t, n : I,. . .,0ú we are integrat-

ing over coordinates parametrising the classical phase space (8*,p*). Therefore,

the integral kernel (the propagator) of the time evolution operator could be ex-

pressed as a sum over all possible paths connecting two points, q' and q" with a

weight factor provided by the exponential of the action. Mathematicians, such

as Wiener, Kac himself, Cameron and Martin, dealing with stochastic processes

already knew this approach, as far as the analytic continuation is concerned.

Though, mathematicians were more reluctant to accept straightforwardly such

path representation, because of its intrinsic and pathological difficulties, mainly
due to the highly non-trivial definition of an infinite functional measure (and

also of the infinite sum of phases). Historically, a semi-classical approach in
solving this infinity was provided by the \ /KB method, in which the solution
of the Feynman kernel is based on the fact that the harmonic oscillator (the
quadratic Lagrangian) is exactly solvable and its solution is only determined by
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the classical path and not by the summation over all the paths. Nonetheless, a
correct mathematical interpretation and definition of the functional measure is
still lacking: there have been many attempts [Unz86,Fuj79,01196,orl04,Baeg4],
and references therein, to give a definite and rigorous definition of such a quan-
tity, trying to find a relation with Lebesgue theory, measure theory and complex
analysis in Hilbert spaces [Ada,Maz]. In [Unz86] it has been pointed out that
a possible correct definition for a functional flat measure of bosonic fields could

have the form of lDÞl : lI, faut (fi5;#6Ð)]å taot, whereas for fermions

IDvl : ll, ia"t (r.¡6ffiÐ)]-å ta*t 1. In rhe case of curved spaces, we may

replace the former functional measures by [dO] : fl,(goo)t /zçnuul/a¿Q,with gu,
the Riemannian metric tensor. Even these two objects can produce some prob-
lems, especiaìly concerning their regularity, because of the infinity arising from
the number of space-times in M. The most common technique to deal with such
a regularisation problem is by virtue of the zeta-function [EVZ98], also adopted
in the regularisation of functional determinants. The crucial problem is that,
in any functional space, finding a converging Cauchy series through which the
underlying metric is defined, and consequently the concept of distance between
two elements of the space, requires a huge effort of mathematics techniques, not
always successful. Therefore, what physicists do, and sometimes even mathe-
maticians, is to postulate the existence of a converging distance, a well-defined
measure, and the only property openly required is the translational invariance
of it, up to boundary terms [Riv]. Though plagued by all these intrinsic and
structural problems, path integrals are very elegant and suggestive and, they are
ideally suited to

o implement the symmetries of the theory directly

o calculate correlations functions,

o incorporate constraints simply,

o analyze and explore field topology,

o isolate relevant dynamical variables,

o describe the non-zero temperature regime.

To clarify the notation we will adopt, we define as functr,onat Flþ) of a real
classical field /(ø) a rule that associates a number (generally complex) to each

lThe symbol of "det" stands for a functional determinant: a standard matrix determinant
over the entire base-space M.
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real configuration @(z). Functionals, naively speaking, include as particular

examples integrals of functions as F [/] : I dr f @@)) By functional di,fferen-

tiation we denote 6Fldlõó(A) as the formal limit (assuming the ratio exists)

64lô)16ó(a) : limu-o l@ló'l - FlôD, with ó' : ó(*) + eõ(r - y). The fun-

damental quantity in path integrals is the generating functional of the theory,

formally defined as the integral of the action over all of the possible constituent

fields, taking values over all the possible space-time points

zlrl: L [dO1 e-stol+ [, r(r)'Þ(t) 
, (3 1)

where M is the functional configuration space of Q and M the space-time base

space on which Õ is evaluated. As seen in the previous chapter, in the case of

the Hamilton principle of least action, the path configurations extremising the

path integrals are the solutions of the classical equations of motion. In path in-

tegrals, though, we consider all the possible paths represented by the functional

measure: these quantum fluctuations have to be imagined as wrapped around

the classical flux tube connecting the two boundary points in the configuration

space, whose contribution is weighted by the exponential of the action. From

ZlJl one can extract all the possible Green's functions of the theory by taking
the appropriate functional derivative (according to the spin-statistics of each

field) with respect to the external sources -I(ø). Unfortunately, these Green's

functions are cumbersome quantities to use, and in general the diagrams that
constitute a Green's function are disconnected (diagrams of two or more sub-

diagrams that are not linked by propagators). Moreover, being interested in
one-particle irreduci,b/e (1PI) diagrams (diagrams that cannot be separated by
cutting single propagators), the isolation of connected 1PI diagrams is easily

obtained by functional derivatives with respect to the external source J(r) by

means of a Legendre transformation of the effective action. To practically eval-

uafe Z[J] from path integrals ',¡/e may retain in the exponent the quadratic part

of the action, expand the rest in a Schwinger series and apply Wick's theorem:

this is valid as long as the coupling constant of the theory is small. If that is not
the case, since we are only able to exactly calculate path integrals whose action

is Gaussian, r¡r'e may use different techniques, such as the steepest descent or

stationary space methods.

We are now ready to translate the quantisation procedure by means of the

covariant operators we investigated in the last chapter into the language of
path integrals. This formalism is fundamental in analyzing and studying the
topological nature of Y-M theory, which constitutes the main subject of this
Thesis. We will first introduce the Faddeev and Popov method to quantise non-

Abelian gauge theories in Euclidian space; then we will present in details the
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Gribov ambiguity which plagues these theories whenever one attempts to attack
their non-perturbative nature. At last, we will concentrate on the functional
configuration space "4, paying particular attention to its stratification through
the various Gribov regions Ca.

3.1 Faddeev-Popov quantisation of non-Abelian
ga uge theories

In late 60's, in the attempt to quantise non-Abelian theories, Faddeev and
Popov [DN67] proposed an original method based on covariant path integrals.
As Feynman noted in [Fey63], in the gravitational field and Yang-Mills theory,
diagrams with closed loops depend non-trivially on the longitudinaÌ parts of
Green's functions and scattering amplitudes are neither unitary nor transverse.
Alongside Feynman, also De Witt [DeW64] proposed a remedy to circumvent
this problem. Though, they were not able to give a prescription for arbitrary
diagrams. The Faddeev and Popov method was developed exactly to generalise
Feynman and DeWitt's arguments. We will follow their work in the light of
Euclidian path integrals 2, emphasising the role of the functional measure and
of the configuration space: these two subjects, alongside the underlying local
gauge-invariance of the Y-M action (and of the functional measure) will turn
out to be of extreme importance to understand the appearance of the famous
Gribov ambiguity [Gri78].

The FP quantisation procedure essentially deals with non-Abelian theories
subject to constraints. In fact, as we noted in the previous chapter, the time
component of the momentum conjugate nfi@) is subjected to a vanishing con-
straint due to the antisymmetry of the field-strength tensor. This condition is
not consistent with the assumed commutation relations. Thus the simple-minded
application of the canonical quantisation of non-Abelian gauge theory fails. This
difficulty arises as long as rve rely on â gauge invariant Lagrangian, such that
4y¡a remains invariant under an infinitesimal gauge transformation, changing
Aflinto A7+O\beb. We previously observed how in the canonical operator for-
malism, the introduction of a gauge-fixing term corresponds to a constraint that

2We choose the Euclidian metric because we will shortìy analyze non-perturbative problems
of Y-M, and for this purpose we will adopt lattice gauge theories a lø Wilson, in which the
Euclidian metric, by means of a Wick rotation from Minkoswi space, is required to perform
proper numerical simulations. This rotation alludes to the fact that a multiplication with the
imaginary unit can be interpreted as arf 2-rotation in the complex plane. Therefore imaginary
time representations ofLagrangian actions are denoted as Euclidean actions, whereas standard
(real time) as Minkowski actions.
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could eliminate this unnecessary gauge freedom. We would then wish to incor-

porate in the path integral only those gauge connections A that are unrelated

by gauge transformations. This is a more difficult task in a non-Abelian one.

To start with the functional quantisation of Y-M theory, we introduce in a flat
(Euclidean) metric, the gauge-unfixed Y-M generating functional

Zv¡rrlJl = loql] "àt' 
['rv¡a*rr [' JP(t)'A'(x) ' (3'2)

Here, the path integral is considered over the configuration space "4 spanned by

the gauge fields ,4¡,, defined on a Riemannian manifold M for now left as general

as possible. In order to remove the gauge freedom of the Lagrangian density
3 and to preserve the manifest covariance, \Me may then choose the Lorentz

condition
)PAft: g, (3 3)

such that the gauge freedom is eliminated because (3.3) is no longer gauge

invariant a. There are some variety of gauges other than the Lorentz gauge.

Among them, the following noncovariant gauges are frequently used: Coulomb

(radiation) gauge 0i A7 :0 (i : 1,2,3), axial gauge A3 : 0 and temporal gauge

A3 : 0. Being interested in manifestly covariant gauges, we will adopt the

Lorentz gauge henceforth. To incorporate the gauge constraint (3.3) into the
generating functional (3.2), we use the standard Lagrange multiplier method

well known in analytic dynamics as follows

Ler -- -l,ri,r"r' - fr@ra1)'. (s 4)

Though the gauge-fixing Lagrangian density so constructed manifestly breaks

gauge invariance, all the physical quantities extracted from it should of course

be gauge-independent and therefore one has the freedom to fix the value of the
gauge parameter ( arbitrarily (for instance € : 1 corresponds to Feynman gauge,

whereas { - 0 to Landau gauge). According to (3.4), the equations of motion
will change, and consequently the expression of the momentum conjugate as

1f!r: -F&, - 
€6op(A" 

AÐ, (3 5)

which circumvents the vanishing condition for the time component of tIfi. In such

a \r,¡ay, the commutation relations are satisfied and the path integral quantisa-

tion is apparently well-defined. Yet, in the case of non-Abelian gauge theories,

3It is worthwhile noting that the source term Jp(r) . Ar(r) is not gauge invariant.
aOf course in (3.2) the gauge invariance is already broken by the presence of the source

term. Nonetheless, as we will focus on the sourceless generating functional, it is important to
stress this lost gauge invariance by means of the gauge-fixing term.
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due to the self-interaction of the gauge field ,4, we also have, differently from
the case of QED, a three-body and a four-body interaction in the Lagrangian
(3.4). At one-loop level, the gauge-field contribution to the self-energy part
nf;"Ø) for gauge fields Afi does not satisfy the requirement for gauge invari-
ance qpflrb,(q) : O. The reason why such requirement fails is due to the non
correct method of extrapolating the physical polarisation for the gauge field
even with the gauge-fixing Lagrangian (3.4). Feynman first [Fey63] and then
De Witt [DeW6a] pointed out this difficulty in the early stages of the develop-
ment of quantisation of non-Abelian theories. To soÌve this problem, Faddeev
and Popov tried to incorporate in (3.2) an appropriate gauge-fixing condition
with the double purpose to eliminate the infinite redundancy of gauge trans-
formed fields affecting the path integral and to guarantee the elimination of the
unphysical polarisation states of the gauge field.

As we know well, the Y-M Lagrangian density is gauge invariant by construc-
tion, whereas the gauge-fixing and source terms are not. The measure requires
special attention: performing an infinitesimal gauge transformation we find

ld%t : [d.A]det (i#)
: [d-4] det(ô.b - ¡aucgc¡

: [d,4](1 + Tr¿ + . .. + det.¿)
: [d,4](1 + 0(020, (3.6)

with,L : -1ob"0". To analyze the problem connected with the infinite gauge
measure, it is possible to disregard from (3.2) the source term and dealing just
with Zy¡a[0]. Furthermore, in the light of covariant gauges, the condition (3.3)
can be generalised to the case of a differential operator Gl

GUA:r@) : X"(r), (3.7)

with X"(ø) a matrix-valued local function not depending on gauge transforma-
tions. The essential requirement for the gauge condition (3.7) is to be single-
valued: this would guarantee the bijectivity of the map between the space
of gauge configurations A and the space of gauge connections modulo gauge-
transformations, AllnAl, satisfying (3.7). Basically, it is demanded that the
gauge-fixing hypersurface generated by (3.7) should intersect each gauge orbit
once and only once. A single-valued gauge-fixing condition is called in the liter-
ature ideal. Yet, it is not difficult to show that for any field A satisfying (3.7),
there are many others, obtained by a gauge transformation of ,4, satisfying the
same condition

CP eAi@) : X"(n) ç+ GpAfi(r) : X"(x). (9.8)



3.1 Faddeev-Popov quantisation of non-Abelian gauge theories 29

It seems then the requirement of an ideal gauge-fixing condition immediately
fails: in perturbation theory, where the FP method is discussed, this inconve-

nience is circumvented by considering only infinitesimal fluctuations around the

trivial gauge configuration Ar:0. In fact, any configuration e0 : gI Apg satis-

fying (3.8) lies sufficiently far from the intersection between the hypersurface and

the trivial orbit, and therefore the gauge-fixing condition can still be regarded

single-valued. However, beyond perturbation theory, when finite gauge transfor-
mations are important, single-valued gauge conditions are considered impossible

to be found (thus the adjective "ideal") as long as Y-M theory is evaluated on

54, the standard manifold for physical processes [Sin78]. This pathological prob-

lem affecting the non-perturbative regime of non-Abelian theories is called the

Gribou amb'iguity and will be detailed in the next section. For the moment,

we will only deal with perturbation theory and consequently we are allowed to
neglect such obstruction.

Faddeev and Popov proposed a \Ã/ay to take into account the condition (3.7) in

the sourceless generating functional Zy¡a [0], generalising the well known formula
in standard calculus for an appropriate change of variables,

lr". (#)1,-:,: I 0., d,r,6Ø)çirn (3e)

where the map is supposed to be bijective, i.e. single-valued and det (æ) is

the Jacobian of the transformation. Being the Jacobian independent of local

coordinates, we then write

r: I d,rt. a*,la"t (#)l*u u,",,ti,-,, (B 10)

The generalisation of (3.10) in the language of non-Abelian gauge theory can be

cast in the form

t: 
løs) 1..,(#)1":,d(rt%l) (s11)

with .F'[%] : 0 the local gauge condition (3.7). Some remarks are necessary

here. The functional integration /[d9] we perform in (3.11) is over the group

space and it is called the Haar measure [Nab, NO90, TS04, Nak, Smi02]. This
measure is invariant under a gauge transformation: in fact, for any functional of
the gauge group g, wa can distinguish between left or right invariant measure,

according to the kind of group action w.r.t. go we perform on the group element
g. The left invariant measure satisfies for instance the following condition

rfrf
I ¿g¡(s) : I dgÍ(sr's): | (dsoùlk): I dgrþ), (s.12)
.IJJJ
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and similarly for the right action. In general, Ieft and right invariant measures
are not necessarily equal, but it is possible to prove [Mut9S] (and references
therein) that for compact groups, simple and semi-simple groups, and also fi-
nite groups this is the case. According to the parametrisation for ,Stl(.n/) one
adopts, we can give a more practical expression for the Haar measure. For in-
stance, instead of using group elements g, w€ can perform the integration over
the local gauge functions 0"(r) appearing through the exponential map con-
necting the group ^9U(¡/) to its algebra su(/ú). In this case, the Haar measure
is proportional to /d-eT9"6fl",,dg"(r) [Nak,Smi02], with g"5 being the met-
ric in SU(¡/) 5. The same result can be also achieved by parametrising the
group through Euler angles, showing that the St/(¡/) volume can be written as

,r'r -r t z nW./¡/ IIil:,' * ITso4l.
The second comment is on the absolute value of the Jacobian. Faddeev

and Popov did not consider it because they were interested in quantising Y-M
theory in the perturbative regime. The reason why in perturbation theory we

can remove the absolute value lies in the positive definiteness of the Jacobian
in (3.11), also known as the determinant of the Faddeev-Popov (FP) operator
MlAl. Under an infinitesimal gauge transformation, in local coordinates, this
operator is

6

õ0"(a)
ô

Mou(r,a): F6['gA(r)l

I ffiDko'@]õ0"(a)
õFu

(3.13)
õAt(r)

DP""õa(r - y)

If we adopt the covariant condition (3.7), we obtain

Mou(r, u) : -ït,DP"o õa (r - y)

: -[rôo6 - Elou"0P Ai@)l6a(r - s). (3.14)

It is now clear wh¡ in the case of the trivial orbit and with appropriate boundary
conditions, the FP operator has definite sign, because it is just the Laplacian op-
erator multiplied tensoriaÌly with the Lie group. It is therefore redundant to keep
the absolute value in perturbation theory. \Me will see, however, that beyond
this regime not only is the absolute value necessary, but it is its very presence

sChosen an arbitrary parametrisation for the group element, the metric in the group space

can be written ås Br¿ : ïT (f#gflr), with p the normalisation in the given representation.

Under coordinate transformations dß : fk(0'), the metric is covariant, Sxt: S*.ffiffi.
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which determines the Gribov ambiguity [GKW05]. According to the gauge con-

dition (3.3), the FP operator is not independent of A. The determinant of MIA)
has also an interesting geometric interpretation: in [BV81a,DZ}l,DV80], it was

shown how it is related to the volume of the gauge orbit. It is worthwhile noting
that the generalisation of the linear covariant gauge condition (3.3) to (3,7) does

not affect the form of the operator M. Inthe case of non-covariant gauges, tem-
poral gauge has a constant FP operator but Gauss' law is lost, whereas Coulomb
gauge has not. It is an easy task to show that in QED, the FP operator is simply
the Laplacian operator and therefore det M results in an overall constant factor
for the path integral. This is the reason why in QED, in the presence of linear
gauges, there is no Gribov ambiguity.

Inserting then (3.11) into the gauge-fixing generating functional, we obtain

z*rl0): 
lva[da] 

det ({{H ,:ou(rlno¡ 
e- I, iF¡'Fo". (3.1b)

Making use of the local gauge invariance of the Y-M action and of the functional
Haar measure, which allows us to show that also the functional Jacobian does

not depend on the gauge transformation g 6, we can re-write (3.15) as

zsrlll: 
ltoa lro'olo., (q+f).:, u,"'nAl) e- rM àFi'F"'|"', (3.10)

where we have left the dependence of. g also in the measure. In this way we have

factored out the infinite measure over the gauge group 7. The importance of
this passage is clearly manifest when one deals with expectation values of gauge-

invariant operators (thus physical observables), where we need to calculate

(o) : ïold'qlol'ql"-w*tot. (3.17)
.-yM

Making use of the Faddeev-Popov method, we re-write the ratio as

(o): (3.18)

oAccording to the left-invariant measure, one can show that any integral over the gauge

group is gauge invariant. In fact, as mentioned above, it is easy to show that /dgÕ(g):
"f 

(dsos)iÞ(9), regardless whether <Þ(9) is a gauge.invariant function or not.
TThe Haar measure of the continuous group Ç of gauge transformations is infinite because,

though the Lie group Stl(N) is compact, a gauge transformation belongs to the functional
space Oo(M,adP). Therefore [d9] also includes an infinite product over all the x, e M,
[dS] : lim,-6o ll" dS("). In lattice Y-M theory, the discretisation of the space-time allows
to make sense of such an infinit¡ and consequently the Haar measure becomes regulated
naturally.
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where /[ag] nas been cancelled both from numerator and denominator, due to
the gauge-invariance of OlAl. Therefore, since gauge-invariant quantities should
not be sensitive to changes of auxiliary conditions, it is possible to average over
the local functions X"þ) of (3.7) with a Gaussian weight, substituting the delta
function in the integrand of (3.16) as

f

J taxl6(G*Ai - x") "-ù 
!,(*")' : ¿- I, fi{cuepz . (3.19)

The complete gauge-fixing generating functional without sources is consequently

zsrl[): 
lB'olo., (qr) "- 

nTor,F","-fi1cuA".rj . (3 20)

The perturbative expansion of det ,Âl I leads to non local interactions between
gauge fields. To express these interactions as local ones, we perform a manip-
ulation which takes into account Grassmann fields, unphysical and fictitious,
playing only an algebraic role. A more detailed explanation of Grassmann fields
and algebra will be given in the next chapter, when we will introduce the BRST
formalism. For the sake of comprehension, we just wish to remind the reader
that it is possible to write a functional determinant of any iV x .ô/ matrix op-
erator Q e over a complete set of dimension 2N ol anti-commuting generators,
called Grassmann, such that

k

detQ: fl o4o dq¡e-lQn (3.21)
i:7

In the language of Feynman diagrams, these fields have been called by Feynamn
FP ghosts: though anti-commuting, they are Lorentz scalar, and therefore do not
satisfy the spin-statistics theorem. As far Feynman diagrams are concerned, they
are allowed to run around loops but not in external lines. They do not add to
the spectrum of observable particles in the theory. The indisputable importance
of these unphysical fields lies in their role played to guarantee the unitarity of
the ,S-matrix. As seen in the previous chapter, the decomposition into positive
and negative frequency states of the B-field led us to a subsidiary condition
B+(ø)lphys) :0, whose role was to specify and select the physical states. This
condition could be associated to the Gupta-Bleuler condition, which guarantees

8We remind the reader that, given a functional determinant detA, this can be exponenti-
ated as det A : exp(Tb log A), which can be diagrammatically represented as infinite non-local
loops.

eln the case of Grassmann fields, the operator Q is not required to have special properties
(apart from singularities). On the contrary, in the case of Gaussian bosonic integration, when
the field is real, Q has to be positive definite.
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the unitarity of QED. In the attempt to generalise QED to the case of non-

Abelian gauge theories, such as QCD for instance, the non-linear self-interaction
of the gauge fields causes the subsidiary condition on the B-field to fail. Feynman

pointed out that this could affect the breakdown of the unitarity of the ,S-matrix.

In fact, due to this self-interaction, it is not guaranteed that the contribution of
unphysical degrees of freedom of. A¡", the longitudinal and temporal modes, to
intermediate states could cancel out. Feynman himself and De \Mitt found in the
context of perturbation theory that this problem concerning unitarity could be

explained by the absence of massless scalar fermions to closed loops in Feynman

diagrams. It is then thanks to Faddeev and Popov that these missing unphysical
particles showed up through their quantisation method. Furthermore, in the
context of Y-M theory renormalisation, it is due to the work of Veltman and 't
Hooft ltHVT2l that we can prove now that ghosts allow exact cancellation at all
orders of the longitudinally and temporally polarised modes in the intermediate
states, where the intermediate states include transverse vector particles. In this
way unitarity is preserved. To insure global invariance, these ghost fields belong

to the adjoint representation of the Lie group under consideration.

Under this manipulation, (3.20) assumes the original form presented by Fad-

deev and Popov

Z"¡lO]: /¡a,+1¡aø]tary] e- [r{ipi,rop'*ioMobrb+},tcu'ap2}, e.22)
J

and in the presence of sources

t'
z*rlJ,(, (l : I l¿,q]taø]t¿ry] ¿- [r{lr¡'r"þ'rn"Mobrb+fitcutp2-r"A"t'-ç"n"+n"<"} 

)' r 
(3.23)

Our quantisation procedure a l¿ Faddeev and Popov is then completed, as well
as providing a generating functional, through the exponentiation of the FP op-

erator, able to generate appropriate Feynman diagrams in the context of per-
turbation theory. Though, as pointed out by Gribov [Gri78] and then explained

in the language of principal bundles by Singer [Sin78], (3.23) makes only sense

in the high-energy regime, but it fails to be applicable beyond it, when non-
perturbative effects have to be taken into account. This will be explained in the
next section.

3.2 The Gribov Ambiguity

As we saw in the last chapter, the constraints we have to impose when quan-
tising Maxwell's electrodynamics do not change the energy spectrum. This is
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so because we can reduce the number of degrees of freedom to be quantised by
taking advantage of the gauge-invariance of the classical theory. This procedure
is caìled gauge f,ri,ng. The choice of a gauge fixing term is arbitrary, but it leads
to different problematic. For example, Coulomb gauge ç Ã :0 is not compati-
ble with the Poisson Brackets {An(i),tI¡(g-)} :6¿¡6(î - g-), because the spatial
divergence of the d-function does not vanish. This implies that the quantisation
of the theory is achieved only at the price of modifying the commutation rela-
tions. Moreover, differently from manifest covariant gauges, such as Lorentz or
Landau gauges, Coulomb gauge spoils the Lorentz invariance. Another gauge
which breaks the Lorentz invariance is temporal or Weyl gauge: in this gauge one
imposes the condition .4s : 0, which causes the Gauss Law to be lost. We have
also seen how the Faddeev-Popov method of quantising non-Abelian theories
provides a way to avoid the infinite gauge measure. Though, such a procedure
is plagued by a topological obstruction, which prevents us from going beyond
perturbation theory. As we will see, this problem is a common problem in any
non-Abelian theory which is evaluated on a configuration space over equivalence
classes of gauge-transformations.

In the late seventies, in fact, it was first pointed out by V. Gribov in his
seminal work [Gri78] that once Y-M theory is gauge-fixed by means of Coulomb
gauge, one has to face a degeneracy of such gauge, i.e. the gauge orbits can
intersect the Coulomb gauge hypersurface at more than one point. Following
Gribov, we consider two gauge-equivalent fields Ã. and. ,4

,il : sI Ã,s t s|i- s. (3.24)

Because of the non-linearifi of (3.24), a transverse field potential satisfying
the Coulomb-gauge condition may actually happen to be a pure gauge, which
should not be separately counted as an additional physical degree of freedom.
He explicitly constructed such a transverse field for SU(2), and showed the
uncertainty in the gauge'fixing procedure when the QCD coupling constant g
becomes of order of unity, i.e. in the non-perturbative regime. In terms of the
FP method, this uncertainty arises when the FP operator acquires zero-mode
solutions, which occurs in the infrared region, where the vacuum enhancement of
the dressed Coulomb gluon propagator becomes catastrophically large [Zwa04].
To see the appearance of this uncertainty, we start first with a covariant gauge,

and then we limit ourselves to the three-dimensional case. The divergence of. A'*
is given by

7rA'u: (lpgt)A, g * gr @pAu)g* gI ArArn+@rgt)0pgr gI Eg. (3.25)

The requirement for the gauge transformation g to not change the divergence of
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both A, and A'r leads to the condition

apkl (DulAlg) : o. (3.26)

This second order partial differential equation, for large values of A¡", i.e. for dis-

tant configurations from perturbation theory (which is evaluated around Ap :
0), will produce several non-trivial (different from constant gauge transforma-
tions) solutions. Among these solutions, we can distinguish three types: 1)

solutions belonging to gauge orbits intersecting the gauge-fixing hypersurface

only once, which correspond to ideal gauge conditions. 2) solutions belonging

to gauge orbits never intersecting the gauge-fixing hypersurface and 3) solutions
belonging to gauge orbits intersecting the gauge-fixing hypersurface more than
once. The third case is what Gribov discovered in Coulomb gauge, which would
cause the ambiguity in the gauge-fixing procedure. These redundant solutions
have been called Gri,bou copies, i.e. for each configuration satisfying the gauge

condition, there are gauge-equivalent configurations that satisfy the same condi-

tion. Therefore, the gauge-fixing procedure fails in removing all the unnecessary

gauge degrees of freedom. It is pedagogical to show that, within perturbation
theory, for an infinitesimal gauge transformation (9 - 1+ X"0"(r) + O(02)) the
divergence (3.25) becomes

30 - @LL?)A, + Ar(0'0) :0 or Ap(Apî * lA, dl) : 0. (3.27)

We see that the condition for the appearance of Gribov copies is equivalent to the
requirement for the operator -6u(0r0 -f lAr,d]), the Faddeev-Popov operator,
to have zero eigenvalues (zero modes). It is also interesting to notice [SS05] that
the eigenvalue equation for the FP operator l0 resembles a Schrödinger equation
as

-0P(0ra * lA,o]) : efAla, (3.28)

with the gauge potential A playing the role of a potential. Being the eigenvalue

e a function al of. A (as well as the eigenfunction a), we expect, for sufficient large

values of A, the zero-energy solution (.[A] : 0) to exist.

3.2.L Gribov pendulum

In his work, Gribov considered the three-dimensional case with Lie group SU (2)

to explore explicit solutions to the Coulomb gauge. Moreover, to simplify the

loPerforming a gauge transformation on .,4p, the FP operator w.r.t. the gauge transformed
fieldbecomesMpp[eA]:o-ôr[nAP,.] :tr-ôrllu-SIlDu,gl,.l:Ju¡pp+ôr[gIlOt",g,.l
Applying n-times a gauge transformation on -,4 gives e^A, : (gn)l Argn-(g-)I ôrgn where 9,, :
lli=tst.This implies that the FP operator for the n-th gauge transformationis Mppll^Al:
tr - ôrlþòI A,,en - (sn)Iô¡"en,.l: MeplAl + 1rlþòtÍDþ,snl,l.
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parametrisation, he chose a time-independent and spherically symmetric gauge

field ,4¿, i:1,2,3, such that it only depends on the unit vector n¿: n¡lr, with
v : 1/ffi. Under such assumptions, he considered for the following parametri-
sation

A¿: ft|)#+ f^Òî,yr,* fu(r)ñn¿, (3.2e)

with fi, : in¿o¿ and the functions fi(r) supposed to be smooth on the domain of
r. Since

on 
- ! t-, - (ñ.. ã)n¿), (3.30)

0r¿ - v \"'

it follows that the gauge field can be written as

tn : lfr?¡oo - tlilÒØ, . d)nn - i¡rfOfn . õ)on + llr{r)nn + ifs(r)(ñ, . ã)nn.r,rr(3.31)

In the case in which fr: fs:0, (3.31) simplifies to

i
A¿ : 

-€¿jt 
r¡o¡, f2(r), (3.32)

which is purely transverse çÃ,: d, drre to the antisymmetry of the tensor e¿¡¿.

The condition for the existence of copies

Ã:sÌÃg+stig
ifl:iÃ, (s.s3)

together with a suitable parametrisation for Ihe SU (2) gauge transformation g

(g : ¿Èo(')ñ'd) determine an explicit form for the gauge transformed field Aln *
follows

ficos "+(r,*å) "" ")# (,,*å.*") -fisin "-;)^#
(3.34)

.(Ai: (
* (^ *;#)^",

The condition on the divergence of the gauge fields determines instead a second-

order differential equation in o

o"(,)+?a'(r) - 3 ((r*å)'* o+ (Í,coso- t)) : (3.35)

Performing a logarithmic change of variables r : log r, (3.35) assumes the form
of the equation for a pendulum in the presence of a damping term, proportional
to the velocity

o"(,) t a'(r)-. ((, * å) .t"o + (Å coso - t)) : (3.36)
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This equation is called the Gribou pendulum. The presence of sinusoidal func-

tions makes the pendulum equation to be highly non-linear: no analytic solution

in closed form is known [CU01,GS01], but only numerical ones. The only possi

bility to analyze such pendulum is to simplify the problem by imposing particular

boundary conditions and approximation. Regardless these analytic difficulties,
r,ve can illustrate the situation qualitatively: at each point in the pendulum tra-
jectory, three forces are applied: 4fi and 4f2*2 respectively in the longitudinal
and transverse direction, whereas fi onto determines a perturbation as sketched

in Figure 3.2.1

o_

4_û

f4$+2i

Figure 3.1: The Gribov pendulum

To simplify further the calculation, we could adopt the pure transverse con-

figuration (3.32), such that the Gribov pendulum equation becomes

o" (,) * a'(r) - n (r * å) .t" a : 0, (3.32)

in which only the force proportional to 4f * 2 is applied on the pendulum.

The smooth function /(e') is necessary to preserve the regularity of solutions

[Sci77, Hen79]: .4¿ is required to be regular at r : 0, implying a(e") rr-0
nn+ O(r2) and to go to zero at infinity faster than If r, implying a(+oo)-a(-*)
being either 0 or *.n f 2 [Sci77]. To be more precise, the condition at infinity can

be of two types, according to the boundary conditions one needs to impose: we

distinguish between weak (WBC) or strong (SBC) boundary conditions. Both
conditions require A¿ lo be regular at the origin, such that f (r) ---+,-s O(r),
but while WBC impose .f(") -,-oo constant, SBC impose /(r) 4r-oo 0. For

ft
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more details about the various types of Gribov copies one can obtain according
to WBC or SBC, we refer the reader for [SS05].

To conclude this section, it is worthwhile addressing the solution found by
Henyey in [Hen79]. As noted in the previous chapter, a fundamental role in
Euclidean Y-M theory is played by instantons: these are classical solutions to
the equations of motion of pure Euclidean Y-M theories which have finite ac-
tion. To fully understand their importance, we have to introduce some basic
concepts concerning the topology of Euclidean Y-M theory. The boundary of
the four-dimensional Euclidean space-time at infinity (" * *) is given by the
three-spher" sL. The gauge field ,4r, when r --+ oo, becomes a pure gauge,
\.e. Ar rr-oo: gÏ 0pg + O(11r2), and the corresponding field-strength tensor
vanishes, Fr,(gt 0rg):0. With such boundary condition for the gauge configu-
ration, it is possible to show [GM86,Nab] the existence of a map between S] and
Su(2): being the topology of the three-sphere the same of su(2) (topological
equivalent) this map can be characterised by the wi,nding number z (also called
the Pontryagin number) corresponding to the discrete homotopg tt ry7ss¡ : 2.
One of the major achievements in the Yang-Mills theory was the discovery of
the relation between instanton solutions and their classification by the winding
number z [BPST75,t}J74,Uh182b]. The relevance of Henyey's work relies on the
fact that he was able to explicitly obtain Gribov's copies with vanishing winding
number and which fall off faster than lf r for r --' oo. Starting with a gauge
field ,4¿ : iaa(r)os, satisfying the Coulomb condition, and adopting a suitable
parametrisation for the SU(2) gauge transformation, he obtained a differential
equation of the second older siurilar to (3.35). Adopting polar coordinates for
the valious parameters, he showed that the function ø, specifying the gauge field
can be put in the form

a(r,'): oh- *drtÐ (u**sin20 (0"* ir)), (3 38)

where the function b only depends on the radius and is defined as ó(r) : @#oF7z
and Æ . *r3 As long as such a function ö exists [Sci79], then a(r,e) ruinUs
the boundary and regularity conditions required in Euclidean Y-M theory, being
regular at the origin r:0 and decaying at infinity faster than lf r2.

rlGiven two continuous maps from the hypersphere Sn to M, $ and g, they are said to
be homotopic if there exists a map.l¡(ø,ú), with 0 < ¿ < 1, which interpolates continuously
between them, namely F(r,0) : d and f'(r, l) : ç. The homotopy between { and rp is
denoted by the symbol ó - v. The set of homotopy classes is denoted by zr',(M). When
M : Sn, the equivalence homotopy classes are labelled by the winding number z: two maps
Ó,g, S" - ,St can be continuously deformed into one another iff both maps cover S" the
same number of times as r covers it once.



3.3 The functional spaces A and ç 39

3.3 The functional spaces ,4 and Alç
The functional analysis of the Gribov ambiguity leads to examine the config-
uration space 

"4., 
the functional space of all gauge connections A, 12, in more

detail. This is an infinite-dimensional affine space, on which it is possible to fix
a point and coordinate axis such that every point in the space can be rep-
resented as an n-tuple of its coordinates. Not only is "4 affine, but also a
Hilbert space: in fact, if we denote by ATQW,adP) the k-Sobolev completion
of. Qe(M,adP) [Uhl82b,Ada,Maz,Nab] the space of smooth sections of degree
p, then ,4 assumes the structure of a Hilbert space, as an affine space modelled
over 01(M, adP).

Since all physically relevant quantities are gauge invariant, the objects of in-
terest are the families of gauge related connections rather than the connections
themselves. For this purpose we denote by Ç the group of all gauge transforma-
tions, whose elements g e Qo(M,adP) in local coordinates determine the group
(adjoint) action * 

!^,î., : sr çùA,(r)g(r) + 
lsr 

{Aa,o@l

: At @) + ls| þ¡opg(r). (3.3e)
g

The fundamental question is how we define the connections and the functions be-
longing to the group of gauge transformations [GS01]: Uhlenbeck [Uhl82a], con-
sidering Sobolev gauge connections A, e Wr,p(ß,Ç),n > pf 2 and gauge trans-
formations with one more weak derivative g e W2,e(ß, G) on the n-dimensional
unit ball IE', was able to prove that with such a setting, providing appropriate
curvatures FA, eA e Wr'p(ß,9) belongs to the Coulomb gauge. The restriction
to Sobolev norms was also suggested in a very interesting work [STSF82], in
which it was shown under which conditions it was possible to find the absolute
minima of the Y-M functional. This issue will be of great importance when,
in the next section, we will discuss about the various Gribov regions and the
so-called fundamental modular region (FMR). On the other side, Dell'Antonio
and Zwanziger [D291] considered less restrictive conditions on the gauge con-
nections, provided with a standard ¿'(R") norm, and they proved the existence
of gauge copies of A, in the Coulomb gauge on the non-compact n-dimensional
Euclidean space IR".

Regardless of these subtle distinctions, the set of all physically inequiva-
lent connections is determined by the orbit space (a manifold) 2I: A/Ç, i.e.

12The gauge connections, a.s explained in the previous chapter, are the components of a
smooth matrix-valued differential one-form Qt (M, adP).
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the set of equivalence classes where ,4 and A' are equivalent if there exists a
g e ç such that A' : eA. The high non-triviality of this Riemannian space
13 is the reason for which \rye encounter the Gribov ambiguity in non-Abelian
gauge theory. Following Singer [Sin78], we try now to highlight the fundamental
topological obstruction that Gribov discovered in the light of Coulomb gauge.

In the Feynman approach to quantisation of Y-M theory, one would want to
make sense of IDA{.}e-llrall'?lïDA"-llFell2, where llI'rll, is the Yang-Mills
functional (2.48), and the integrand of the numerator may be constant on orbits
of I. These orbits are expected to have an infinite measure though and this in-
troduces a difficulty in evaluating the ratio. One then would like to perform the
integral over 21, but this turns out to be intractable and this is the reason why we

choose an arbitrary gauge-fixing condition. This procedure would be consistent
if one would be able to choose in a continuous manner one gauge connection on
each orbit. When changing variables from "4 to 2l we introduce in the functional
integral a Jacobian, which is interpreted as the integral of a probability measure

along the fibers. Gribov observed that by choosing a Coulomb gauge with ap-
propriate boundary conditions at oo, there exist gauge transformed connections
belonging to a trivial principal bundle P over IRa, with Lie group SU(2), fhat
intersect the Coulomb hypersurface not only in the vicinity of trivial configura-
tions, æ Ar: 0, but also at a large distance from 0. What Singer showed is that,
this scenario is not only valid and applicable to the case of Coulomb gauge, but
more generally, if the conditions at oo amount to studying Riemannian surfaces

as ,S4 : lRa U oo (the unit sphere in ìR5), then topoÌogical considerations impty
that no gauge exists. Thus, the Gribov ambiguity for the Coulomb gauge will
occur in all the other gauges, and no continuous gauge fixing is possible. In prac-

tice, the topological obstruction occurs when one tries to invert the projective
map d'. "{---+ Al9: due to (3.39) o is mapping an affine space to a non-affine
one, such that any A e A is being mapped onto the orbit I of A. Yet, ø-r maps

back to one A € A each representative of the same orbit without distinction, and
therefore such a function is not bijective. This topological obstruction therefore
prevents one from introducing affine coordinates in a global \r/ay 14.

rsA very detailed description of the Riemannian structure of the gauge configuration space

in Y-M theory can be found in [BV81a,DV80].l4This problem occurs also in General relativity when one considers diffeomorphisms of the
metric tensor [Nab,Nak].
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3.4 The Gribov reg¡ons C¿ and the fundamental

modular region A.

Following Gribov [Gri78], it is possible to define on AlÇ different regions C¿,

according to the number of negative eigenvalues of the the Faddevv-Popov opera-

tor. To see this, consider the eigenvalue equation for the Faddeev-Popov operator
(3.28): for small values of. A, it is solvable for small and postive e[,4] only. More
precisely, one can show that for small A, e¿lAl > 0. As the gauge field increases

its magnitude, one of the eigenvalues turns out to vanish, and then becoming
negative as the field increases further. Therefore the magnitude of A, insures the

existence of negative energy states, i.e. bound states. Supposing to keep going

with increasing A¡", some other eigenvalues will start vanishing and subsequently

changing sign. If we divide the orbit space into regions C¿ (i : 0, 1,... l/), the

Gribou regions with i denoting the number of negative eigenvalues e [,4] for the

F-P operator -0P(0r* lAr,.l), *" may obtain the following schematic picture
The various lines denoted by l¿ correspond to the so-called Gribou horizons: the

Figure 3.2: The Gribov regions C¿ and the fundamental modular region .4.

label indicates the number of vanishing eigenvalues of the corresponding F-P op-

erator M. Therefore, when passing from C¿ to C¿¡1, one crosses one horizon and
the overall sign of det MlAl changes. Moreover, it is possible to show that for
any configuration lying within the region C¿11 close to the boundary l¿a1 there
is an equivalent configuration within the region Q close to the same boundary
l¿+t. It is important to notice that in the first region C6, there is no negative

fc,
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eigenvalue, or put in another form, the lowest eigenvalue is positive, guarantee-
ing the condition for the positiveness of the Faddeev-Popov determinant such
that for a given gauge-condition .F[,4], the zeroth Gribov region is defined as

Co : {A, € 2I,F[A): O,€i[A] > 0l - 0r(ôr* lAr,l) > 0]. As origina¡y
suggested by Gribov himself and rephrased in the language of path integrals,
the Y-M functional integral over gauge-inequivalent configurations should be
restricted to an appropriate region, where the gauge-fixing condition would be
guaranteed unambiguously. Gribov suggested to restrict the integration over Cs:
yet, as proved in [STSF82], this region wouldn't necessarily guarantee to find
unique solutions to the gauge condition for each orbit. Therefore, it is necessary
to find a better way to evaluate the Y-M path integral in such a way that the
integration region only selects one single representative for each gauge orbit.
It was shown in [STSF82] first and then developed in [D291], that there is a
functional method to determine such a region. Suppose we define a covariant
L2-vector Morse potential 15 along the gauge orbit

vlsAl: lln All, : - I* t, ((or A,s + gt ars)r), (3.40)

Expanding around the minimum of eq.(3.40), writing g(r) : exp(X(ø)), one
easily finds:

llnAll,:llAllr+2 [ ft(xLrAr)+ [ tçxtu¡t1x¡
JM Jtv

tr (lD rX, XllApX,Xl) + O(Xu).

(3 41)

At any local minimum the vector potential is therefore transverse, 0rA, : 0,

and MlAl is a positive operator. The set of all these vector potentials is by
definition the Gribov region Cs. Using the fact that MlAl is linear in A, C¡
is seen to be a convex subspace 16 of the set of transverse connections I- Its

15A smooth function u: M - lR is called Morse if all its critical points are non-degenerate.
Morse functions exist on any smooth manifold, and in fact form an open dense subset of
smooth functions on M.

r6lf .41 and, A2 are two gauge fields inside O, they by definition satisfy the Faddeev-Popov
eigenvalue equation, -M(h,z)ó^ : Àn(At,z)ón such that À, > 0, Vn (M = ôu()r- [Áu, .])).
To prove convexity it suffices to show that, given a real parameter s € [0, 1], through which
werelate A1 toA2 a^ss.á1 +(1 - s)A": A,thefieldAalwaysbelongstoO,regardlesssand
the particular choice of the two starting fields. This is easy to see because, by definition, A1
and A2 belong to Ce, and so they have positive eigenvalues. This impìies their combination
by s is always positive, whichever value for the parameter we pick up and therefore A e f). In
addition to this convexity, there's another theorem which claims there's always an equivalent

.i l_ tr (X llA, Xl,At"Xl) * i l,
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boundary ôCo is called the Gribov horizon. At the Gribov horizon, the lowest

eigenvalue of the Faddeev-Popov operator vanishes, and points on }Cs are hence

associated with coordinate singularities. Any point on õCs can be seen to have a

finite distance to the origin of field space and in some cases even uniform bounds

can be derived lZwa9A,DZgIl. The Gribov region is then defined as the set of
Iocal minima of the norm'functional (3.40) and needs to be further restricted to
the absolute minima to form a fundamental domain, which will be denoted by
A. The fundamental domain is clearly contained within the Gribov region and

therefore Ä is proven to be convex too. We can define Â in terms of the absolute

minima over 9 e Ç of llnAll" - I lAll' : (s, MlAls) as

L : {A , AIT¿ïþ, MlAlg) - 0}. (3.42)

A different approach in restricting the integration region to A may come from

stochastic quantisation as explained in lZwa}a). A detailed overview of the
analytic properties of the Gribov and fundamental modular region can be found

in [v892, Zwa94,Zwa04] and references therein. For the purpose of this thesis

we only focus on some elementary properties of these regions. As .4. is contained

in Co, this means r\, is also bounded in each direction and has a boundary
â.4.. Convexity of ,4. allows us to consider rays extending from the origin of À,
set to Ap : 0 out to Cs, crossing the common boundary, such that at some

point along the ray, this absolute minimum has to pass the local minimum.
At the point they are exactly degenerate, there are two gauge equivalent vector
potentials with the same norm, both at the absolute minimum. As in the interior
the norm functional has a unique minimum, again by continuity, these two
degenerate configurations have to both lie on the boundary of ,4,. This is the
generic situation. If the degeneracy at the boundary is continuous along non-

trivial directions one necessarily has at least one non-trivial zero eigenvalue

for MlAl and the Gribov horizon will touch the boundary of the fundamental
domain at these so-called singular boundary points. It is interesting to note

in the case of stochastic quantisation in [Zwa04], it was suggested that in the
thermodynamic limit, as the number of configurations tends to increase, the Y-M
functional integral would be dominated by configurations lying on the common

boundary of A and Co.

The final comment we would like to point out here concerns the practical
realisation of such a fundamental modular region. As the Gribov region is as-

sociated with the local minima, and since the space of gauge transformations

field in the second Gribov region, Cy, f.or a field A, inside Co and close to the Gribov horizon
11. These two geometric properties of Cs ensure us that the common cartoon which displays
this region is correct.



44 3. Path integrals in Y-M theory

resembles that of a spin model, the analogy with spin glasses makes it unrea-
sonable to expect that the Gribov region is free of further gauge copies [vB92].
Unfortunately restrictions to a subset of the transverse gauge fields is a rather
non-local procedure. This cannot be avoided since it reflects the non-trivial
topology of field space [Sin78]. Early after the discovery of Gribov of the degen-
eracy in quantising non-Abelian gauge theories, within the context of U gauge,
in [BMRS78] an unambiguous way rù/as proposed to select single representatives
for each orbit. Though, this gauge fails in being covariant and hard to put in
a close analytic form. Further proposals of eliminating the Gribov ambiguity
are very frequent in literature, for instance see [MSV04,GS01,Zwa04). Nonethe-
less, the most rigorous scenario in which Gribov copies can be consistently and
practically avoided is Lattice Gauge Theory (LET), according to Wilson's pro-
cedure [\ /i174]. In the course of the next chapters we will often deal with such
formalism: for now, it suffices to say that in LGT, it is well known that due
to the discretisation procedure adopted, no gauge-fixing is required. The Y-M
path integral is calculated over an ensemble of links U,,, randomly generated
by appropriate Monte Carlo algorithms. It is then possible to show that the
probability to generate two link configurations lying on the same gauge orbit
is statistically negligibìe. The fundamental di.fference between continuous and
lattice gauge theories lies therefore in the fact that in the former formalism
it is possible to simulate numerically the dependence of the gluon and ghost
propagators on Gribov copies [AdFFO1, AdFF02, LSWP98, BBLW00, BHW02].
Appearance of Gribov copies are studied in Landau gauge in [MPRSI,Sha84]
whereas, for instance, a proposal to eliminate lÌre arnbiguiby of gauge-equivalent
configurations can be found in [Tes98] in the light of a simple toy model using
BRST arguments. It is however a difficult task to show how the continuous limit
of LGT can be obtained, maintaining the theory free of Gribov copies.
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BRST formalism in Yang-Mills
Theory

Soon after the work of Faddeev and Popov [DN67], the attention of the physics

community was focused greatly on the appearance of these fictitious and un-
physical particles, called FP ghosts. As Feynman suggested early on, these

particles were meant to be necessary to guarantee the unitarity of the S-matrix
in non-Abelian gauge theories. De Witt had also suggested that this breakdown

of unitarity was due to missing contributions of a pair of massless scalar (or

vector in the case of the gravitational field) fermions to closed loops in Feynman

diagrams. It was further realised that the Ward-Takahashi identities for Abelian
theories, as well as Slavnov-Taylor identities for the non-Abelian case, both indis-
pensable to prove renormalisabilty of the respective theories, should necessarily

involve these unphysical ghosts. Though ghost particles were thus the missing

particles physicists were after, the geometric structure of gauge theory seemed

to be plagued by unphysical modes which do not follow the spin-statistics for
fermions. This chapter will be then entirely dedicated to the BRST formalism,
introduced independently in [BRS76] and [Tyu] in the mid-1970s: this quanti-

sation method will be analyzed in the light of covariant Y-M theory, firstly with
linear gauges, such as Landau gauge and successively with a more general class

of non-linear gauges, such as the Curci-Ferrari gauge. We will also present the
Kugo-Ojima criterion for selecting the appropriate physical states.

.1 Faddeev-Popov ghosts and the birth of a

new symmetry

In the last chapter we saw how FP ghosts appeared in the path integral repre-

sentation of Y-M theory, through the introduction of two Grassmann fields in
order to exponentiate the determinant of the FP operator. As we know, the
Lagrangian appearing in (3.23) has lost its local gauge invariance by the intro-
duction of a gauge-fixing term: it would be nonetheless desirable to maintain
the infinitesimal gauge invariance of the theory. The extension of this sym-

4
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metry to the case of finite transformations can be understood heuristically by
performing the same transformation many times as AA : limr,-oo ôrrA with
6A: DlAl?. This infinite repetition of infinitesimal variations can be avoided
by introducing a Grassmann parameter in the definition of õA in the followirrg
way: in the previous chapterwe saw that by the exponential map we can define
a local relation between the group and its algebra as g(r) - .X"0"(t). Suppose
no\M we introduce in the exponent a parameter € as g(r) : 

"e 

x40"(t) and we
expand the exponential in a Taylor series, g(r) : 

"e 

x"q¡(t) : II* eX"Q"(r) +
|(e X"O"(r))'+ . . fi(e X"O"(r))". Ifwe are allowed to take (, X")' : 0 not as an
approximate relation, but as an exact one, then we notice that the infinitesimal
form becomes exact by itself being identical with its finite one, This constraint
mimics the infinitesimal form of the original local gauge invariance, whereas it
does not reproduce its finite form which has been broken by the gauge-fixing
procedure. It is well known that in differential geometry, an object which is
endowed with such nilpotency condition is a differential form [Nab,Nak]: these
forms constitute a finite-dimensional Grassmann algebra equipped with exte-
rior product (see Appendix). This anti-commutating nature underlying classical
gauge transformations led in mid 70's Becchi, Rouet and Stora [BRS76] and
independently Tyutin [Tyu] to construct a coherent formalism in covariant non-
Abelian theories to solve in more algebraic way Slavnov-Taylor identities and to
prove the renormalisability of the theory. Moreover, the canonical quantisation
of Yang-Mills theory and its correct application to the Fock space of instanta-
neous field configurations were elucidated by Kugo and Ojima. Later works by
many authors, notably Thomas Suchcker and Edward \Mitten, have clarified the
geometric significance of the BRST operator and related fields and emphasised
its importance to topological quantum field theory and string theory.

The BRST formalism is based on the use of the Faddeev-Popov ghosts to
construct a nilpotent operator ð and its associated Noether charge Q6, the gen-
erator of quantum gauge transformations. Furthermore, the Grassmann nature
of ô identifies it as a supersymmetric operator and consequently the BRST for-
malism is considered an example of a superymmetric theory (SUSY). Another
important property of this formalism is its understanding in terms of differential
geometry and fiber bundles. In [8T81] it was pointed out how the gauge-fixing
procedure by means of FP ghosts would enlarge the Riemannian structure of the
principal bundle inherited by Y-M theory into a supersymmetric space, extended
to include Grassmann degrees of freedom [DJT82,DJ82]. In [QdUH+81,HQR-
MdU82, BTM82], these ideas were confirmed and expanded in the context of
superfield formalism and covariant quantisation for Y-M theory. Topologically
speaking, the central idea of the BRST construction is to identify the solutions
of the gauge constraints with the cohomology classes of a certain nilpotent op-
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erator, the BRST operator á [KvH91], generated by a pair of anitcommuting
Lorentz scalar frelds, the FP ghosts.

Following the original works of Becchi, Rouet and Stora [BRS76] and Tyutin

lTyul, we want to show how the Grassmann structure shows up naturally in
gauge transformations: consider for this purpose the linearly covariant gauge-

fixed Lagrangian 1

L: Lyt¡ * Lsr i Lpp : |r;,r"r' - |turoi)2 
+ id,M"ucb, (4 1)

and a local infinitesimal gauge transformation

õA:r(r) : 0t 0"(r) - s l"'"Ai@) 7b(r) : oifvqleo@). (4.2)

Substitutine 0"(x) : c"(r) in (4.2), with c" being a local Grassmann field, we

obtain
õA!r(r) : DiblAlcb@). (4 3)

It is worthy noting the role played by the ghost field: it replaces the classical 0"

gauge function to provide the quantum version of @.2). Under such a transfor-
mation, it is rather trivial to show the invariance of ,Cyy under (4.3), because

the ghost field does not affect the original gauge invariance. Conversely, the
variation of the Faddeev-Popov Lagrangian yields

So (4.1) is not invariant under the local infinitesimal gauge transformation (4.3)

with an arbitrary gauge function 0". In [BRS76,Tyu] it was proposed to "gauge"

transform also the two ghosts. For this purpose consider the following analogy

with differential geometry in the case of an infinite-dimensional Lie group: in
Y-M theory we deal with an infinite-dimensional Lie group Ç of gauge transfor-
mations, together with its Lie algebra g. On g, we can define a Maurer-Cartan
differential form ø, which is a left-invariant l-form, whose functional nature
is due to the fact that g : C*(M, su(I/)), or a section of the fiber bundle
l(M xsulN1 su(I/)). On this algebra, we can define a coboundary operator ð
(dual of a derivative operator), which acts on elements of g according to the
following anti-derivation rule

6(çt n gz) : ô(pr) n pz + (-l)de*et gt A 6(çr), (4 5)

l'We start the BRST formalism without the Nakanishi-Lautrup field b, also called the on-

såell BRST, i.e. when we consider the equations of motion for the Lfield. Then we will show

how the auxiliary field plays the role of insuring the BRST invariance off-shell
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and satisfies the nilpotency condition

62 :0. (4.6)

From the last chapter, we know that such a Maurer-Cartan form ¿¿ satisfies
6u: -i, x u): _i!r,ø]. By rewriting u(r): gc(z), we chose the folìowing
on-shell transformations

co @: -E
1(r): - ;\

õ

õt

(c(ø) x c(*))" : - I f"b"cb(r)c"(r)

(4 7)

Under the transformations (a.3) and (4.7), called the BRST transformations, we

can prove that the Lagrangian (4.1) is left invariant. In fact, the variations of
the gauge-fixing and Faddeev-Popov read 2

1

õLsr: ;@t'AZ)@"D,c")
s

õLpp : -Qe)APDþco - tðPõ(Drc)". (4.8)

Concentrating first on the variation of the covariant derivative we notice that

õ(D rc)" : õ l(Arõ"b - sfb' Ai)cb)

: l-li.* rb*narçc^cn) - e|"u"(-D[!c*)cb - gf"r.A:r(-lfu*""^"")).
(4.e)

Expanding the covariant dcrivativc, tcrms lincar in g and 92 scparatcly canccl

g6"b fb^nar@"){ + gõ"b fb^"\r(c^)c" : 0, (4.10)

and because of the Jacobi identity 3

g',A:rff"tu f*n + ¡cam ¡hnn + Í"^ fb*n)c^cn : 0. (4.11)

The terms remaining in (4.8) vanish because they can be written as a total
space-time derivative

@pAï)a'(D,co) * a, (ra".tl) t"";A\

(0rA, (")')

õ(16 +¿r'p) : lrlt
:[6u- J,' aAi(å, Di"' -0.) cb) (4.r2)

2Flom now on we will not make the space-time dependence explicit in the expression of
the various fields.

sThe Jacobi identity holds for any Lie algebra and its expressed through the Lie brackets
as [X", [Xa, x.]]+ IX.,lXo, X6l]+lX6,lX", X"l): 0 or equivalently through the corresponding
structure constants ¡abc ¡abm¡cnn ¡ ¡cam¡bmn + ¡"'*¡a''n - O.
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This completes the proof that the Lagrangian (a.1) is invariant under the BRST

transformations (4.3) and (4.7). As a further check, we can see if the BRST

transformations are nilpotent as required. Keeping in mind the Jacobi identity,

acting twice on A!, we obtain

62Ai: (Dr(sc+f;"x "))":0. (4.13)

For co, we get

62co : tt ¡o* ¡ed.a I ¡cd.e ¡eba + fd.be f."o)cbc.cd :0. (4.14)- 6\J l -1-J

Yet, when applying ô twice on co, we notice an inconsistency, because we obtain

62eo : -f}u(Drc)" +0. It is this problem which forces us to introduce here the

b-field, in order to guarantee such nilpotency condition (4.6). We then change

(4.7) as follows

õco : -Ç ¡"b""b"c2"
õt:b"
6b" :0, (4'15)

and it is rather trivial to prove the nilpontency on c and b. These transfor-
mations are called off-shell BRST transformations. a This all shows that the

FP ghosts are to be interpreted as components of Maurer-Cartan 1-forms, as

well as the gauge field A, [BT81,BTM82]. The anticommuniting properties of

the ghosts therefore are consequences of their differential-form nature, forming

a Grassmann algebra of left-invariant forms on g and represent all infinitesimal

local gauge transformations in Ç in a generic way. With c and c not identified

with any particular g € Ç, the BRST invariance of (a.1) can be then regarded

as the lost gauge invariance under infinitesimal local gauge transformations. It
must be stressed that in the case of linear covariant gauges, such as Landau
gauge for instance, the Lagrangian (4,1) is not invariant under the interchange

of ghosts into anti-ghosts and vice-versa. This symmetry is only generated in

the case of non-linear gauges, such as the Curci-Ferrari gauge [CF76].
To conclude this section, we wish to make a remark on the Hermiticity prop-

erties of the ghosts: if we demand the requirement for the Lagrangian density
to be Hermitian and for the S-matrix to be (pseudo-)unitary

Ll : L, St.S: SSt : ll, (4.16)

aThey are called off-shell because we do not use the equations of motion of the Lfield.
Hence, the BRST transformations (4.7) are called on-shell.
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the only permissible choice for the ghosts [NO90] is for them to be both Hermi-
tian as

cot : co tI : co, (4.17)

and hence the factor i in front of c"Mo6cb is necessary. If we had adopted the
wrong hermiticity assignment

coI : ,id' dt : ico , (4.18)

then not only would the hermiticity of the Lagrangian density (4.1) be violated

Lt _ L: ¡,e7pA.t, f"b"c"d _ lg0p(Ail"b"c"ð) ¡ 0, (4.1g)

but also it would affect the hermiticity of the BRST and Faddeev-Popov charge
operators.

4.2 BRST Noether's charges and algebra

According to the Noether theorem, whenever there is a continuous symmetry
in the theory, there must be a conserved current jr', whose associated charge is
generated by the space integral of the current's temporal component. Making
use of the Euler-Lagrange equations for (4.1), the conserved BRST Noether
charge is then

J,:IffiO*
: bo(Dt"c)o - Lrboco + tlrsf"b"ðrõocbc", (4.20)

with {Õ} the set of all fields present in the Lagrangian 5. The BRST Noether
current is consequently

en : I o, (u"po"¡" - bo"o +ilsr"b"è*"u"") . Ø.2r)

Under the hermiticity properties of the ghost fields we assigned in the last sec-

tion, we then check the hermiticity of QB, Qs: QL, which implies that such
a charge operator has real eigenvalues. The BRST transformations (4.3) and

5To be precise, we generate a conserved current up to a total divergence ôp(Ffrrc"), which
should vanish provided appropriate boundary conditions, znless such a term does not generate
a massless bound-states spectrum.
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(4.15) can be put in the form of BRST commutators, i.e. as Lie derivatives of

fields w.r.t. the current Q6 as

6A,", : liQB, Ail : (Drc)"

6co : liQp,c"l*: -fl(c x c)',r 2, ,

õd' : lies,c"l*:6"
6b" : liq",b"1: g, (4.22)

with * indicating the anti-commutator. The reason for this lies at the very

heart of the BRST formalism, due to its supersymmetric nature, and hence all

the operations must be understood to be Grassmann graded. 6 The fundamental

difference between the BRST symmetry (and its charge operator in particular)

and the underlying infinitesimal local gauge invariance stands in the globalnature

of the former, This property allows us to interpret the BRST procedure as a

topological operation.
Another conserved current emerging from this formalism is the so-called

Faddeev-Popov current, which interchanges ghosts in anti-ghosts and vice-versa.

To it, we associate a FP ghost number, resembling of the fermion number, which

is a conserved quantity too. Unlike the usual case of fermion number conserva-

tion, however, the FP ghost number is not due to the invariance under a phase

shift in the ghost fields, because this would lead to an incompatibility with the

hermiticity requirements for both c and c. Instead, the conservation of this new

quantum number is due to an invariance under a scale shift as

co --+ eo co ú --- e-oú, a € IR, (4.23)

The action of the FP charge operator Qc on the Nakanishi-Lautrup field and on

the gauge connection is trivial. The corresponding conserved Noether current

reads then
Jcp: i(t(Drc)" - 7rúc"), (4.24)

which generates the conserved charge

Qc: t I arglooc)o - Lec,): qI". Ø.25)
J

In terms of BRST brackets, we get the following variations

liQ¿,c"1: ¿"

liQc,úl - -æ, (4.26)

oGrassmann grading defines the eueno¡ odd character of a field under product exchange.

This rule is also applied on functional derivatives w.r.t. ghost fields: it is custom to define left
(L) and right (R) derivatives as follows # = # # = #
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with a minus sign to preserve the hermiticity of ic"(Drc") under the action of
Qo. Being hermitian, the FP charge operator, as well as the BRST one, has rear
eigenvalues: though, the FP ghost number ,|y'¡p requires to be identified with
the eigenvalue of Qc' multiplied by a factor i to be consistent with the existence
of an indefinite-metric Hilbert space. These pure imaginary eigenvalues come in
pairs with their complex conjugate, providing the norm-cancellation necessary
to isolate unphysical ghost modes with negative norms [KO7g,Nog0]. Together
with the BRST charge Qp, they form the BRST algebra, which is a simple
example of a superalgebra 7

IQs,Qs]*:(Qn)2:o
liQc,Qnl: QB

lQc,Qcl: o. (4.27)

This algebra should correspond to the superalgebra extension of the Lorentz
group ^9O(1,1), which is a non-compact Lie group, whose only generator is a
boost. BRST algebra in fact can be regarded as a Lie superalgebra whose even
part is zero-dimensional and whose odd-part is one-dimensional. The superalge-
bra structure of the BRST algebra will become more manifest and complex when
we will introduce the anti-BRST operator ð. Notice the presence of the factor
i in the second line of (4.27) which associates the FP charge with the correct
FP ghost number and which leads to the fact that the FP charge behaves as a
bosonic operator, hence the use of an even-graded commutator. A remarkable
aspect of these two charges is that they can be cr.r¡rnected via a BRST variation

Qn: diJBo: - di(6Jco + ac(ryp"))

: _õQc: _liQø,Qc). (4.28)

Therefore, the coboundary operator d generates the BRST charge operator as a
quantum gauge transformation on the FP charge. This property of an object to
be equal to the BRST variation of an other one is called eractness, states that are
annihilated by Qa are called closed. To the reader familiar with differential ge-
ometry this terminology is reminescent of the De Rham cohomology: in classical
differential geometry the set of smooth, differential k-forms on any smooth man-
ifold M forms an Abelian group (a real vector space) called au(M). The exterior

7A Lie superalgebra is a generalisation of a cìassical Lie algebra to include a Z2-grading.
Lie superalgebras are important in theoretical physics where they are used to describe the
mathematics of supersymmetry. In most of these theories, the even elements of the super-
algebra correspond to bosons and odd elements to fermions (but this is not always true; for
example, the BRST supersymmetry is the other way around).
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derivative "d" maps a : Ak(M) --- Qk+'(M). The use of De Rham cohomology

is to classify the different types of closed forms on a manifold. One performs this

classification by saying that two closed forms a and B in Ak(M) are cohomolo-

gous if they differ by an exact form, that is, if a - B is exact. This classification

induces an equivalence relation on the space of closed forms in CIk(M). One then

defines the k-th de Rham cohomology group H!"(M) to be the set of equivalence

classes, that is, the set of closed forms in Ak(M) modulo the exact forms. In
the BRST formalism one then wishes to generalise such an argument to the case

of infinite-dimensional Lie algebra-valued differential forms, by replacing d with
ô, whose BRST De Rham cohomology (or simply BRST cohomology) becomes

Hd(M xç g): Ker6lIm6. In [KvH91] it was pointed out that to prove the

consistency of the BRST quantisation procedure, the BRST cohomology has to
define physical states. For this purpose the authors studied the use of harmonic

gauge fixing procedure in the context of indefinite-metric Hilbert spaces. These

concepts will be discussed within the Kugo-Ojima criterion.
Finally, consider the Lagrangian

L: Ly¡¡r Lsr* Lpp: jr;,r"r, +f,{a\, +ib"@pAï") +iúM"acb. (4.2g)

It is very important to notice that, according to the BRST transformations
(4.15), Lú * Lpp caî be written in terms of a total BRST variation as

Lgr * Lpp : f,{a\' + ib"(at"Aï") + it M"ucb

:n(p'e")Ai,-Í.-0"). (4.30)
\' ' t' 2 )

Therefore, being the artificial Lagrangians L"ç*Lrp appearing in (4.29) a BRST-

cobaundary term (BRST exact), they do not contribute to the overall invariance

of 4 under the action of ð, due to its nilpotency. This is a consequence (and a
confirmation) of the local gauge invariance. The coboundary term can also be

cast in a more general form as

L"r r Lpp : i6(æ(F"(A, - lr")r, (4.31)

with ,t'"[,4] being a general covariant gauge fixing.

4.3 Kugo-Ojima criterion and Slavnov-Taylor

id entities

In covariant gauge theories, negative norm states appear naturally, and the
Hilbert space of configurations V has consequently an indefinite metric. As
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in Abelian theory, it is required to select a subspace of V such that, inside
this Fock subspace Vory" Ç V, time invariance and norm-positivity are being
guaranteed. In Abelian theory, the condition on the positive-frequency b-modes
6(+)lphys) :0 satisfies such a requirement. Yet, in Y-M theory, due to the
non linearity of the gauge connection A, the same condition on the Ö-field
cannot select straightforwardly the physical subspace )/phys. Thanks to Kugo
and Ojima [KO79], we can impose a subsidiary condition such to overpass this
topological obstruction

Q¿lphys) : O )/or,r, = {lQ); Q¿lO) - 0}. (4.22)

The condition (4.32), known in the literature as the Kugo-Ojima criterion, de-
scribes the gauge invariance of all the physical states belonging to Vpry. as the
conserved charge associated to the b-field in Abelian theories represents the gen-
erator of local gauge transformations, the BRST charge represents the genera-
tor of quantum gauge transformations. It is possible to show that the condition
(4.32) reduces to the Gupta-Bleuler condition for QED [NO90]. The importance
of this criterion for the selection of physical states can be also seen in the calcula-
tion of Sìavnov-Taylor identities. Due to the underlying BRST symmetry of the
Lagrangian (4.29), the corresponding Slavnov-Taylor identities of Y-M theory
are novr' derived from a more general argument than from local gauge invariance.
We know that these identities are indispensable to guarantee the renormalizabil-
ity of the theory: though the local gauge invariance has been broken through
the gauge-fixing procedure, the BRST formalism, as vøe saw, provides not only
the quantum version of it, but detemines a new global symmetry. Originally, the
ST identities were derived in a very complicated diagrammatic way þHV72]. To
translate these in the language of the BRST formalism, we assign the condition
for the vacuum to be BRST closed

Qalo) :9, (4.33)

as long as there is no dynamical symmetry breaking. It then follows that for
any physical quantity (?

(olô(rlo) : (olliQø,olalo) : s. (4.34)

The subsidiary condition (4.32) then allows us to generalise (4.34) in order to
include the physical states belonging to Por,"" as

(nlõOlm): (nlliQs,Olalm):s {lù,1ù € yphy.}" (4.35)

The ST identities follows from defining a generating function f , being the effec-
tive action of the theory of one-particle-irreducible vertices, defined through the
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Legendre transformation

slJ, Kl: L (Jt""Ai* Jic" + J:æ + Jib"

tKP"(Drc)" -f;ryçrx c)" - K¿b"e))

exp(iWlJ, KD = (017 exp(zSp, l(l ) l0)

f [o, K] = WlJ, Kl - Jiai, (4.36)

with O being Q: (61õJ¿)+WÍJ,K], where f reminds us of the correct Grass-

mann grading. The main difference with standard ST identities is easily appre-

ciated by the new sources K associated to the BRST variations (4.3). Due to
the vanishing variation for b, Ka does not enter l. In short-notation, the ST
identities then read

ðf ôf óf ôf ôf ôf
14îñ* **s* *u*s:o (4'37)

In the case of non-linear gauges (as well as for a more symmetric form of (4.3)

as far as the b-field goes), we will see that (4.37) will also incorporate the b-field

term"

4.4 Another BRST operator

If we take a closer look at the Lagrangian (4.29), we notice that FP ghosts and

anti-ghosts do not play a symmetric role. Though FP ghosts are interpreted
as Maurer-Cartan l-forms, and the operator ô is recognised as the generator of
translations in the c-direction, as first pointed out in [TM80], we do not have at
this stage an analogous interpretation for the FP anti-ghosts. These fields are

being introduced in the BRST formalism as Lagrange multipliers for keeping the
gauge-fixing condition unchanged under the BRST transformations (4.7).

The attempt to discover an appropriate and coherent interpretation also for
the anti-ghost fields can be traced back to late 70's and early 80's. As noted

first in [TM80], the anticommuting nature of the ghost fields was associated

to elements (Maurer-Cartan l-form of connection) embedded in an extended
principal fiber bundle. Yet, it was realised in [QdUH+81] and [8T81] that the
principal bundle needed to be enlarged to correctly correlate the classical gauge

and the new quantum global symmetry. In particular, in [QdUH+81], it was

proposed, starting off the classical Maurer-Cartan l-form for gauge connections,
how to write down the appropriate Maurer-Cartan l-form to include ghosts and

anti-ghosts in an extended principal bundle. On the other side, in [8T81] the
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idea of interpreting the BRST transformations and charges as proper supersym-
metric quantities was expressed in terms of superprincipal bundles and super-
fields [DeW]. However it is due to Ojima [Oji80] who discovered another global
symmetry in the context of the BRST formalism: this new symmetry, called
anti-BRST, behaves as the "almost" mirror image 8 of the standard BRST one.
The purpose of this new operator ô (and its associated charge Q¿) i. to make
the geometry in the extended ghost-space more symmetric. If we interpret ô
as the generator of translations in the c-direction, then it would seem appropri-
ate, if not necessary, to construct an analogous operator for translations in the
c-direction.

For this purpose, consider the following operator identity

)rDu - DPA, : El)rA, ,.1. (4.38)

Only in the special case of Landau gauge (€ : 0) e, this identity vanishes. In
such a gauge, it is possible to show that the Lagrangian (4.29) remains invariant
under the FP conjugation operator Cpp

CppAfl: /"
Cppb":bo-ig(exc)"
CPPc": d
Cepc"' : -co. (4.39)

The apparent strange transformation of b under Cpp is necessary to cancel the
term coming from Cpv(Lvp).Following [CF76,OjiBO], combining ô with Cpp, we
can construct a new BRST operation ó as

6 : Cpp ôC;;, Ø.40)

such that the BRST and anti-BRST operators transform covariantly under FP
conjugation. Applying this identity to the BRST transformations (4.15) we
generate the anti- B RS T transf ormations

õAi: (DrÕ)"

6ú:_$1axa¡"
2

õco : -b" - g(a x c)'

6b" : -9f. x b)". (4.41)
2

8We call the anti-BRST symmetry "almost" mirror image of the standard one because, as
we will see later, the Þfield breaks such symmetry. Moreover, this field is also responsible to
break the superalgebra osp(al2) as discovered by Thierry-Mieg [TM80].

eln this gauge, in fact, lim6-o/[dò]e- ¡rn"a'ei+$(ö')'x 6@t'Aï,).
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It has to be pointed out that, though only in Landau gauge Cpp is unbroken,

the invariance the Lagrangian under (4.4I) is preserved even for { 10. Due to
the nilpotency of 6,62:0, and to the following operator identity

ôð + ôó : 0, (4.42)

then not only the gauge-fixing but also FP Lagrangian can be written as a total
BRST variation and even more importantly as

L"r t Lsp : i6ÍuæAi - fOU",

: _i,6(opc"Ai, _ 
lr"u",

: 
f,a61n,Ai) + tf,6p","¡. (4.4s)

We then see how the gauge-fixing and FP Lagrangians can also be expressed

as boundary terms of ô, though, in the attempt to write these Lagrangians as

a whole BRST-anti-BRST variation, we fail due to the presence of the term
l|6(Uc"¡. Demanding the vacuum be left invariant under the action of Qa

@"lo) :0, (4'44)

',¡/e can generate ST identities on the same line of the previous section. Further-
more, the Kugo-Ojima criterion, due to the anti-commutativity between Q6 and

@", becomes in terms of the anti-BRST charge

O¡lPhYs) : o' (4'45)

One difficulty in this formalism is to make (4.15) and (4.41) look more symmetric.
For this purpose, in [NO90], a nerv\¡ Nakanishi-Lautrup field is being introduced:
by demanding b" : -bo - g(¿- x c)", then we have

6co : bo 6b" :0, (4.46)

with FP conjugation

Cspb" : -bo Cppb" - -b". (4.47)

In an interesting paper in 1982 [TMB83] it has been shown that the most general

form of Lorentz invariant renormalizable Lagrangian density can be written as

_ ß__
L: L + ;b"b"

: Lyxt+i6Ít'æAi+f,u"e +

: Lyw - i6(au c" A7 + 
f,u""" 

+

*t"u

t """ (4.48)
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This new parameter É will be of great importance when we will treat the mas-
sive Curci-Ferrari gauge and the invariance of the Lagrangian under the related
massive BRST transformations.

4.5 BRST superalgebra for linear and non-linear
ga uges

This abundance of new operators and charges may look awkward: it is therefore
a considerable advantage to manage these in a short-form, according to the
following double BRST algebra

i{Qu,Qp} : õQs:6Qa:0
liQc,Qnl: 6Qc : Qa

liQc,QÅ: õQc : -QB. Ø.49)

In a series of papers [Sch99,Sch01,DLS+02] and references therein, following the
work in [NO80] it has been addressed that this double BRST algebra actually
hides a more general algebra. We define the operators ô"" and ô¿¿ as

6".õo : co ö¿¿co : c-t

õ".bo : $(" x "¡" 6¿¿bo : $1a x e¡'2r / çç- 2\-
6".4i - õ".co : 0 õd¿Ai: õ¿¿ú : 0, (4.50)

and their conserved Hermitian charges are respectively Q." and Q¿¿. Together
with the Faddeev-Popov ghost number charge Q", Q". and Q¿¿ generate an
sl(2, R) algebra 10. This algebra is a subalgebra of the algebra generated by Q.,
Qu, Quu and the BRST and anti-BRST charges 8a and Q6. The algebra

e2a:
{Q",Qn}:

li.Q.l2, Q*12):
[iQ.l2, Qal:
liQ*l2,Qal:
liQuulZ,Qa):

-oQi: o

liQ*12, Q-l2l: -Q"
liQ"lz, Quulzl: -Quul2

liQ.lz,Q"l: -Qul2
UQ""¡z,Q"1: -Q"
þQuul2,Qul:0,

0

0

l2
l2

Q."

a
0

B

(4.51)

loThe Lie group S,L(n, IR) is the special linear group of real matrices with unit determinant.
Its corresponding Lie algebra sJ(n,R) has an irreducible representation by square matrices
with null trace. It is important to notice lhat SL(2,1R) is the set of orientation-preserving
isometries of the Poincar half-plane SO(2,I), isomorphic to Stl(l,1) and Sp(2, R) and also it
is a non-compact group since its universal cover has no finite-dimensional representations.

8"
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is known as the Nakanishi-Ojima (NO) algebra [NO80,DLS+021. The remarkable
aspect of this algebra, composed by these five BRST charges, is that it consti-
tutes the contracted superalgebra extension of the Lie algebra of 3-dimensional
Lorentz group [NO90] [FSS96] [DeW], whose representation is osp(7,2). This
orthosymplectic superalgebra is denoted in the literature [FSS96] as B(m,n) or
generally osp(2riz*1,2n): it is defined for m ) 0 and n ) l, has as its even part
the Lie algebra so(2m*I)@sp(2n) and as its odd part (2m*I,2n) representation
of the even part. It has rankm*n and dimension 2(m+n)2 +m*3n.

The BRST formalism so far has been presented in the context of a linear
covariant gauge: however, as Baulieu and Thierry-Mieg showed in [TMB83],
to achieve a more general scenario, in which ST identities are still preserved

(and therefore the renormalizability of the theory), we must incorporate into
the gauge-fixing Lagrangian a quartic ghost interaction. This can be obtained
in different ways. For instance, consider the Lagrangian (4.48): the quadratic
interaction bb : (b - i,gc x c)2 abeady contains such a desired quartic ghost

interaction. Furthermore, from the algebraic point of view, as demonstrated
in [TM80], if we perform a shift of the ö-field as

bo --- bo +|te x ,)", (4.52)

then the BRST and anti-BRST transformations become

6Ai: (Dr")"

6co : -|{, " ")"
6d:a"-|{er")"

õbo : -Urrc "al" - *tt" x c) x c)"

õAï,: (Dr¿)"

õú:-|{e"e)"
6co:-b"-f;{r"")"

Ebo : -ltux å)'+ *,,. x õ) x c)'.

(4.53)

Though these new BRST transformations appear more complicated, the striking
advantage comes from the observation that Lst and Ér'p are now expressed as a

proper total double BRST variation

L

Ls¡ * Lsp 6õ(At"Ap - i(êc")
2

(4.54): ila"A't"+ |@\' + tle M"blAl.o + $e {. 
x c)",

where the term 6(b"c") in (4.a3) has been cancelled by the shift on ö. In fact,
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due to the triple FP ghost terms in ôb and ôb, the action of dd(õc) produces

1
't-

2
õ6(-i(úc") : õ(c"b")

1

t
È

t
È

,

)(

)(

b"

b"

,

2

(e x c)2

t

*î(
ú2+î €fb'" f"*"cbc'-cncn (4 55)

The reason why this gauge is non-linear is easily understood: there is no linear
procedure to reproduce the Faddeev-Popov method out of this Lagrangian as

seen by the following path integral representation

z : [ ¡a,r]tadtaa][db] e- 
I'(nu"auei+${a.)'+t¿e" M"blAla+{ctu""i'). 

(4.56)
J

In Appendix C we will see how to deal with such a non-linear gauge by means

of the semi-classical approximation. Moreover, we will provide the linearization
of the quartic term which will allow us to construct the Hubbard-Stratonovich
transformations of this non-linear gauge. \Me will also determine the relative
BRST algebra, The renormalizability of such a theory has been studied for
instance in [DTT88] and checked in [Gra03] up to three loops. It is known
from topological field theory arguments [BBRT91] that the four-fermion inter-
actions are governed by the Riemann tensor of the manifold and by topological
considerations we can derive from them the Euler characteristic of the target
manifold 11. Such interactions are fundamental terms in supersymmetric quan-

tum mechanics, supersymmetric Y-M theory and above all string theory. The
presence of fb'"¡" "dc'd"C'is particularly important to give rise to an effective
potential whose vacuum configuration favors the formation of off-diagonal ghost-

condensates [Sch99,KS00]. The ghost condensation has been observed in others
gauges, namely in the Curci-Ferrari gauge and in the Landau gauge [DLS+02]
and references therein. In these gauges the ghost condensates do not give rise

to any mass term for the gauge fields. The existence of these condensates turns
out to be related to the dynamical breaking of a SL(2,.R) symmetry which
is known to be present in both Curci-Ferrari and Landau gauge since long

time [Oji80, DJ82, Oji82]. We will return to this issue when we will discuss

one of our works on Extend Double Lattice BRST later on. The idea of giving a
mass to gauge fields is stricly connected to the topological nature of the BRST

lrThese topological quantities will be explained and used in great details in successive
sections. For now, it is only necessary to know that they are related to the curvature of the
manifold. In particular, the Euler character is a topological invariant, i.e. does not depend on

the Riemannian metric, which "counts" the number of holes in the manifold M.
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operators: the nilpotency condition for both ð and ð is necessary to guarantee

the confining of physical states. It would then be interesting to find to what ex-

tent such a condition can be violated and how it can be controlled. Suppose we

introduce a bare mass term of the freld Afl which damages the aforementioned

nilpotency. Following the seminal work [CF76]) a renormalizable covariant La-

grangian can be written as

L*r I Lre
2

(66 - irn2)(A, A, - i(tc")

: lb"ap A7" + f,Q\' + lre M"oIAl r' + {{, * ,)'

We call this Lagrangian the massive Curci-Ferrari Lagrangian. Notice how the

mass term enters (with the correct factor i to preserve the overall hermiticity of
L^cp) the double BRST variation and how in the third line, together with the

expected gluon mass term, there is also a ghost-anti-ghost one. This Lagrangian

is left invariant under the following extended double BRST transformations

m2__A
2

6Ai: (Dr")"

6co: -f;k* Ò"

6æ:u"-f;Gxr)"

õbo:im2co -|k"u)"
t

- ?((" x c) x õ)"

i,A'-i,(m2úc":LmcF (4.57)

(4.58)

õAi: (Dr¿)"

6z-:-f;{e"e)"
ú

6co:-bo-o
2

)"

6b" : im2c" - (cx b)"

,
+ |((c x c) x õ)"

X(e

aö

,

c

Though, these transformations do not satisfy the nilpotent condition; in fact

62ú : i6b" : -im2co 62t: -im2ú, (4.59)

or in general

62 : 62 - irn2. (4.60)

The fundamental consequence of such manipulation is the unitarity breakdown

of the physical S-matrix. Topologically speaking we can picture this problem as

having a singularity in the domain of the exterior differential operator d, which
fails to maintain its nilpotency. Though the unitarity is lost, FP conjugation
still reamins valid, and this is the reason why we can construct a superalgebra
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irrespective of the validity of the nilpotency of Q n and Q6 as

{Qn,Qn} :2Q28: -i6QB
: -rn2Q.": -*'QI"

{Q",Q"} :2Q'": -iõQa
: -mzQe¿: -*'Qlu

{Q",Qu}: -iõQn: -iõQB
: _Tn2e", (4.61)

with the other algebra in (4.51) intact. This superalgebra constitutes the group
decontraction of. osp(2,1) for finite rn. In group theory terms [Nak], the group
contraction is strongly related to the existence of a little group. In [wig39]
Wigner constructed the maximal subgroup of the Lorentz group whose transfor-
mations leave the four-momentum of the given particle invariant. This subgroup
is called Wigner's little group. This little group dictates the internal space-time
symmetry of relativistic particles. In [KN01] the reader can find an extensive
overview of little group theory in the Lorentz group. For a relativistic particle,
we then wish to find what the maximal subgroup of ,SO(3,1) is leaving invari-
ant the first Casimir operator Ct : -ppÉ. For the purpose of this thesis, we
are interested in considering the light-lilce case (C, :0) and the space-like case
(Ct < O¡. In the case of the Poincaré group, therefore including also space-
time translations there is also the second Casimir operator to take into account
Cz : WpWp, with Wt' : et"Ào' J¡P, /2. It suffices hcrc to say thot thc intcrnal
space-time symmetries of massive and massless particles (massive and massless
BRST algebra) are dictated by O(3)-like and E(2)-like little groups respectively.
O(3) is locally isomorphic to the three'dimensional rotational group, whereas the
Euclidean group E(2) is a two.dimensional group constituted by a translation
and a rotation over a flat space.

It would be also possible to include in the NO algebra other 3n charges
(conserved in Landau gauge) following from the equations of motion or bo, co

and c-o respectively. It is argued in [NO80, DJ82] that this new ertended algebra
would correspond to osp(4,2), i.e. enlarging the Lorentz group to the Poincaré
group. Though, as shown in [TM85] the Lfield would create an anomaly in the
algebra, and therefore osp(4,2) is broken, at least on-shell.
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Faddeev-Popov Jacobian in
non-perturbative Y-M theory

The elevation of Faddeev-Popov (FP) gauge-fixing of Yang-Mills theory be-

yond the realm of perturbation theory has been intensely pursued in recent

years for many reasons. Nonperturbative gauge-fixed calculations on the lat-
tice are being compared to analogous solutions of Schwinger-Dyson equations

[AvS01, BHW02]. As well, the long-term goal of simulating the full Standard

Model using lattice Monte Carlo requires the Ward-Takahashi identities asso-

ciated with BRST symmetry [BRS76] in order to control the lattice renormal-

isation. The main impediment to nonperturbative gauge-fixing is the famous

Gribov ambiguity [Gri78]: gauges such as Landau and Coulomb gauge do not

yield unique representatives on gauge-orbits once large scale field fluctuations

are permitted. To some extent one could live with such non-uniqueness if one

could incorporate all Gribov copies in a computation. However the no-go theo-

rem of Neuberger [NeuS7] obstructs even this: (a naive generalisation of) BRST

symmetry forces a complete cancellation of all Gribov copies in BRST invari-

ant observables giving 0/0 for expectation values. In particular, Gribov regions

contribute with alternating sign of the FP determinant.

Here we shall propose an approach which takes seriously that gauge-fixing

when seen as a change of variables involves a Jacobian being the absolute value

of the Faddeev-Popov determinant. Usually the absolute value is dropped either

because of an a pri,ori restriction to perturbation theory or because of the iden-

tification of the determinant in terms of an invariant of a topological quantum

field theory [BBRT9l] such as the Euler character [Hir79, BS98]. In the latter
case the Neuberger problem is encountered.

The approach we describe in the following is not restricted to perturbation
theory. Moreover, because it will be seen to involve a gauge-fixing Lagrangian

density that is not BRST exact it falls outside the scope of the preconditions

for the Neuberger problem. In the next section we shall derive the Jacobian

associated with gauge-fixing in the presence of Gribov copies. We shall give

a representation of the "insertion of the identity" in this case in terms of a

functional integral over an enlarged set of scalar and ghost fields. The extended
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BRST symmetry of this new gauge-fixing Lagrangian density will be described
though we will see that the final form of the gauge-fixing Lagrangian is not
BRST exact.

5.1 Field theoretic representation for the
Jacobian of FP gauge fixing

In the following we shall formulate the problem in the continuum approach to
gauge theory.

Our aim is to generalise the standard formula from calculus for a change of
variable:

1.", (#)1,_:, : I a., arnõØ)q¡r¡t¡ (5 1)

Here one is changing from integration variables d to those satisfying the condition
i@):0 and where, for Eq.(5.1) to be valid, in the domain of integration of ã
there must be only one such solution. In the context of gauge-fixing of yang-
Mills theory the generalisation of Eq. (5.1) is

l'*(#) l":, 
: l'n'rFt'gAtt (52)

where .4, represents the gauge field, g is an element of the Stl(¡i ) gauge group,
Dg is the functional integration measure in the group and

F[qA):O (5.3)

is the gauge-fixing condition. we shalì be interested in Landau gauge FlAl :
ðrAr- As in the calculus formula, here Eq.(5.2) is only valid as long as Eq.(5.3)
has a unique solution. This is known not to be the ca.se for Landau gauge. The
FP operator nevertheless is MIIA]: (õF[rAllôg)lr:o and its determinant is
A.[,a] : det(Mr). For the Landau gauge MrlAl"b : ðpDî;blAl with DiblA)
the covariant derivative with respect to Aft in the adjoint representation. Now
the standard FP trick is the insertion of unity in the measure of the generating
functional of Yang-Mills theory realised via the identity (which follows from the
above definitions):

1- DsLpleA)6tF[%]l (5.4)

By analogy with standard calculus, in the presence of multiple solutions to the
gauge-fixing condition Eq.(5.4) must be replaced by

f
¡ürlll : Jrnõ@l,Al)laetur¡'e11, (5.5)
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where ¡/¡[A] is the number of different solutions for the gauge-fixing condition

FlsA] : 0 on the orbit characterised by A, where ,4 is any configuration on

the gauge orbit in question for which det Mp I 0. It is known that Landau

gauge has a fundamental modular region (FMR), namely a set of unique repre-

sentatives of every gauge orbit which is moreover convex and bounded in every

direction lDzgl,STSFS2]. The following discussion can be found in more detail

in [v895]. Denoted Ä, the FMR is defined as the set of absolute minima of the

functional VÃg] : I an*1n ¡¡' with respect to gauge transformations g. The sta-

tionary points of V¡lgl are those A, satisfying the Landau gauge condition. The

boundary of the FMR, â4, is the set of degenerate absolute minima of V¡[g]. l\
lies within the Gribov region C6 where the FP operator is positive definite. The

Gribov region is comprised of all of the local minima of Vafgl. The boundary of
Cs, the Gribov horizon âC¡, is where the FP operator M¡ (which corresponds

to the second order variation of 7¿[g] with respect to infinitesimal g) acquires

zero modes. When the degenerate absolute minima of âÂ coalesce, flat direc-

tions develop and M¡ develops zero modes. Such orbits cross the intersection

of âÂ and 7Cs. The interior of the fundamental modular region is a smooth

differentiable and everywhere convex manifold. Orbits crossing the boundary of
the FMR on the other hand will cross that boundary again at least once cor-

responding to the degenerate absolute minima. Though, at present, there is no

practical computational algorithm for constructing the FMR, it exists and we

will make use of it for labelling orbits, i.e.,.4,,, are defined to be configurations

in the FMR, 4' e .4,. Since every orbit crosses the fundamental modular region

once 'ù/e are guaranteed to have .ðy'¡ ) 1. In turn the eA' fulfilling the constraint

of Eq. (5.3) would be every other gauge copy of -4,, along its orbit. Eq.(5.5) is

equal to the number of Gribov copies on a given orbit, NGC : ,fú¡ - 1, except

that copies lying on any of the Gribov horizons (A¡ : 0) do not contribute to
I/¡. The finiteness of .f/¡ in the presence of a regularisation leading to a finite
number of degrees of freedom (such as a lattice formulation) can be argued as

follows. Consider two neighboring Gribov copies corresponding to a single orbit.
If they contribute to l{¡ they cannot lie on the Gribov horizon. Therefore they

do not lie infinitesimally close to each other along a flat direction, namely they

have a finite separation. This is true then for all copies on an orbit contributing
to ,|y'¡: all copies contributing to ,lú¡ have a finite separation. But the g which

create the copies of Au belong to SU(¡/) which has a finite group volume. Thus

for each space-time point there is a finite number of such g. We conclude then

for a regularised formulation that ,lü¡ is finite. Consider then the computation

of the expectation value of a gauge-invariant operator OlAl over an ensemble of
gauge-field configurations .4,, which is this set of unique representatives of gauge

orbits discussed above. Note that for a gauge-invariant observable, it makes no
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difference whether Au e Â or if the ,A,r's are any other unique representatives of
the orbits. The expectation value on these configurations

(otA)):teffi# (b6)

is well-defined. Since in any regularised formulation .À/¡ is a finite positive
integer, we can legitimately use Eq.(5.5) to resolve the identity analogous to the
FP trick and insert into the measure of integration for an operator expectation
value. We thus have

(olAl): I DA"ñiÃ¡ [ os dlr¡n¡1¡ der MpleA) O[A) e-sv vltl
(5 7)

I DA"nìn I Ds 6(Fl'gAl) det Mrlell e-sv ufAl

We can now pass l/¡[1"] under the group integration Dg and combine the latter
withDA" to obtain the full measure of all gauge fields D(nA,) which we can
write now as DA. l/p is certainly gauge-invariant: it is a property of the orbit
itself. So .f/¡[,4"] ://r[náu] : l'rr[Á]. Thus we can write

(o[Á]) : ï DAdaa(rl¿J) 
la"t MplAl OlAl e-svvlel

(5.8)
I DAffittr¡al) 

la"t MrlAl e-svul,Al

Perturbation theory can be recovered from this of course by observing that only
,4 fields near the trivial orbit, containing A : 0 and for which Sy¡alA) : g,

contribute significantly in the perturbative regime: the curvature of the orbits
in this region is small so that the different orbits in the vicinity of A : 0
intersect the gauge-fixing hypersurface F : 0 the same number of times. Then
the number of Gribov copies is the same for each orbit, l/¡ is independent of
,4u and we can cancel .|y'¡ out of the expectation value. In that case

(o[Al): I DAõ(FlAl) det MplAl OlAle-svuØl

I DAô(f'[/]) det MplAl e-sY ¡øÍAl
(5.e)

In turn, observing that fluctuations near the trivial orbit cannot change the
sign of the determinant, the modulus can also be dropped and one recovers the
usual starting point for a standard BRST invariant formulation of Landau gauge
perturbation theory. Note that perturbation theory is built on the gauge.fixing
surface in the neighbourhood of A : 0, which for a gauge-invariant quantity
will be equivalent to averaging over the Gribov copies of A:0 as in Eq. (5.9).
For the non-perturbative regime, the o¡bit curvature increases significantly and
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in general there is no reason to expect that l/¡ would be the same for each

orbit. Moreover the determinant can change sign. Let us focus on the partition
function appearing in Eq. (5.8)

ô(F[Aj) e-svu (5.10)

The objective is to generalise the BRST formulation of Eq.(5.10) such that it
is valid beyond perturbation theory taking into account the modulus of the
determinant. We thus start with the following representation:

det(MpfAl) : ssn(det( M IIAD) det(M pfAl) (5.1 1)

This representation goes under the name of the Nicolai rnap [Nic80, BBRT91]

5.1.1 The Nicolai map and Topological Field Theory

Soon after the seminal work of Gribov [Gri78], the attention on gauge-fixing pro-
cedures in non-Abelian gauge theories [Sin78] led physicists to examine more in
depth the strong relation between these theories and Topological Field Theory
(TFT). It was immediately realised that in 4-dimensional gauge theory cer-
tain topological aspects play an important role: in late 70's and early 80's
an enormous amount of work, mainly due to Donaldson, Schwarz and Wit-
ten, allowed the physics community to discover how Y-M theory could be ex-
plained in terms of topologically invariant quantities, such as polynomials and
knots [Sch78,Wit82,Don83,Don90,Wit89]. The discovery of solutions to the Y-
M classical equations of motion, called instantons, [BPST75] and the analysis of
monopole structures in gauge theory ltE74,t[76l spread light into a world dense

of interesting topological properties [Uhl82b,Pol77,AJ78], as well as a better
understanding of the geometrical/mathematical background of low dimensional
manifolds of Yang-Mills theory in terms of the well known theory of principal
bundles [BV81a,DV80,AB82]. The study of these relations among mathematics,
topology and physics has become known as Topological Quantum Field Theory
(TQFT). In the following sections we will largely adopt [BBRTgl] as a leading
guide: as TQFT is a considerable subject to cover, we will try to focus on those
parts which directly concerns supersymmetric aspects of Yang-Mills theor¡ the
coherent and appropriate scenario on which the BRST formalism resides.

In topological quantum field theories we are only interested in those observ-
ables that only depend on global features of the space on which these theories are

defined. Consequently, the observables are independent of any Riemannian met-
ric characterising the underlying manifolds. The study of quantities which are

DANrt[,4] det(M¡[A])Zgarge-frxed
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topological invariant was first started by Euler, in 1736 when he published a pa-
per on the solution of the Knigsberg bridge problem entitled Solutio problematis
ad geometriam situs pertinentis which translates into English as The solution of
a problem relating to the geometry of position 1. The quantum'version of Euler's
ideas deals largely with the path integral representation of topoligcal invariants
such as the Ray-Singer torsion [Sch78] or Morse theory and its relations with
supersymmetric quantum mechanics [Wit82]. As we will see, in the construc-
tion of TQFT, one can adopt two main different frameworks, the Witten-type
or Schwarz-type: for the Witten type theories, also called cohomolog'ical, one
combines certain topological shift symmetry with any other local symmetry,
whereas in Schwarz type models, called quantum, the attention is focused on the
usual gauge symmetry. We will only consider 'Witten-type theory throughout
this work. The necessary ingredients to construct a topological field theory are

o a collection of Grassmann-graded 2 fields {Q} defined on a Riemannian
manifold M with metric g,

o a nilpotent operator Q, Q2: 0, odd w.r.t. Grassmann grading,

o the physical Hilbert space is defined by the condition QlphAs) : 0, and
its physical states are defined to be Q-cohomology classes 3,

o an energy-momentum tensor which is Q-exact, i.e. corresponds to the
variation of a functionalV..,B of fields w.r.t. Q a

Tog: {Q,V"3@,9)}, (5.I2)

The existence of a a Nicolai map is admitted in a Witten-type theory, such

that the path integral can be restricted to the moduli space of classical solutions
(instantons). Nicolai has proven that for theories with a global supersymmetry
there exists a non-linear and, in general, non-local mapping of thc bosonic fields
which trivialises the bosonic part of the action, and whose determinant cancels

the Pfaffian 5 (in the case of Majorana spinors) of the fermionic fields present.

lThe paper not only shows that the problem of crossing the seven bridges in a single journey
is impossible, but generalises the problem to show that, in today's notation, A graph has a
pøth trauersing eøch edge exactly once if eaactly two uert'i,ces haue odd degree.

2Grassmann grading defines lhe euen or odd, character of a field under product exchange.
3A state annihilated by Q is said to be Q:sl.r.¿, whiìe a state of the form Ql¡) is called

Q-exact; this equivalence relation partitions the physical Hilbert space into Q-cohomology
classes, states which are Q-closed modulo Q-exact states.

4The variation ôO : {Q,O} corresponds to a Grassmann-graded commutator of fields.
sThe Pfaffian of an even 2n-dimensional antisymmetric matrix Mtj is defined as Pf (M):

ei,,...i,.M:: . . . M:::-', with the property that the determinant of the matrix M is equaì to
the square of the Pfaffian.
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Consider the following action

After integrating out the fermions, the partition function takes the form

lr"-"r' P rlöl

dó avþ'€:i*taô

1
A"¡rt',þorþrrþi rþ'

4

(5 13)

Z- (5 14)

The existence of a Nicolai map for such a theory tells us that there exists a map

ó - €(ó) such that the Jacobian of the transformation compensates the Pfaffian
(up to a sign). The partition function Z then assumes the topological form

Z- I u I à €' x (winding number of the mapping), (5.15)le \

where the winding number is the number of times ( runs over its range as /
is varied. In [Nic80] Nicolai was able to show this map only up to third order

in the coupling constant for lf : 1 super Yang-Mills theory in 4-dim. This
approximation is due to the highly non-local character of the map, which can be

found analytically only in low dimensional cases. In the above case, suppose we

use the following change of variables, showing the instanton sector of the theory

(5.16)

'With this change of variables we get

17_
L- (5.17)

The ratio of functional determinants is then *1, which can be regarded, when

dealing with Y-M theory as a topological manner to consider the Gribov prob-
lem. In the next chapter, we will analyze this ratio problem from the topological
point of view of the PoincarêHodge and Gauss-Bonnet theorem. There, we will
discuss the fundamental topological obstruction in non-perturbative Y-M the-
ory which determines the eract cancellation of this ratio, also known as the
Neuberger problem.

I,"-trd"€' 
der (#) þ" (#)] : 11
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5.2 The Nicolai map in the Faddeev-Popov

Jacobia n

As mentioned, the factor det(Mp[A]) in Eq.(5.11) is represented as a functional
integral via the usual Lie algebra valued ghost and anti-ghost fields in the adjoint
representation of Stl(¡/). Let us label these as co,c". It is usual also (see for
example [NO90]) to introduce a Nakanishilautrup auxiliary field b". Thus the
effective gauge-fixing Lagrangian density 6

Ld"¡: -b"apA"t"+ f,,,u" 
-l d'Mftbcb (b.18)

yields [NO90]

lim / DúDc"Dba"-IdarEa"t: ð(r[,4]) det(MplAl). (5.19)
e-o J

In order to write the factor sgn(det(M¡[,a])) in terms of a functional integral
weighted by a local action, we consider the following Lagrangian density

L.sn: i,B"Mf;pb - id"Mfrbdo +|a"øu (5.20)

with d", d" being new Lie algebra valued Grassmann fields and go, B" being new
auxiliary commuting fields. Consider in Euclidean space the path integral

2"s,,: Ioã"oa"OtpoDBoe-ld'aæL"sn. (b.21)
J

Completing the square in the Lagrangian density of Eq.(5.20), the B field can be
integrated out in the partition function leaving an effective Lagrangian density

L!"*: |v"(ur)')"uMuf ç" - td"Mibdb , (5.22)

where (Mr)' denotes the transpose of the FP operator. Integrating all remain-
ing fields now it is straightforward to see that the partition function Eq.(5,21)
amounts to just

Psqft : sgn(det(Mr)) (5.23)

6We will use throughout this Chapter a different convention from the one we will adopt in
the next Chapter. In this Chapter, in fact we adopt Hermitian generators for the algebra, and
Hermitian ghost fields.
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Thus the representation Eq.(5.21) can be used for the first factor of Eq.(5.11).

The Lagrangian density of Eq.(5.20) therefore combines with the standard BRST

structures of Eq.(5.18) coming from the determinant itself in Eq.(5.11) so that
an equivalent representation for the partition function based on Eq.(5.10) is

I7zgauge-hxecl - D AiD æD c" D d'" D d,"D b" D g" (N pl,4] ) 
- t e- svv -sa"' -s"g' (5.24)

with S¿"¿ and ,9"*,, the actions corresponding to the above Lagrangian densities

Eqs. (5.18,5.20).

5.3 A new extended BRST

The symmetries of the new Lagrangian density, l.rn, are essentially a boson-

fermion supersymmetry and can be seen from Eq.(5.20). In analogy to the

standard BRST transformations typically denoted by s, we shall denote them

by the Grassmann graded operator ú

tg"
td"

td"

tB"

d"

0

BO

0

-|øf'""'"'
b"

0.

such that
tL""n:O' (5'26)

Eqs.(5.25) realise the infinitesimal form of shifts in the fields. The operation t
is nilpotent: t2 : 0. Using Eqs.(5.25) we can give the following form for the

Lagrangian density f"*,

' wiur'* ls"l) . g.2T)L"En:t\d"(ii., 2'/

The question now is how to combine this with the standard BRST transforma-

tions

tA!, Dil'u

(5.25)

sco :

st:
sb" : (5.28)
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The transformations due to ú and s are completely decoupled except that the
latter also act on the gauge field on which the FP operator M¡ depends. We
propose the following unification of these symmetry operations. Consider an
operation S block-diagonal in s and ú; S: diag(s,ú). The operator acts on the
following multiplet fields:

A: (ii) ,c" : (";) ,e": (";) ,ß" : (,;") (5 2e)

We see that these fields transform under .S completely analogously to the stan-
dard BRST operations

SA : 'Pabgb

sci : Fif;c:cÊ
SC" : ß"

SB" : 0, (5.30)

where i, j,k :1,2 label the elements of the multiplets, and

D"b : diag(Dfib,õ"b)

Fili : -*,nf"u", r:!f :0 for ijk + tlt. (5.31)

Note that nilpotency is satisfied, 52 : 0. V/e shall refer to this type of operation
as an ertended BRST transformation which we distinguish from the BRST-anti-
BRST or double BRST algebra of the Curci-Ferra¡i model [cF76,TM80]. We
can thtrs formulate the gauge-fixing Lagrangian density for the Landau gaugc u,s

Luf:r¡s(u"!" 0 \
\ u d(iM"Fbvb+ln"¡)' (5'32)

This approach admits also an extended anti-BRST operation:

SA : Dabcb

sci : fiifeleÊ
SC" : -8"
SB" : 0. (5.33)

\Mriting ,s : diag(S, ú] we can extract the standard antlBRST s--operations, in
Landau gauge, [TMB83, BTM82]

gA:r : Di"ud

;fl,òL -7 o ¡ob.¿V
2yJ 

ww

sco : -b"
sb" : 0 (5.34)



5.3 A new extended BRST 73

and those corresponding to ú:

Moreover, the ghosts and anti-ghosts in this extended structure also fulfill the

criteria for being Maurer-Cartan one-forms,

SC + SC : 0. (5.36)

However there is no extended BRST-anti-BRST (or double) symmetric form of

the gauge-fixing Lagrangian density Eq, (5.32), unlike the two pieces of which

it consists. Such a representation exists in the s-sector of Landau gauge:

tço :
td," :
tdo :

tBo :

d"

0

-8"
0. (5 35)

(5.37)o, a
þ It

In the t-sector, the corresponding structure is

1 _-
Lsr,t: 

Utîl,n"tutf 
pb + a"a"l. (5.3s)

However the complete Landau gauge-fixing Lagrangian density can only be ex-

pressed via a trace, namely as

(5 3e)

Ler ASA
1

,"- 2"

Let

with
w: diag(Ai,Ai,,p"Mfrbpo + *d"). (5.40)

Nevertheless this compact representation formulates the modulus of the deter-

minant in Landau gauge fixing in terms of a local Lagrangian density and follows

as closely as possible the standard BRST formulation without the modulus.

SwTrs
1

2
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Decontracted Double Lattice
BRST, the Curci-Ferrari Mass and

the Neuberger Problem

ln 1974, Wilson [Wil74] formulated Euclidian gauge theories on the lattice in
order to shed light on the confinement mechanism in QCD and to study the non-

perturbative regime of non-Abelian gauge theories. To construct the proper

lattice gauge theory of QCD, we need first to discretize the space-time, then

the transcription of the gauge and fermion fieldsl succesively the action and

the re-definition of the functional measure. Finally the transcription of the

operators to probe the physics. For a detailed analysis of lattice gauge theory

we refer to [Gup97] and [Smi02]. Here we just wish to give the basic properties

and definitions of this theory which will be used in the following sections. To

start with, we need to stress that the lattice procedure provides a cutoff which

naturally regularizes the ultraviolet divergences of quantum field theories. As

with any regulator, it must be removed after renormalisation: the continuum

version of any lattice theory is provided by taking the adopted lattice spacing

to zero. In the wide range of possible lattice regularisation, the simplest one

consists in taking the isotropic cubic grid, where there is no distinction between

the space lattice spacing as and the time on€ oa. Moreover, on the lattice, we

sacrifice Lorentz invariance, but all the other internal symmetries are preserved,

particularly local gauge invariance2. Having said that, any four-dimensional

integral can be written in terms of the lattice spacing a as

[on*'¿a)], (6 1)
JrL

where the space-time coordinate x, has been replaced by a set of integers nr,
such that rp: an, and !,, corresponds to a finite sum over the lattice sites n.

lDealing only with pure gauge theories we will not consider fermion fields in this introduc-

tion to lattice gauge theory.
2Requiring gauge invariance at all ø is necessary otherwise one would have many more

parameters to tune (such as the gluon mass for instance) and there would arise many more

operators at any given order in a. The lattice action will be also invariant under charge

conjugation C, parily P and time reversal 7.
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The construction of gauge fields is somewhat tricky and requires some attention:
observing that a particle moving on a contour picks up a phase factor, Wilson
formulated gauge fields on a space-time lattice introducing the concept of link
variables Ur(r), connected to this phase factor. These links are the fundamental
variables on the lattice, they live in the Lie group G of the theory, connecting r
to r * ¡.1, defined as

( nr+û I
Ur(r): P""p {s / X"Ai@)d", Il/" )

: Ur(r,r + îL), (6.2)

with X" the .¡{2 - 1 anti-hermitian generators of the Lie algebra g. p denotes
the path ordering, such that

Ur(r,r - t"): U-r(r): Uj(r - tt,r) (6.3)

Under a gauge transformation g(r), the link variable transforms as

Tr(r) = g(r)Ur(*) st @ + p). (6.4)

With these definitions, there are two types of gauge invariant objects (which
can be of arbitrary size and shape and over any representation of the Lie group)
that one can construct on the lattice 1) a string of path-ordered product of links
capped by a fermion and an antifermion; 2) closed Wilson loops, whose simplest
example is the plaquette, a 1x 1 loop

wìî': R"ry(u, @)u,(r + þ)u)(r + ù)uj@)). (6.b)

A gauge invariant action has to build up out of loops and strings, with the
physical constraint that in the limit limo-0, we recover the continuum theory
(in the case of QCD, the Y-M action). Consider for this purpose the wilson
loop (6.5), where the average field .4, is defined at the midpoint of the link

wì:': R"rt(uu @)u,(r + p)ul@ + ù)uJ@))

_ 
"asAr(r*Ç)+¡"þ+E)-¡,,6+È)_A,(r+tÐ. (6.6)

Expanding about r * ff gives

W;i' :exp 
{a2g(ô, 

A, - a,At) + #@'rA, - a:,Ap) * }
: 1* a2gFr, - #r*ru' + o(a6) + .. . (6.2)
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Summing over the Lorentz indices we can write

srr/l : þ+Ð*"oå G-wi,î')

: tu,)tr,,F" - i I d4r F,,Fp' (0.8)
t<u

Historically, lattice calculations are generally presented in terms of the coupling

13: 6le2 (for ^9U(3)).

6. 1 Dou ble B RST on the lattice

In the covariant continuum formulation of gauge theories, in terms of local field

systems, one has to deal with the redundant degrees of freedom due to gauge

invariance. Within the language of local quantum field theory, the machinery

for that is based on the so-called Becchi-Rouet-Stora-Tyutin (BRST) symmetry

which is a global symmetry and can be considered the quantum version of local
gauge invariance [NO90,AFRvS03]. In short, one starts out from the representa-

tions of a BRST algebra on indefinite metric spaces with assuming the existence

(and completeness) of a nilpotent BRST charge Q¡. The physical Hilbert space

can then be defined as the equivalence classes of BRST closed (which are anni-

hilated bV Qn) modulo exact states (which are BRST variations of others). In

QED this machinery reduces to the usual Gupta-Bleuler construction. For the

generalisation thereof, in non-Abelian gauge theories, all is well in perturbation

theory also. Beyond perturbation theory, however, there is a problem with such

a construction that has not been fully and comprehensively addressed as yet. It
relates to the famous Gribov ambiguity [Gri78], the existence of so-called Gribov

copies that satisfy the Lorenz condition [JO01] (or any other local gauge fixing
condition) but are related by gauge transformations, and are thus physically

equivalent. As a result of this ambiguity, the usual definitions of a BRST charge

fail to be globally valid.
A rigorous non-perturbative framework is provided by lattice gauge theory.

Its strength and beauty derives from the fact that gauge-fixing is not required.

However, in order to arrive at a non-perturbative definition of non-Abelian gauge

theories in the continuum, from a lattice formulation, we need to be able to
perform the continuum limit in a formally watertight way. And there is the
gap in our present understanding. The same problem as described above comes

back to haunt us in another dress when attempting to fix a gauge via BRST

formulations on the lattice. There it is known as the Neuberger problem which

asserts that the expectation value of any gauge invariant (and thus physical)
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observable in a lattice BRST formulation will always be of the indefinite form
0/0 [Neus7].

The BRST algebra requires the introduction of further unphysical degrees
of freedom. These are the Faddeev-Popov ghosts and anti-ghosts which violate
the Spin-Statistics Theorem of local quantum field theory on positive definite
metric (Hilbert) spaces. Contrary to what the name anti-ghost might suggest,
however, in the usual linear covariant gauges the treatment of ghosts and anti-
ghosts is completely asymmetric. On the other hand, it is also known for many
years that it is possible to extend the BRST algebra to be entirely symmetric
w'r.t. ghosts and anti-ghosts. This additional symmetry arises naturally in
the Landau gauge but can also be extended to more general gauges the so-called
CurciFerrari gauges at the expense of quartic ghost self-intertactions. The most
interesting feature of these gauges four our purpose, however, is that they allow
the introduction of a mass term for ghosts [CF76]. While such a Curci-Ferrari
mass zn breaks the nilpotency of the BRST and anti BRST charges, which
is known to result in a loss of unitarity and which therefore meant that this
relatively old model received little attention for many years, it also serves to
regulate the Neuberger zeroes in a lattice formulation. In [KvSWO5] this was
exemplified in a simple Abelian toy-model where the zeroes in the numerator
and denominator of expectation values become proportion al to m2 and allow to
compute a finite value for rn2 --- 0 via I'Hospital's rule.

For the SU(¡/) gauge theory on a finite four-dimensional lattice things are
naturally much more complicated than in the toy model. In this Chapter we
developed a full lattice formulation of the time-honored model by Curci and
Fer¡ari with its decontracted double BRST/anti-BRST and ghost-mass term, as

announced in [GvS\M06]. We first extend Neuberger's no-go.theorem to include
the ghost/antighost symmetric case of the non-linear covariant CurclFerrari
gauges ror m2 : 0, â case originally excluded by Neuberger. At non-vanishing
Curci-Ferrari mass the partition function of the model used as the gauge-fixing
device can be shown to be polynomial in m2 and thus non-vanishing. In this
way regularising the Neuberger zeroes, the leading po\4'er of that polynomial can
be extracted from a suitable number of derivatives (w.r.t. rn2) before the limit
n'¿2 --- 0 is taken, in the spirit of I'Hospital's rule. This gives rise to a modified
lattice BRST model without Neuberger problem.

For the topological lattice formulation of the double BRST symmetry of the
ghost/anti-ghost symmetric covariant gauges we start out from the standard
gauge-fixing functional Vulgl of covariant gauges which here assumes the role of

t
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a Morse potential on a gauge orbit,

vulsl : -l )- I r, (re : -i f Re ft(r!*' 2P?"* Lr 
Pu**

(6.e)

Here, in the first form, U¿¡ e Stl(.n/) is the directed link variable connecting

nearest neighbour sites z and j. The sum j - i denotes summation over all
nearest neighbours j of site i. We assume periodic boundary conditions. The
double sum thus runs twice over all links (zj), and with Uj¡ : U¡¿ it is therefore

equivalent to the simple sum over links in the second form, whers U,,u stands for
the same link field [/ at position ø in direction ¡.r,. The constant p is the normal-
isation of the ,9tl(¡i) generators X. We use anti-Hermitian lX",Xbl - ¡abcyc
with trX"Xo : - p dob. We explicitly only need the fundamental representation,

where p: pnn¿:I12.
As usual, under gauge transformations the link variables U transfrom

U¿j - (4¡ : gltl¿¡g¡. (6,10)

BRST transformations s and anti-BRST transformations 5 in the topological
setting do not act on the link variables U directly, but on the gauge transforma-
tions g¿ like infinitesimal right translations in the gauge group with real ghost

and anti-ghost Grassmann fields ci, ci as parameters, respectively,

sg : gXoco : gc, 5g : gX"d : gc, (6.11)

where we introduced Lie-algebra valued, anti-Hermitian ghost fields c¿ -- X"ri
with c| : -ci¡ and analogous anti-ghost fields ci = X"cl. For consistency, 'ù/e

furthermore require

sgt :("g)t : -c7t, tgt :(fu)t : -rgI " (6.12)

For the gauge-transformed link variables this then implies

tufi : -"nUf¡IUf,c¡ , tufi : -erUfi+Ufret, (6.13)

The BRST transformations for (anti)ghosts and Nakanishi-Lautrup fields b are

straightforward lattice analogues (per site) of their continuum counterparts,

1
sco

sú

sb"

(cxc)", (6 14)

(6.15)

(6.16)

2

b" !r{u * 
")"

-){" * u)" - å(,"" c)xe)"
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The relatively obvious notation of using the "cross-product" herein refers to the
structure constants for ^9U(.n/) , e.g. (c x c)o : f"b'd"'.

In the ghost/antighost symmetric gauges as considered here, the anti-BRST
variations are obtained by substituting c -+ c and ¿ ---+ -c according to Faddeev-
Popov conjugation. Thus,

1

-b" (exc)", (6.17)
2

(6.18)

sco

sc"
")"

1

-r(ex
sbo : -Irrx b)" + å(l- r e) x c)". (6.1e)

The action of the topological lattice model for gauge fixing a la Faddeev-Popov
with double BRST invariance can then be written in compact form as

sc" : t, ss (vuls) * n*} t,e,"n) . (6.20)

This is the lattice counterpart of the continuum gauge-fixing Lagrangian

Lc, : iss(,+iai-i.(c-'c") with ,S.. : f a,rL", (6.21)

in D Euclidean dimensions.
Performing the anti-BRST variation first, we obtain

svulgl : ++I,, Guuf¡ - ¿¡uf¡) (6.22)

1

2p I t cîft (x"(ufi - uí,0
, J-"

where

-tqFfvn),

1

2p D r' (x"(uf, - uí))Ff (un) (6.23)

J-r
is, of course, the standard gauge-fixing condition of covariant gauges which re-
duces in the continuum limit to

Ff (un) o'9 o'ðrA!r" + o(aa) . (6.24)

As we know, the gauge-fixing condition is derived by considering the first deriva-
tive of the Morse potential V¡¡[gl with repsect to the group element g. However,
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since this functional derivation takes into account matrix elements, its compu-

tation requires special attention to the matrix-order, and so it can turn out to
be ambiguous. To avoid this complication we define the one-parameter sub-

group of the Lie group as gt(r) : stu', with ¿ € R. Through this parameter t
we then have to compute a simple l-dimensional derivation, bypassing the non-

commuting nature of the matrix elements. Adopting standard notation (*,tt),
we write

1

f n" t,r[(c,.r, - u*+t)s,U,,þf
p

t,lf,

1

2p D ,rþ"(rt(It,tt - n,uj,ì - u,+t (s,(J,,, - n'uj,r)]

*,,,,

arþ

- - 
1 I n" t, {,, l}t,r,,, - 

n,(I,r) -}{n,r.-,,, - n,ul_r,,,] 
}p Lr* 'P - r'tl/ 2' - * 

(6.25)

From now on \Me will drop g¿ from the link notation. Defining A*,þ: I(U,,, -
Uj,r)t.u""t""" : AI,.X", we then have

*r,rr: -;Ð"r I t,1x"1 A,,, A*-,,,)\

: t ri!,Øi,r- A!,-r,r)

: (:," ;, (6 26)

Turning back to the BRST variations, with Eqs. (6'17), (6.18) we furthermore

have
5 (dc') : c''b" , (6'27)

and therefore, for the gauge-fixing action, we obtain the alternative form

sc¡ : +D,(e @ie, *+bÐ) (6 2s)

As in the continuum formulation, in this form it looks exactly like the gauge-

fixing action of standard Faddeev-Popov theory for the linear covariant gauge.

The specific features of the ghost/anti-ghost symmetric framework show when

working out the remaining BRST variation. Flom the first term we have (i),

T (,q) Ff : -+Ð; ft(b^ufi-uí,))
o 

* 1 \- Ð ,, ({¿n, q} (uf¡ - uí,)) (6.2e)' +p ?fn
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The first term implements the gauge-fixing condition as in standard Faddeev-
Popov theory. The second term, containing the anticommutator {õ, c}, is char-
acteristic of ghost/anti-ghost symmetry because it combines with the remaining
quadratic ghost terms to produce a Hermitian Faddeev-Popov operator (for any
gauge parameter €) To see this explicitly, consider (if),

T+ 
("4') : *+)-- r, (¿o"nuf¡

- c¿Ufrc¡ + c¡Ufnc.i _ cn¿¿Uln) ,

so that the difference (z) - (ii) yields

T"(* 
F:): -++I ,, þtur,-uí,))

(6 30)

= t biFi + D3 m,,i!"! (6 s1)
i i,i

which defines the lattice Faddeev-Popov operator Mr" of the ghost/anti-ghost
symmetric Curci-Ferrari gauges. Following the same method we used to derive
the gauge-fixing condition, we want here to show how to derive the Faddeev-
Popov operator M"", which is obtained by the second derivative with respect
the real parameter ú of the Morse potential V¡¡lgl as follows

s2

#r,vl: I ,iD,ftroz,- tit,)

(6.32)

Changing notation to U¿¡ =Ux,p and A¡¡: A*,p we can write

. ++I ,, (eouf,c¡ - c¿(rf,c¡ - l¿n, "nllV:, * uft) + 
"nen];çuX, 

+ uí))

:rp

: 1\-,.,o \--.1 1: 
o +', +{t 

(t'(ø,p + u},t")@i+t" - ai) - tr(rJ,-r,, + u}-, ì@i - ui-t")

- 1,r"" (l, r@I*r+ ru-) - A,-r,r@0, + ru"-r))

*lo"u" (t çx"çu',, + u),r))(ub,+t - ub,¡trlx'1u,-r,r t uj-, ì)(r:,, - ,i--ùj

#r,r,: i++ Dfi{"rr,, + u¡)(ui - uî) - l¡*" Ai¡*,l + ubt)

*1o"u"tr(x"(u¿¡ +u¡¿))(ab¡- rl,) (6.ss)
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Therefore, the Faddeev-Popov operator can be obtained as a double derivative
with respect to the gauge function u" of. ffiVrlOl

(M,,)i: :&&#r,r, (634)

Note that the terms in (6.30) can be written in the form

T + (,rÍ) : h 7*,q { 
,, ([x", xbl4fi - uí,)) çcln + cb¡)

+ tr ({x", xb}Qfj + uí)) ki - "i) } to asl

This, of course) corresponds to the widely used Faddeev-Popov operator of lattice
Landau gauge, as first derived in lZwa94l. It differs by the quadratic ghost terms

in (6.29) from the ghost/anti-ghost symmetric one, M* in (6.31), which can be

written in the alternative form,

Ð 
+ M,,i: 

", 
: -+| {,.11t ", xb}(r:,, + ul,I,)) x (4+p - 4)k!,*t, - "0,)

+ tr([x", xol(ul,r - ul,Ir)) x (1kb,*ø - "!,) - (4+ø - 4)"Ð] ,

(6.36)

In the continuum limit this reduces to the ghost/anti-ghost symmetric Faddeev-

Popov operator

To complete the derivation of the gauge-fixing action in the ghost/anti-ghost
symmetric framework, we furthermore need work out the BRST variation of
ss(e"co) : s(c"b) from (6.14)-(6.16). This, however, is done in exactly the
same au/ay as in the continuum, the result is (üi),

s(ea"): bobo +f,fe xc)2. (6.37)

Putting together all terms from (i) to (üi) we obtain the full gauge-fixing action
with extended double BRST invariance on the lattice in the form,

scr:t{ -ib.Figs)-¿dM,,i["] + f,uiui*å,u,. o),], (6.38)

M",i: 1 -"';(an"'+ D"ba) õ@ - a) + o(a') .
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where we introduced the short-hand notation that

M,,îl,l = -ilÐ { rr ([x', xb]Vfj - uínD,j

+ tr ({x", xu}(uf¡ + uíoD þi - "r)} , (6 Be)

which corresponds to the ghost/anti-ghost symmetric Faddeev-Popov operator
in (6.36), in particular, we have

Tq 
M,,îl"l : 

Ð4 
ut*î|"1. (6.40)

The full symmetry of the ghost/anti-ghost symmetric Curci-Ferrari gauges [CF76,
TM80] is given by a semidirect product of a global SL(2,.R), which includes
ghost number and Faddev-Popov conjugation, with the BRST/anti-BRST sym-
metries as used aboveS. This is the global symmetry of the Landau gauge, and
it is sometimes referred to as extended BRST symmetry.

Among the general class of all covariant gauges [TMB83], with a Lagrangian
which is polynomial in the fields, Lorentz, globally gauge and BRST invariant,
and renotmalisable in D : 4, the ghost/anti-ghost symmetric case is special and
interesting in that it allows to smoothly connect to the Landau gauge for { ---+ Q,

without changing the global symmetry properties.
In particular, introducing with [TMB83] a second gauge parameter B e [0, 1],

to interpolate between the various generalised covariant gauges, the linear co-

variant gauges of standard Faddeev Popov theory correspond to the line B : g

in the two gauge-parameter plane (€, P). Along this line, the global symmetry
changes abruptly when reaching the Landau gauge limit; and for p :1, one ob-
tains a mirror image of standard Faddeev-Popov theory with the roles of ghosts

and anti-ghosts interchanged. The ghost/anti-ghost symmetric gauges discussed
here then correspond to the line B : Il2. For { : 0 the distinction is an illu-
sion. The whole interval for B e [0, f] at { : 0 is equivalent and corresponds
to the Landau gauge. The important difference is, however, that the SL(z,íR)
symmetric line at 0 : tl2 provides a unique class of covariant gauges which
share the full extended BRST symmetry of the Landau gauge for any value of (.
The limit € * 0 is thus a smooth one, as far as the symmetries are concerned,
only along this line. The price to pay are the quartic ghost self-interactions in
(6.38) which again vanish only in the Landau gauge limit.

For a further discussion of the general ghost creating gauges, and their ge-

ometrical interpretation, see [TM80]. The one-loop renormalisation was first
discussed in [TMB83], for explicit calculations of renormalisation constants and

3Also see Appendix A of Ref. [AFRvS03]
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anomalous dimensions of the ghost/anti-ghost symmetric case up to including

the three-loop level, see [dBSvNW96,Gra03]. The Dyson-Schwinger equations

of these gauges were studied in [AFRvSO3].

6.2 The Neuberger problem

Following Neuberger, we introduce an auxiliary parameter t in the Euclidean

partition function to be used as the gauge-fixing device via the Faddeev-Popov

procedure of inserting unity into the unfixed partition function of SU(,n/) lattice
gauge theory. The gauge-fixing action of the double BRST invariant model

given by (6.20) consists of two terms both of which are separately BRST (and

anti-BRST) exact. Multiplying the 1"t term in (6.20) by the real parameter ú

amounts to a mere redefinition of the Morse potential which should have no

further effect. We can therefore write the gauge-fixing partition function with
double BRST,

2",(t) : I orn,b,c,cl"*p { iss(tvulsl * .Lrol,, ,,")}, (6.41)

which is independent of the set of link variables {U} and ,n. *"ur. parameter

{ because of its topological nature. Moreover, the ú independence is really not
different from the { independence here, and it is thus rather obvious. Explicitly,
the derivative with respect to I (or {) produces the expectation value of a BRST

exact operator which vanishes, i.e.,

f
zL,Q) : J 

oln,b, e, cl (-i,ssv¡¡lsl) 
"*p { - zss(t vulgl + r++tr clc,) }

- 0, (6.42)

provided the BRST operators are nilpotent (property that we will see lost in the

case of the massive Curci-Ferrari gauge). At t:0 on the other hand, we obtain

with (6.27) and (6.37),

2""(0) : r 
lalu,c,cl 

x.*p{ -Ð (frrrr + f ta, "n)') },{0.+s)

where the volume of the gauge group on the lattice, from the invariant integra-

tions lln d,gaviathe Haar measure over !¿ € Stl(¡\¡) per site i, is absorbed in the

constant ,A/. the Gaussian integrations over the Nakanishi-Lautrup fields b are

also well-defined and produce a factor (2r l{)Qt'z-r)/2 per site'
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One might be tempted to conclude at this point that the quartic ghost
self-interactions in (6.43) might remove the uncompensated Grassmann inte-
grations of the linear covariant gauges where no such self-interactions occur.
The ghost/anti-ghost integrations at ú : 0 also factorise into independent inte-
grations deidci over 2(l/2 - 1) Grassmann variables per site. For l/ : 3, for
example, the 4th order term of the exponential in (6.43) produces a monomial in
ci, ci which contains each of these 16 Grassmann variables exactly once, so that
their integration might produce a non-vanishing result, This is not the case,
however. Working out the prefactor of this monomial, as we will do explicitly in
the more general case with including a non-vanishing CurclFerrari mass m be-
low, one finds that the prefactor of this term in (6.43) vanishes in the masssless
case and thus,

2",(0):9. (6.44)

Because of the f-independence (6.42), this implies the vanishing of the gauge-
fixing partition function (6.41) of the ghost/anti-ghost or SL(2,-R) symmetric
formulation with double BRST invariance in the same way as that of standard
Faddeev-Popov theory observed in [Neu87]. As for the latter, the sign-weighted
sum over all Gribov copies, as originally proposed to generalise the Faddeev-
Popov procedure in presence of Gribov copies [Hir79,Fuj79], vanishes.

This cancellation of Gribov copies is well-known [Sha8a]. The fact that it
also arises here, in the ghost/anti-ghost symmetric formulation with its quartic
self-interactions, directly relates to the topological interpretation [BSg8, Sch99]
of the Neuberger zero: 2", can be viewed as the partition function of a V/itten-
type topological model to compute the Euler character x of the gauge group. on
the lattice the gauge group is a direct product of ^9[l(l/)'s per site, and because
the Euler character factorises,

Zcr: y(SU(N)#sites) - y(SU(N))#sites - g#sites .

For f : 0 the action in (6.41) decouples from the link-field configuration and
Z"r(0), albeit computing the same topological invariant, has of course no effect
in terms of fixing a gauge. In the present formulation, with z"r(o) in (6.43),
the independent Grassmann integrations per site of the quartic-ghost term which
contains the curvature of SU(l/) each compute its Euler character via the Gauss-
Bonnet theorem IBBRT91]. This explicitly produces one factor of zeroper site on
the lattice. And it provides the topological explanation for the vanishing of the
prefactor of the corresponding monomial of degree 2(N' - 1) in the Grassmann
variables ð, c, which could otherwise exist in the expansion of the exponential in
(6.43) for all odd .ð[. For l/ : 3, for example, the zero in this prefactor arises,
upon normalordering, from a cancellation of 368 non-vanishing individual terms

t



6.3 The massive Curci-Ferrari model on the lattice 87

when expanding the square of the square of the quartic ghost self-interaction.

This cancellation would be rather unnatural to arise accidentally, without such

explanation,
The vanishing of the gauge-fixing partition function at t : 0 part in Neu-

berger's argument, in the ghost/anti-ghost symmetric gauges with SI(2,IR)n
double BRST symmetry, therefore most directly reflects the topological origin

of the Neuberger zero. Eq. (6.43) precisely represents a product of one Gauss-

Bonnet integral expression for X(Sil(,V)) p.t site of the lattice.

Note that the gauge parameter { can be removed completely from the expres-

sion for Z"r(0) in Eq, (6.43) by a rescalins \Æ b -+ b and $c'--+ c, ffc -- c,

which leaves the integration measure unchanged. The same rescaling for the full
gauge-fixing partition function Z"r(t) in (6.41), which amounts to replacing the

action in ,Scr in (6.38) by

s""(ú): T {-rtuir;gn) -itQM*ifcl+ f,uiui 
+ f ta, * "n)'} , {oas)

furthermore shows that ú and { really represent a single parameter tl\/8. Setting

ú : 0 in Neuberger's argument is therefore the same as the { --' oo limit which

is usually what is considered as the Gauss-Bonnet limit in topological quantum

field theory [BBRT91]. As mentioned above, there is no gauge-fixing in this

limit, but it provides a simple way to compute the value (zero here) of the

partition function which is independent of tlt/€
In the opposite limit, that of the Landau gauge { - 0 or tl1/( -} oo, of

course, Z"r(t) still reduces to the sign-weighted sum over all Gribov copies as

usual [Hir79, Fuj79],

zçe(t) --- t sign (det M,,çUIG)¡¡ , (6.46)

cooies {9(i)¡

which because of the ú (and {) independence (6.42) thus computes the same

topological zero [Sha84,BS98,Sch99], in this case via the Poincaré-Hopf theorem

lBBRrell.

6.3 The mass¡ve Curci-Ferrari model on the

I atti ce

In the previous section we have seen that the quartic ghost self-interactions of
the SL(2,,R)x double BRST symmetric Curci-Ferrari gauges have no effect on
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the disastrous conclusion of the 0/0 problem in lattice BRST. They rather serve
to reveal most clearly the topological origin of this problem.

We will demonstrate explicitly below that this zero can be regularised, how-
ever, by introducing a Curci-Ferrari mass nL) as proposed in [KvSWO5,GvSW06].
The gauge-fixing action ,S." is thereby once more replaced by

,S-".(ú) : z(sF -i,*r)(tvrld + ¿{D trqcr) rc.47)

(where we dropped in the 2nd term the factor ll(2'p): l, in the fundamental
representation). The BSRT and anti-BRST transformations of (Is, ð and c in
Eqs. (6.13), (6.14), (6.15) and (6.17), (6.18) of secr. 6.1 remain unchanged.
Those for the Nakanishi-Lautrup b-fields, Eqs. (6.16) and (6.1g), are replaced
by [rM80],

sb" : i,m (6.48)

(6.4e)

In the derivation of the explicit form for S-."(ú), using these modified anti-BRST
transformations, the only modification in comparison to Sect.6.1, arises from
s(e"b) in (6.32), which now becomes,

s(a"b") : -i1n2 coco * l)ol)n + |G * ")' . (6.50)

The additional first term on the right contributes an additional term -l,Seici
to the gauge-fixing Lagrangian, c.f., Eq. (6.28). Together with the same contri-
bution from the explicit mass term in (6.47) we therefore obtain twice that as
the ghost mass-term of the massive Curci-Ferrari model (this subtlety will be
worth remembering for later). The action of the massive Curci-Ferrari model
therefore becomes, explicitly,

S,"o(¿) :m2tvu[g] +D { -iüit,(us¡ -itdM.,i!cl

r f,aiui -i^,€cici + f {., * "ù,} " (6.51)

BRST and anti-BRST transformations are no-longer nilpotent at finite m2, but
we have [NO90, CF76,TMBS3]

s2 : im2o* , s' - -iTn2o- ,

sS*Js: -,im2oo, (6.52)

((cxc) xe)",

((axa)xc)"

2co -!t"^b)"-12'8
2da -|o"b)"+åxn'Lsb"
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where o+ and o0 generate the global SL(2,,R) including ghost number and

Faddeev-Popov conjugation. The Curci-Ferrari mass decontracts the sl(2,IR)x
double BRST algebra of the massless case to the osp(Il2) superalgebra extension

of the Lie algebra of the 3-dimensional Lorentz group SL(2,1R). Conversely,

the m2 --- 0 limit is interpreted as a Wigner-Inonu contraction of the simple

superalgebra osp(ll2) [NO90,TM80]. The BRST and anti-BRST invariance of
the massive Curci-Ferrari action in (6.47) itself follows readily from this algebra

as given in (6.52), noting that only õ and c transform non-trivially under the

sL(2, rR).

We emphasise that this algebra decontraction has from the very beginning

been known to lead to a breakdown of unitarity when attempting a BRST co-

homology construction of a physical Hilbert space in analogy to the massless

case [CF76]. In fact, explicit examples exist for states of negative norm surviv-

ing in any such construction [dBSvNW96,Oji82]. They do not belong to BRST

quartets and can therefore not be removed by the quartet mechanism [NO90].
Only through ihe algebra contraction by *'--- 0 do these states reduce to zero

norm components which have no effect on the physical S-matrix elements.

Here we deliberately do not want to interpret the mass parameter by Curci

and Ferrari as a physical mass. It rather serves to meaningfully define a limit
n'12 --- 0 on the lattice, perhaps in parallel with the continuum limit, to recover

nilpotent (anti-)BRST transformations.
To study the parameter dependence, we first define the partition function

of the massive Curci-Ferrari model, explicitly listing all three parameters (even

though these again really only represent 2 independent ones as we will show

below),

Z^"r(t,€,*') : I orn,b,c,clexp{-S-""(¿)}, (6.53)

with S-""(t) from (6.47) or (6.51). We note in passing that the terms propor-

tional to m2 in the massive Curci-Ferrari action (6.51) are given by

O(t, €) = tVulsl - ¿€Dqrî , (6.54)
i

or, in the continuum,

(6 55)

For f : 1 this coincides with the on-shell BRST invariant (at m2: 0) operator
proposed by Kondo as a possible candidate for a dimension 2 condensate [KS00].
The doubling of the explicit ghost mass-term in (6.20), by the BRST variation

of eö in (6.50) as mentioned above, is crucial here. Without this difference in

o(t, Ð : I oo, (lot oroi,@) - ge @)c"@))
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the relative factor of 2 between the two terms in O(t,{) and the gauge fixing
functional

-iW"r:tVu[g]-i
2 D,q"i,

N2-l

I*(ñ') : f] açe¡aco exp
,_'c.c 1

(e x c)2 (6 61)

t
ç

(6 56)

one could not have both, the on-shell BRST invariance of (g and the gauge-
fixing action in (6.20) from the double BRST variation Scp: sSI4/.p, at the
same time.

The observation that the mass terms in (6.b1) are given by m2o(t,{) could
in principle be used to obtain the expectation value of Kondo's operator from
the derivative 

pþ,€)) : -# rn z^ço(t,€,*r)1,,":o, (6.57)

upon insertion into the unfixed partition function of lattice gauge theory, i.e.,
with taking the additional expectation value in the gauge-field ensemble. As any
other observable at m2 :0 this expectation value as it stands, unfortunately, of
course also suffers from Neuberger's 0/0 problem of lattice BRST.

In order to demonstrate that the Curci-Ferrari mass regulates the Neuberger
zero, for ú : 0 we wilÌ verify by explicit calculation that

Z^",(0,€,*\lo. (6.5g)

In fact, from (6.53), (6,51),

z^",(0,€,^'):N 
ld,lb,e,cl 

exp{-f (furu, -i*r€dri + !{u, 
*.,,r) },

(6 5e)

which again factorises into independent Grassmann (and ö-field) integrations per
site on the lattice. Using the same rescaling J€U-- b and Æe --- c, ffic--- c
as mentioned in the last section, we obtain,

z^",(0,€,^') : (v* {zn)@'-t)/2 Iu(*'rÆ))u''*', (6.60)

where I/,y is the group volume of Stl(,n/), and

LN'L
8a:7

where we used the rather obvious abbreviations ¿v : c"c", (cxc)" : f "b"dc', and
ñ,2 : n 

"/€.Note 
that we define the Grassmann integration measure to include

the imaginary unit z with the real anti-ghosts c so as to reproduce the result of
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integrating over complex conjugate Grassmann variables co*.'ic". Expanding the

exponential and collecting the relevant po',¡/ers in the ghost/anti-ghost variables,

for SU (2) we obtain

r*(ñ,): I y_d"(i.ú)dß" {ffrnr."r. 
+ 

å @xc)2ñ2(te.c) } ru.url

Due to the anti-symmetry of the ghost fields we notice that (iõ'c)3 : 6l|"(i,¿"'c")
and e"b"d rc rade¿d c" : *(cc)2. Therefore the term combining the quartic and

the quadratic interaction simply becomes (e x c)2(i,e'c): (icc)3. According to

these considerations I*(ñ') becomes for SU(2)

h(ñ,) :X^' (t. fa') (6 68)

For SU(3) the computation is a bit more tedious. First of all notice that the

quartic term can be written ¡abcf 
"c 

¡ad'e¿d'ce: fr(æc")' + db'(ðc")dd'(cdc")
or equivalently, adopting the fundamental representation, with Hermitian gen-

erators ¡abc¿b r'f"*êo c' :2tr ((7"f"b"d"")'). This last term can also be cast

into a more convenient form as

2tr ((7" f"o"dr")') - -2tr ([?b, T']dc")2

-2tr (cc I ce)2

-ztr ({e,c})2 . (6.64)

Also, using the Jacobi Identity

f"u'dr" f"d'dr' -f f""dc'd ¡abe¿lre + f"dbdd fo"c"c' :0
(6.65)

we can write

1

2
(exc¡2:- (cxc)(cxcJ (6.66)

Therefore, the quartic interaction, in the fundamental representation reads

(e x c)2 : -; ¡aucf ¿ Íotu"d""

: -tr (7" ¡"b"dd rh ¡hd" cd c')
: tr ({õ, a}{c, c})
: 4tr (¿' ""). 

(6.67)
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Similarly, for the quadratic term, we have

tco :2tr(ec).

The integral over the ghost fields then assumes the compact form

(6.68)

I¡¡(ñ,2) :
¡r'2- I

ll açte¡a"a 
"2ñ'2 

tr(ec¡+Çt'(e2 c2) (6.6e)
a:1

The result for St/(3), using Mathematica to compute all the possible combina-
tions, is

h(ñ:) : #^n (t + +n^ * Yru^, * #^',). (6.70)

In both cases v/e factored the leading po\/er for ñ,2 --- 0. I¡v(ñ2) is polynomial
in ñ,2 : m't/€ of degree ly''- 1, for all l/. The successively lower powers of
ñ.2 decreaseby2 in each step in this polynomial, reflecting an increasing power
of the quartic ghost self-interactions contributing to each term. Therefore, the
polynomiaìs 1¡¡(ñ.2) are odd/even in ñ} for .À/ even/odd.

Because the polynomial is odd for all even /y' there can thus not be an order-
zero term in the first place. The powers of the quartic interactions alone never
match the number of independent Grassmann variables, and the Neuberger zero
at ñ,2: 0 arises rather trivially for even .n/ (for the same reason that the Euler
character of an odd-dimensional manifold necessarily vanishes).

For l/ odd, /¡y(ñ2) is an even polynomial which could in principle have an
trrder zero, constant term. The fact that this term is absent, e.g., as explicitly
verified for ^9tl(3) in (6.70), reflects the vanishing of the Euler character of
stl(¡/) also for odd .f/, as mentioned above (the even dimension N2 - | of the
algebra is deceiving in this case as, for example, the parameter space of .9tl(3)
can roughly be thought of consisting of odd-dimensional ,93 and 

^95).
In any case, the polynomials fy(ñ2) do not have a constant term and there-

fore vanish with ñ,2 --. 0, ,i.e.,1¡v(0) : 0, ffi expected. Moreover, the scaling
argument used here and in the last section shows that the partition function
(6.53) of massive Curci-Ferrari model can only depend on two of the three pa-
rameters,

z-",(t,€,^'): f (t/rß,€*n). (6.71)

An independent route of deriving this generic form, from the equations of mo-
tions, will be presented below. In this section we explicitly obtained /(0, y) with
U : ñ.4 to constrain this function f @,ù of two variables along the z : tl l€ : 0
line, and verified that

(Qrna)#'ite"/2, N :2
({rna¡#"ir"., .fy':3

Z^"r(0,€,^'): /(0, €*n) o
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lor m2 --- 0. Because of the topological explanation of the zero obtained in this

limit, i. e., Í(0,0) : 0, as discussed in the last section, this actually constrains

/ to vanish along the entire U : 0line, /(r,0) : 0 for all * : tl Æ.
For ø : 0 we could furthermore define a non-vanishing, frnite limit

l¡mo€mn)-N'""2^"r(0,€,*") : const. (6.72)

with an appropriate power /útot : f of sites on a finite lattice for odd ,ly', or half
that for even ly', This constant could in principle be inserted into the unfixed

lattice gauge theory measure without harm, i.e., avoiding the zero in (6.44).

Because r : 0, however, this still has no effect in terms of gauge-fixing by the

Faddeev-Popov procedure either. We need to get away from r : 0, at least by a

small amount, to suppress those parts of the gauge orbits with large violations

of the Lorenz condition. At finite Curci-Ferrari mass m2 we no-longer have the

ú-independence (or ø-independence) of (6.42). We can therefore not conclude

at this point yet that the constant in (6.72) will essentially remain unchanged

when going to some finite r I 0 * we must.

We are not quite there yet, and we will therefore have to have a closer look

at the parameter dependence of the massive Curci-Ferrari model in the next

section.

6.4 Parameter Dependences

From Eqs. (6.53) and (6.47) or (6.51) we immediately obtain the following (log-

arithmic) derivatives,

: -i( (ss - i*')tvulsj),.,,

: -i( (ss - i*')( - ¿e f 4"i) )-, ,

^'# lnz^ç,(t,e,*') : -(*'o(t,€))*, , (6'73)

where the subscripts m2 on the right denote expectation values within the Curci-

Ferrari model at finite mass. In particular, the derivative w.r.t,. m2 in the last

line differs from (6.57) only in that m2 has not been set to zero here yet' All
these expectation values can, in general, depend on the link-field configuration

{t/} which acts as a background field to the model. Independence of {U} is only
guaranteed to hold in the topological limit m2 -- 0.

From the definition of. O in (6.54), we thus find that

a

tftn z^.,(t,€,*')

ztft n z^",(t, €,*')

(,*.r€ln- 0m2
In Z^",(t,€,*') : -i(ss O(t,€) )-,
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The standard argument that the expectation value of an (anti-)BRST exact op-
erator vanishes does not hold at frnite m2. Neither are BRST and anti-BRST
variations nilpotent, nor is (2 invariant under the BRST or anti-BRST trans-
formations. However, the equations of motion for (anti-)ghost and Nakanishi-
Lautrup fields on the lattice, i.e., their lattice Dyson-Schwinger equations, can
be used to show that, indeed,

(ssO(t,{))_,:0, (6.74)

even at frnite m2. In fact, consider the variation of the massive Curci-Ferrari
action w.r.t. the b-field

tr : itFi(us) + €bi : €þ)i, (6 7s)

such that

(*¡ry),n": €(r't (tox - T':,'',) )-,
: -i(N: - 1)-ðy'+.it""õ"bõ¿j, (6.76)

where we used the fact that ((b/)f(b')i)*" corresponds to a Gaussian integral,
whose result is simply tõ*dnt. For the anti-ghost field we have, where all the
functional derivatives are understood left graded, we write

# 
: i,tM,,ilcl - im2ci + Ë*¡*'ri fo'*"i

: i,tM,,ilcl - im2ci - en7Ur x c) x c)i. g.TT)

Consequently we have the lattice DS equations as follows

(*¡+) *,: i, (M*il"l4)^" -'irnz ("i"u¡)*, - (rtuurx c) x ,)îui) 
*,

: i(N: - l)/y's,it". u"bõü. (6.7g)

Putting together Eq. (6.76) and (6.78), we exactly obtain Eq. (6.2a). Therefore,

(r*.r€f,.-^'#,) Z^""(t,€,m2) : o. (6.7e)

This differential equation entails that we can write the partition function of the
model in the generic form (6.71).

As we already did in the previous sections, we therefore continue to use the
new parameters ø : tlt/E and ñ2 : *,Æ from now on, writing

Z^cp:Z^"r(r,ñ2). (6.80)
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Again using rescaled fields JEA --- b, {€a --- c, {€c -- c and ffis -' s,

Æt - s, the (anti-)BRST transformations of Eq. (6.14) - (6.19) remain for-

mally unchanged, and m2 is replaced by ñ' in those of the massive model in
Eqs. (6.a8), (6.49). Correspondingly, all other relations above are then converted

by the formal replacements { ---+ 7,t ---+ z and m2'- ñ2.In particular,

^9-."(') : i (sF - tñ,\ (rvulgl - lr[,erf) (6.81)

: t { -irbiFf (uo¡ -irr*,,r1,
,1

+ )uiui + ] ta, * "u)'\ * ^'o(*) 
,

with
O(r) : 

"Vu[s] - t\eici (6.s2)

The two independent derivatives left, u.. ,"udiiy read off in an analogous way

to give

a
A* 

ln Z-",(r,ñ2) : -i( (ss - iñ'')Vrlgl)a, ,

a

ffi lnz^",(r,ñ2) : -(o("))^, . (6'83)

In absence of a topological argument for the gauge parameter independence

at finite Curci-Ferrari mass, the best we can do to achieve independence of
r : tlJE is to allow an z dependent mass parameter ñ'2 : ñ'("). In particular,
the r : 0 results of the previous section are then to be interpreted as being

expressed in terms of ñ2Q). These results will remain unchanged for r f 0,

if we adjust the mass function ñ,2(r) with z in the partition function Z^cpt
accordingly. That is, if

d
0 z^"r(*,ñ.'(*))

dr
a
A"

dñ2 a

dr Añ2

(6 84)

+ z^"o(r,ñ.'("))

From Eqs. (6.83) we see that this requires that

dñ2 .( ("t - iñ,')vulgl)a,
l:-'W (685)

This is not a very profound insight. The crucial question at this point is, whether
the tuning of the Curci-Ferrari mass parameter with ø is possible indpendent of
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the link configuration {t/} which is far from obvious here. Otherwise we would
have to choose a different trajectory in the parameter space (r, ñ') for different
gauge orbits which wouìd be of little use then, as far as the Faddeev-Popov
gauge-fixing procedure is concerned. If it is possible, on the other hand, \rye can
then'use the value of the mass fi,fr : ñ2(0) at x:0 to regulate the Neuberger
zero and use the r and {U} independent, non-vanishing and finite constant

^ìim (ñá)-N'"'Z^"r(r,ñ,'(r)) : conSt. (6.86)
m6't¡

as the starting definition of Faddeev-Popov gauge fixing on the lattice. Then,
of course, we would also expect that there should be a topological meaning to
this constant which is so far, however, unfortunately unknown to us.

All we can offer at the moment is to verify that all is well at r :0, where
ïve can do the explicit calculations. It is relatively straight-forward to show in
this way that

dñ2 t

ll,:r: corìst r + O@2) (6.82)

with the constant independent of {U}. While this is merely necessary, but not
sufficient, it demonstrates that we can get away from r : 0, at least infinites-
imally. This is of qualitative importance as a non-zero value of r : t/.,Æ, no
matter how small, corresponds to a large but finite { at t : 1 and thus elimi-
nates the gauge freedom. The study and result for the second derivative will be
presented in the next publicatit-¡n.
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Batalin-V¡lkovisky Formalism In
Y-M Theory

We have shown so far how the quantisation of Y-M theory can be pursued by

means of several formalisms: canonical, covariant operator, path integral and

BRST formalism. Yet, the most general algebraic way to quantise a gauge

theory is achieved by the Batalin-Vilkovisky (BV) formalism [BV81b, BV83].

This formalism provides a Grassmann-graded canonical formalism, by means of
a ne\M canonical structure, called anti-brackeú, which generalises and elevates the

standard Hamiltonian formalism to a more algebraic scenario. Furthermore, the

Batalin-Vilkovisky method encompasses the Faddeev-Popov quantisation and

can be entirely formulated in the light of BRST and anti-BRST symmetry. The

new fields introduced in this formalism, the anti-fields, necessary to build up

the global canonical structure, are identified with functional derivatives of an

anti-fermion gauge-fixing term. We will first introduce the main ingredients of
this formalism, and after that we will present the BV construction of Euclidian
4-dimensional Y-M theory in the framework of non-linear gauges. At last, we

will provide the lattice version of our model.

7 .L The Appearance Of Anti-Fields

To introduce a canonical formalism, graded with respect to the Poisson brackets

first we have to deal with the concept of Grassmann parit¡ which defines the euen

or od,d, character of a field under product exchange. Given a set of fields eA(ø)
of Grassmann parity .(OA) : €A¡ then we associate to them the corresponding

anti-fields Oå(t) of opposite parity, as e(O|) : et I l. Fields and anti-fields
play the role of conjugate variables in the Hamiltonian framework, and therefore

it is natural to define a canonical conjugation as

(aA,o.u¡ : 5¿ (Q', Õt) : (oi, @ä) : o, (7.1)

where the conjugation is defined through the BV brackets

6'F õIG 6'F õIG
(7.2)(F,G)

ðoA ôaä ôÕ1ôoil
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where r and I denote respectively right and left derivative. These brackets
determine therefore a canonical structure onto the BV formalism, providing it
a Jacobi identity

t (_t¡(."+r¡1."+1)(4 (G, H¡ : g, (Z 3)
P(F,G,H)

and a Leibnitz rule

(F'CH): (4 G)H + (-1¡'"('"+t G@, H)
(FH.G): F(H,G)H + (-1¡"('"+t(F,G)H. (7.4)

To the antifields we can also associate a ghost number as

çh(a.A):-Çh(a\-t (75)

and it is constrained such that the quantum action carries total ghost number
zero. The BV quantisation prescription amounts to solve the quantum Master
Equation

1

;(W,W) 
: i,flLW, (7.6)

where a a second-order odd differential (nilpotent) operator defined as

A : (-1)'o+r -õ]- , =6: (7.7)
ôÕA ðoi'

andW :WlÞ,O*] a generic quantum action, that is supposed to be expandable
in powers of ñ 

æ

w : sct+ D rr s*) (7.8)
n:o

Here, ,9"¡ is the classical action obtained by setting all the anti-fields to zero, and
,9ou its quantum fluctuation. To the lowest order in ñ,, the "classical" Master
Equation reduces to

(^9, s¡ : 9' (7.9)

The path integral representation of the BV formalism starts from the considera-
tion that the classical action, as previously observed, is generated while setting
Oä : 0. Therefore, by defining the correct gauge-fixing anti-fermion, we can
write

z: 
l@o^lrdoälô (" - H) *'l-å'] (7 r0)

After integrating out the anti-field Õi using the delta-function, one can verify
that the action is left invariant under usual BRST transformations.
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7.2 Non-linear gauges ¡n BV formalism

It is well known that the pure Yang-Mills action S[,a] : T [* F*Fp', in a

certain irreducible representation p of ,9U('n/), is left invariant under a gauge

transformation e,4 : gt Ag + gI 0g. An interesting question to ask ourselves is

what happens if the gauge field ,4 is being shifted as A '- A - A: does the

gauge symmetry still remain and moreover, how does this shift-symmetry af-

fect the underlying BRST structure? It is this background gauge manipulation

of the Y-M action which poses the bases of the Batalin-Vilkovisky method of

quantisation. The appearance of the anti-ghost fields in SIA - ,Ãl 
"un 

be ob-

served by gauge-fixing iteratively the gauge-symmetry and the shift-symmetry,

as done for instance in [4D93]. Though pedagocically interesting, we prefer to

give a more heuristic approach to it. Suppose to gauge fix with a non-linear

gauge the Euclidian Y-M action: we then insert in the path integral representa-

tion the following covariant, non-linear gauge-fixing Euclidean Lagrangian with
ghost/anti-ghost symmetry

LgçlA,b,c,cl:'ibolAo *fu'+f,e1a,Dlou"u+ f ta x c)2. (7.11)

where all the fields are in the adjoint representation of Stl(¡\I). This Lagrangian

is left invariant under the BRST and anti-BRST transformations (4.53) and can

be written either as a BRST coboundary term

(7.t2)

or a double BRST coboundary term

LgrlA,b,c,ci - ssw, w :;(Ai,A'- i(úc"). (7.13)

Performing now a shift in all the net¿, t

A---A-Ã c---c-õ c-+c-ã. b-b-6, Q.I4)

we notice that the quantum action SlA,c,ð, b] becomes also invariant under the

shift symmetry

se(ø) : a(t) sÕ(z) : t@)

"õ1"¡ 
: o(r) - þ(") sõ(r) : t@) - xþ), (7.15)

lFlom nou¡ on we will leave component notation implicit, unless needed in a specific com-

putation.

LstlA,b,c,cl- sV, V : it (Uro"' - nfU) ,
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with Õ(r) the set of all fields and Õ(r) the set of shifted ones. Here B@) and
¡(r) represent the originaÌ BRST and anti-BRST variations of Õ("), whereas
a(r) and 7(r) correspond to some collective frelds generating the field-shift. Let
us focus first on the BRST construction of the Batalin-Vilkovisky Lagrangian.
The BRST transformations (4.53), according to the shift (7.1a), assume the form

sAtr:1þt, tÃr - ,þ, - DII-Ðçc - e)

sc:€ sõ:e*TV- õ,c- õl

sð:e sõ:€-(b- 6)+;þ-õ,c_ õl

sb:eb sã:.a *ïV-õ,b-;1 +]lt" -õ,c-õ),c-cl. (7.16)

A few remarks here are needed: first of all, the choice of transformations we have
made is consistent with the hermiticity of the ghost fields, chosen to be real, to
satisfy the hermiticity of the Lagrangian and therefore the unitarity of the S-
matrix. Moreover, to generate a ghost/anti-ghost gauge-fixing action, we have
shifted the b-fieìd as b -+ U - +þ,c]: such a symmetry is different from standard
covariant linear gauges, as Landau gauge, where the action is not symmetric
under the exchange of ghost into anti-ghost fields. This operation also affects the
linearity of the gauge chosen, and as a consequence we obtain a nonlinear gauge,
whose main feature is to generate a quartic ghost interaction in the action. This
term is required from topological consirlera,tions to produce the most general
renormalisable covariant action with an underlying BRST symmetry, as showed
in [BTM82]. Finally, the choice we made to associate the covariant derivative
only to the shifted field makes the original gauge symmetry of the original gauge
field to be carried entirely by the collective field. The transformation of the
original gauge field is then taken always just as a shift.

To enforce the overall invariance under s of the quantum action, we require
more fields: among some neIM Nakanishi-Lautrup fields, it is important to notice
the appearance of the anti-fields, denoted with an asterisk

s1þp:0
Se:0

sAi: Br
sc*:B
sc*:B
sb* : Bu

se:0
s66-0

sBr: g

sB:0
sB:0

sB6 : 0, (7.17)

where the multiplet (þr,e,€.,€b) is the ghost multiplet associated with the shift
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symmetry for (A¡",c,c,b), (Ai,,c*,õ*,b*) are the anti-ghosts 2 and (B¡",B,E,Bb)
the corresponding auxiliary fields. Having such an abundance of fields with
different ghost number, it is worthwhile to provide the table

çh(Ap):çh(Ap):o
Çh(c):çh(õ):t
Çh(e¡ -- çh(õ) - -1
çh(b):Çh(t):o

çh(A;): -r
Çh(c.) : g

Çh(e.) - -2
Çh(b.): -1

Çh(tþr) :1
Çh(e) :2
Çh(e) : s

Çh(e6) :7

Çh(Br) : s

gh(B) :1
çh(B) - -1
Çh(86) : g.

Ã

It is interesting to notice that in the BV formalism, the Nakanishi-Lautrup fields

associated to the FP ghosts are Grassmann, with Ghost number respectively +1.
We can therefore write in close-form the various Ghost number and Grassmann

parity for the general field Õ as

qh@.):çh@) -r e(Õ*¡ : e(a)+ 1' (7.18)

We may also construct the following table which summarises the relations among

the BV fields

Field Collective Field
Anti-Ghost
(anti-field)

Ghost
Nakanishi-Lautrup

Field

Ap
c

c

b

Ap

õ

¿

b

Aï"

c*

a*

b*

tþ,
€.

€.

eb

Bp
B
B
B6

The physical requirement for the gauge-fixing Lagrangian is obtained by de-

manding all the fields associated to the shift symmetry to vanish. Vy'e thus re-

cover the original theory, by choosing for instance the following shift-symmetry
gauge-fixing Lagrangian

,+|1"- -,"- ul)

+Bbb ,- (.u *lV - õ,b -41 + |lf" - õ,c - õ1,, -U)] (7.1e)

It is an easy task to check that the Lagrangian Zcp is left invariant under

the BRST transformations (7.16) and (7.17). Moreover, the requirement for

) +Ba* -. (

+ Bãj+ e (a - (b - f,¡ +f,V - -," - u:)

2These antifields are the usual antighosts of the collective fields enforcing the Dyson-

Schwinger equations through shift symmetries.
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4çp to be Hermitian is guaranteed by the factor z in front of the trace. By
performing the integration over the B-fields, we generate Delta functions in the
shift-symmetry fields, which will set them to zero.

All the field couplings in (7.19) amount to an overall vanishing Ghost number
as required. Suppose the gauge-fixing anti-fermion ![r to depend upon only the
original fields as

Lcp:isv: u ('o,#+ ""9 *,u# *,r#)
/õv ,, ôv ðv ôv \:'\d4ø** õ"'* ôu-* 6b..u). (7.20)

Thus, integrating out the auxiliary fields we set all the frelds associated to the
shift symmetry to zero. The remaining Lagrangian is the BV gauge-f,ring La-
grangxan

Lsv:Zcp*Lce

(

)

(

?,

-AþPu*c*e*c*e-b*e6

:r{a;orc+f,e.þ,cl-"*

1
AiDPc * c*lc,cl - c*

2

c*
Òc

-u + |Þ,4) - ,. (å[c, ö] + ] tr", "r, a)

., (#r. *8,* #-. #")
-u + |Þ,"r) . ,- (;[c, b] + ] lt", o, a)

-(o, #) ,Þ'+(e..#) .*("..#-) --(u.-#) .,)
(7.21)

To obtain the conditions on the anti-fields, it is sufficient to integrate out the
ghosts associated with the shift symmetry

A.u: ôq/

c

õAu

ôiú

^ .õLsvsAtr: , 
õAL

6c

ôü, ,¿: -iõluuòc*

, .6LsvS0: L----=--
òb*

.õLsv
SC: -'1,----=-òc*

b.:X (7.22)

Once we define the explicit form of the anti-fermion gauge-fixing V, according
to (7.22) we automatically determine the identification of the anti-fields with
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BRST fields as

Ai: -ior¿
ð*:0

c:'1,

(7.23)

Equations (7.23) clarify the geometric interpretation of the anti-fields on the line

of Maurer-Cartan l-forms. We are now able to write the total action as a BRST

variation of a gauge-fixing anti-fermion function as a proper Witten-type theory

L:Lo*sú
: Lo r *(l;ar + c*õ + 

".õ 
+ u-u)

: Lol-;r(o.,ã) , 3.24)

such that Çh@;Ãu + c*õ - ã.c. + b.6) : -1 as expected. It is worth noting the

difference with the ordinary BRST-exact gauge-fixing term

(u,o' -'r')

(u,o, -,lr) : icc*

Following the structure of (7.16), we demand that 5(O - Õ) reproduces the anti-
BRST variations of ordinary fields (,4r, c,c,b): for instance we might have this
algebra

3Ar: Aï"+Dtr-t)çe - ã:) sÃr: ¡;
sc: c* - (b-¡¡ -ll-ã,c- õl sõ: c*

-+ 1r- = - :r -= -*sc:c -tl-c'c-cl sc:c
1-1

sb: b* - ilr-õ,b - å1 +;ll¿ -õ,c-õl,c- cl 5ö: b*. (7.27)

t,:t.

ú:i,c (7.25)

7.3 lncluding Double BRST Algebra

As noted by Nakanishi and Ojima [NO80, Oji80] the quantum action is also

invariant under an additional symmetry, known as anti-BRST, whose relation

with the BRST operator is given by Faddeev-Popov conjugation

s: crprcFÉ. Q.26)
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Imposing the condition of invariance on 2"", *" generate the other variations:
consider for example

sla,Ã, - oî,(,þ- - of-Ãt1c- "))] 
: B,s,Ãr + e;s(ttte - Dll-À)("- u))

BrA.r+ Aisút" - a;s(of-;r1" - a))

(7.28)

Here we have imposed vanishing variation on Br, as suggested in [ADg3] and
[8D95]. In order to have invariance under 5 we need to impose this variation on
the field r/,

stþt" = - B, * s (of-Ãt ç - e¡)

- - Bu - Dll-Ãt þ - ul - lrof,-Ãt¡çe - õ), ("- ¿)l + IDtr-A) @ - õ), (c - c)]

(7.2e)

Since the ghost fields are anti-commuting, then the following identity holds

[a,c1 : [",r], t implying that

stþt": -Bt,- of-Atçu- ã) + |tof,-Ãtfe-õ),("- ¿)l - |Wy-Àtt"- ¿),(e- ¿)1,

(7.30)

where we used rhe facr that - j[(a -ô,oll-Ã)("-¿)j : -àÍriÍ!-u, ("-¿),(¿-ã)]
According to [8D95], the antivariation Stþrin a linear gauge is

stþp: _Bp _ of,-A)1u _ a¡ _ lDÍ:-A)þ _ 
"),(¿ 

_ õ)1. (7.31)

Therefore, in the presence of non-linear gauges, this variation becomes more
symmetric, as far as the action of the covariant derivative onto the FP ghosts.
It is worth checking the nilpotency of this transformation:

_t,
S-1þp: S DÍl-Á¡þ - u¡ - |of-a¡ç - ¿),("- õ)l + [of,-Ãtçe - õ),(c - c)]

(-,u - Ð - Itru - õ),("- u,)] + s (tDÍi-â G -õ), (c - a)l)

(7.32)

3In fact, using component notationfc,cl" - ¡abc¿b"c. changing the index ö into c, and
using the antisymmetry of the structure constants we get ¡abc¿b"e - ¡acb¿c"b - -¡acb"b¿c -
¡øbc.b¿c = lc,ë).

5
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Using the identit v , (oÍl-u)t- - ð) : 0 we obtain

s2 ú t" : @of,- 
a¡ (- ,u - ul - Ttr, - ã') , ("- u)r 

)
- loÍi-u,f¿ - õ),-(b - b) -
: loll'u,(, - i'),-(b - b) -
- loø-atr, - õ),-(b - b) -
-0

For the FP ghosts, we apply the same procedure, supposing the variations with
respect to the two auxiliary fields to vanish:

.{ru*r.(. *;þ- õ,c- u,) * Bõ+c* (.-,r- a) + Trr--,'- u) }
: -Bc* + c*se +e-f,s¡"- õ,c- õl

-Bc* * c*se+ c. (-s(a - a) + IUr- õ,c - õl) . (7.s4)

'We separate the two contributions for e and e: for the second line we obtain a

c*se : Bc* -e.f,s¡r-õ,,c-õl
: c* B - r.|[s(. - ¿)](. - u¡ * r.f,{, - õ)s(c - c)

: õ* B - ð- [(" - õ), (b- ¿ll - Tr.rr"- õ), [(¿ - ã,), ("- õ)]1, (7.35)

implying that

se:B-[(.-õ),(b-b)]-

-fi-[("-.),(å-b)]- (7.36)

Checking the nilpotency we find an inconsistency: in fact

s2e : t ( n - lþ - "),(ö - b)l - f,U"- a), [(a - ã)
\

1: 
¡tt{u - e),(" - ¿)1, [(¿ - ã), þ - Q)] I o.

Tu._ -ã), (c - õ)l]

It, - ã), (c - ol]

Tu. -c=), (c - a)l]

[(. - õ), [(¿ - õ), (" - ¿)]l

[[(. - .), (" - ¿)], (¿ - õ)l

(7.33)

1

,
1

4

' 
(. - õ)ll

(7.37)

alt is worth noting that [c, [¿,"]] : ¡abc¡cmn"b¿mc¿. Using the Jacobi Identity ¡abc¡cnn -
_ ¡rnøc ¡cbn _ ¡bmc ¡cøn, we obtain ¡abc ¡cnn"b¿m& : _ ¡m"c ¡cbn"b¿m"n _ ¡bmc ¡cøn"bdncn.
Rearranging the indices in the third term we get ¡abc¡cmn"b6mcn : -Í*oc¡cbn"b¿m"n -
¡obc¡cnn.b1mcr and thus 2l"b"l.mn"b6m"n : _lnacfcbncbdncn or similarly 2lc,[e,c]l :
+[e, [c, c]] : -[[c, c], ð].



106 7. Batalin-Vilkovisky Formalism ln Y-M Theory

This means that we have to replace SB : 0 with

sa : -jt'i - õ),(. - õ)1, [(¿ - õ), (" - ¿)]1,

which is nilpotent

s2B:0,

because of the following identities

[[[¿, .], cl, [a, c]l : - [[c, c], [[a, c], cll

[[a, a], [a, c]l : -[[a, c], [a, b]1.

Similarly for e we obtain

c*sé : Bc* - ,- (-s(u- ¿) + *rtu - õ, 
" - al)

\¿/
--+-õ 

- 1:c D -c-[(¿-"),(b-ö)] + i".llu-õ,"-õl,c-õ)
It is clear that this transformation is nilpotent because

s2b --r (-]r-,al + ]tta,.l, "l) 
: o

(7.38)

(7.3e)

For the ö and ã fi"1d. we have, according to the identities [c, [e, b]] : [[¿, b], c] and

[c, [e,b]] : [[c,c],ó] + [[",b],õ1, derived from the anti-symmetric property of the
structure constants and the Jacobi Identity,

b*Fe6 : -Bab* - ,.. (]rr ,- õ),(b - ã)1) - b*s (å"" - õ,c- õ1,- - õ1)

b*se6: -b*Bo+f,u.¡¡e -õ,c- õl,b-a] * ån I¿-ã',c-õ1,1"- õ,c- 
"ll
(7.43)

Therefore, we generate the following anti-transformations on the ghosts

(7.40)

(7.4r)

(7.42)

Etþp: -Bp - DØ-A)(b - b) lof-Atle - õ),("- ¿)l - lrloy-utf" - c), (e - ã:))
1

J__,2

se:B-[("-õ),(ö-ó)]+

sE:E - [(¿ - ¿-), (ö - ã)i +

]ttt" - õ),(" -a)1, (a - e)l

ltlru - ã,),(¿ -õ)1, (c - c)l

se6 - - 86* ] nu - õ, c - õl,b- al + * rr. - õ,, - õ1, l" - õ, c - õll (7.44)
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and on the anti-fields

sAi: g

sc*:0
sð* :0
5b* :0

sBr: g

5B:0
sB :0
sBr: g (7.45)

We may notice an usual structure for the anti-variations of the fields associated

to the shift-symmetry. These equations look similar to the usual form we saw

for the anti-BRST transformations (4.41), s" - -U - Tlr,c]. The vector ghost

tþ, behaves as a gauge field due to the presence of the covariant derivative:

yet, due to its Ghost number (çh(rþr): 1), the ghost field appearing in (a.3)

(sA, : DÍP Ò has been replaced by the Nakanishi-Lautrup field in the second

term, plus an additional coupling of the covariant derivative with the FP ghost

in the adjoint representation. The anti-transformations for e and e are obtained

one from the other by ghost exchange operation, whereas for e6 we notice an

additional coupling with x (, - ,) with respect to terms appearing in 5b'

In order to achieve a more symmetric for (7.27), (7.44) and (7.45), we can

adopt the same procedure used to symmetrise standard BRST transformations

in Chapter 3. Consider in fact the following shift in B,

B t" - B t, - f,ry-ur(b - b) + jtoli-Ã)(d - ã), (" - ¿)l

-!nWf-u)(" - ¿), (¿ - õ)l

Apply now this shift to stþ, andfo sAi and what we get is

stþt,-- -Bt,-T4i-u',0- ã) + f,Wf-Ätfe - õ),("- õ)l - |toy-Ãtf"- z),(e -õ)l

sAi : 
" 

r - IrÍ:-Ã) þ - Ð + ïtoÍi-A) G - ã'), ("- ¿)l - jWy-ut f" - e), @ - õ)l

(7.47)

which tell us how the anti-field of the gauge-field behaves as the anti-ghost for
the ghost field associated to the shift symmetry, as well as in ordinary BRST, c
is the anti-ghost of c. The only difference in the geometric interpretation of the
BRST operators as differential operators in the superspace lies in the different
sign with respect to the auxiliary field b (Note we have generated the same

difference in sign with respect to Br). The same approach can be adopted to all

(7.46)
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the other remaining auxiliary fields associated with the shift symmetry

se : B - |v- õ,b- bl - *ro - õ,c - õ1,¿ - õl

s€.: fJ -
1

2 le-e,b-b) 8 ll¿ - õ," - õ1," - õ1,
1

se6 - -86 -it. - õ,c - õl,b - bl [[[e - ã, c - õ],c - õ1, 
" - õ1,

1I-
'16

(7.48)

and the anti-fields

sc* : B +;1, - õ,b -õf - å ll" - õ,c - ¿1,¿ - õl

1-1
sê* : B * il¿ - ã',b - bl - ,ttu - 

=c,e - el, c - cl

1-1sb*: gu-ille -õ,c-õ),b-aj + *tttu -õ,"-õ1,"-õl,c-õ1. (7.4s)

We notice a geometric feature in the transformations for the two fields associated
respectively to the Y-M ghost and anti-ghost: in this case, the difference in sign
is not with respect to the auxiliary fields, B and B, but in the other of the
transformations. Thus is due to the fact that the antifields associated with c

and õ have an even Grassmann parity, reflected in the BRST and antiBRST
transformations. The anti-fields ö* behaves as usual. The transformations for
the four Nakanishi-Lautrup fields are more complicated: let us see in details sB,

sB, : ' {-'i"f-Ð þ - t) +;pf,-Ãt çe - õ), ("- õ)1 \

: -;{oÍl-u,,(u- õl - lolf-Ã¡("- õ),.b-6r\

* åt" (of-Ãtçe- õ)) , k - ¿)l -|t"y-u)(¿ - ã), s(c - õ)l (7.50)

The term t (of,-at 1- - A) vanishes and so we obtain

sBt": -|ry-u, {-.io - 
õ,b- ör - å'o - õ,c - õ),- - 4}

*|toÍi-u)þ - e),b - b) *|toÍi-^)(e - õ),[" - õ," - õ]1. (2.51)

Using the Leibnitz rule for the covariant derivative sBu assumes the more com-
pact form

1

,sBt": (7.52)
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,U: r{TV

e
(ttr:tlz

c b bl +
1
:
E

=1Ilc-c,r-rl,c-cl

1
=c) bl

.î = - =1 -1[[c-c,"-r],c-cl

(7.53)

(7.54)

(7.55)

(7.56)

sB --

b
8

sB --

sB6:
(7.57)

(7.58)

We may be naively tempted to symmetrise aÌso the ghosts associate with the shift

symmetry, but that would cause an ambiguity in the definition of the covariant,

one of the essential features of the BV formalism, as pointed out previously. As

a final part of this section, we show how to write the full Lagrangian as double

BRST-exact quantity. We remind the reader that in the last section we wrote

the full Lagrangian as

L:Lo*sú
/' 'i ^f ^* 4t" + c*¿, + c*=c- ö-b). (7.5g)

- L'0-T ò\ - ñpã -T-(. L-.l-U Ç- w v 
J'

By demanding the BRST symmetry to be unbroken, we can then generate the

gauge-fixing anti-fermion as

" - lo* silr : Éo - (-l)'ttlrlO-.õ)L.-L'O -r,)Y 
-!O-\-rl "\- -)

- ÃrÃ, + õõ+ õõ - bb)

sB6 :" 
{ -1 

". 
- õ, c - ¿1, b -al + fi tlt- - õ,Ò - õ1,, - õ1, c - õl}

:Lo*sSE:Io*

- Ls - (-r;'(o11",

It
t's(
(*.) (7.60)
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Conclusions

This Thesis has been devoted to two main subjects: the study of gauge fix-

ing methods in non-Abelian gauge theory and the BRST formalism, both in
perturbative and non-perturbative QCD

We have thus found a representation for Landau gauge-fixing corresponding

to the FP trick being an actual change of variables with appropriate determi-

nant. The resulting gauge-fixing Lagrangian density enjoys a larger extended

BRST and anti-BRST symmetry. However it cannot be represented rigorously

as a BRST exact object, rather the sum of two such objects corresponding to

different BRST operations. This means that some of the BRST machinery is

not available to this formulation, such as the Kugo-Ojima criterion for selecting

physical states. We discuss cursorily now the perturbative renormalisability of

the present formulation of the theory. Note that the procedure leading to Eq.

(5.32) does not introduce any nev\r coupling constants; only the strong coupling

constant g is present in MplAl coupling the Yang-Mills field to both the new

ghosts and scalars. The dimensions of the new fields are

lç] : Lo, [d] : [d-] : L-r, lBl: L-2. (8 1)

Most importantly in this context, the kinetic term for the new boson fields g"
\s quar-tic in derivatives: 

/. _Lkin - g"(}')'p", (8.2)

which is renormalisable, by power counting, since po are dimensionless. Such a

contribution is seemingly harmless in the ultraviolet regime: for large momenta

propagators will vanish like llpa. Moreover it should play an important role

in guaranteeing the decoupling of such contributions in perturbative diagrams.

That such a decoupling should occur is clear from Eq. (5.11): in the perturbative

regime fluctuations about Ap:0 will not feel the sgn(detMFlAl), so that the

field theory constructed in this way must be equivalent to the perturbatively
renormalisable Landau gauge fixed theory. For example in the computation
of the running coupling constant we expect that this property will lead to a
complete decoupling of the ú-degrees of freedom so that the known Landau gauge

result emerges from just the gluon and standard ghost sectors. Naturally, the

new degrees of freedom will be relevant in the infra-red regime, which will be

the object of future study
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Regarding the BRST formalism in non-perturbative non-Abelian theories,
we showed that the massive Curci-Ferrari model with its decontracted double
BRST symmetry can be formulated on the lattice without the 0/0 problem.
The param eter m2 is not interpreted as a physical mass but rather serves to
meaningfully define a limit n'12 --- 0 in the spirit of l'Hospital's rule. At finite
m2 the topological nature of the gauge-fixing partition function seems lost. It
is possible, however, to tune the Curci-Ferrari mass with the gauge parameter
f so that the limit nù2 -r 0 can be defined along a certain trajectory in param-
eter space independent of {. An interesting open question might then be the
topological interpretation of the model within the decontracted double BRST
o sp(Il2) sup eralgebra framework.

In the Batalin-vilkovisky formaìism for non-linear gauges, we showed how
the BRST and anti-BRST transformations assume a more complicated form
than with respect to standard linear gauges, such as Landau gauge. We have
constructed an algebraic BRST structure which still preserves the required nilpo-
tency, aÌÌowing us to write the complete B-V Lagrangian in the form of a
coboundary term, both for BRST and anti-BRST transformations The nptu-
ral implementation of this work leads to derive the lattice algebraic structure
of this theory, mimicking the Curci-Ferrai model we have already proposed, in
which the background lattice gauge-fixing has to be translated in the language
of the antifield formalism.
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Appendix A

Connection on a principal bundle

In this appendix we will enlist briefly the major topics of gauge theory from

the geometric and topological point of view. This is necessary to understand

the rich geometric structure of Y-M theory. Moreover, its generalisation to

super-space is essential to the comprehension of super-symmetry, BRST and

topological field theory (TFT). This will be covered in Appendix C. We assume

the reader being familiar with basic concepts of topology, such as manifolds,

tangent and cotangent spaces. For this we remind the interested reader to [Nab].
As previously said, Y-M theories can be regarded as the quantum theory of
principal bundles, on which we construct connections, covariant derivatives and

curvature forms. To start with we define a principal bundle: a differentiable
principal fiber bundle over a manifold M with group structure G consists of a

manifold P and an action of G on P satisfying the following conditions

o G acts freely on P without fixed points, i.e. gr: r implies g -- I (only the

identity element fixes any n), P x G --' P is denoted by P x G > (u,a) --
uaeP;

o M is the quotient space of P by the equivalence relation induced by G,

M : PlG, and the canonical projection r : P '-+ M is differentiable;

o P is locally trivial (P = R"¿).

To any element A of the algebra g of. G, we associate a vector D(,4) on P, the

fundamental vector field corresponding to A. D(A) is actually generated by the

right action of G on P | : 1f A € g, then exp(úA) is a one-parameter subgroup

of G, acting on P as

D(A),.r: ftr@,)1,:0, (e.1)

where ut : R"*p(tt¡(u). D(A)" is a vector tangent to P at u (tangent to the

fiber). Call G, the subspace of T"(P) of vectors tangent to the fiber through u,

rleft and right actions of a group element are diffeomorphisms defined as Ln(h) = hg and

Rn(h): hs.
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at u.

D : g ---+ Çu is an isomorphism. (9.2)

A connection in P is a choice of a suppìementary linear subspace e, in T"(p)
toGu 

ne):Gu,,eu (93)
where Quo: (R").Q, is a push-J'or-ward 2 and depends differentially on u. Qu is
called the horizontal space and G, the vertical space. Choosing a e', amounts to
choosing a basis inT"(P), though this distribution is not, in general integrable.
Geometrically, this corresponds to the non triviality of parallel transport using
the holonoy group of the principal bundle.

Connection form

A connection form is a Lie-algebra valued l-form c..' such that

o ø applied on any fundamental vector field D(,4) reproduces A, i.e. cu(D(,A)) :
A;

o (R[u)(X) : Ado-, .r(X). The horizontal subspace e, is the kernel of ø,
that is to say that Xu is horizontalifr a(X.) : 0;

where (Riw)(X) is a pull-baclc 3. It's possible to express ø, the connection form
on P, by a family of local forms, each one being defined in an open subset of
the base-space manifold M. Let {I/"} he a covering of M,we choose in p thc
preferred set of local sections øo and the corresponding transition functions ty'oB:

for each o and þ. we define a Lie-algebra-valued 1-form on(Joby

ao: o[u pull-back of ø through oo (9.4)

where

wp : Ad,pr¿ ' uo * ,þiÀ drþ"p (9.5)

inuonup. rf ø is a connection form on P: M x G, we can construct from a
global section o1 of. P the form on M

q: oi(w) (e.6)
2Let M and N be two smooth manifolds, with dimension rn and n respectively. Let

f : M -+ N be a smooth function. Then, the differentiaror push-forutard f* (or d/) of / in
the point p e M is the application /* : ToM - TÍþ)N. The push-forward defines then a
change of variables in tangent spaces.

3The transpose action of the push-forward is the pulì-back /* (or ô/), defined as .f' :

Tìfof ' T;M. Contrary to the push-forward, we cannot pass from the cotangent space
TiM toTÏfùN, but only the other way round, linking a change of variables for cotangent
spaces, duaì of tangent spaces.
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If we now use a G-valued function g on M to transform o2 into o2(t) : ot(*)'
g(x), we can define a netri/ l-form on M

uz: oi(u) (9 7)

we have
uz: Ade-r 'cl1 * g-t dg. (9 s)

Geometrical interpretation of gauge potentials

On a 4-dim manifold, the connection form ø, defined on an open subset of
M , Uo, can be expressed as

uo: Aq*(r)drp (9 9)

whose Lie-valued components transform as

A'p(r): Adr_, .At" + g-1 7pg (9.10)

which are the components of the transformed connection form

(r)io: o'åu : A'P(r)dntr. (9'11)

A change of a by the action of some G-valued function g on M can be viewed

as a change of coordinates in the principal fiber bundle P, and it induces a

transformation of the components Ap similar to the usual gauge transformation

of potentials. Then the gauge potential naturally becomes the component of a
geometrical object of a definite type: a connection form on P.

Covariant derivative

The concept of covariant derivative is strongly related to the horizontal lift
of the derivative 0r. A vector field X is the lift of a vector field X on M , which

is the horizontal field on P, which projects onto X, s.t.

n.(*,):Xn@) where r : P : M xG -'+ M. (9.12)

Suppose we choose a local chartUron M, with local coordinates {øp}. Then,

we construct vector fields, with generators as 0r: f,, whose lift Ap lies on

tr-'(U") : Uo x G. lf. oo is section over [/o, then

u.(1t) : oLu(îp) : u(oo*1r) : Ø1"(")dx,,ôr) - Aap: u(E(A"p)) (9.13)

(e 14)
Hence

u(oo*îr-X(,4,r)):9,
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where oo*}t" - D(A"r) is evidently horizontal. Then

ap : oo*1t" - E(A"r) with u : oo(x) (e.15)
u

We can identify oo*0t"with ô, and -D(,4*r) with the Lie-algebra-valued element
A, to recover the usual covariant derivative

Dt,: 0, - Ar. (9.16)

So, any point on the local sectiorr oa¡ defined by n-r((I.) : (Jo x G, can be
thought of as

us: o,(!xs) : ("0, e): oo*0r@ E(,4"/,). (9.17)

This point us is generated by the curve on the fiber zr-r(U,)1,,

P)r-t(ro) f u¿:u0exp(úAr):{ q9 , * ) (9.18)

Point in ¡4 element of G

If / is a function on r-1((J.), then the restriction of this function to ø.-1(16) is
a function F defined on G, because it's etAu which localises n-r(U.) to zr-1(ø¡).
The directional derivative along z¿ is clearly the action of the Lie algebra element
A, on F at e. Thus, the covariant derivative is section-dependent. There's also
an other way to interpret the covariant derivative, which follows from the adjoint
action on any element of P

0¡þ:0rrþ -liq 1 ["-'' *þ(uo)etAu - rþ(uo)] (9.19)' ¿-0ú.

for any function tþ on P, s.t. tþ(ua): Ado-,,r/. It is also important to notice
that while the commutator of two fundamental vectors is still a fundamental
vector, showing that this map preserves space and algebra structure, it is not
true that the commutator of two horizontal vector fields is still horizontal. In
particular

lDr,D,l: -(7V"A,t+IA- þ,A"]) - -F¡,, (9.20)

is a fundamental vector field on the bundle space written as a Lie algebra ele-
ment, and moreover

Fpp,: Ad,l;Å. Fo* r'r"(r): Ade-' ' Fr,(r) (9.21)---+

on Uof\UB

Curvature form
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From the commutator of two covariant derivatives, which is a fundamental

vector on P, s.t. u(lDr, D,]) : lDp, D,l, 'üe can construct a Lie-algebra valued

2-formO. Locally, on Uo ÀUB

l)o Fo*drP A dr" (e.22)

with
QB: Adu-'Qo. (9.23)

To connect the curvature form to the connection form, we need to introduce the

covariant exterior derivative dr, ffi

f) : d,ø : dø * f;W,rl. (g.24)

If X and Y are two tangent vector to the bundle, then

CI(x,y) : du(x,n +|@6),r(v)1. (e.25)

Let's decompose X and Y into their vertical and horizontal components

X:hX@uX Y:hY@uY (9.26)

then, what we get is

a(x,Y ) : du (hX, hY) + du(u x, uY) + du (hx, uY) + du (u x, hY )
1. 1

+ 
rIu(u 

X), u(uY )l + rlu(nx), u(hY)l

: du(hX,hY). (9.27)

Though d2 : 0, D' + 0, whereas D{l :0,Vø (Bianchi ideintity), using the

Jacobi identity.

Group of gauge transformations

Gauge transformations are equivariant automorphisms of some G-bundle P.

The l-forms of connections are the physical interesting objects, whose compG

nents are the gauge potentials. Choosing a particular G-bundle automatically
defines the set of Chern classes. (Pr,lc e Z). In this context, the gauge transfor-

mations assume the role of elements of an infinite-dimensional Lie group, called

9, whose group composition is smooth

Q: P -+ P, A e C-(AdP). (9.28)

1

2
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This group composition can be expressed as follows

Vg e Çlg : P -' P + )1€ Map(AdP),'y,, -. G,

g(u) : u' l(u), u e P, l(ua) : a-ry(u)a,

Vg,h e Ç,9 o h(u) : u. (tn'lù(u).
Locally, the mapping "y : P -- G can be written as

rc@) : rþ;Å@) n@) 1Þ.B@),Yr e (/o ) up, {uor,} Ç p

(e.2e)

(e.30)

This representation is in 1-1 correspondence with the sections of the bundle 6
associated with P with standard fiber G, G acting on itself by the adjoint map
("(g) : aga-r). The group Ç of gauge transformations can be identified with
the set f(6) of sections of 6, which is not a principal bundle though, because
the action of G is not free. 6 will have global sections and unit element (r, 

").The Lie algebra of. Ç, LieÇ. As we know, elements of sections of tangent and
cotangent bundles are respectively vector fields and forms. Consider the constant
unit section s of 6: through any point of 6 passes one fiber. Using the local
triviality of.matB over patches Uo, we may identify the fiber with the group G.
Tangent vectors to the fiber s follow immediately, as well as parallel transport
and all the operations on vector fields. These fields are elements of the algebra
of G, vectors to a frber r^l"rB(z), with r Ç(Jo. on the transition LIo.l(Ip,the
map is of course

Ap: Ad,þ-' .Ao. (9.31)

The field we have just determined on B can be identified as a section of an
associated bundle E lo P, where the fiber is g and the adjoint action of G on
g. Then, f(E) is the Lie algebra of. Ç : 1(Q. l(E) is an infinite-dimensional
module. Any section of. B can be written as

C'"(AdP) : Ç =f(B) ) s : exp(ø), ø € f(E)
(e.32)

o : Uo ---+ g.

At last, there's a particular class of gauge transformations, those which have
values in the center Z of. G: for such a transformation we have on some local
chart U.

nAi,: g;1Afi7, * got7rg* - Aî. (9.39)

This can be also written as

opgo * lAfi, s"l : DfiTo : o, (e.34)
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i.e. Vgo : 0. Then, go belongs to the center of the holonomy group of the

connectiotn under consideration. In fact

DtuD"lg : lFpu,gl : 0. (9.35)

Covariant derivative in background

As an exercise, consider the covariant derivative, whose connection is a pure

gauge, acting on a generic function ø in the adjoint representation

Drlgtõrg]Ø :7*u +lgtôrg, ul. (9.36)

Explicitly, it becomes

\ru *lgt0¡"g, al: 7pu + gIðrgu - u gt0rg

: gt g\pu gI g + gÍ 0,,g a gI g - gI g, gl7rggt g

: gt[g\pu gr + 0rgu gt - g, gtõrggllg

: gllgat"u gt + opg u gl + g a ôpgrlg

: srlapþ u s\ls, (9.37)

where we have used the identity

gt g : lt + or(gI g) : o. (9.38)

To evaluate the operator D2, we use then this compact expression

Drlgt 0rgl : srf7r@ a st)ls

D'(r) : gt[0r(glstl0r(s, gi)lglgt)ls: eI(afgu grl)g. (e.39)

.1,
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Appendix B

Hubbard-Stratonovich transformations to lineartze the
quartic-ghost interaction

The massive Curci-Ferrari gauge-fixing Lagrangian density presents, being
a specific example of a broader class of non-linear gauges, the feature of a
quartic-ghost interaction: this is necessary in a non-linear gauge to preserve
renormalizability. This non-linearity also contributes to prevent from applying
straightforwardly Grassmann integration, which would turn out into the more
common form of a functional determinant of the Faddeev-Popov operator, as

it happens for instance in Landau gauge. To avoid such a problem, we will
perform a linearisation of the quartic term, in the framework of path integral
linearisation technique, making using of the Hubbord-Stratonovich transforma-
tions. To begin with, we choose a .9U(/V) Lagrangian densit¡ ghost/anti-ghost
symmetric, quantized in the massive Curci-Ferrari gauge

LmcF: r, 
{f,u, 

r rur¡nrtl t +eA), +!rep,D}"-im2(ec+ f,efa 
* r)r} ,

(10.1)

which is left invariant under the following BRST and antiBRST matrix trans-
formations

sAr: -Drd
se:-årere

sb:'im2c- 9. r b sb: im2c- 9¿ r ¿22
t2 c2

!("tc)xð +?(cxc)xc. (10.2)

The two transformations relative to the Nakanishilautrup field b are responsible
of the presence of the quartic ghost interaction in (10.1). In the ghost/anti-
ghost symmetric case, the Faddeev-Popov is Il2{A,2} rather than just 0D as

in standard linear gauges. As pointed out in [NO90], the presence of m2 in the

sA*: -Dt"c
,": -9" * "2

g_
SC:O--cXc

2
Sc: -b - cxc

dö
,
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BRST transformations and consequently in Eq. (10'1) spoils the nil-potency of

both the BRST operators, such that their mutual anti-commutativity is given

by [TM80, CF76, NO90]

{r, r} : -m26 : -m261 {S, S1 : -m26 : -rn26I
(10 3)

{t,5} - -m26pp,

with ô, ð and the Faddeev-Popov ghost number operator ôpp $enerating a ^9¿(2' R')

algebra [DLS+02, Sch99]

[ð, ô""] : -26 [5, ôto] : -26
(10.4)

[ô, ô1 : 5"o'

In [DJ82] and [NO90] it was argued that the 5 charges, obtained from the 5

operators we just showed, constituted a super-symmetric Lie algebra OSp@12):

though in [TM80], it was actually found that the ö field broke down such a sym-

metry, and therefore its super-symmetric algebra. To introduce the Hubbord-

Stratonovich transformations, we simplify the above Lagrangian employing the

case of SU(2) (the generalisation to SU(I/) only invokes the introduction of f"b"

as structure constants), such that the quartic interaction becomes

tr{ete x c)2 :{r"b"ðr'rd*ndncn trxoXd' (10'5)

Adopting anti-Hermitian algebra generators and a normalisation trX" Xd :
_16"0, the Lagrangian density of Eq' (10.1) becomes

LmcF: -i{lrr' + iboF"¡n¡l +\e'+")' + iela,D)ou"u

-imzqtco +{r"b'e"be'**d^c^\. (10.6)

In [Sch99,DLS+02] the quartic interaction was linearized in the light of Maximal

Abelian gauge, though the BRST formulation of the corresponding Lagrangian

wasn't explicitly revealed. In particular, it was only showed how to find the

relative BRST transformation for the @ field in order to preserve the invari

ance of the Lagrangian under BRST and in that gauge, the coupling involves

t2 scalar fermions rather than scalar bosons. This is because of the maximal

abelian decomposition of the various couplings and consequently of the structure

constants. We will further on see how the complete St/(¡i) structure constants

will play an important role as far as their convolution is concerned. Moreover,
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it wasn't showed again in [DLS+02] how to generate the Lagrangian density
over the two BRST operators, which a crucial thing to achieve in order to prove
the topological nature of a BRST-based theory. Therefore, our objective here
is to demonstrate that in the case of non-linear gauges, such as the massive
Curci-Ferrari, it is possible to re-write Eq. (10.6) as a total BRST-anti-BRST
variation, and we will then present the extensive BRST transformations. To be-
gin with, let's use Hubbard-Stratonovich transformations to linearize Eq. (10.5)

g* I {rob"z""brcmn¿m"n : C I Dóe- [ $ø"a"-isfóocob.êbc., (10.2)
I

with c : (a"t T)''' The scalar field @" has vanishing ghost number and is
required to be hermitian to mantain the total Hermiticity of the Lagrangian
density. It is then left invariant under FP charge operator ðpp. Both ghosts
and anti-ghosts functions are chosen to be hermitian, such that ("")t : c" and,
(¿")t : co, see e.g, [AFRvsO3, oji80, KoTg] and refe¡ences therein. The local
Lagrangian density becomes then

n 7 I €,"," ..n ã^,ñ .1 12 ;
LmcF : -i \;u"u 

-t ib"F"¡s4l +Çe,+")' + |ela,Dlo'ru - im2qúco

+f,ó"ó" - ur9ró"r"u"o"u\, (10.s)

which implies that we need 3 additional @ fields in s[l(2) and .ð/2 - 1 in ^gu(¡r).
The partition function in Euclidean space-time, which will be a functional de-
pending on a certain background gauge field ,4, reads

Z^¿plAl: ( D gD cD cD bD þ ¿zt's Io t'b'c'c'sl

D ¡-t, e2 I L^"o 
.

Before performing the integration in the ghost fields, which is defined over real
ghost fields as DdDc = fl,ll"ie"(r)co(r), we wish to separate the contribution
of the ghost zero and non-zero modes with respect to the eigenvalue equation
of the Faddeev-Popov operator. In non-linear gauges, the presence of a quartic
ghost term allows us to absorb two zero modes without causing any harm as
far the Grassmann integration is concerned. In addition to that, the diagonal
quadratic ghost term, -im2ec" can absorb an additional zero mode: this is the
reason why in the massive Curci-Ferrari gauge the corresponding Euler character
does not vanish, as it would be the case in sU(¡/) [GK\ /05], but it will depend

-c (10.e)
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on n'¿2. The eigenvalue equation is then

{a,DlAl)"bÀb(") tÁl : Mffbr\l.r [Á] : €il) [.4]À?") [A],

{a,DlAl}"b)?o)[-4] : M"rooÀ'tot [A] :0. (10.10)

In this ,,r/ay, 'ù/e will not worry of singularities once we will deal with the inverse

of the Faddeev-Popov operator. The resulting partition function is

z ^crlAl 
: c I 

D c p¡D c p¡ el im2 €'io'cio)+ilt Ó" e"b' cio)cbuo')

f ,norr*¡Dc6¡DbDôe2!*¿,. (10.11)

Integrating out both ghost zero and non-zero modes, we obtain two functional

determinants which both contain the auxiliary field @, the standard feature in

effective Meson theory [AvS01]

Z^ceÍAl: C 
I 

DgDbDþ ¿- I $ub+tu"r"+{{n't)2+tÖ"Ö"

. o" {/ (e*'u* * rló',"u")},,,

,. o* 
{ - I (rf, - t*'6ou - sf,öl."u")},,,,. (10.12)

Using the formula det A - "tttorA, 
vr'e can write the effective action as a non-

polynomial function in @ as

s"nldl : I (lnóo - trt"* {/ (e^'u* * *ló',"u")},,,

-trrog { I Qø*, - €*"6ou - sf,ó","u")},,,) (10 1s)

Following [Avs01], variation of the effective action s"n[d] (10.13) yields the

Dyson-Schwinger equations in terms of the classical fields

óft¡(x) {cf,rr*,ùsf,u"'"d*}

{" 
"r0,., (*, ù sf,r"o' d 

*\
The solution of these two equations determine the vacuum expectation value

(VEV) of the boson fields @1¡¡ and @1,,¡. Gr,o.,(*,r) and Grr,,(*,r) are bhe ghost

1: -tr
€

: óft¡,a@), (10'14)

and

ó(,¡(r): åt.
: ó("¡,a@). (10.15)
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propagators in the background respectively of the fields /16¡ and /1s¡. They are
defined, in matrix notation, as

a) 
u''

¿(r,

5'@1"¡

dtol

Mrp-€^'-g

t
ç

2
È

G;,to,(r,a):

G;rr,r(r'a): õ@ -a). (10 16)

n-L *g
2

The non-zero mode effective potential Vç(óa) for the space-time independent
classical field /"¡ is obviously

Ë

vnlóal: )óó -tos
ç: )óó - lor
2t'

{ l(.*-€^,--fr,,)}
("-'tt",l*å) (10.17)

In this semiclassical approximation, the boson field is being shifted by ó ---
óa*$, such that the classical field coincides with the vEV d"r = (ó) and the
quantum fluctuation f has a vanishing vEV. Assuming from (10.15) a non-
vanishing VEV for /, this would imply a non-vanishing ghost condensate: from
the equations of motions of @, we generate a gap equation for the ghosts as

óa = (ó") : !rckb.dc") : M2. (10.1g)

which can be solved by Fourier transform as

il#yffi:M2 (10 1e)

with an ansatz for the f function asl'(p'): p2o, the gap equation assumes
the form

dnp1l
6y@:t6nz

p3

")+A'
(10.20)

with A being a mass function a, : m2€ + g|M' and Â a momentum cut-off.
The solution to Eq. (10.20) is expressed in terms of the Lerch's Phi function,
defined as tÞ(z,s,a): Di.r4"u..¡*

(ó):#1,^a0ffi6
: g/\n 

^(-Lz(t+*).' 
2 \3212(7+rc)A-\ A "'t+n)

G-h##,*ot*-')')
(10.21)
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BRST formalism in Hubbard-Stratonovich transformations

After performing the Hubbard-Stratonovich transformation to linearize the

quartic ghost interaction, the various BRST transformations of Eq. (10.2) will
change. To generate the Lagrangian density of Eq. (10.8) as a double extended

BRST variation we consider the following matrix transformations, (we employ

from now on SU(2) as a Lie group, whose generalisation to.9U(¡i) is obtained

by substituting the structure constants e"b" with ¡abc in the exterior product x)

sA,: -D,'c
sc: -f;c x c

sc:b- f;e""
sb:im2c-|rxa

sÖ :2Ú
,v:-f;v,.v
sV:ó-i,gcxc

EA,: -Dre
g.Se:-lcxc

sc:-b-f;e""
sb:im2c-f;e"u

sit/ \[¡xü
SlU:Q-i,gcxc (L0.22)

:2ú
Itò:--
2

só

such that

LmcF : |rt (ea"l2 - i¿dc" - tf,o"o")

.+ ((t)' - i{dc")

: 
f,u"u' 

* ib" F"¡sll + \ea)" + ie 1a,Dlou"u

im21úco + 
f,0"0" - orló"r"o"tcb -€vovo. (10.23)

It is worth noting that the transformations involving the Nakanishi-Lautrup

field ö'change with respect to Eq. (10.2), in the way that the triple ghost term
is no longer present in neither of sb" nor 5öo, respectively -*(" x c) x õ and

+*(a x ð) x c. The auxiliary field / has vanishing ghost number, Gh({) : g,

whereas the two additional fermionic fields, introduced in (10.22) to generate the

coupling of / with the quadratic-ghost term in (10.1), ilr and iU have respectively

Gh(U/) : 1 and Gh({/) : -1. The field @ thus plays the role of an additional
Þfield in standard BRST, and ![r and i[ the role of c and ð. The appearance of

the term {V"V" in (10.23) produces only a multiplicative overall factor, because
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of Grassmann integration

DVDV ¿I€'v"v": det({), (10.24)

which will be absorbed into the overall constant g : (det 2tr{)-t/2. An other
interesting aspect of these non-linear gauge BRST transformations is that the
Lagrangian density (10.23) so generated is, at m2 : 0 a true topological La-
grangian. In fact

Z^cplAl : C I DgDbDcDcDó ei"s I((sAa)2-i€¿ùcd-t$0"a") (10.25)
.t

conserves its topological nature, which can be seen by rescaling the fields as

and noticing that Z^cr[A] will remain unchanged. Furthermore, demanding the
nil-potency of the BRST transformations we notice that

s2v:2ú-igbxc+0 s2.Ir:2ú-igð,xbl0. (10.27)

Yet, the nil-potency is restored on-shell once we use the equations of motions of
the /-field. In fact, on-shell, sö : i.gts(c x c) : ¡etb x c, and therefore

s2V :o'-.h 
"¡ ztglU x c - igb x c: 0. (10.2g)

This is the reason why in the BRST tr"urrrror-utions (10.22) we have a factor 2
upfront both s/ and s/. Also the invariance of the Lagrangian density (10.23)
under the transformations of Eq. (??) is preserved on-shell

s LmcF :, (fr" r" - orfó" rabc¿ rb- {ú'*")
: €óosóo - orlþO.)eob"ecb - isf,6"r"u"b""u

- ((sÜ")rlr" + 6V"s1,Ir"¡. (10.29)

Using the equations of motion lor Q, ö : i|e"b.eocb, and ú" : iäe"b"bbc", we
restore the invariance. In this Appendix we will show how the BRST trans-
formations (10.22) will change if we expand the convolution of the structure

cc
a+-^J- n\/C n\/e

(10.26)



constants, €abc€cmn and l"b"f*'. Let's start with SU(2): the convolution of the

structure constants is very simple and gives

,abcrcrnn _ 5arnSbn _ õonõb^, (10.30)

which, inserted in Eq. (10.6) gives

LmcF : -; {lr, * ib" F"¡s¡1 + }a 1a,D}"0,0

+!{,,+)' - im2{eoco* {ro"i'} (10 81)

After performing the linearisation of the quartic tetm, we obtain

LmcF : -; {lr"f * 
,ib" F"¡s¿\ + ie 1a,D}oo,'

m2 F t . .ì
+f{++")' -im2{dc" +;óó -is;aec\}. (10.32)
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We notice that now, the @ field carries no gauge index, due to the scalar nature

of (e"c")2 , which implies that @ lives in the identity of SU (2). It is worth noting

that in thise case, there is only one single @ field, whereas, in the case in which

we do not employ the convolution of the structure constants there were ¿Ìs many

fields as the generators of the algebra (ô", o - 1... ¡/2 - 1) Consequently, the

BRST transformations (10.22) will change accordingly as

SA*: -Drê
cî
hsc--:cxc'¿
u- |ex"

where the two fermionic fields \[ and ü transform trivially under s and 5 because

they live both in the identity of the group too, and so their exterior product

vanishes. Thus, \¡¡e see that the structure-constant convolution gives a U(1)
BRST theory in the additional fields. In ^9tl(l/) the situation looks quite more

complicated, because the convolution of /"b" gives

¡abc¡crnn : lça"^dbn - 5an5btn) + do .dbnc 
- ¿anc¿bnrc, (10.34)

¡y'.'

sA,: -D,c
øsc: -Yc x c

s_sc:b-tcxc
sb :'im2c - 9" x u

,¿

sÔ:2Ú
stÛ:0
s!ú:S_igð,.c

sb : im2c - 9¿, a
2

3Ó:2V
Silr : 0

sll:d-ige.c, (10.33)

sc: -
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where dob" comes from the commutation relations of the sz(l/) generators

1
lX",Xal : f'obX" {X", Xu} 6o6 - id,'o6X". (10.35)¡/"

The quartic ghost term will then be

Z^cF[Al: CI
-c

s' f, r "o' r 
*n d' cb dn cn : s' ft{æ "')'

+ s'f,a"""earn ¿bmc¿lrm

- s'f,a" "edn dbn'cbcn,

LmcF : -; {lr, * lb" Fo¡snl + { e,+")' + 
f,e 1a ,D}ou 

"u

-im2 qú co * lo, - rsr*róe" 
""

+f,v"v" - ¿slp"d"'"no][

(10.36)

which should determine three different couplings. Yet, the third vanishes because
of the anti-commutativity of the ghost fields and the symmetry of the d symbols,
e.g. dob'cbcc - -¿acb"c"b - ¿abc""cb : 0, and the same thing for õ. Therefore,
the ^9U(.n/) Lagrangian density appears not so different from the SU(2) case,
specifically

The corresponding partition function, expressed in terms of a double BRST
variation is then a functional integral over the new additional fields as

(10.37)

D gD bD dD cD QDú D ú D 9D yD te- s [ { Õ },'41

D p eiñtrl|gA¡" -tq-n-t$w-t$ool

"-4t 
llPe)2-it.¿.| (10.38)
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The corresponding SU(¡r/) BRST transformations are the following

sAfl: -D",|"' sAi: -Di:d
sco : -|f"**æ
Fco: -b" -f;f"u"dr"

sbo:im2ca-9¡abcf6c

sco : -lf"o".o"'

sú : b" -f;r"b"dr"

sbo:im2co-|l"u"rub.,

sÓ:2'Ú
silr : 0

sú:ç"-ig

sÓ" :2x"
sxo : -ïrf"u"xox"

sXo: þ" -igd"b"ðc'

sÓ:2Ú
s\[:0
sú:g"-iE

sÖ" :2X"

sxo : -f;f"u.Nox"

sxo : þ" - igd"b'dc'. (10.39)
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