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The impact of dynamical fermions on the vacuum structure of QCD is explored. Of particular
interest is the topological charge correlator, 〈q(x)q(0)〉, where negative values at small x reveal a
sign-alternating layered structure to the topological-charge density of the QCD vacuum. We con-
sider large 283×96 lattices from the MILC collaboration, and develop a new gluonic definition of
the topological charge density, founded on a new over-improved stout-link smearing algorithm.
The algorithm reproduces established results from the overlap formalism and is designed to pre-
serve instantons. We examine the extent to which instanton-like objects are found on the lattice.
Finally, we investigate the effects of dynamical sea-quark degrees of freedom on topology and
find that the magnitudes of the negative dip in the 〈q(x)q(0)〉 correlator and the positive 〈q(0)2〉
contact term are both increased with the introduction of dynamical fermion degrees of freedom.
This is in accord with expectations based on charge renormalization and the vanishing of the
topological susceptibility in the chiral limit.
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Aspects of QCD Vacuum Structure

1. Introduction

Understanding the topological structure of the QCD vacuum remains a central focus of modern
Lattice QCD studies. For computational reasons, most previous studies have focused on gauge
fields generated using the quenched approximation. In the following proceedings, we present a
quantitative comparison of vacuum structure for quenched and dynamical-fermion gauge fields.

The introduction of fermion loops into the QCD action renormalizes the coupling and demands
smaller values for β in obtaining the same lattice spacing, a. Smaller β values will admit rougher
gauge fields such that we expect to see a higher density of non-trivial topological excitations,
particularly for lighter sea-quark masses. For example, we anticipate larger values for the mean-
square topological charge density 〈q2(x)〉x. This combined with the vanishing of the topological
susceptibility in the chiral limit leads to our prediction that the negative dip in the topological
charge density correlator, 〈q(x)q(0)〉, will be enhanced in full QCD with light dynamical-fermions.
To the best of our knowledge, this is the first study of the 〈q(x)q(0)〉 correlator in full QCD.

In order to study these differences in vacuum structure on the very large MILC lattices, we
commence with the development of a new gluonic definition of the topological charge density,
founded on a new form of over-improved [1] stout-link smearing [2] algorithm, designed to stabi-
lize instantons. We then examine the extent to which instanton-like objects are found on the lattice.
Finally, we investigate the effects of dynamical sea-quark degrees of freedom on topology and find
that the magnitudes of the negative dip in the 〈q(x)q(0)〉 correlator and the positive 〈q(0)2〉 contact
term are both increased with the introduction of dynamical fermion degrees of freedom. The effect
is significant and is easily observed in the visualizations of the topological charge density provided
at the close of these proceedings.

2. Over-Improved Stout-Link Smearing

The removal of short-distance UV fluctuations is an important aspect of defining the topolog-
ical charge of a rough gauge-field configuration. For gluonic topological charge operators, one
often applies iterative smoothing algorithms which hold the risk of destroying the very structures
one hopes to reveal. The corrosion of topological excitations in the QCD vacuum under smoothing
is due to the presence of discretization errors in the approximation of the action. In the past there
have been attempts to remove these errors via the combination of different sized Wilson loops in
the calculation of the local action. When combining these loops, one must carefully choose the co-
efficients of the different shapes in order to cancel the leading order error terms, thereby resulting
in an improved action [3, 4].

Despite the improvements, improved actions can still spoil instantons [5]. Consider, for ex-
ample the Symanzik O(a2) improved action, composed of the plaquette (Pµν ) and rectangular
(Rµν , Rνµ ) Wilson loops.

SS = β ∑
x

∑
µ<ν

[

5
3
(1−Pµν(x))− 1

12

(

(1−Rµν(x))+(1−Rνµ(x))
)

]

, (2.1)
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We can Taylor expand the Symanzik action in orders of a and following Perez, et al. [1] substitute
the classical instanton solution [6]

Aµ(x) =
x2

x2 +ρ2

(

i
g

)

∂µ(S)S−1 , S ≡ x4 ± i~x ·~σ√
x2

, (2.2)

into the expanded action to find

Sinst
S =

8π2

g2

[

1− 17
210

(

a
ρ

)4
]

. (2.3)

The negativity of the O(a4) error means that this action will destabilize instantons when used in
an iterative scheme. This occurs because the smoothing algorithms are designed to remove action
and will do so by effectively reducing ρ to obtain a lower action. Eventually the instantons become
sufficiently small that discretization errors allow them to be removed from the lattice.

Perez, et al. [1] proposed that instead of combining different loop combinations in order to
suppress the discretization errors, they could instead tune their coefficients such that the errors
became positive for a classical instanton. By doing this, instantons should be stable under cooling.
We extend their work, using a plaquette plus rectangle action, in the interests of locality, and
modern stout-link smearing [2].

Taking the Symanzik action (2.1) and introducing a new parameter ε , such that ε = 1 provides
the Wilson action and ε = 0 provides the Symanzik-improved action, implies the following form
for the over-improved action

S(ε) = β ∑
x

∑
µ<ν

[

5−2ε
3

(1−Pµν(x))− 1− ε
12

(

(1−Rµν(x))+(1−Rνµ(x))
)

]

. (2.4)

Taylor expanding this action for the classical instanton solution, one finds that for ε < 0 the leading
order a2 errors are positive

Sinst(ε) =
8π2

g2

[

1− ε
5

(

a
ρ

)2

+
14ε −17

210

(

a
ρ

)4
]

. (2.5)

The question is now: How negative should ε be? To answer this, we propose the following method.
Given S(ε), select some value of ε and plot S(ε)/S0 as a function of ρ . Ideally this will result

in a straight line at S(ε)/S0 = 1. What we actually observe is illustrated in Fig. 1. Note that it is
the value of the slope of the curve that is important when deciding how an instanton will change
under a given smoothing algorithm. Varying ε results in curves of varying slope. We settled on a
value of ε = −0.25 as providing a nice result.

3. Vacuum Structure

With the over-improved stout-link smearing procedure completely defined we now proceed
to perform a study of topological excitations in the QCD vacuum. We also provide a few results
obtained using a 3-loop improved cooling algorithm [4]. We use one set of quenched gauge fields
and two sets of dynamical gauge fields in order to investigate the effect of dynamical sea quarks
and varying quark mass. The gauge fields were generated by the MILC collaboration [7, 8], and
their details are summarized in Table 1.
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Figure 1: S(ε)/S0 versus the instanton size, ρ , for the Wilson action, Symanzik-improved action, Perez
over-improved action, and our over-improved action S(−0.25). S0 is the action for a single instanton. To
preserve instantons the ideal smoothing action would give a straight line at S(ε)/S0 = 1. The slope of each
curve dictates how an instanton in the gauge field will evolve under smearing. Our action should be the most
stable because it is mostly flat and has a dislocation threshold, given by its maximum, at ρ ∼ 1.5.

3.1 Topological Charge Density Correlator

Recent studies of vacuum structure in Lattice QCD [9, 10] have revolved around the use of
the overlap topological charge density operator [11]. The overlap operator has the benefit of pro-
ducing an integer topological charge and was first to reveal the negative topological charge density
correlator, 〈q(x)q(0)〉 [10] for x > 0. Unfortunately, the overlap operator is very computationally
intensive. Thus we examine the issue of whether a traditional smearing method can produce a
negative correlator. Using the quenched gauge fields, we calculate the 〈q(x)q(0)〉 correlator on
smoothed gauge fields with a three-loop O(a4)-improved lattice field strength tensor [4]. Fig. 2
reports the results.

3.2 Instanton-Like Objects

Repeated application of a smearing algorithm will eventually reveal the presence of spherical
instantons in a gauge field. However, after only a small number of sweeps, these objects tend to be
far from spherical. We now wish to investigate the similarity of these objects to instantons.

Using over-improved smearing we analyze the action density of a smeared field to determine
the peaks of maximum action and fit the instanton action density to our data. From this we can
extract a size, ρ , for the instanton. We also extract the charge at the centre of the instanton-like

Table 1: Parameters of the gauge fields used for this investigation. Label denotes how we will refer to the
respective lattices throughout this proceeding. For more information see [7, 8].

label size β a (fm) amu,d / ams

Quenched 283 ×96 8.40 0.086 −
Heavy 283 ×96 7.11 0.086 0.0124 / 0.031
Light 283 ×96 7.09 0.086 0.0062 / 0.031
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Figure 2: The topological charge density correlator 〈q(x)q(0)〉 as computed on the quenched gauge config-
urations for both 3-loop improved cooling (left) and over-improved stout-link smearing (right). We see that
for a small number of sweeps it is possible to obtain a negative 〈q(x)q(0)〉 correlator, similar to the recent
overlap results [10]. Note that errors were calculated using a first-order jackknife procedure but are too small
to see.

Figure 3: q(x0) versus the instanton size ρ for 4 and 20 sweeps of over-improved stout-link smearing.
Calculation details are in the text. We see that for 4 sweeps of smearing the peaks do not seem to represent
instantons, but that as we smooth further the points start to cluster around the predicted line.

object, q(x0). Thus, if there is good agreement between the extracted q(x0) and that predicted by
ρ , then we can say that the object is locally representative of an instanton.

In Fig. 3 we plot q(x0) vs ρ for a quenched gauge field after both 4 and 20 sweeps of over-
improved stout-link smearing. Each cross represents a peak in the action density. If the peak were
to represent an instanton then its cross should lie on the theoretical curve. We see that for 4 sweeps
of smearing the peaks do not appear to represent instantons. As more UV fluctuations are removed
the crosses lie closer to the line.

3.3 The Vacuum Structure of Dynamical Gauge Fields

Several studies of the differences in vacuum structure between quenched and dynamical fields
have focused on the topological susceptibility

χ = 〈
∫

d4x q(x)q(0)〉 =
〈Q2〉

V
(3.1)
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Figure 4: The topological charge density correlator 〈q(x)q(0)〉 for the quenched, light and heavy dynamical-
fermion gauge fields. It is interesting to see how the dynamical fermion loops have caused the negative dip
to increase in magnitude, and how this effect is greater for lighter quark masses. Although not shown, the
positive contact term 〈q2(0)〉 has also increased in magnitude. Exact values are given in the text.

We now extend these studies of the topological susceptibility to the 〈q(x)q(0)〉 correlator. It has
been shown that [12]

〈
∫

d4x q(x)q(0)〉 ∼ m2
π → 0 in the chiral limit, (3.2)

and therefore |Q| → 0 also. This leads to three scenarios for how the shape of the 〈q(x)q(0)〉 could
change in the presence of dynamical quarks. Either the positive contact term and the magnitude
of the negative component could both increase or decrease, or they could stay the same. The
only requirement is that the integral of the correlator vanishes in the chiral limit. However, as we
discussed in the introduction, fermion-loop coupling renormalization leads to smaller β admitting
larger field fluctuations. We therefore expect that 〈q(0)2〉 should increase, and thus so must the
negative component of 〈q(x)q(0)〉 increase in magnitude.

Fig. 4 shows the topological charge density correlator as calculated for the three different
types of gauge fields. We see that the presence of dynamical quarks has caused the magnitude of
the negative component of the correlator to increase, and that this effect is greater for lighter quark
masses. The x-intercept has also moved closer towards 0. Although not shown in the plot, the mean
square density 〈q2(0)〉 has also increased in magnitude. The exact values of the positive contact
term are; quenched = 2924±4fm−8, heavy = 5251±12fm−8, light = 5432±8fm−8

We expect that this behaviour will be readily apparent in visualizations of the charge density,
q(x). Plots of q(x) are shown in Fig. 5, and indeed we observe that the light and heavy gauge fields
contain many more non-trivial field fluctuations.

4. Conclusion

We have presented the first calculation of the topological charge density correlator, 〈q(x)q(0)〉,
in full QCD. Using both 3-loop improved cooling and the new over-improved stout-link smearing
procedure we are able to obtain negative 〈q(x)q(0)〉 correlators. Using our proven methodology
a quantitative comparison of quenched and dynamical gauge fields is performed. The dynamical

6
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Figure 5: Topological charge densities for the quenched (top), heavy (bottom left) and light (bottom right)
dynamical-fermion gauge fields. Each field has been smoothed using 4 sweeps of over-improved stout-
link smearing. We see that the bottom two dynamical gauge fields contain a higher density of non-trivial
topological charge density than the quenched field. However it is difficult to see the difference between the
two dynamical gauge fields.

gauge fields show an increase in non-trivial vacuum field fluctuations. This is observed directly
through visualizations of the topological charge density and via the calculation of the 〈q(x)q(0)〉
correlator. For the correlator we see an increase in the magnitude of the negative dip and positive
contact term with larger effects for lighter quark masses. These observations are in accord with
expectation, outlined in greater detail in a forthcoming publication [13].
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