

Enhancing yeast performance under oenological conditions by enabling proline utilisation

by

Kathryn Poole

A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Sciences

Department of Horticulture, Viticulture and Oenology The University of Adelaide

April 2002

Table of contents

Thesis summ	ary	i
Declaration		iv
Acknowledge	ements	v
Chapter 1	Literature review	1
1.1	Introduction	1
1.2	Nitrogen requirements for fermentation	2
1.2.1	Nitrogen in grape must	2
1.2.2	Proline as a nitrogen source	3
1.3	Proline uptake and utilisation by Saccharomyces cerevisiae	5
1.3.1	Proline transport	5
1.3.2	Regulation of the permease genes	6
1.3.2.1	Transcriptional regulation of the permease genes	7
1.3.2.2	Post-translational control of Put4p and Gap1p	9
1.3.3	Proline catabolism in Saccharomyces cerevisiae	10
1.3.4	Regulation of the <i>PUT1</i> and <i>PUT2</i> genes	10
1.4	Oxygen requirements of Saccharomyces cerevisiae	12
1.4.1	Role of oxygen during oenological fermentation	13
1.5	Summary	15
Chapter 2	Materials and methods	17
Chapter 3	Preliminary study: construction of mutants capable of proline	
	transport	35
3.1	Introduction	35
3.2	Selection of strains	36
3.3	Selection of nitrogen sources	36
3.4	Construction of constitutive PUT4 strains	37
3.4.1	Deletion of URE2	37
3.4.2	Cloning <i>PUT4</i> under the control of a constitutive promoter	37
3.5	Results	38
3.5.1	Analysis of PUT4 expression in response to the quality of available	
	nitrogen	38
3.5.2	Investigation of Put4p activity in constitutive PUT4 strains	39
3.5.3	Removal of proline from chemically defined grape juice media under	
	model oenological conditions	40
3.5.4	Depletion of oxygen from a chemically defined grape juice medium	40
3.5.5	Oxygen availability during oenological fermentation	41

Table of contents

3.5.6	Comparative growth k inetics and n itrogen utilisation of KP2, KP20 and	
	KP21	42
3.6	Conclusions	43
3.7	Discussion	44
Chapter 4	Generation of PUT4 mutants no longer responsive to nitrogen	
	catabolite repression	48
4.1	Introduction	48
4.2	Random mutagenesis of the PUT4 promoter region	49
4.3	Selection of strains capable of PUT4 expression under repressive	
	conditions	50
4.4	Confirmation of <i>PUT4</i> expression in the presence of ammonium	52
4.5	Identification of mutations in the PUT4 promoter region of KP41 and	
	KP42	52
4.6	Identification of single point mutations resulting in PUT4 expression in	
	the presence of ammonium	53
4.7	Analysis of regulatory sequences in the PUT4 promoter region	54
4.8	Conclusions	56
4.9	Discussion	56
Chapter 5	The post-translational down-regulation of the proline specific	
	permease	59
5.1	Introduction	59
5.2	Nitrogen catabolite inactivation of Put4p and Gap1p	59
5.3	The ammonium-induced down-regulation of Put4p	61
5.4	Site-directed mutagenesis of PUT4	64
5.5	Proline uptake activity in a strain constitutively expressing Put4p S605A	67
5.6	Conclusions	68
5.7	Discussion	68
Chapter 6	Fermentation by a strain capable of proline transport	73
6.1	Introduction	73
6.2	Results	75
6.2.1	Fermentation kinetics of KP2 and KP71 in the absence of oxygen	75
6.2.2	Fermentation kinetics of KP2 and KP71 when oxygen is available during	
	the initial stages of fermentation	76
6.2.3	The effect of oxygen additions during the stationary phase	77

Table of contents

6.2.4	Viability of KP2 and KP71 cultures at the end of fermentation	78
6.3	Conclusions	78
6.4	Discussion	78
Chapter 7	General Discussion	82
Appendix 1	Solutions	87
Appendix 2	Plasmid construction	94
	References	96

Thesis summary

Assimilable nitrogen, which is typically lacking in grape juice, is an important nutritional requirement of Saccharomyces cerevisiae. As such, fermentations frequently become protracted, terminate prematurely or develop undesirable aroma profiles. Amino acids and ammonium are the main sources of assimilable nitrogen in grape juice. The amino acid proline often predominates. Proline uptake is mediated by a high affinity, proline-specific permease, Put4p, and a low affinity general amino acid permease, Gaplp. The expression and activity of these transporters is subject to nitrogen catabolite repression (NCR) and nitrogen catabolite inactivation (NCI). That is, in the presence of a preferred nitrogen source, the expression of PUT4 and GAP1 is repressed and the permeases are inactivated. For yeast to fully exploit proline, its transport must be derepressed by depletion of other (preferred) amino acids and molecular oxygen must be present to allow proline catabolism by proline oxidase. Consequently, as oxygen is typically depleted well before the other amino acids in grape juice are reduced to non-repressive concentrations, proline is largely un-utilised by yeast during oenological fermentation. This study aims to overcome these metabolic restrictions on proline utilisation.

A preliminary study was conducted to determine the potential for proline transportcapable strains to utilise proline during the initial stages of fermentation when oxygen may be present, particularly in red grape must. Initially, the transcriptional regulation of the *PUT4* gene was targeted to generate strains capable of proline transport under normally repressive conditions. In the first case, the *URE2* gene, encoding a negative regulator involved in nitrogen discrimination, was deleted. In the second case, *PUT4* was expressed from the constitutive *TEF2* promoter. It was observed that both strains express *PUT4* in the presence of a preferred nitrogen source. This expression led to Put4p activity during the initial stages of growth and fermentation, with Put4p activity declining over the course of the growth phase. Proline removal from the media, however, was limited to the initial stages of fermentation while oxygen was available. It seems that the rapid depletion of oxygen limits the amount of proline transported into the yeast cell. The two proline transport-capable mutants were analysed for growth and fermentation characteristics. It was found that the deletion of the URE2 gene led to a slow initial growth and the formation of a larger biomass. The ure2 delete strain also utilised significantly more nitrogen during fermentation than the wild type. Consequently, a ure2 delete strain would not be suitable for industrial use. The expression of PUT4 from a constitutive promoter did lead to an increase in nitrogen assimilation during fermentation when compared with the wild type. However, this observed increase was significantly less than that observed in the ure2 delete strain. In an effort to produce a proline transport-capable strain with potential industrial benefit, strains constitutive for PUT4 specifically were isolated using random, *in vitro* mutagenesis of the PUT4 promoter region. Four point mutations were identified that, when introduced singly into the PUT4 promoter, led to expression of PUT4 in the presence of a preferred nitrogen source.

The rapid depletion of oxygen observed in the preliminary study will limit the potential usefulness of strains capable of proline transport. Micro-oxygenation is rapidly becoming an accepted practice during oenological fermentation. The potential benefit of the controlled addition of oxygen during fermentation is restricted by the timing of any oxygen addition. Oxygen additions made at the onset of the stationary phase are the most beneficial. During the preliminary study, it was noted that Put4p activity decreased during the growth phase to low levels at the onset of the stationary phase. To ensure that sufficient active Put4p is present at the onset of the stationary phase, the post-translational control of the Put4p was investigated.

Site-directed mutagenesis was used to target residues in the carboxy-terminal region of Put4p that are potentially involved in the ammonia-induced down-regulation of the permease. The substitution, S605A, lead to the amelioration of ammonia-induced down-regulation of Put4p. The activity of the Put4p S605A variant decreased over the course of the growth phase, but not to the same extent observed in the wild type. Furthermore, a recovery seen after down-regulation restored a greater percentage of the original activity compared with the wild type.

To determine whether such a strain proved better able to ferment media in the presence of micro-oxygenation, the fermentation kinetics of a strain constitutively expressing *PUT4(S605A)* were compared with the wild type. Micro-oxygenation of ferments did not result in an increase in fermentation rate nor a decrease in fermentation time in the mutant. However, the cell viability of the strain capable of proline transport was increased in comparison with the wild type, suggesting a role for proline in stress responses within the yeast cell.