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Abstract

As the complexity of very-large-scale-integrated-circuits (VLSI) soars, the complexity of

verifying them increases even faster. Design verification becomes the biggest bottleneck

in VLSI design, consuming around 70% of the effort and time in a typical design cycle.

The problem is even more severe as the system-on-chip (SoC) design paradigm is gaining

popularity.

Unfortunately, the development in verification techniques has not kept up with the growth

of the design capability, and is being left further behind in the SoC era. In recent years,

a new generation of hardware-modelling-languages alongside the best practices to use them

have emerged and evolved in an attempt to productively build an intelligent stimulation-

observation environment referred to as the test-bench. Ironically, as test-benches are be-

coming more powerful and sophisticated under these best practices known as verification

methodologies, the overall verification approaches today are still officially described as ad

hoc and experimental and are in great need of a methodological breakthrough.

Our research was carried out to seek the desirable methodological breakthrough, and this

thesis presents the research outcome: a novel and holistic methodology that brings an oppor-

tunity to address the SoC verification problems. Furthermore, our methodology is a solution

completely independent of the underlying simulation technologies; therefore, it could extend

its applicability into future VLSI designs.

Our methodology presents two ideas. (a) We propose that system-level verification should

resort to the SoC-native languages rather than the test-bench construction languages; the

software native to the SoC should take more critical responsibilities than the test-benches.

(b) We challenge the fundamental assumption that “objects-under-test” and “tests” are

distinct entities; instead, they should be understood as one type of entities – the interactions ;

interactions, together with the interference between interactions, i.e., the parallelism and

resource-competitions, should be treated as the focus in system-level verification.

The above two ideas, namely, software-centric verification and interaction-oriented verifica-

tion have yielded practical techniques. This thesis elaborates on these techniques, including

the transfer-resource-graph based test-generation method targeting the parallelism, the cov-

erage measures of the concurrency completeness using Petri-nets, the automation of the

test-programs which can execute smartly in an event-driven manner, and a software obser-

vation mechanism that gives insights into the system-level behaviours.
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Chapter 1

Introduction

1.1 Motivation and Contribution

1.1.1 Motivation

Owing to the advancing VLSI manufacturing technologies, the system-on-chip (SoC) solution

– designing a whole system ready for application on a single chip – has become a popular

design paradigm. Although there is no strict definition of SoC, a design could be counted

as an SoC if it features multiple components, including at least one processor, connected by

on-chip interconnection. The SoC paradigm has brought about rich benefits from various

perspectives, including

• superior performances (higher frequency and lower power),

• wide applications (personal, wireless and military electronics) and

• overall lower design and manufacturing cost (fewer photomasks).

From the design complexity point of view, the SoC paradigm is also very beneficial – it

has practically reduced designing a complex system to integrating pre-designed and reusable

components. However, the verification of the SoC becomes the critical bottleneck in further

improving SoC design productivity. Generally speaking, verification refers to the practice of

detecting errors in designs. Designs that are not thoroughly verified are not worth manufac-

turing; and errors should be corrected as early as possible – correcting errors at a late stage

could be forbiddingly costly.

1



2 CHAPTER 1. INTRODUCTION

Verification was regarded as the subservient issue compared with the implementation of a

design. This view soon became invalid as designs became just moderately complex. The

well known Moore’s law suggests that the complexity of integrated circuits is growing at an

exponential rate against time, whereas multiple sources claim the verification complexity is

growing at a double-exponential rate [11, 74, 85], i.e., exponential with respect to Moores

law. Figure 1.1 illustrates the growing “verification gap” between the integrated circuit (IC)

verification capability and the IC design and manufacture capabilities. Nowadays about

50%-80% of the design time and efforts are spent in verification. It becomes well known that

verification is the biggest single bottleneck [44] in integrated circuit design.

Figure 1.1: The verification gap from very-large-scale-integrated-circuit (VLSI)
manufacturing point of view. While the manufacturing technology evolves, a
state-of-the-art chip could have tens or even hundreds of millions of gates. However, the
capability of designing such VLSI does not increase that fast. Worse, the capability of
verifying such designs has been growing even slower. There is a huge and growing gaps
between the verification capability and the design/manufacture capabilities. Adapted
from: SIA Roadmap, 2001.

The features of a typical SoC impose great challenges on SoC verification in two respects.

• First, the large scale of hardware integration leads to sophisticated hardware-hardware

interactions. Since an SoC has multiple components, the interactions between them

could give rise to emerging properties that are not present in any single component.

a1172507
Text Box
 
                          NOTE:  
   This figure is included on page 2 
 of the print copy of the thesis held in 
   the University of Adelaide Library.
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• Second, the introduction of software into hardware behaviour leads to sophisticated

hardware-software interactions. Since an SoC has at least one processor, software

forms a new dimension of the SoC’s behaviours and hence brings a new dimension in

verification.

So far, there have been no SoC verification methodologies that address both the above

challenges, which motivates our research on a holistic SoC verification methodology.

1.1.2 Contribution

The main approach to verifying a design, especially a very complex one, is by simulation.

Simulation is so important to verification that the terms “simulation” and “verification”

largely share the same meaning in practice. “Simulation” refers to the practice of running

tests on models of a design before the design is actually manufactured. The term “model”

refers to a presentation of the hardware under design in the form of software. The simula-

tion approach inherently has the “simulation performance issue”. That is, simulation is a

very time-consuming process, while VLSI designers are constantly under the time-to-market

pressure. Fast and accurate simulation is always desired; however, being fast and being accu-

rate are always competing metrics for simulation-based approaches. The “verification gap”

viewed from the simulation point of view is shown in Figure 1.2. As designs are becoming

more complex, the requirement of thorough verification is soaring, whereas the performance

of various simulation technologies is degrading. The simulation performance issue is more

outstanding for SoC verification due to its high level of integration.

There is distinction between a verification methodology and a simulation technology. Our

research is about SoC verification methodology using the simulation approach; our research

is not about addressing the simulation performance issue, which is technology issue in sim-

ulating all types of design including the SoC. Faster simulation platforms and technologies

are always desirable but they are independent of the SoC-specific challenges, namely, the

problems about hardware-hardware and hardware-software interactions, as mentioned in Sec-

tion 1.1.1. Methodology and technology both contribute to a successful verification practice.

Without methodology support, it is very likely to get a poor verification quality even using

an advanced simulation technology; without proper technology support, a good methodol-

ogy may not exert its full power. Technologies evolve rapidly while methodology is relatively

stable.
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Design Complexity
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Figure 1.2: The verification gap from simulation point of view. Simulation is the main
approach to design verification, and there are simulation platforms suitable for different
abstraction levels. However, as integration level increases, simulation efficiency always
decreases; while the requirement to thorough simulation increases. There is widening gap
between the required and available simulation performance. Adapted from [70].

The contribution of this thesis is that it addresses the challenges specific to SoC and SoC-like

designs and puts forward a methodology independent of the underlying simulation technolo-

gies.

Furthermore, the proposed methodology is very different from the current mainstream verifi-

cation methodologies, which substantially centre on the construction of test-benches (TBs).

A test-bench is a structure external to a design; it couples with a design during simulation.

A common problem of these methodologies is that the software native to an SoC virtually

does not have a proper position in the verification framework; and the TB structure tends to

be very complicated. In contrast, our research proposes to systematically exploit software’s

capabilities in verifying an SoC, and to reduce the TB complexity. It should be noticed that

using software for SoC verification is not new; our novelty is about partitioning software and

test-benches into independent roles and organising them seamlessly in a well-defined verifi-

cation framework. To our best knowledge, we do not think that there is any literature in

which the relationship among the software, the test-bench and the SoC are so harmoniously

arranged.

This thesis addresses the following problems that are not explicitly discussed or even dealt

with by the current TB-centric methodologies.
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(1) What is a test and what is an object-under-test in a system context?

(2) What are the system-level specific behaviours?

(3) How do we automatically generate tests that target the system-level specific behaviours?

(4) How do we implement tests on a system in the form of software? and

(5) What is the proper relationship among the test-bench, the software and the SoC under

verification?

The quick answers to the above problems are:

(1) the term tests and object-under-tests should refer to one type of objects – the interac-

tions ;

(2) concurrency and the associated resource-competition form the system-level specific be-

haviours;

(3) using a model called transfer-resource-graph (TRG) to automate the test generation of

concurrency and resource-competition;

(4) implementing tests in the form of an event-driven test-program, which is to be automat-

ically generated by the TRG model;

(5) treating the test-bench, the software and the SoC under verification as one continuum,

in which the software and the test-bench help each other in controlling and observing

the SoC.

The full answers to these questions are elaborated in the rest of the thesis.

1.2 Thesis Overview

The main structure of the thesis is shown in Figure 1.3.

• Chapter 1 gives an introduction to the thesis, including the thesis motivation, contri-

bution and structure.

• Chapter 2 lays a firm background for further development of the thesis. The main

topics include:
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Chapter 1: Introduction

Chapter 2: Background

•General Verification Practices

•Problems in Verifying SoC

•Potential Solution

Chapter 3: TRG

•Transfer Model

•Resource Model

•Transfer-Resource Graph

Chapter 4: SW Structure

•Test-Program

•Interrupt Service Routine

•Soft-Transfers

Chapter 5: TP and TB

•TP Control TB

•TB Observe TP

•Unifying TP, TB and DUT

Chapter 6: Experiments

•Simulation Completeness

•Simulation Efficiency

Chapter 7: Conclusion

Appendices:

•Test Generator Implementation

•SW Structure Implementation

•Example Bugs

Figure 1.3: The structure of the thesis. The main contributions of the thesis are
presented in three chapters (Chapter 3 to 5), followed by a chapter of experimental
results. The logical link between the three main chapters is detailed in Chapter 2.

– the general practices in the area of design verification;

– the current problems in verifying a system-on-chip (SoC), and

– the opportunities brought by the interaction-oriented thinking to address the SoC

verification problems.

• Chapter 3 to Chapter 5 present the contributions of our research.

– Chapter 3 introduces a formal model called transfer-resource graph (TRG) to

solve the system level test-generation problem by discussing

∗ the definition of an interaction model called transfers and how to model

transfers as the building blocks for system-level verification;

∗ the algorithm to generate test-cases of concurrency and resource-competition

automatically using TRG;

∗ the measurement of the test completeness by converting a TRG to a Petri-net.

– Chapter 4 focuses on implementing the TRG-based tests in software. In this

chapter, “software” is partitioned into three categories of components, each re-

sponsible for one type of roles. The respective requirements of these components

together with their automation opportunities are elaborated.
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– Chapter 5 naturally moves to discuss the roles of the “hardware” verification

infrastructures, i.e., the test-bench in the software-centric verification framework.

This chapter focuses on the relation between software and test-benches in verifying

an SoC, and finalises the theoretical contributions by proposing a novel framework

of system-level verification.

• Chapter 6 demonstrates all experiments involved in the last three theoretical chapters.

This chapter is also organised around two critical topics in simulation-based verifica-

tion: (a) simulation completeness (i.e., coverages) and (b) simulation efficiency.

• Chapter 7 concludes the thesis.

Some miscellaneous topics including a few identified bugs in the SoC used in our research

are arranged in the appendices.

1.3 Publications

The research has produced the following publications.

1. Justin Xu and Cheng-Chew Lim. Modelling Heterogeneous Interactions in SoC Verifi-

cation. In IFIP International Conference on Very Large Scale Integration 2006, pages

98-103, October 2006.

2. Justin Xu and Cheng-Chew Lim. Exploiting Concurrency in System-on-Chip verifi-

cation. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2006),

pages 836-839, December 2006.

3. Xiaoxi Xu and Cheng-Chew Lim. Using Transfer-Resource Graph for Software-Based

Verification of System-on-Chip. In IEEE Transaction on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 27, No. 7, pages 1315-1328, July 2008.

4. Xiaoxi Xu, Cheng-Chew Lim and Michael Liebelt. Positioning Test-Benches and Test-

Programs in Interaction-Oriented System-on-Chip Verification. In IEEE International

Workshop on High Level Design Validation and Test (HLDVT 2008), pages 3-11, No-

vember 2008.



Chapter 2

Background

This chapter introduces background information regarding verification in three steps. First,

we have a review of important concepts and techniques widely adopted in the general verifi-

cation practices. Second, the problems associated with the current practices of system-level

verification are identified. Third, we give an outline of our approach to solving these prob-

lems. The system-on-chip used in this research is also introduced in this chapter.

2.1 General Verification Practice

2.1.1 Overview

There are two categories of verification methods.

• Simulation-based methods or dynamic verification. In this category, the verification

engineers develop a set of tests known as testcases to stress a given design. Hence, the

design is often called design-under-test or DUT. A testcase could be a very abstract

description of a scenario the DUT should be exercised in. In order to apply the abstract

testcases to a DUT, a structure called test-bench (TB) needs to be constructed. The

TB transforms and concretises the abstract testcases into “0/1” signals and directly

interacts with the DUT using these signals.

• Formal methods or static verification. This category is called static since no tests

are needed. Instead, the verification engineer should provide design properties (the

properties a correct design should have) in the form of temporal logic. The design

9
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is also required to be represented in the form of finite-state-machine (FSM). Then

a binary-decision-diagram (BDD-) based model-checking tool computes whether the

design abides by the properties. If one property is violated, the tool will produce at

least one counter example – a sequence of input to the FSM that leads to the violation

of that property.

Simulation can be regarded as the “experimental” approach, requiring a set of tests being

applied to the DUT in a simulation environment; while formal methods attempt to “theo-

retically” prove that the design satisfies certain predefined properties. Each approach has its

own strengths and limitations. Table 2.1 compares the two approaches. Generally speaking,

the simulation-based approach, which is more conventional, imposes less restriction on the

design than the formal approach does.

Property expressivity; 

Computation 

Complexity issues.

Non-exhaustiveness; 

Simulation 

Performance issues.

Drawback

Control-intensive, 

FSM based 

designs

Any executable 

specification

Application

Exhaustive 

(for each 

property)

Model-checkerProperties;

FSM.

Formal (static)

FlexibleSimulation-

Platform

Testcases; 

Test-benches.

Simulation-based 

(dynamic)

AdvantageTool 

Required

User InputCategory

Table 2.1: Simulation-based verification and formal verification

2.1.2 Simulation-Based Verification

Simulation-based verification contains many inter-related and overlapping practices, concepts

and terminologies. In order to describe them systematically, we organise them in four aspects:

• infrastructure – the basic elements involved in a simulation;

• building-block – the structure used to build a simulation environment;

• mechanism – the driving force of a simulation environment; and

• paradigm – the conventions in building a simulation environment.
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2.1.2.1 Infrastructure: Abstraction Levels, Languages and Simulation Plat-

forms

In simulation-based verification, a design should be modelled at various abstraction levels

using some modelling languages, and then be simulated on some suitable simulation plat-

forms.

The term “simulation” suggests two worlds: (a) the world in which the model is simulated,

or the real world ; and (b) the world for which the model is simulated, or the simulated

world, or the virtual world. The virtual world abstracts away some details of the real world

phenomena. The term “abstraction level” refers to the degree of the omissions of details

from the real world. The virtual world at each abstraction level captures certain parameters

of the real world design. Each abstraction level has its suitable application. For instance,

• a register-transfer level (RTL) model is the level where “synthesisable” designs are

described; and

• a transaction-level model (TLM) is rapidly gaining popularity in modelling test-bench

components, whose behaviours are more abstract than a design-under-test (DUT).

Table 2.2 lists the main abstraction levels used in a design cycle with their applications, in

a decreasing order of abstraction level.

Each level may have further divisions. For instance, an “RTL model” could either be behav-

ioural or synthesisable. A synthesisable RTL model is very critical – it is accurate enough

to be automatically transformed into models at lower levels (using a series of commercial

tools), and also abstract enough to be composed by human in computer languages known as

hardware-description-languages (HDLs).

Synthesisable models and more abstract ones need to be manually described in certain com-

puter languages, such as Verilog and VHDL – the two HDLs dominating the RTL modelling.

Different abstraction level models may require different languages; but there are no strict

rules. For example, a synthesisable RTL model is described using a subset of HDL constructs

called “the synthesisable subset”; it would be poorly productive to use this subset – some-

times even the full set of HDL constructs – to describe more abstract models for verification

purpose. Hardware-Verification Languages (HVLs) such as e [55], OpenVera [82], SystemC

[59] have been introduced in the past decade for verification purpose. More general-purposed

languages such as C, C++ are also frequently used for early design validation, especially be-

fore a design is implemented in HDL. In recent years, SystemVerilog (SV) [62], a superset of
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Table 2.2: Abstraction levels. Synthesisable RTL is very critical since lower levels can
be obtained automatically using commercial synthesis tools, while models at higher levels
essentially require manual effort. Simulation is essentially performed at this level.

Verilog language constructs has recently been ratified as one of IEEE standards (IEEE Std

1800TM-2005 [48]); it appears to be the ideal language since it combines the advantages of

HDLs and HVLs.

The introduction of HVLs is an important step in the evolution of simulation-based verifica-

tion. To simulate the behaviours of a DUT, a test-bench (TB) needs to be constructed. TB’s

responsibilities are much more abstract than the DUT’s; HVLs ideally fit in the position of

TB construction by providing the following constructs or capabilities:

(1) constrained randomisation mechanism – for automatic concretising abstract test-cases;

(2) property and assertion constructs – for error-capture and supporting formal verification;

(3) coverage constructs – for automatic coverage collection;

(4) messaging mechanism – for systematic logging as well as high-level control;

(5) support for transaction-level-modelling (TLM) – for convenient connection of TB com-

ponents;
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(6) object-oriented programming (OOP) capability – for increasing TB reusability.

From the academic point of view, HDLs are powerful enough to construct any test-benches.

However, compared with HVLs, HDLs are not convenient to compose complex test-benches

in the sense that the user needs to do a lot of programming at low abstraction-level; and the

outcome of the programming could hardly be reused across abstraction levels. Nevertheless,

HVLs also have limitations; they are proprietary languages, having reusability issues across

simulation tools. Recently, the trend is that traditional HDLs are extended to include features

commonly found in HVLs to become the so-called “hardware-description-and-verification-

languages” (HDVLs), which all EDA vendors agree to support. SystemVerilog, extending

Verilog, is such a language. It is very likely that vendor-dependent HVLs will be replaced

by HDVLs as they mature.

While new languages provide convenient constructs, and each language has its own strength

[13], it should be noted that no language provides answers to the verification problem in it-

self. Cohen [27] observed that the term “verification” refers to a generic concept rather than

language-oriented technologies, and that languages are just “tools” but not the “methodolo-

gies”.

The choice of languages happens in the modelling stage; for the simulation stage, a suitable

“simulation platform” needs to be selected. Table 2.3 lists some simulation platforms and

their simulation speeds.

Commercially available simulation platforms are powerful tools that allow models at differ-

ent abstraction levels and/or in different modelling languages to run simultaneously. This

flexibility permits the trade-off between simulation speed and simulation accuracy to suit

different applications. Some of these trade-off options are as following.

(1) Model the DUT in HDL and model the TB in HVL. This is widely used in component-

level verification.

(2) Model DUT components that were already extensively verified (e.g., commercially avail-

able ones) as abstract TLMs, and model those insufficiently verified as RT-Level models.

(3) Similar to the above, but load the extensively verified portion onto the field-programmable-

gate-array (FPGA) and leave insufficiently verified portion as RTL models. This tech-

nique is called hardware acceleration, the focus is on the RTL side.

(4) Load the entire design onto the FPGA to get fastest simulation speed. This type of

simulation is called emulation. Emulation allows for the verification of the application-

software.
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DUT SW verification106 ~108 HzEntire DUT realized as 

true hardware (FPGA)

Hardware 

Prototyping

DUT parts simulated 
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realized as true 
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Simulation driven by 

signal changes

Description
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Platform

RTL verification102 ~105 HzEvent Driven

104 ~106 Hz

104 ~106 Hz

Co-simulation

Cycle Accurate

DUT SW verification

Synchronous DUT only

Table 2.3: Comparison of simulation platforms.

(5) When full design emulation is not possible due to FPGA capacity, load the insufficiently

verified components onto FPGA but leave the others, usually including the CPU, as

abstract soft models. Like (3), this practice features a partial FPGA loading; but the

motivation is more like that in (4). With proper tool support, this practice is often called

“HW-SW co-simulation” or “HW-SW co-verification”.

Abstraction levels, hardware modelling languages and simulation platforms are neither ab-

solutely dependent nor absolutely independent. They together form the infrastructure for

simulation-based verification. Table 2.4 lists some typical combinations.

2.1.2.2 Building Blocks: Test-bench Components and Reusability

To apply tests to a design, a test-bench (TB) must be constructed for the design-under-test

(DUT); it is the TB that directly applies tests to the DUT. A test-bench is not a monolithic

block, but a collection of organised components. Therefore, a TB and a SoC DUT are similar

in the sense that both have internal structures.

Walker [87] states that a canonical test-bench should provide the following components:

(1) A test reader: to read the tests and convert them into commands to the driver.
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Table 2.4: Common combinations of abstraction-levels, modelling-languages and
simulation-platforms.

(2) A driver: to accept the logical commands and drive signals to the DUT and the emulator.

(3) A watcher (or monitor): to observe the DUT physical response and convert it to logical

events. A watcher usually incorporates functionalities of logging and measuring.

(4) An emulator: to work as a reference model of the DUT, often called the “golden model”

or the “reference model”.

(5) A checker: to compare the behaviours of the DUT with that of the emulator and report

any mismatches.

Their relations are shown in Figure 2.1.

Just like components in a DUT, components in a TB can be represented at various abstrac-

tion levels as well as in various languages, and it is the simulation platform that handles

the variety seamlessly. TB components which directly interact with the DUT are usually

called bus-functional-models or BFMs; they could be composed at lower abstraction levels in

HDLs. Other TB components need to be coded as behavioural models in HDL or transaction

level models (TLMs) in HVL, so that they could conveniently handle the abstract test-cases

defined by users.

HVLs are developed to facilitate the common requirements in typical test-benches. For

instances,
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Tests

Reader

Driver

Design Emulator

Watcher

Checker Logger

Meter

Canonical 
Test-bench

Figure 2.1: The canonical test-bench includes various functionalities in simulation,
making test-bench construction a time-consuming and error-prone process. Also, tests
are not a part of test-bench. Additional effort is required for test-generation.

• the constrained-randomisation mechanism in HVLs fits well for the driver;

• the assertion mechanism fits well for the checker;

• the coverage mechanism fits well for the monitor; and

• the messaging mechanism fits well for the requirements of communication between TB

components;

The term “test-bench reusability” is a concept with many aspects. In other words, there

are many forms of reusability. A trivial one is to reuse TB components from an old project

simply because the identical DUT components are used in the new project. Non-trivial forms

of reusability include the following:

• reusability across the integration-levels of the DUT. TB components having been used

in component-level verification could be modified and reused in system-level verifica-

tion;

• reusability across abstraction levels / modelling languages / simulation platforms. For

instance, a DUT component written as a transaction-level-model (TLM) in HVL, which
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was created and used in the stage of protocol validation, could be reused as the reference

model for its RTL implementation;

• reusability of common facilities required by various TB components. Information log-

ging and messaging are such facilities. This kind of reusability is in the form of class

inheritance.

The HVLs’ contributions to TB reusability include (a) their support to transaction-level-

modelling (TLM) and (b) their support to the object-oriented-programming (OOP) para-

digm, which respectively contribute to the second and the third type of reusability. In [16],

the author describes in details many useful techniques to build reusable test-benches.

Reusable components can become commodities. Reusable design components are called “in-

tellectual proprieties” (IPs), while reusable verification components are called “verification

IPs” (VIPs). Commercialisation of IPs and VIPs respectively contributes to the SoC design

paradigm and system-level verification. Silver [78] observed: “Verification IP is becoming

much more than a BFM or a passive checker designed to monitor a set of assertions at the

interface. Commercial verification IP offers pre-defined compliance tests, inject errors, and

drive directed-random traffic through the interface for system-level verification.”

However, reusability alone is not the solution to the construction of sophisticated test-bench.

Reusable TB components simply make it relatively easy to build such a TB. According to

[64, 87], reusability is mostly efficient for similar projects, similar components, or in a closely

organised design team. It is impossible to implement an entirely reusable verification system

[92].

The reason why reusing is never sufficient is rather philosophical. A test-bench tends to

treat its DUT as a whole. However, the whole is greater than the sum of parts, and a “supra-

system taken as a whole displays greater behavioural variety and options than its component-

systems” [86]. When we apply this general principle to simulation-based verification, we can

predict that at every higher integration-level, even if we could reuse all TB components, we

still have to enhance the test-bench with new capabilities in order to stimulate and observe

the new behaviours/properties. This explains why the test-bench complexity has to grow

faster than the design complexity in terms of gate-count. Thus the phenomenon that the

test-bench is even larger than the DUT itself, reported in several sources [65, 80], is now

understandable and predictable.

Reusable TB components serve as the building-blocks for the control-observation mechanisms

of verification.
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2.1.2.3 Mechanism and Methodology: Test Generation and Coverage

Simulation-based verification is essentially a control-and-observe process; and a test-bench

serves as the vehicle of control and observation. The test reader and the test driver (in

Figure 2.1) are in the control part; while the monitor, the emulator and the checker form

the observation part. Human intelligence is indispensable to construct a control-observe

mechanism that drives the verification process, which includes (1) test-generation (the control

part) and (2) coverage measures (the observation part).

• Test Generation: The TB components stimulating a DUT do not really address the

test generation problem. They simply convert test-cases, which are more abstract,

to stimuli, which are more detailed. The constrained-randomisation facility provided

by state-of-the-art modelling languages only addresses the converting/concretising is-

sues of the transformation. The generation of abstract test-cases is a manual process

requiring very specific knowledge about the DUT.

• Coverage Measures : Simulation based methods suffer an inherent problem – the test

completeness problem. There is no absolute criterion upon which to claim that the

DUT has been sufficiently stressed in simulation. What kind of information to be in-

cluded in coverage measurement and how to interpret the coverage information require

human intelligence.

In practice, to maximise the probability to find design bugs in complex designs, multiple

test-generation methods and multiple coverage metrics are needed.

Common coverage metrics include:

• Statement-based metrics, also known as code coverage. They derive from the field of

software verification. In this category of coverages, the DUT in HDL is treated as

software components. These metrics include (a) line, (b) toggle and (c) conditional

coverage (See 6.2.) Statement-based coverages are supported by simulation platforms.

• Functional coverages. They refer to user-defined behaviour space which the DUT

should cover. HVLs provide convenient constructs to define functional coverage spaces.

Defining a coverage space requires subtle balance between granularity and feasibility.

That is to say, the coverage space should be large enough to include important corner

cases; meanwhile, the space should be small enough to be practically covered during

the verification stage.
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Human intelligence is also needed to feed the coverage information (observation) back into

test-generation (control), so that the coverage spaces can be traversed quickly. Although

coverage information may not perfectly measure verification completeness, traversal on mul-

tiple coverage spaces can greatly increase the “confidence level” established upon the DUT.

The feedback mechanism is important to achieve high confidence level in short time.

The feedback mechanisms come in two flavours:

• online feedback. In this category, stimulus-generation is connected with the coverage

information collected in the same simulation run, so that a coverage space could be

quickly traversed in that simulation run;

• offline feedback. In this category, tests are already generated before simulation, and the

coverage information is analysed after the current simulation run and is used to guide

the next round of test generation. The coverage space may require many simulation-

runs to be covered, which is the case for a complex DUT.

In short, the mechanism that drives the simulation-based verification is test-generation (con-

trol) and coverage (observation), which depend on human creativity and insight.

Given a category of DUT, the implementation of the control-observation mechanism, i.e,

the test-generation and the coverage schemes, are referred to as the “methodology” for that

category of DUT. However there already exist the so-called “verification methodologies”

[60, 61, 81, 83] proposed by major EDA vendors. The next section introduces these vendors’

methodologies.

2.1.2.4 Paradigm: Test-bench Centric Verification Methodologies

The control-observation mechanism requires a heavy involvement of human creativity; thus,

like in many other engineering practices, there comes the need to standardise (but not

restrict) human’s creativity. This is a common requirement from EDA tool users as well

as from EDA vendors. The tool users prefer to stick to verification practices that have

succeeded before, while the tool vendors need to support their customers through consistent

terminologies.

Therefore, EDA tool vendors propose their test-bench construction conventions, or para-

digms, together with pre-programmed TB components and constructs, as open sources to

users, under the name of “verification methodologies”. The term “methodology” here subtly
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differs from the “methodology” we are proposing in this thesis. The former is not bound

up with any specific design category, so it should be better understood as “conventions”

or “paradigms” to build test-benches; the latter is tightly associated with a certain design

category – SoC, and does not focus on TB construction.

Such a vendor’s methodology is implemented in certain OOP-capable modelling languages

(e.g., SystemVerilog) well adopted by users; such a methodology provides

• prototypes of commonly used TB components in the form of classes ;

• programming conventions to (a) interconnect TB components, (b) connect TB com-

ponents with DUT components;

• general principles to build TB at transaction level.

Verisityee Reuse MethodologyeRM

Mentor; 

Cadence

SystemVerilog; 

SystemC

Open Verification 

Methodology

OVM

MentorSystemVerilog; 

SystemC

Advanced Verification 

Methodology

AVM

ARM; 

Synopsys

SystemVerilogVerification Methodology 

Manual

VMM

SynopsysOpenVeraReference Verification 

Methodology

RVM

AffiliationModelling 

Language

Full NameMethodology

Table 2.5: Some verification methodologies have recently emerged. Many of them have
rapidly become obsolete. These methodologies are actually conventions and guidelines for
test-bench construction endorsed by various electronics-design-automation (EDA)
vendors.

The available methodologies are listed in Table 2.5; they are endorsed by different EDA ven-

dors. Armed with the competing simulation tools from the vendors, these methodologies are
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involved in the so-called “methodology wars” [61]. There is no consensus on which methodol-

ogy is superior, and comparing these competing methodologies does not have much academic

value. Nevertheless, these methodologies altogether are fostering important concepts in the

verification practice, including

• for infrastructure:

– abstraction-level: adopting transaction-level modelling (TLM);

– modelling languages: mixing the OOP paradigm with the traditional hardware

description paradigm.

• for building blocks:

– structure: organising TB components into layered structures. Figure 2.2 (source

from [8]) demonstrates a typical layered TB.

– reusability: (a) reusing TB components across RTL, TLM and even higher ab-

straction levels, and (b) reusing common facilities by class inheritance.

• for control-observe mechanism: generating stimuli using the constrained-randomisation

facility, which could be fed-back with the online information from functional coverage.

Among these concepts, the idea to increase TB reusability by elevating abstraction level is

one hallmark of these methodologies. However, as mentioned in Section 2.1.2.2, “reusability”

comes in different forms, not just limited to elevating abstraction level. In fact, increasing

TB abstraction levels destroys TB’s synthesisability – another form of reusability. Section

5.3.2 discusses why TB synthesisability is important. Our methodology supports this form

of reusability.

Layered TB structure is another important aspect of mainstream verification methodologies.

Figure 2.2 (sourced from [17]) is the layered TB recommended in VMM. (Same concept can

be found in [16, 35, 60])

• Signal Layer: including interfaces that provides signal-level connectivity to the DUT;

• Command Layer: including BFMs that drives/observes DUT (via interfaces) for atomic

operations such as read and write.

• Function Layer: generating functional transactions to the command layer; providing

certain degree of abstraction level for higher layers;
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• Scenario Layer: generating transaction sequences ; managing the function layer (and

its sub-layers).

• Test layer: including user-defined applications of the services provided by lower levels.

DUT

Checker
Driver

Checker

Driver

Monitor

MonitorSelf-Check

Properties

Generator

Testcase ATest

Scenario

Functional

Command

Signal

F
u
n
c
ti
o
n
a
l 
C
o
v
e
ra
g
e

Figure 2.2: The layered test-bench structure recommended by Synopsys’ verification
methodology manual (VMM). Various facilities are roughly organised in layers. Timing is
not taken into account at functional and higher levels. However, such a sophisticated
structure is still the vehicle to apply abstract “tests”, which are assumed already
available. Adapted from [17].

According to [60], these layers form (1) the operational domain (the lower layers), where

TB components are timed models working closely with the DUT HW, and (2) the analytical

domain (the higher layers), where TB components work as ordinary objects in general-

purposed software programming, facilitating the control-observation mechanism.

Organising TB in layers is an empirical practice – the rule to separate layers is not clear,

especially for the higher layers.

2.1.3 Formal Verification

While simulation-based methods continue to work as the main verification approach, formal

methods prove to be a useful supplement. However, the equivalence-checking (EC) technique
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[36] finds its application mostly in proving the equivalence between RTL model and gate-level

model and does not help function verification at RT-Level, since it assumes that the RTL

model is correct. Formal verification mostly refers to the model-checking (MC) technique

[10], which can exhaustively check if a control-intensive design satisfies or violates user-defined

properties.

More specifically, model-checking is a category of methods which automatically prove finite-

state-machine (FSM) against temporal properties by the means of state-space traversing.

Figure 2.3 shows how model-checking works. A user provides both (a) the FSM model of the

design and (b) the temporal properties to be proved or disproved. The model checker takes

the inputs and gives result for each property. (a) If the property holds, it gives a simple yes

answer; (b) otherwise, it gives counter-examples that violate the property.

The desired properties need to be formally expressed in temporal logic by users. One temporal

logic is enhanced computation-tree-logic or CTL* [10]. CTL and linear-temporal-logic (LTL)

as two subsets of CTL*. A temporal property in CTL* is a hierarchy of sub-properties,

which can eventually be decomposed into the following elements.

• Atomic Propositions. They are non-temporal properties associated with states, and

cannot be further decomposed.

• Boolean Combinators. They are classical logic operators: conjunction ∧, disjunction ∨
and negation ¬, applicable to both temporal and non-temporal properties. They can

derive other operations such as logical implication ⇒.

• Temporal Combinators, including X and U.

– X means “next”; expression XP specifies that the next state satisfies the property

P ;

– U means “until”; expression PUQ represents that property P holds from the cur-

rent state until a future state satisfies Q.

Other temporal combinators such as “future” F, “always” G and “weak until” W are

derived from X and U. A property immediately constructed with temporal combinators

is associated with a state-path rather than with a single state.

• Path Quantifiers E and A. A property immediately constructed with path quantifiers

is associated with one state.

– E means “there exists a path”; expression EP represents that there exists a path

(from the current state) where property P holds;
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Figure 2.3: Using the model-checking technique for property proving/disproving. Users
should prepare the design as a finite-state-machine (FSM) model and also provide the
desired properties in temporal logic. Given an FSM and a property of that FSM, the
model-checker gives a definite yes/no answer. Counter-examples will be provided if the
answer is no.
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– A means “for all paths”; expression AP represents that for all paths (from the

current state) the property P holds.

A user combines these elements to specify desired properties for a design; the commonly

desired properties for a design include the following.

• Reachability, typically in the form of EFP ;

• Safety, typically in the form of A(¬Response WRequest);

• Liveness, typically in the form of AG(Request ⇒ AFResponse);

• Deadlock-freeness, in the form of AGEXtrue, i.e., always having successor state;

• Fairness, typically in the form of A( GFUser1 ∧ GFUser2).

Set-operations, including intersection, union, complement and FSM state-space-traversing,

form the heart of model-checking. Suppose that an atomic proposition Q is nested in a

temporal property P , then the state-set where P holds, denoted as Sat(P ), could be com-

puted iteratively using set-operations, from the set Sat(Q) (which is trivial to get since Q is

atomic). Then, if the underlying FSM M ’s initial states are in Sat(P ), then we could claim

that property P is satisfied on the machine M .

Binary-decision-diagram (BDD) based model-checkers use ordered-reduced-binary-decision-

diagram (ORBDD, usually further shortened to BDD) [22] to represent a state-space implic-

itly and canonically. The implicitness means that the BDD can represent a huge state space

without memorising any specific state. Then the set-operations become the operations on

BDDs. The canonicity means that there is only one possible ORBDD to represent a space;

this fact makes BDD operations very efficient. BDD-based model-checking is also known as

symbolic model-checking.

However, BDD may still suffer from the state-explosion problems due to the fact that its

efficiency heavily depends on the order of state-variables. Searching the optimal order is

computationally expensive. Another type of model-checking is boolean satisfiability (SAT)

based methods, in which, the temporal properties are limited within k time frames. There-

fore, this category is called bounded model-checking (BMC) [26]. In BMC, the input, state

and output of the FSM in k consecutive time-frames are unfolded and then coupled with the

property logic to form a SAT instance, i.e., a combinational logic with one output. Figure

2.4 demonstrates this technique. The unfolded input, output and state are fed to the prop-

erty logic P, whose final output is negated. If this SAT instance is not satisfiable, then the
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property P is proved to be true; otherwise, any assignment to the initial state s0 and the

unfolded inputs is a counter-example to the property.
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Figure 2.4: Satisfiability-based bounded model checking (BMC). Temporal properties
are assumed not exceeding k cycles; then, the finite-state-machine is unfolded k times to
cascade into a wide combinational logic, whose outputs are used to specify the k -bounded
temporal property. The output of the property logic is negated and assumed to be True;
if the model-checker fails to find any assignment of s0, i0, ...ik−1 to satisfy the negated
property, the property is proved; otherwise, the assignment is the counter-example to the
desired property.

Given a property P , the advantage of the formal method over simulating testcases for P

is that the former attempts to exhaustively check the paths leading to P . However, this

kind of exhaustiveness only applies to P ; it should not be mis-interpreted as the verification

completeness. The verification completeness problem for formal methods is to decide whether

enough properties have been specified by users [52]. The limitations of formal methods also

include:

• The dilemma to provide a FSM model. An very abstract FSM may not accurately

describe a design; a very detailed one may exceed the model-checker’s capability.

• The difficulties to provide temporal properties. A user may provide incorrect or in-

sufficient properties; and there can be gaps between the desired properties and the

expressivity of the temporal logic accepted by the model-checker.

In addition to proving or disproving temporal properties formally, model-checkers could also

serve as test-generators for the simulation-based method [15, 42], due to its capability to

generate counter-examples. A counter-example is an input sequence that violates a temporal

property. If we feed a model-checker with the negation of a property P for which we want to
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generate tests, a counter-example to the negation ¬P is actually an input sequence leading

to property P . This technique is usually applied to the complex control-intensive logic (e.g.,

a RISC processor’s pipeline control), where direct property-proving may not be practical.

This technique is used to generate the elusive input sequence that would result in very rare

corner-cases. In practice, however, the user need to perform non-trivial job to transform the

counter-examples into executable stimuli.

2.2 System-Level Verification Problem

2.2.1 Overview: System-Level Bugs

At system-level, the concurrency or parallelism, among multiple components is the defin-

ing characteristics of a hardware system. Concurrency forms a new verification dimension.

System-level bugs are usually discovered in corner cases where parallel processes interfere

with each other in an un-expected way. Resource-competition is an inevitable consequence

of concurrency. HW components could show functional problems when competing with each

other for resources, even if they have already passed component-level verification. Listed in

[64], unique bugs at system-level include:

• Interactions between blocks that are assumed verified;

• Conflicts in accessing shared resources;

• Arbitration problems and dead locks;

• Priority conflicts in exception handling;

• Unexpected hardware/software sequences.

All these bugs are related to component-to-component interactions, especially to concurrent

interactions with resource competitions. Therefore the key to system-level verification is to

construct concurrency.

Currently, neither formal methods nor general simulation-based approaches are dealing with

the system-level behaviours such as concurrency/resource-competition satisfactorily.
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2.2.2 Formal Methods: Not in the Position

Formal methods are simply not in the position to discover system-level bugs due to the

nature of these bugs, so the industry is depending less on formal methods [11, 45].

• Bugs caused by implementation details: system-level bugs could arise from an inaccu-

rate or a mis-interpreted design specification, as well as from the detailed implemen-

tation of that specification. Formal methods may suit well for the former, in which

implementation details could be abstracted away. However, if the design is represented

as an FSM with implementation details, it can easily choke the model-checkers.

• Control- and data-intensive failures: system-level bugs often arise in scenarios in which

data-intensive and control-intensive behaviours are loosely intertwined; whereas formal

methods work best with control-intensive applications.

• Failures across components: it is often impossible to attribute a system-level bug to

a particular hardware component; instead, the bug may be caused by the ill-matched

behaviours of multiple components [64]. It will be very difficult and unscalable for

formal methods to deal with combined or communicating FSMs.

More importantly, the fact that the user is responsible to provide properties to formal tools is

the fundamental barrier to applying formal methods on system-level verification. A hardware

system, which is made of multiple components and may be represented with implementation

details, do not have fixed failure modes. Therefore, verification engineers are constantly in

a dilemma of “expecting something unexpected”. As a consequence, they cannot postulate

those properties that they are yet to know.

2.2.3 Simulation: DUT-TB Dualism

System level verification substantially relies on the simulation approach, in which tests are

applied to the design-under-test (DUT) via a structure called test-bench (TB). However, the

current practices centring on test-bench (TB) construction has introduced and even enforced

the “DUT-TB dualism”.

Figure 2.5 illustrates this dualism – the TB stimulates the DUT and observes the response

from the exterior of the DUT. The dualism also manifests itself in the form of the divergence

between the techniques to develop DUTs and those to develop TBs. A DUT and its TB are

rapidly becoming two distinct entities.
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• The languages used to develop a DUT continues to be HDLs. Moreover, for accurate

simulation, the DUT should be described in the synthesisable subset of HDL constructs.

A DUT is largely understood as a hardware structure in the simulated world.

• The languages used to develop a TB migrate to HVLs and other object-oriented pro-

gramming (OOP) capable languages. These languages provide dynamic constructs to

facilitate dynamic connections. However, being dynamic also means the loss of syn-

thesisability. The state-of-the-art TBs require OOP paradigm or even beyond [16]. In

this sense, a TB is more a software phenomenon in the real world than a hardware

structure in the simulated world [60].

Test-bench

Design-under-test

Stimulation Observation

Figure 2.5: Test-bench (TB) stimulates and observes design-under-test (DUT) from the
exterior of DUT, forming the “TB-DUT dualism”. The TB and the DUT are becoming
very different entities; the technique to build the DUT and the technique to build the TB
are diverging rapidly.

Although this dualism appears reasonable and proves fruitful in component-level verifica-

tion, relying on the TB alone is inherently flawed in controlling and observing system-level

behaviours. The following complications arise from the dualism.

The distinction between external and internal behaviours. As suggested in Figure

2.5, the TB tends to treat the DUT as a black box. It applies stimulation and obser-

vation from the exterior of a DUT, so it is inherently problematic to force the TB to

control and observe the DUT’s internal behaviours. There are white-box approaches,

i.e., adding control and observation points around components inside a DUT, to sup-

plement the black-box approach. However, we could argue that this approach is still

black-box natured in the sense that the similar controllability/observability issues still

exist at component level.
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The soaring TB complexity. As mentioned in 2.1.2.2, when components are integrated

into a system, new capabilities has to be added in the TB to test the emerging prop-

erties caused by the integration. That is why TB complexity could grow faster than

DUT complexity. Two TB construction principles, i.e., (a) layered TB structure and

(b) reusing TB components [17, 60] could only mitigate but not solve the problem.

This complexity issue will eventually prohibit us from relying on TB alone to verify a

more complex DUT. We further argue that the construction of sophisticated TBs has

actually defocused the attention on the DUT itself. Verification engineers are easily

trapped in the painstaking process of TB development, and distracted away from the

more creative task of testcase generation.

The test generation problem. A test-bench is essentially the vehicle to transform

abstract testcases into physical stimuli to the DUT. The TB does not really handle

testcase generation; it always assumes that abstract testcases are already available. In a

layered TB, each layer is simply responsible for transforming tests from a more abstract

form to a more detailed one. The best stimuli-generation mechanism provided by state-

of-the-art HVLs is merely “constrained randomisation”, which is largely independent

of the central characteristics of a system, namely, the concurrency and the associated

resource-competition; and it is mostly used to concretise abstract testcases. It is still

human who is responsible for providing abstract testcases in the form that the TB

understands. In this sense, TB-centric verification methodologies help to increase the

users’ productivity in TB construction; but by no means could they replace the users’

creativity.

In a word, the DUT-TB dualism creates serious complications for system-level verification.

The TB tends to be very complex to take control and observation responsibilities; but in the

end, it still does not touch the central question of test generation.

Then how to evaluate the EDA vendors’ TB-centric methodologies? Many regard that the

emergence of these methodologies allow users to construct complex TBs for complex DUTs.

However, this is in fact a typical “chicken-and-egg” paradox and could be interpreted in the

opposite way – we could argue that it is the complex DUTs that require sophisticated TBs,

which is the reason why TB-centric methodologies are required to emerge. We favour the

second interpretation and regard these methodologies as the efforts to simplify the process

to build sophisticated test-benches, not the effort to simplify test-benches themselves. In

contrast, our approach attempts to shift the centre of SoC verification away from test-bench

construction to software construction. Software native to the DUT has actually overturned

the traditional “DUT-TB dualism”.
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2.2.4 Software: the Third Entity

Software (SW) could be responsible for the majority of the SoC functionalities, but software

does not have a proper position in TB-centric verification methodologies. Although software

is involved in VLSI design/manufacturing in several ways as described below, none of them

is significantly contributing to SoC integration verification.

• SW-based verification is naturally used in processor verification [14, 30, 31, 32, 40, 47,

50, 56, 57, 75]. In this application, SW is organised at instruction-level and usually

targets at micro-architecture of the processor-under-test. Therefore, this category of

verification methodologies does not apply to system-level verification.

• SW-based tests are also found in the area of SoC manufacturing-testing [6, 68]. Since

the driving force of design verification and manufacturing test are substantially dif-

ferent, those methods shed limited light on the area of SoC verification. The former

targets at RTL design bugs, while the latter targets at the gate stuck-at fault model.

• The idea of “HW/SW co-verification” is practiced as running an operating system

(OS) and application software on a SoC model for the purpose of software verification.

Therefore, running these software components is the “liability” rather than the “asset”

to the hardware team. The “HW/SW co-verification” concept stays at infrastructure

level, i.e., simulation performance level [23, 66] and lacks methodological support.

• SW in the form of hardware diagnostics programs could be interpreted as the “asset”

to SoC verification. However, these diagnostics (a) are either too simplistic or too

specific, and (b) are poorly automated and require manual development. So using this

form of software cannot serve as a major verification approach.

Software is the valid third entity alongside the DUT and the TB. For an SoC DUT, it is

common practice for a verification engineer to write tests in the form of software snippets.

The languages (C and assembly) used in these snippets are native to the DUT, not native to

the simulation environment as the test-bench is. These software snippets typically write con-

figurations to control registers, and read the status from the status-registers. This common

practice actually demonstrates software’s capabilities in controlling and observing a DUT.

Although writing testcases in software is often treated as an ad-hoc verification technique,

we should realise that the introduction of software in hardware verification has overturned

the traditional TB-DUT dualism.
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Software, as the third entity, seems to cause further complications in addition to those already

caused by the TB-DUT dualism. For instance, it is unclear how to position the software and

the test-bench properly in a verification framework, as suggested in Figure 2.6.
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Figure 2.6: For a system-on-chip (SoC), stimulation and observation could be provided
either by the test-bench (TB) or by the test-program (TP). TB controls and observes the
DUT through signals; The TP controls and observes the DUT through WRTIE/READ
operations and interrupts. The relation between the TB and the TP is not clear, causing
conceptual confusions in SoC verification.

This problem cannot be addressed by TB-centric verification methodologies. In fact, by

treating TB-construction as the software phenomena in the real world, (for example, adopting

OOP paradigm in TB construction), these TB-centric methodologies neglect the software

phenomena in the virtual world. In the sequel, we will refer the software in the virtual world

also as “test-program” (TP) to contrast with the term “test-bench” (TB).

In addition to the unclear TB-TP relationship, how to generate testcases and organise them

in TP is another open question. This problem is not answered even by some SW-centric

verification approaches [33, 39, 41]. For example, in [39], Hunsinger et al. briefly compared

the test-bench approach with the software approach. Regarding the latter, he proposed to

introduce custom operating systems on top of hardware. This idea attempts to resolve the

difficulties at physical-level programming. But it does not give answers to how to produce

high-level TPs; instead it still suggests that the testcases should be based on pre-defined test

rules.
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There are also common pitfalls in utilising TPs for system-level verification. The essentially

sequential execution of software could obscure the inherent parallelism in a system. It is a

common mistake to view system behaviours as the sequential execution of instructions, rather

than a collection of parallel activities. Also, existing TP generation methods [21, 24, 25] tend

to overly focus on non-system-level issues such as statement-based coverages and program

size.

2.3 Our Solution: Software-Centric and Interaction-

Oriented Verification

The problematic relationship between (1) an SoC, (2) its test-bench and (3) the test-program

causes complication and confusion in system-level verification. On the other hand, software,

as the third entity, also brings the potential to address the complication and confusion

altogether. The test-bench and the test-program should be placed more naturally in the

verification framework. We propose two ideas for SoC verification.

Test-Program Centric Verification. The test-program, instead of the test-bench,

should take the more active role of testcase control, especially parallelism manage-

ment; the test-bench, not the test-program, should take the relatively passive observa-

tion roles.

Interaction-Oriented Verification. The object-under-test should be the interactions

among components, rather than the components themselves.

2.3.1 TP-centric Verification: Reshaping the Verification Frame-

work

While the TP has overturned the DUT-TB dualism, the relationship between TP and TB is

seldom discussed explicitly. In [9], the proposed relation is that “TB controls/observes TP”.

Here, “TP” refers to diagnostic subroutines for HW verification purpose. The behaviours of

TPs are monitored and intercepted by a TB. For instance, the TB could intercept a TP’s

read-access at a certain memory location, and modify the read data with a value generated

by the TB’s randomisation mechanism. Thus, the TP always gets random data from this

memory location, which could be treated by TP as a random data source to configure HW

components. However, using the TB to control a TP is un-natural in the sense that a
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programmer’s original intention encoded in the TP is damaged. Therefore the applicability

of using the TB to control a TP would be narrow. For the above specific example, the TP

could obtain a similar effect (without the TB’s intervention) by accessing not a fixed memory

location but an array of pre-decided random values.

The more natural TP-TB relation should be exactly the opposite: TP controls TB [38, 53,

89]. In [38], the TP-TB synchronisation is manually (and statically) specified but automat-

ically implemented. In a test file, testcases in the form of SW snippets are annotated with

desired TB behaviour. A custom parser reads the test file and associates snippets’ program

addresses with their annotated TB behaviours. At simulation, the TB is sensitive to the

program-counter (PC) in the processor. Whenever the PC matches any address that has

been identified by the parser, the associated TB behaviour is triggered. In this sense, the TB

is under the control of the TP. This approach is useful but may not be sufficient to support

more flexible TP-TB communication such as run-time parameter-passing.

It is better to let the TP control the TB more explicitly. The TB and the DUT are es-

sentially hardware; indeed, the TB can be composed in HDL just like the DUT, and has

similar reusability issue. Since a TP can control/observe the DUT through the DUT’s “pro-

gramming interface”, namely, its control/status registers, it makes sense to allow the TP to

communicate with the TB in a similar fashion. In [51], a patented idea is to connect all TB

components using a central bus dedicated to verification, just as an SoC is integrated around

some interconnection mechanism. If the TB is controlled by a TP as the DUT is, from the

TP’s point of view, the dualism between the “TB” and the “DUT” is reduced – there is

only one type of entity, namely, SW-controllable HW components. Indeed, counting a HW

component on the “TB” side or on the “DUT” side is not absolutely necessary. A good

example is the SoC’s processor, which could be represented either by an accurate but slow

HDL model, or by a less accurate but faster instruction-set-simulator (ISS). Counting the

processor on the DUT side or on the TB side is simply a matter of interpretation. If we do not

distinguish between DUT and TB, the distinction between DUT’s “external” and “internal”

behaviours also loses significance, for everything now happens within the SW-controllable

“DUT-TB super-system” (detailed in Chapter 5).

If we adopt this view, the TP actually moves to a more critical position than the TB.

The entire verification framework could centre on TP’s generation and automation, which

substantially differs from the mainstream TB-centric verification practice.
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2.3.2 Interaction-Oriented Verification: Redefining the Object-

under-Test

As discussed in the last subsection, the term “design-under-test” (DUT) (as well as “TB”)

becomes subjective. Therefore we shall now redefine the term “object-under-test”.

At system integration stage, the focus should be put on the interaction between components,

rather than the components themselves. This suggests that the interactions, not components,

should be treated as the object-under-tests. This view is justifiable, since at integration

stage a certain degree of confidence in hardware quality should already be established. This

assumption is especially valid for commercially available components.

Focusing on components’ communication is already a common practice in SoC design/ver-

ification, such as “transaction-level modelling” (TLM) [60]. The central idea in TLM is to

separate a component’s computation capability from its communication capability. Never-

theless, the term “communication” is still viewed as the capability, or property, attached to

a component [67]. The communication property is modelled as a task member attached to

a component-object. It takes the form of

Component.Communicate(Transaction).

where

Component represents a hardware component;

Communicate() represents a member-task (or member-function) associated with the hard-

ware component, and

Transaction represents the data content to be communicated.

To allow convenient connection between components in the test-bench, more components

are introduced. These additional components include “ports” and “channels”, whose only

capability is to communicate. User components must hold references to ports, which are

sub-components of a channel. This technique is shown in Figure 2.7. In this scheme, a user

component communicates with other components via a channel typically in the form of

Component.Port.Communicate(Transaction).

As a benefit, the communicating components do not have to have full knowledge of each other.

This connection technique is one major concept in the TB-centric verification methodologies.
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Figure 2.7: The object-oriented convention on how to connect components. To connect
Component A and Component B, a third components called the channel is introduced,
which further contains sub-components called “ports”. A port is a placeholder for
functions that perform the actual data movement. Each of A and B has a reference to
the ports of the channel. The nature of communication is function-calling.

By introducing channels and ports, the component-oriented view of a system continues to be

valid. However, the hardware verification community has not proceeded to migrate from the

view in which interactions or communications are treated as the properties, or “capabilities”,

attached to HW components, to the view in which interactions themselves become a set of

objects independent from HW components. We respectively refer to these two views as the

“component-oriented” mindset and the “interaction-oriented” mindset.

In the component-oriented mindset, “tests” and “objects-under-test” are two distinct con-

cepts (even implied by the appellations); the former is something external (and incomparable)

to the latter. As a result, the component-oriented mindset inevitably faces some fundamental

questions that cannot be answered by the mindset itself; these questions include: (a) what

can be counted as a “test” to a component, and (b) how to generate those tests for the

components.

In the interaction-oriented mindset, this “test vs. object-under-test” distinction disappears –

the terms “tests” and “objects-under-test” are now referring to one type of entities, namely,

the interactions. The “test generation” issue now is transformed into interaction identi-

fication issue. Although identifying interaction objects still requires non-trivial effort, the

conceptual complications caused by the “test vs. object-under-test distinction” are removed.

Moreover, this mindset is coherent with the concept of concurrency, or parallelism. Treating

interaction as objects, test generation now could focus on combining simpler interaction-

objects into more complex scenarios in which parallel interactions compete for resources.

In a pure interaction-oriented mindset, the actual HW components’ significance is reduced.

If components’ properties are reorganised into interactions’ properties, they could even be

abstracted away. The philosophical implication of interaction-oriented mindset can be found

in many areas of studies. Milner [63] observed that “it is reasonable to define the behaviours
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of a system to be nothing more or less than its entire capability of communication”. In [86],

the author quoted: “Besides substances, there are processes ... The universe should be better

understood as a set of processes rather than a set of substances.” Indeed, even a so-called

substance is not a static matter – it is a process of being.

The interaction-oriented mindset also brings an opportunity to identify the system-level ver-

ification complexity. In order to mitigate the soaring verification complexity, the verification

community has long been attempting to implement the intuitive idea of reducing system-level

verification complexity from the cross-product of verifying all components, i.e.,∏
Ci,

to the summation plus the system-level verification complexity, i.e.,∑
Ci + Csys,

where the
∑

Ci part is already performed during component-level verification stage [74].

Treating interactions as objects-under-test is an implementation of this idea. The system-

level verification complexity Csys now can be expressed in terms of interaction-objects’ prop-

erties, including the temporal relations of interactions.

2.3.3 Combining TP-Centric Approach and Interaction-Oriented

Mindset

A TP-centric verification methodology is not necessarily interaction-oriented. A TP-centric

but component-oriented method implies that TPs are developed to diagnose hardware com-

ponents. Since testcase development for each hardware component must be very specific,

we see little opportunity for automation here. One example of TP-centric but component-

oriented method is described in [33], in which some lower-level software components, called

low-level-device-drivers (LLDDs), are oriented at testing each hardware-components, while

higher-level software components such as the test-operating-system (TOS) and the test-

applications (TAs) are responsible for high-level control, including test-initialisation, multi-

tasking and result-checking. Because the scheme is still component-oriented, it suffers critical

drawbacks as follows:

• the user needs to hand-write a test-operating-system (TOS), where sophisticated syn-

chronisation mechanism between (TOS, TAs, LLDDs) must be implemented;
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• the test-generation problems is not handled; it is the user’s responsibility to conceive

interesting testcases of parallelism and to exploit the synchronisation mechanism;

• running the TOS becomes a huge overhead to running TAs and thus need to be done

on a separate execution platform, which in turn introduces further complications about

the synchronisation between platforms.

Another TP-centric but component-oriented scheme in [41] also attempts to construct par-

allelism between component-oriented tests by utilising existing OS. This scheme has similar

issues as mentioned above, that is, (a) the hardware overhead for running the specific OS,

(b) the software overhead for synchronisation and (c) human-conceived parallelism.

If a TP-centric approach is combined with the interaction-oriented mindset, the TP natu-

rally takes the responsibility of parallelism management – the very role that the TB struggles

to play but hardly satisfactorily in a TB-centric verification approach. Very few researches

combine these two concepts. XGEN [28, 29, 37], the system level test generator developed

in IBM for verification of high-end server and SoC, explicitly use “interaction” objects as

building blocks to generate system level test cases. An interaction in XGEN is a series of

communication stages known as “acts”; each act is performed by some hardware compo-

nents (known as “actors”). An interleaving technique is also used to enforce the parallelism

[29]. Nevertheless, hardware components are not abstracted away in XGEN. To the con-

trary, a library of component models, each with its properties modelled in detail, must be

already available. Obviously, these part of modelling requires in depth hardware knowledge.

Therefore, XGEN is not a purely interaction oriented verification tool.

This thesis proposes a test-program (software) centric and interaction-oriented methodol-

ogy. The link between “TP-centric verification” and “interaction-oriented verification” is

“transfer” – a software controllable interaction-object. The next chapter details the transfer

model.

2.4 SoC Used in the Research

Our research is demonstrated on a simple SoC (∼ 25, 000 lines of Verilog code) generated

by the SoPC builder [1], an Altera’s product which contains a library of commonly used

RT-Level hardware component for general embedded applications. This SoC was also used

by Cheng et al. in [25] for a related research in the University of Adelaide. Some comparison

based on this SoC is described in Section 6.2.
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Figure 2.8: The System-on-Chip (SoC) under demonstration – the Nios SoC. This
simple system possesses typical SoC features: multiple components interconnected by
on-chip bus.

The Nios SoC [5] is shown in Figure 2.8.

• The Nios CPU is a typical five-stage pipelined RISC, including an 8KB data-cache and

a 8KB instruction cache. The instruction-set contains 54 RISC op-codes. The RISC

structure contains a register-window mechanism allowing fast context-switching.

• The DMA (direct-memory-access) engine can perform data transfer between any slaves,

including memories and other peripherals. The max word-width is 32-bit.

• The UART (universal-asynchronous-receiver-transmitter) can interact with the exter-

nal world in bit stream in full-duplex mode. The baud-rate is programmable.

• The ROM (read-only memory) stores instructions, size 64 KB.

• The SRAM (static random-access memory) stores data, size 1 MB.

• The RAM and Flash are the additional memory modules.

• The on-chip interconnection is the Avalon Bus [2], which is a cross-bar interconnection.

It does not have a central arbitration mechanism. Instead, a mechanism called “slave-

side arbitration” is provided for each slave port. There is no arbitration requirement

until two masters are visiting the same slave.
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interrupt, the request with lower priority code will be serviced first. Interrupt requests
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The Nios SoC has an interrupt subsystem as illustrated in Figure 2.9. The DMA, the Timer

and the UART each has an interrupt line wired to the CPU with fixed priority-code (DMA

> Timer > UART, the smaller the code, the higher the priority). A number of interrupt

sources exist across the system, including

• UART Receiver Ready (rrdy) – UART received a character;

• UART Transmitter Ready (trdy) – UART transmitter sent a character;

• UART Status/Errors (end-of-packet; parity, frame, overrun, etc)– Various UART sta-

tus/errors;

• DMA Done – DMA engine finished transfer;

• Timer time out – the timer’s internal countdown-register reaches zero.
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In addition to the external interrupt sources, the Nios CPU also contributes two exceptions

with highest interrupt priority: (a) Register-window-Underflow-Exception, priority-code 1

and (b) Register-window-Overflow-Exception, priority-code 2, which are raised when the

register-window slides across limits. Some complications arise when the interrupt mecha-

nism interfere with the register-window mechanism. These complications together with the

solution are described in Appendix B.

This Nios SoC proves to be an ideal choice – it is simple enough for academic research and

typical enough to represent a wide range of real-world SoC design. It contains adequate fea-

tures of a typical system-on-chip: multiple components (including the CPU) interconnected

by an on-chip interconnection structure. It is also a typical “system” in the very general

sense – it has internal structures that could potentially co-operate or conflict with each other;

it can communicate with its environment, inputting and outputting simultaneously.

An SoC verification methodology should be independent from verifying a specific SoC. In our

research, we strictly differentiate between “SoC knowledge” and “methodology knowledge”,

especially in constructing the test-generator. (Refer to Appendix C for details.) We believe

that the software-centric and interaction-oriented verification methodology demonstrated on

this Nios SoC is generic enough to cover a large category of SoC designs.

2.5 Summary

This chapter has introduced some basic concepts and commonly adopted techniques in the

verification practice. We have shown that the bottleneck to more efficient SoC design verifi-

cation stems from the lack of theoretical support. It is philosophically problematic to apply

the traditional test-bench centric verification methodologies to system-level verification. Fur-

thermore, we have revealed our approach to the problem. Our “interaction-oriented” and

“software-centric” verification approach gives holistic consideration to the inherent prop-

erties of a “system”, including parallelism and hardware-software interactions. The next

chapter starts our treatment by introducing an interaction model called transfer.
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Transfer-Resource Graph

3.1 Overview: Proper Abstraction Level

In a system context, the objects under test are interactions between components, in place

of the components themselves. In contrast to a component, which has a clear boundary,

an interaction appears to be abstract and shapeless. This chapter deals with some basic

questions such as how to identify and characterise interactions as valid objects under test,

and how to combine them to form legal parallelism.

For SoC verification, interactions must be modelled at a proper abstraction level. Interactions

in a system come in different levels. There are signal-level handshakes; there are logical-

level frames/packets/tokens; there are also application-level threads/processes. Lower level

interactions aggregate and collaborate to become higher level interactions. The abstraction

level for verification should not be too low. This is because we are to implement tests in

software known as test-program (TP), which has little controllability and observability of

signal-level events (e.g., Bus Request and Bus Acknowledge, etc). However, the abstraction

level should not be too high either, because TP is supposed to vigorously stress the hardware

devices. It is inappropriate yet for a TP to view hardware devices as API (application-

program-interface) services as for an application-software programmer.

To trade-off the above considerations, the model should be readily comprehended by a device-

level programmer, who understands hardware functionalities and performances, but may

have little knowledge about hardware implementation. We use the term “transfer” to refer

to interaction at this specific abstraction level. We also use the term resource to refer to the

43
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hardware resource needed in interactions. Transfers and resources form transfer-resource-

graph (TRG), in which testcases of parallelism can be generated.

3.2 Transfer Modelling

3.2.1 Definition of Transfer

Interactions are the focus of system-level verification. There is a challenging issue associ-

ated with modelling them, that is, interactions come in various forms, requiring different

techniques to stimulate and observe them. Some interaction examples in the Nios SoC are:

(i) A Flash-to-RAM DMA transfer. It is a series of read and write operation driven by

the dedicated hardware – the DMA engine;

(ii) The execution of a sort subroutine. The subroutine can be viewed as a pattern of

memory-access performed by the CPU, driven by the execution of software;

(iii) An incoming bit-stream via the UART receiver; this stream is converted into a byte-

stream and finally reaches a memory buffer. This process is mostly driven by the

interrupt mechanism.

Note that these three examples are data-flows driven by heterogeneous mechanisms, which

are respectively the DMA engine, the sort subroutine and the interrupt subsystem. While

checking each of them is common sense, checking their parallel execution will greatly improve

test quality, because we are able to observe not only interactions, but also interference

between interactions. When the above three interaction examples take place in parallel, we

are able to observe how the DMA engine and the CPU compete with each other for the bus

access, how the UART interferes with their competition by frequently interrupting the sort

subroutine, and how UART interrupt is nested in DMA interrupt. The concurrent execution

of these behaviours brings huge indeterminism at physical level, and some extremely elusive

design defects can only be exposed in such complex interaction patterns. However, it will

be hard to construct such interesting testcases if we do not overcome the heterogeneity of

different interaction forms.

The key to effectively construct such parallelism is to generalise heterogeneous interaction

forms into a common model. We call this model transfer-type.
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Definition 1: Transfer-type is a set of programmer controlled and data-intensive interaction

patterns among SoC components. Its programmer-controlled feature means that a transfer-

type has the following properties:

(i) Configuration: Transfer-types have their own parameters, which can be configured by

some instructions. (An important part of a transfer-type’s configuration is the resources

to be used. )

(ii) Invocation: Transfers can be invoked by some instructions. Invocation instructions are

allowed to have side-effects of configuration.

(iii) Notification: The event of transfer completion can be notified to software in some way

(e.g., via interrupt) so that some software flag can be set to indicate the event.

A closely related concept is the instance of a transfer-type called transfer-instance.

Definition 2: A transfer-instance is a transfer-type associated with a specific configuration.

We may treat a transfer-type as a set of transfer-instances. In the case that the discrimination

between transfer-type and transfer-instance is insignificant in discussion, we use the term

transfer.

Figure 3.1 shows the life-cycle of a transfer, which includes a data-phase and a control-phase.

Note that the configuration, the invocation and the notification are the overhead of a transfer

and that the main body of a transfer is the data-flow. Also notice that the differentiation

between “control” and “data” is relative (to the abstraction level). The control operation at

transfer level, typically a register-access operation, is also a data-operation at instruction-

level; similarly, the data-flow of a transfer has already implicitly involved physical-level

control.
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Figure 3.1: The life cycle of a transfer. We regard the configuration, invocation and
notification as the control overhead, while the data-phase as the payload.

A transfer shares some similarity with a CPU instruction.
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• A transfer has its type, just as an instruction has its opcode, which determines what

type of operation is going to take place;

• A transfer needs to be configured with concrete parameters, just as a valid instruction

needs to be filled with concrete operands;

Notification is a property not shared by an instruction, but serves as the driving force of the

test-program as detaled in the next chapter.

Both transfers’ running and instructions’ execution can be viewed as interaction-objects.

Indeed, a transfer is an interaction pattern between SoC components, just as an instruction

is an interaction pattern between components inside the processor (e.g., the ALU, the reg-

ister file and the pipeline). However, transfers and instructions are interactions at different

abstraction level. Instructions are so short that the parallelism between them (instruction-

level-parallelism, or ILP) should be handled by a dedicated hardware, namely, the processor

itself; while transfers have much longer life so that it is possible for software to handle their

parallelism.

We only include the configuration/invocation/notification as the basic transfer controls. It

may be useful to extend the model with more control properties in control-intensive applica-

tions. For instance, in addition to configuration and invocation, we could add other control

handles to transfers such as “abort”, “pause” and “resume”; and transfer may also have

notification events other than end-of-transfer.

3.2.2 Expressive Power of Transfer

In the early stage of an SoC design/verification cycle, the level of abstraction should be high

enough to hide the differences between hardware behaviours and software behaviours [54].

Our transfer-type model meets this requirement. All the three previous interaction examples

can be expressed as transfer-types.

(i) Transfer-type “Flash-to-RAM-DMA”:

• Configuration: initial-source-address, initial-destination-address, width (8, 16, or

32-bit) and length;

• Invocation: setting the go bit in the DMA engine control register;

• Notification: DMA-finish interrupt.
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(ii) Transfer-type “Sorting”:

• Configuration: address, data type(signed/unsigned integer, etc), length, sort-algorithm

and reverse;

• Invocation: calling subroutine sort(address, type, length, algorithm, reverse);

• Notification: the return of the subroutine.

(iii) Transfer-type “UART-Rx-by-Interrupt”:

• Configuration: end-of-packet character, max-length, finish-mode (by max-length

and/or end-of-packet-char), error-detection-mode (parity, frame);

• Invocation: a STORE instruction to a special address – the test-bench/test-

program interface; when this address is written, the test-bench starts to feed

the SoC with a bit stream.

• Notification: the UART interrupt-service-routine detects the finish condition of

the UART receiver.

More generally, the transfer-type model can express the following three categories of data-

intensive interactions. The above three examples represent each of the categories.

(i) Hardware behaviours (Hard-transfers):

The transfer “Flash-to-RAM-DMA” models the read/write operations on the bus driven

by master-devices, whose behaviours are mostly hardwired. So this kind of transfers

are categorised as hard-transfers. Hard-transfers are intrinsically fast. But their be-

haviours have less variety. The configuration is done by setting up registers across the

hardware devices involved in the transfer. The invocation is similar. The completion

events are notified to the test-program via interrupts. The main form of interactions

in hard-transfer is the read/write operations on the bus.

(ii) Software behaviours (Soft-transfers):

A processor in an SoC is a valid master device, whose behaviours are programmable

rather than hardwired. So its behaviours are called soft-transfers. Soft-transfers are

basically in the form of subroutines and their behaviours are intrinsically flexible. A

soft-transfer’s configuration is done by passing arguments to the subroutine; the invo-

cation is the “JUMP” or “CALL” instruction to a subroutine, and the completion is

notified by the return of the subroutine.

There is a subtle but crucial difference between the codes in a soft-transfer and the

codes in configuring a transfer.
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• The former should be regarded as the payload and subject to verification; they

are also application-oriented, and thus require manual development.

• The latter codes are treated as the overhead to build the data-phase. They should

be automatically organised in a test-program.

One guideline to build soft-transfers is to compose the read/write intensive subroutines

to stimulate the interactions between the CPU and slaves. However, soft-transfers do

not have to transfer data literally ; they can be computation-intensive operations to

apply stress to different types of physical resources like the ALU in the CPU. For our

Nios SoC, a simple recursion-intensive subroutine (recursive fibo) is developed to

apply stress to the register-window mechanism in the Nios CPU architecture.

(iii) HW/SW Collaborations (Virtual-transfers):

In the Nios SoC, the incoming UART byte-stream is formed by the cooperation between

the UART, the interrupt subsystem and the UART-receiver-ready interrupt-service-

routine (ISR). Although the byte-stream is physically performed by the CPU, from

a higher level of abstraction, it is functionally equivalent to perceive that a virtual

master (also see Section 3.3.2) is conducting the stream between the receiver and a

memory buffer, independently from the CPU which may be involved in another task

(at a reduced performance). Transfers conducted by virtual masters are called virtual-

transfers. Like a hard-transfer, configuration and invocation are in the form of writing

control-registers; the notification to software is a trivial requirement for virtual-transfer,

since the virtual-master (i.e., the ISR) is already software.

Unlike a soft-transfer, which explicitly requires a real CPU as its resource, a virtual

transfer just requires a virtual master; therefore, we can arrange multiple virtual trans-

fers (and one soft-transfer) to work “concurrently” on a single CPU. This concurrency

is actually the parallelism between the CPU and the peripherals.

In a virtual transfer, the primary forms of interaction are interrupt request and re-

sponse, while the traffic on the read/write bus is secondary.

Table 3.1 lists the three categories and summarises how to implement their configuration,

invocation and notification.

The “transfer” is a compact and abstract model to express interactions. A tool named

XGEN, developed by IBM for system-level test generation [37], also uses a model called

“interaction”. One such “interaction” is further divided into acts. For the example of a

memory-to-memory DMA, XGEN models it as a three-act interaction: the DMA-service-

request phase, the DMA copy process itself, and the DMA-finish-interrupt phase. Each act
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Table 3.1: Implementation of hard-, soft- and virtual transfers.

needs to be modelled separately and explicitly. In contrast, we model it as a single transfer,

which represents all three phases. Our model is more straightforward and natural.

The “features” of transfer’s expressive power could also be interpreted as its “limitations”

depending on the context, and vice versa. For instance, the instruction-flow cannot be mod-

elled as an independent interaction-object. We may interpret this fact either as a limitation –

we do not have a direct control over the instruction-flow, or as a feature – the instruction-flow

is simply abstracted away and could be understood as the “noise” on the bus.

3.2.3 Transfer Complexity and Environment Complexity

In order to identify transfer-types in a given system, we need to discuss the complexity

of the transfer-type model. One transfer-type’s complexity is caused by its configuration.

We use T to denote the set of transfer-types in a system, and denote Ti as each transfer-

type member. For Ti, each of its parameters has a set of values to select from. Hence,

Ti requires an operation P (·) to perform its parameterisation. Its parameters could be

either totally independent or constrained with each other in various ways. In other words,

each Ti’s parameter-space is specific and application-oriented. Therefore, its P (·) should be

more accurately denoted as PTi
(·), or, from the object-oriented programming point of view,

as Ti.P (·). The complexity of Ti.P (·) can represent the complexity of Ti. To let Ti.P (·)
deterministically traverse the whole parameter-space seems neither necessary nor practical.

We could implement Ti.P (·) using weighted and constrained randomisation.

Our transfer model is quite flexible in the sense that defining a transfer-type allows for

trade-off between (a) the number of transfer-types in a system, and (b) the complexity of

their P (·)s’. To one extreme, we could model only one single transfer-type to represent all
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possible interaction patterns in a system, but its P (·) needs to deal with a very large but

also very artificially constrained parameter-space. To the other extreme, we could create a

transfer-type for each possible interaction pattern of concrete parameters. In this case, we

would have a huge number of transfer-types, while their P (·)s’ all have trivial complexity. In

other words, given a system, the more generalised each transfer-type is, the fewer transfer-

types are required, but at the cost of more complex P (·)s’. Figure 3.2 conceptually displays

this generalisation continuum.

Low                    Degree of Generalisation High

More transfer-types;

Lower parameterisation complexity

Less transfer-types;

Higher parameterisation complexity

Figure 3.2: Generalisation of transfer-types. The transfer model allows users to
trade-off between the number of transfer-types and the complexity of their
parameterisation.

In practice, it is natural to adopt this guideline: generalising interaction patterns of “similar”

parameterisation style as one transfer-type. Taking the example of the Nios SoC, we ini-

tially planned to model 12 transfer-types to represent DMA transactions among four source

memory modules (ROM, RAM, FLASH, SRAM) and three destination memory modules

(RAM, FLASH, SRAM). But later we decided to merge them into one transfer-type called

“memory-to-memory DMA”, with a single but stronger P (·) capable of assigning source

and destination among all memory modules. Meanwhile, we consider it more appropriate

to model “UART-Rx-by-DMA” and “UART-Tx-by-DMA” as separate transfer-types, which

have very different parameters.

Another guideline is to let the application of the SoC to guide transfer-type identification,

and let the consideration of hardware capabilities to guide the design of transfer-types’ pa-

rameterisation spaces.

Some control variables are not appropriate to be associated with one single transfer-type.

Instead, these variables globally affect concurrent transfers. For instance, in the Nios SoC,

the UART baud rate affects both a receiving (RX) stream and a transmitting (TX) stream,

which could run simultaneously. Another example is the data-cache and instruction-cache

enabling/disabling setting, which affects all concurrent transfers from the background. These

control variables are called “environment parameters”, whose parameterisation is performed

by Pen(·), which is not associated with any particular transfer-type. The implementation

of Pen(·) is similar to T.P (·), i.e., via randomisation. A reasonable assumption is that
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an environment parameter should not be updated until all affected transfers are inactive.

The complexity of the environment space also contributes to the total complexity of SoC

verification.

3.2.4 Transfer Temporal Granularity

To further characterise transfers, we give an estimate of their life-expectancy.

First of all, we discuss the necessity of comparable life-expectancy of all transfers. The

transfer model enables us to generalise data-flows driven by various mechanisms, which

could operate in a wide spectrum of data-rates. In our Nios SoC, transfer-type “ROM-to-

RAM-DMA” has the rate of 33.3MB/sec; while the transfer-type “UART-RX-by-Interrupt”

is operating at 14.4KB/sec (or 115,200bps baud-rate). Now the question is: how to “match”

concurrent transfers in order to achieve the desired verification quality, i.e., the parallelism

and resource-contention? For example, does it make sense to create a testcase in which

a 1000-byte-long transfer T1 at speed of 10MB/sec runs alongside another 1000-byte-long

transfer T2 at 10KB/sec? It appears to be a poor match, since T1’s life is only one thousandth

of T2’s, meaning that the parallelism exists only 0.1% of the simulation, so the competition on

the shared resource (the bus) is very little. Therefore it makes sense to configure all transfers

to have comparable life-expectancies, say, within one order of magnitude of difference.

Figure 3.3 illustrates the effect of combining two transfers of different data-rates. We see

that Req-1 (from one transfer) and Req-2 (from anther transfer) are using the bus at very

different paces. If Req-2 is much shorter than Req-1 as shown in Figure 3.3(a), the stress put

on the bus granting mechanism is completely absorbed by the bandwidth of the bus; but if

the two transfers are configured with comparable life-expectancy as shown in Figure 3.3(b),

these two transfers together stress the bus in a way neither of them can achieve individually.

We now consider how to estimate the optimal life-expectancy. Common sense tells us that the

life-expectancy should not be too long. This is because simulation is a very time-consuming

process. In the shortest time possible, we not only need to cover most configurations for each

given transfer-type, but also should try its concurrent running with other transfers. On the

other hand, neither can life-expectancy be too short. We regard the data-phase of a transfer

as its main body, in which parallelism and resource-competition are supposed to happen;

whereas the transfer’s control-phase, namely, its configuration/invocation/notification, is the

overhead. So it is natural to require the data-phase to be at least one order of magnitude

longer than the control-phase; otherwise, a considerable portion of simulation time will

be spent on the overhead. Fortunately, the length of control-phase is predictable because
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Req-1

Req-2

GNT

(a) When bus requests from two transfers differ greatly in length, the probability of physically simulta-
neous bus accesses is low. In this figure, Req-2 falls completely between two continuous accesses from
Req-1, therefore neither of the requests is affected by the other. The bus arbitration mechanism is
stressed very little.

Req-1

Req-2

GNT

(b) When bus requests from two transfers has similar length, there is high probability of physically
simultaneous bus accesses. The two transfers are physically interfering with each other, implying a
much higher stress on the bus and a higher test quality.

Figure 3.3: Transfer life-expectancy affects test quality. Req-1 and Req-2 stand for the
bus requests from two transfers; GNT stands for the bus granting signal.

all transfer-types’ configurations, invocations and notifications are made up of instruction

sequences of similar length. Hence, we assume that the following quantities are available:

• the average execution time of transfer configuration, C;

• the average execution time of transfer invocation, I;

• the average execution time of transfer notification, N .

Then we can reasonably conclude that the optimal transfer life-expectancy is simply in the

range of (10 to 100)× (C + I + N), which makes the overhead well under 10%.

In the Nios SoC example, (C +I) requires 25 assembly instructions (mostly memory/register

write accesses), or 100 SoC cycles; transfer notification is typically carried out by interrupt,

which includes the time spent on context switching and ISR execution; thus the average N
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is about 350 cycles. The optimal transfer life-expectancy is in the range of (10 to 100) ×
(C + I + N), or 4,500 to 45,000 SoC cycles.

At run-time, considering the transfer-performance penalty caused by resource-competition,

we shall allow for longer transfer life-expectancy than what was parameterised. Since we

favour resource-competition in test scenarios, we should allow for heavy penalty, say, another

ten-fold parameterised life-expectancy.

From the above discussion, we can quantitatively sense the time-granularity of “transfers”.

This is also the granularity of our proposed “system-level” tests. Understanding transfers’

temporal granularity helps us to

• model and identify transfers, especially bias the behaviours of their P (·);

• understand the feature and limitations of system-level tests; and

• properly encapsulate tests in test-programs.

Compiling a TP consumes time; we should make sure that compiling a TP is a small overhead

compared with executing the TP (during simulation). The actual time (wall-clock time) to

simulate a transfer organised in a TP depends on the simulation platform and the SoC

complexity. Our Nios SoC in RT-level Verilog model is simulated by Synopsys VCS [79]; the

simulation roughly runs at the speed between 5 and 10 KHz, thus a typical transfer takes

about dozens of seconds. This length justifies encapsulating many transfers in one test-

program, considering that the overhead of test-program compilation is around one minute.

Compared with other interaction-objects, a transfer has a unique temporal granularity. The

interaction-objects at lower abstraction levels, such as instructions, have a much smaller

temporal granularity, which is well within 101 cycles. However, transfer’s granularity of

104 cycles is still much finer than that of application-level interaction-objects, namely, the

processes. One CPU-slice allocated to a user process is at the millisecond level, or in the

order of 106 CPU cycles, and the life expectancy of a process is much longer than that.

In this sense, interaction-oriented view of a system is also a hierarchical view: transfer is just

one intermediate interaction-form that connects other identifiable interaction-forms. Short-

living interaction-forms, e.g., instructions and signal-level transactions, aggregate to become

transfers, which in turn aggregate to become long-living computation-treads and processes,

which may aggregate further to become applications.

Table 3.2 compares the temporal granularity of instructions, transfers and processes. The

granularity decides which mechanism is used to manage the parallelism. Instructions have
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Table 3.2: Different Levels of Interactions: Instructions, Transfers and Processes

such a small granularity that the instruction-level parallelism must be managed by dedicated

hardware, namely, the processor. In comparison, transfers have a granularity large enough

to be efficiently managed by software. On the other hand, transfers’ granularity is also

small enough compared with processes so that transfers exhibit much simpler behaviours

than processes. As a result, a test-program, which manages transfers, enjoys substantial

simplicity that is not shared by the OS, which manages processes.

(i) A transfer’s resource usage is static; while a process uses resources dynamically. For

instance, in a memory-to-memory-DMA-copy transfer, it is unnecessary, as well as

impractical, to claim partially copied memory-ranges as free resources. The entire

memory ranges should be regarded occupied until the copy finishes.

(ii) Concurrent transfers do not communicate with each other due to their granularity;

while processes need to communicate each other. In fact, inter-process communication

could be modelled as transfers.

The simplicity makes TP implementation easy and TP automation feasible. For instance, in

principle, the data-structure for transfer scheduling purpose could be as simple as a single
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bit: 1 for running and 0 for not-running. The usage of this structure is detailed in Sections

4.2.1 and 4.2.2.

Table 3.2 suggests that resource availability is a common factor for parallelism management.

We are now in a position to model the resources for system-level verification purpose.

3.3 Resource Modelling

3.3.1 Resource-contentions and Resource-conflicts

The focus of system-level verification is parallelism. The main purpose of constructing par-

allelism is to observe interesting resource-competitions. Resource-competitions could hap-

pen on various mechanisms, including the on-chip interconnection subsystem, the interrupt

mechanism, the CPU-time, the context-switching mechanism, memory locations, caches and

buffers. Even more interesting situation is that competitions in various domains can interfere

with each other, as discussed in Section 3.2.1.

Transfer model allows these competitions to be built naturally – we simply arrange multiple

transfers to run concurrently. By managing transfers’ configuration/invocation/notification,

a test-program has considerable freedom in arranging parallelism. However, there should

exist some principles to prevent the freedom from being reduced to unchecked randomness.

Our principle is to distinguish between resource-contentions and resource-conflicts. Resource-

contentions represent the physical level competitions that are supposed to be resolved by

hardware mechanisms (e.g. bus protocol, interrupt handling scheme, cache coherence scheme).

These competitions are not just legal but also desirable. Resource-contentions are then de-

fined as physical-level resource competitions which a programmer has no direct controlla-

bility and observability. Table 3.3 lists the typical physical resources in a system, potential

contentions and the hardware mechanisms that address the contentions.

In contrast, resource-conflicts are competitions at the logical level and require a programmer’s

discretion to avoid. For example, we should allow the DMA engine to compete with the CPU

for a physical memory module, but we require that the DMA transfer should never access the

memory locations that are currently involved in a sort subroutine; otherwise the results of

both transfers will not be predicted from their configurations. Intuitively, if the result of an

interaction is dependent on its timing with respect to other interactions, resource conflicts

are implied.
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Table 3.3: Typical physical resources and resource contentions.

Definition 3: Given a set t of transfer-instances t1, t2, . . . , tn, which are respectively

instantiated from transfer-types t1.T , t2.T , . . . , tn.T , we assume that each ti.T is associated

with a pass/fail boolean function

ti.T.Check(ti.configuration, MemRegSpacestart, MemRegSpaceend),

which, according to ti’s configuration, checks if ti has caused the expected changes (between

when it starts and when it ends) in the memory-register space. If, there exists a tj in t, whose

value of tj.T.Check() varies with respect to tj’s temporal relations (sequential, overlapping)

with other transfers in t, we say there is resource-conflict in t.

This definition forces some “determinism” – the result of each ti should be deterministically

predicted; but the determinism is also accompanied by “indeterminism” – the temporal

relations between conflict-free transfers are allowed to happen in any way. If there are n

conflict-free transfers, each having a start and an end event, then we shall allow for (2n)!
2n

possible event sequences, all of which shall yield the same results in the memory/register

space.

To avoid resource-conflicts is reasonable – if each transfer’s result can be predicted by its

configuration together with the contents in memory/register space, high level functional

checkers, i.e., T.Check(·), can be easily implemented in the test-bench. Not enforcing this

restriction on resource-conflicts is still an option; in that case, test-generator simply has more



3.3. RESOURCE MODELLING 57

freedom, but it loses the potential capability to predict correct results, therefore the burden

of predicting correct test results is left to the users.

Once the test-generator is able to avoid resource-conflicts, no other restrictions are preventing

it from constructing parallelism. In this way, resource-contentions at physical level are

constructed implicitly.

3.3.2 Logical Resources

Since resource-conflict is a logical concept, we only need to model the logical resources in

the system. (They are “logical” to a programmer.) Therefore, there is no need to model

hardware’s specific functionalities. With this simplification, we only model three categories

of resources: masters, registers and memory-ranges. We will see that this modelling is not

as ad-hoc as it may seem.

(i) Master: Master is defined as anything that can conduct a transfer-type. Examples

of master in our Nios SoC include the read-master and the write-master of the DMA

engine, and the data-master of the Nios CPU. Once modelled, a master is a trivial

resource – the test-generator only needs a single bit to indicate its status: available or

unavailable. However, the concept of virtual-master requires a little more insight into

how to interpret system behaviours.

A virtual-master is an interrupt-service-routine (ISR) that cooperates with hardware

to perform data-intensive operations. For example, the UART receiver-ready-ISR is a

virtual-master performing transfer-type “UART-Rx-by-Interrupt”. (Also see Section

3.2.2.) A virtual master is usually capable of only one transfer-type, but we can model

as many virtual-masters as necessary for an SoC, independent from the number of

physical CPUs. Other examples in our Nios SoC include UART transmitter-ready-

ISR and timer-ISR. Once modelled, the test-generator does not distinguish virtual and

real masters. In this way, the resource-contention on CPU-time can be constructed

implicitly.

(ii) Register: Registers are also simple resources. We only need to model data-intensive

registers visible to programmers. Examples are the UART rxdata and txdata registers.

Since control/status registers across an SoC are not suitable to be treated as data, they

are not modelled as register resources. However, in fact, many control/status bits are

already implicitly abstracted as masters.
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(iii) Memory-range: Memory-ranges are flexible and general-purpose resources dynami-

cally maintained by the test-generator. A memory-range is an object with properties

such as base-address, size, sub-word granularity, read/write mode. From within one free

memory-range, test-generator can dynamically allocate sub-ranges of suitable sizes and

locations to transfers; meanwhile, the unused fragments become free memory-ranges.

Allocated memory-ranges can reside in the same physical memory module, and even

can overlap if they are all read-only. By this way the test-generator is able to construct

resource-contentions on physical memory modules.

In our current implementation on the Nios SoC, memory-ranges do not cross physical

boundaries between memory modules. But this restriction can be lifted if we view

the whole memory space as a single free memory-range and allocate sub-ranges to

transfers. In that case, the corner-cases in which transfers cross physical boundaries can

be naturally built. However, this implementation needs to take account of miscellaneous

constraints such as: ROM cannot be written; memory-mapped-registers should be

excluded from the address space; different memory modules may accept different sub-

word granularities, etc.

Just as transfer-types are the generalisation of similar transfer-instances (see Section 3.2.3),

the above discussed logical resource types (master/register/memory-range) are the generali-

sation of bit-resources, namely, all bits in memory and registers accessible by a programmer.

Bit (regardless of data-, control- and status-bit) is the finest resource object to a programmer;

master, register and memory-range are simply different aggregations of bits. For instance,

a physical master device’s behaviour is controlled/observed by the bits in its control/status

registers; it is actually those control/status bits that are abstracted as one logical “master”

resource. Therefore, the granularity of a master resource is a few control/status bits. Sim-

ilarly a register’s granularity is several data bits; and a memory-range’s granularity is a lot

of (continuous) data bits.

Our treatment of register/memory bits in a system might appear similar to the concept of

register abstraction level (RAL) model [34] in the TB-centric verification methodology called

VMM [17]. In RAL models, bits are also organised to form hierarchical objects, including

fields, registers, memories. But the philosophy of the RAL modelling is still component-

oriented. Register and memory objects are treated as objects under test and it is the user

who should provide tests, either from scratch or from pre-defined templates. Therefore,

RAL modelling still presents the “test vs. object-under-test distinction”. In contrast, in the

interaction-oriented mindset, registers/memories are resources for tests (i.e., interactions)

and simply serve as the constraints to build parallelism.
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3.4 TRG for Test Generation

3.4.1 TRG Definitions

Once transfers and resources are modelled, their relationship becomes explicit: transfers

need resources to run. They can be interlinked to form transfer-resource graph (TRG). TRG

can be formally defined in terms of transfer-instance and bit-resource.

Definition 4: A flat TRG is a triple G = (t, r, u), where:

• t is a set of concrete transfer-instances in a system;

• r is a set of bits accessible to a programmer;

• function u: (t× r) → {n, s, e}, where n, s, and e respectively represent no-use, shared-

use and exclusive-use. Notation “u(t, r) = n/s/e” respectively means that transfer t

will not use, share or exclusively use bit r during its life-time (both control-phase and

data-phase).

Then “parallelism” can be formally modelled as scenario or concurrent transfers without

conflicts.

Definition 5: Given a TRG G = (t, r, u), a scenario is a subset s of t satisfying:

• |s| = 1, or

• |s| ≥ 2 and for any two distinct ti, tj ∈ s, for all r ∈ r, (u(ti, r), u(tj, r)) /∈ {(s, e), (e, s), (e, e)}.

Environment parameters (Section 3.2.3) can also be modelled as bit-resources in the TRG

model. One “environment bit” of a scenario S is a control bit r that satisfies

∃t, τ ∈ S, t 6= τ, u(t, r) = u(τ, r) = s.

Implementing a flat TRG is impractical due to the huge number of concrete transfers and

bit-resources in a system. In order to visualise a TRG and generate scenarios practically, we

use a different TRG definition based on transfer-types and master/register/memory-range

resource models.

Definition 6: A TRG is G = (T,R, U), where
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• T is a set of transfer-types in a system, each transfer-type is a set of transfer-instances;

• R is a set of logical resources, each resource is a set of bits;

• function U : (T ×R) → {n, s, e}. For each pair (T, R) ∈ (T ×R), if all instances of

T exclusively use all bits in R, then U(T,R) = e; if all instances of T do not use any

bits in R, then U(T,R) = n; otherwise, U(T,R) = s.

Here is a hidden assumption about the resource usage of a transfer: a transfer-instance

neither releases any allocated resource nor requires any additional resource throughout its

lifetime. This assumption can be justified by the discussion of transfers temporal granularity

(see Section 3.2.4). This static quality of transfers contributes to automatic test-generation.

Figure 3.4 visualises an abridged TRG for the Nios SoC. Arrows represent the transfer-types

and the blocks represent the resources, the letter e and s represent the access mode. Note

that some ISRs are treated as master resources.
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Figure 3.4: The abridged TRG for the Nios SoC. The shaded transfers form a valid
scenario.

TRG is an interaction-oriented model in which hardware components’ functionalities are

totally abstracted away. The only property regarding hardware in TRG is the very generic

concept of “resource availability”. In fact, HW component’s functional properties have not

disappeared; they are reorganised to be transfers ’ functional properties. (These properties

do not show up in the TRG model.) This reorganisation is the central step to migrate from

a component-oriented mindset to an interaction-oriented mindset. For instance, in order to
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instantiate a “UART-RX-by-DMA” transfer in the Nios SoC, with the property that “the

RX stream terminates on the eop (end-of-packet) signal”, the test-program needs to:

1. write the EOP register in the UART with a specific eop character;

2. setup the transactor in the test-bench to feed a byte-stream whose last byte is the same

eop character;

3. enable the DMA engine to be sensitive on the eop signal.

We do not say that these three operations are “configuring three hardware devices” – this

is the component-oriented interpretation; instead, we say that they are “configuring a single

property of a transfer” – this is the interaction-oriented interpretation.

3.4.2 Implement TRG for Test Generation

We implement TRG as a couple (T,R), where members in T and R are all intelligent

objects aware of resource-usage. A transfer-type T has a resource-allocation operation. This

allocation is an important part of the T ’s parameterisation operation T.P (·), and it is denoted

as T.P.A(·). The allocated exclusive and total resource-usages are respectively denoted as

T.Ue and T.Ut, where T.Ue ⊆ T.Ut ⊆ R. Now we can re-describe the scenario generation

question. To construct a parameterised scenario, we need to search for any non-empty subset

S of T and perform Ti.P (·) and Ti.P.A(·) of each Ti in S, so that either there is just only

one transfer, or, if there are more than two transfers and for any distinct Tj and Tk in S,

Tj.Ue ∩ Tk.Ut = ∅ and Tj.Ut ∩ Tk.Ue = ∅.

Before we give a scenario generation algorithm, we need to introduce another internal oper-

ation of transfer-type T . Once T.P (·) has decided the concrete parameter-values in logical

sense, the test-generator needs to interpret them into actual configuration/invocation in-

structions. This interpretation operation is denoted as T.I(·). Its input comes from T.P (·)’s
output; and its output is SoC instructions that implement the configuration/invocation.

Separating T.I(·) from T.P (·) decouples two levels of constraints: (a) logical constraints

between parameters and (b) hardware-induced constraints to implement the configuration

of parameters. This decoupling makes the test-generator easy to maintain.

• T.P (·) resolves the logical constraints between parameters and decides the concrete

parameters. It does not care about how to implement the configuration of these para-

meters.
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• T.I(·) mechanically interpret the concrete parameters into configuration/invocation in-

structions. It is a relatively simple job. With the logical constraints between parame-

ters having been addressed by T.P (·), T.I(·) can focus on resolving hardware-induced

constraints. For instance, it may either configure one parameter using multiple opera-

tions, or combine the configuration of multiple parameters in one operation.

Since T.P (·) has already concretised logical parameters, the order to implement their con-

figuration is not important. Therefore the “configuration” part of T.I(·)’s output should

not interpreted as a sequence of configurations, but a set of configurations, each of which

could be implemented as an instruction-sequence. Shuffling the configurations gives the

test-generator another level of freedom to output a test-program.

Given a TRG G = (T,R), let RS and RE respectively represent the current resources

available for shared and exclusive access. The following algorithm constructs a scenario and

maximises the number of transfers.

(1) RS = R; RE = R;

(2) Randomly select a transfer-type Tx from T;

(3) Issue Tx.P (·), which in turn issues Tx.P.A(·), to parameterise/allocate resources to Tx

so that:

• Tx.Ue ⊆ RE, and

• (Tx.Ut \ Tx.Ue) ⊆ RS

(4) Issue Tx.I(·) to interpret the configuration and output the configuration/invocation in-

structions;

(5) RS = RS \ Tx.Ue; RE = RE \ Tx.Ut;

(6) In T, drop any transfer-types that cannot obtain sufficient resources from the reduced

RE or RS;

(7) If T is empty, one scenario with maximal transfers has been generated; otherwise repeat

from step (2).

In the above algorithm, transfer-type selection (step 2) is constrained by the previous round

of transfer parameterisation (step 3), due to the resource usage being updated. This is

different from the generation methods used in XGEN [37] and Esterel [18], in which abstract
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tests are generated first and then are concretised into parameterised tests. Abstract test-

generation and test-concretisation respectively requires separate techniques to fulfil, whereas

in our approach these two tasks are uniformly blended under resource constraints.

The four shaded transfers in Figure 3.4 form a legal test scenario. Although they appear

loosely distributed in the TRG, the test quality is high because all hardware components are

supposed to behave concurrently in simulation: the CPU is sorting data in RAM, the DMA

is transferring data from a buffer to the UART; the Timer is counting, and the UART is

working in full duplex mode. (Some “noise”, such as the instruction-flow on the bus, is also

active.) Therefore, high degree of resource-contentions will be achieved on various physical

resources such as the bus, the slave interfaces, the interrupt mechanisms and CPU-time.

The variety of tests is managed by the test-generator in several ways, including

• transfer-type selection, i.e., step (2) in the above algorithm;

• transfer-type parameterisation, i.e., T.P (·);

• the shuffling of configurations of each transfer;

• the interleaving of configurations of multiple transfers in a scenario;

• the parameterisation of environment parameters (see Section 3.2.3), which globally

affect concurrent transfers.

The user can also intervene test generation by specifying a bias file, which biases most ran-

domisation operations in the test-generator. The bias file will also be used in test generation

with feedback information from post-simulation analysis. Section 6.4 provides further in-

formation. More detailed implementation details about the test-generator is described in

Appendix C.

3.4.3 Features and Limitations

As a model at high abstraction level, TRG has the following features and limitations:

• TRG decouples two levels of complexity for test-generation – the complexity of each

transfer-type and the complexity of generating parallelism. The former is system-

specific while the latter is relatively independent from an actual SoC, which makes

TRG applicable to a wide range of designs.
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• Scenarios generated from TRG can serve the purpose of functionality test as well as

performance test.

• While the task of generating legal scenario is left to the test-generator, the users

need to manually build transfer-type (e.g. to manually compose T.P (·), T.I(·), and

T.Check(·)). Other level of automation could be introduced to help model interactions,

such as the path selection mechanism used in XGEN [28];

• TRG is a method independent from the simulation platform. It is even possible to

apply it to generating manufacturing tests.

• The target bugs are not the bugs inside each hardware component, but hard-to-detect

bugs caused by close resource competitions. Therefore, hardware components are

preferably free of obvious internal bugs. In fact, in the interaction-oriented mindset,

bugs are associated with interactions rather than with components.

• Result-checking of transfers is by means of checking the contents in memory and reg-

isters. These checking can be implemented as high level (thus easy-to-construct) func-

tional checkers in a test-bench. However, these high-level checkers lack the observability

on low-level errors such as protocol non-conformance. Therefore, other error-detection

mechanisms (e.g., HW property assertions) at lower levels should also be implemented

in test-benches.

In a word, TRG as a model at a specific abstraction level has its own strengths and limi-

tations. The clearly defined abstraction level allows the TRG method to work orthogonally

with many existing verification practices.

We should realise that the “scenarios” generated by TRG are only the snapshots of concur-

rency. The TRG-based test-generator cannot deterministically predict the temporal relations

between concurrent transfers. For example, the test-generator do not (and cannot) specify

which transfer finish first in a scenario. The dynamic aspects of transfers must be performed

at simulation time and be analysed after simulation. The next section discusses TRG’s

application for post-simulation analysis.
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3.5 TRG for Coverage

3.5.1 Overview

The simulation-based verification of a complex VLSI like SoC requires multiple coverage

models. Each model measures simulation completeness from a specific perspective. At

system level, since the system’s behaviours can be described as concurrent interactions, one

coverage model is needed to enumerate all concurrent interactions and the temporal relations

between them. The widely used statement-based coverages (line, toggle, conditional and local

state-machine, etc) cannot give such information.

The temporal relations open up an enormous coverage space, requiring a mathematical model

to deal with it. The completeness of concurrency can be quantified in terms of the temporal

relations between events. In [58], Kwon et al. propose that users first establish a hierarchical-

temporal-event-relation (HiTER) graph to represent the interactions between communicating

hardware components, then an algorithm based on the graph can calculate coverage space,

which will be much smaller but more meaningful than a simple cross-product coverage model.

This method could generate accurate coverage space for tightly communicating FSMs. To

build such a graph, the users (verification engineers) must have an accurate view of signal-

level timing dependencies between components.

We choose Petri-net [69, 93] as the model because its semantics include concurrency con-

strained by resources.

Definition: A Petri-net is a directed graph represented by a 5-tuple (P,T,F, W, M0), where,

• P is a set of nodes known as places ; each place can hold tokens. Tokens are all identical;

• T is a set of nodes known as transitions ;

• F is a set of directed arcs (known as flows) connecting places and transitions, i.e.

F ⊆ (P×T)
⋃

(T×P);

• Function W : F → N+; W (f) is called the weight of flow f ; (N+ denotes positive

integers.)

• Function M0: P → N , known as initial marking. M0(p) is the number of initial tokens

in place p. (N denotes non-negative integers.)
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A transition t is said to be enabled when each of its input places has equal or more tokens

than the weight of the input flow. When enabled, t can (but does not have to) fire, i.e., t

consumes W (fi) tokens from its input place connected via flow fi, and puts W (fo) tokens

into its output place connected via flow fo. The duration of a firing is considered zero. The

firing sequence is called the execution of the net. The state of a Petri-net can be described

in terms of its marking, i.e., the distribution of the tokens. A Petri-net has its reachability

graph, whose nodes are the states (i.e. the markings) and whose directed arcs represent the

transitions between states. The reachability graph can be used to define the coverage space.

3.5.2 TRG and Petri-net

TRG and Petri-net share some similarities in describing a system. Both formally define

concurrency and conflict.

• In TRG, concurrency is defined as a set of n (n ≥ 2) transfers. In Petri-net, concurrency

means a transition-node has multiple incoming or outgoing flows;

• In TRG, conflict means that some of concurrent transfers exclusively use the same

logical resources. In Petri-net, conflict means a place-node has multiple incoming or

outgoing flows.

The TRG model does allow us to specify the system-level concurrency. However, TRG

lacks the capability to describe the dynamics of the system. As a high level test-generation

tool, TRG cannot and does not need to deterministically specify temporal relations between

concurrent transfers. The rich possibilities of the temporal relations can only be realised

during simulation. For example, TRG does not (and cannot) specify at which moment in

transfer T1’s life, another running transfer T2 will finish. The timing that T2 finishes is a

complex function of its configuration, its submission timing and the penalty caused by the

resources-contention between T1 and T2.

A scenario generated from TRG only represents a snapshot of data-flows in a system; in

contrast, the execution of a Petri-net captures the temporal aspect of a system’s behaviour

at logical level; the reachability graph derived from a Petri-net can be used to describe the

possible execution sequences. Therefore, a Petri-net model is suitable for post-simulation

analysis of the temporal aspects of a system.

Nevertheless, a desirable feature of TRG is that it can be readily converted to a Petri-net.

Assuming that any transfer in TRG contributes two transitions in Petri-net, start and end,

we can construct a Petri-net from a TRG by the following steps:
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(1) Converting Resources: For each resource R in TRG, create a place PR to represent

the resource.

(2) Converting Transfers: For each transfer-type T in TRG,

• create two transitions Tstart and Tend;

• create a state-place Trunning (cf. resource-place PR.);

• create flows of weight 1 from Tstart to Trunning and from Trunning to Tend.

(3) Connecting Transfers and Resources:

• First, for each transfer-resource pair (T, R) that satisfies U(T,R) = s:

– add one token into PR;

– create one flow of weight 1 from PR to Tstart;

– create one flow of weight 1 from Tend to PR.

• Then, for each transfer-resource pair (T,R) that satisfies U(T,R) = e:

– if PR has no token, put one token in it;

– create one flow of weight n(R) from PR to Tstart, where n(R) is the number of

tokens in PR;

– create one flow of weight n(R) from Tend to PR.

The complexity of the above algorithm is linear to the size of TRG. Given a TRG (Ttrg,R, U),

the sizes of the resulting Petri-net (P,Tpn,F, W, M0) are:

• |P| = |Ttrg|+ |R|,

• |Tpn| = 2|Ttrg|, and

• |F| = 2|Ttrg|+ 2| {(T,R) : U(T,R) ∈ {e, s}} |

Once the Petri-net is generated, its reachability graph will be conveniently obtained by a

Petri-net tool. Figure 3.5 shows the Petri-net constructed from the TRG.

It should be noted that both TRG and the Petri-net converted from TRG are high level

abstraction of an SoC (with its application). Most resource-contentions at physical level are

invisible, simply because the physical resources are not present in the models. Nevertheless,

the Petri-net can provide useful temporal information regarding hardware-hardware and

hardware-software interactions at the granularity level discussed in Section 3.2.4. The Petri-

net could include even more temporal information, provided that each transfer contributes

more internal states and events other than simple “start”, “running” and “finish”.
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Figure 3.5: The Petri-net derived from the TRG of the Nios SoC. Square nodes are
transitions, round nodes are places, and dots and numbers are tokens.

3.5.3 Use of Petri-net

Once a Petri-net is obtained from TRG, we can use the net in a number of ways. For

instance, we could prove the liveness and boundedness of the Petri-net and then infer the

similar characteristics of the TRG; we can simplify the Petri-net (but keep the reachability

graph isomorphic), then we are able to map the simplification back onto the TRG. However,

these theoretical treatments do not significantly contribute to a verification practice.

The derived Petri-net can indicate the total number of scenarios, because each state in the

reachability graph represents a scenario. This size contributes to the total complexity of

scenario-generation algorithm in Section 3.4.2.

The most practical use of the Petri-net is to define the coverage space. The coverage space is

based on the reachability graph associated with the net. There are several options to define

the space:

• All states in the graph (i.e., the markings);
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• All state-state transitions in the graph (these transitions are different from the transi-

tions in the Petri-net);

• All paths in the graph;

• All cycles in the graph.

These options represent the different levels of temporal details. In [93], a number of coverage-

space definitions based on the reachability graph are proposed. These definitions roughly

fall into: (1) state-based category, (2) transition-based category, and (3) flow-based category.

Restrictions or modifications could be applied. For example, the path coverage space could

be just too enormous due to the graph size and connectivity, but we could restrict the length

of the path not to exceed a threshold.

To check the coverage, we need to collect transfers’ start/finish event history from the sim-

ulation trace. This history can be easily collected, because each transfer has a software flag

(running-flag) indicating whether it is running. The Petri-net reads the event history to re-

play the transition firing sequence. Its reachability graph is traversed in this manner. The

traversed states, transitions and other coverage points such as cycles and paths are counted

and compared with the coverage space size, then the percentages are reported.

Besides indicating the completeness of temporal relations, the coverage information can be

further used to guide test generation. We have implemented test-generation with feedback

at state and transition level. See Section 6.4.

3.6 Summary

This chapter details a key concept of our methodology: defining the interactions as the

objects under test. The abstract concept of “interaction” now has a practical model –

transfer. Transfers and bit-resources form the TRG model, which is used for both test

generation and coverage measures. The tests generated from the TRG model can be applied

to the SoC in software. The next chapter discusses the software structures that drive the

TRG-based tests.



Chapter 4

Software Structures of Test-Program

Software native to a system-on-chip (SoC) could play multiple roles in system-level verifi-

cation owing to the flexibility inherent to the software. In this chapter, we categorise these

roles and detail their respective software structures.

4.1 Overview: Partitioning Software Roles in System-

Level Verification

Running software native to the SoC for SoC verification is practiced in the following two

ways, but neither of them has significantly contributed to the verification of system-level

behaviours in the mainstream test-bench centric methodologies.

• Running software (SW) on a design-under-test (DUT) could be treated as the “asset” to

hardware (HW) verification, since SW has certain control and observation capability

over a DUT. The software that falls in this category includes diagnostic programs

written by verification engineers to test the basic functionalities of a DUT. These

diagnostic programs typically (a) write configuration data into the control registers in

the DUT and (b) read the status registers to check the results. This practice is usually

treated as an ad-hoc technique supplementing the test-bench (TB) centric verification.

Indeed, these hand-written diagnostics are insufficient to test a system since they are

either too basic or too specific; and obviously the automation of the process is poor.

• Running software on a DUT could also be interpreted as the “liability” to a HW verifi-

cation team. The software that falls in this category includes device-drivers, operating
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system (OS) and application software. Their owner is the software development team.

The hardware team should not expect to run this set of software to verify a DUT,

because

– this set of software may be simply unavailable at the integration stage;

– even if they are available, they would not put enough stress on the hardware;

– even if some anomalies are discovered, little indication is obtained about the

nature of the bugs;

Running this set of software is necessary but should happen much later – after the DUT

hardware has been substantially verified. That is why running this set of software is

the “liability”.

Our proposed software-centric SoC verification methodology addresses this dilemma of using

software by concentrating on the inter-transfer parallelism in the DUT. The abstraction

level of this kind of parallelism is not as high as that of the inter-process parallelism that

an OS manages; meanwhile it is also high enough to abstract away the detailed hardware

functionalities. The inter-transfer parallelism is the source of numerous corner-cases; by

managing this level of parallelism, the test-program (TP) could greatly enhance the test

quality.

“Parallelism management” is a perfect application niche for the DUT-native software, but

not for the test-bench. A test-bench, being external to a DUT, has the inherent problems

managing the parallelism internal to a DUT, and would incur much overhead including

• additional TB components to convey and manage synchronisation information, and

• additional languages for the user to manually specify tests of parallelism.

In the TB-centric verification methodology called VMM [17], the synchronisation information

conveyor and manager are respectively called “XVC” (extensible-verification-component)

and “XVC Manager”; and the language used to specify testcases is the “XVC manager test

scenario description language”. Again, we see that a TB is just the “vehicle” to transform

abstract tests into more detailed ones; and the abstract tests must be described by human.

Since everything in this XVC mechanism is not a part of the DUT, building such an external

mechanism is the pure overhead to verification.

In contrast, we could utilise the interrupt subsystem and the processor embedded in the SoC-

DUT respectively to convey and manage the synchronisation information; and the language
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used for the management is the programming language native to the SoC DUT. Therefore,

building such a software-based parallelism managing mechanism is not verification overhead

at all, but a meaningful exploration of the SoC-DUT’s full capabilities. Also, we have shown

in the previous chapter that the testcase generation could be automated by the TRG model.

The idea to let the test-program manage the parallelism reminds us that an operating system

(OS) shares the same concept of parallelism management on a general-purpose computer. Al-

though we regard it inappropriate to run an OS for verification purpose as we have discussed

above, comparing the TP with the OS will shed some light on how to partition verification

responsibilities in software and where the opportunities for automation lie.

For SoC hardware verification, software can and should play multiple roles; therefore, soft-

ware can be partitioned into different components.

• Role 1: some software components, typically interrupt service routines (ISRs), should

cooperate with raw hardware devices to fulfil their originally intended functionalities.

This role extends a system from a collection of raw hardware to a collection of usable

functionalities;

• Role 2: some software components, such as hardware diagnostics, should stimulate

hardware to check if they work as expected. For example, a subroutine with intensive

memory access could stress memory modules; a subroutine with intensive arithmetic-

logic-unit (ALU) operations could stress the ALU in the processor itself. We call such

software components soft-transfers (also see Section 3.2.2).

• Role 3: some software should manage system-level concurrency by efficiently schedul-

ing hardware and software behaviours.

These roles contribute differently to system-level verification. Role 1 is actually a part of a

DUT, Role 2 represents some actual testcases to the DUT, and Role 3 manages testcases on

the DUT. Role 3 serves as the backbone of the verification software. It enhances the test

quality by arranging parallelism on a DUT, and is relatively independent from an actual SoC.

In this chapter we specifically regard the software playing this role as the “test-program”

(TP).

Role 1, 2 and 3 components respectively resemble the software components running on a

general-purpose computer, i.e., (1) hardware drivers, which fulfil hardware functionalities,

(2) user processes, which carry out the user-defined tasks, and (3) the operating system

(OS), which schedules user processes. These two sets of components (ISR/soft-transfer/TP
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and driver/user-process/OS) have different purposes and work on different levels. Namely,

OS manages inter-process parallelism, while TP should manage hardware-hardware and

hardware-software concurrency at a much finer granularity. However there are also simi-

larities between them.

We should develop a payload-overhead view similar to that for a general-purpose computers.

An OS is a complex and critical software on a computer; however, computer users always

hope that their user processes occupy most CPU-time and meanwhile the OS kernel consumes

a little fraction of CPU-time as the overhead to maintain inter-process parallelism. Notice

that the OS is overhead only in terms of CPU-time, not in code size or structure. In fact, it

is the smart structure that makes an OS run with minimum CPU-time usage.

Similarly, from the hardware verification point of view, the TP (Role 3 software) is only the

overhead to manage the user-defined tests; the SoC processor should distribute most time

executing the payload code – the code in software of Role 1 and Role 2. Therefore, the

structure of the TP becomes critical since the parallelism management should not take too

much CPU-time.

A general-purpose OS is event-driven software. In fact, events, typically interrupts, are the

only entrance to an OS. Being event-driven makes OS work intelligently and efficiently. It

is highly desirable to design event-driven test-program.

Unlike the software components on a general-purpose computer, verification SW components

have some automation requirements.

• ISRs need to be manually developed in order to fulfil the hardware functionality prop-

erly. But there should be guidelines to compose ISRs in order to meet the requirements

of the transfer model.

• Soft-transfers should also be manually developed. Like ISRs, guidelines should be

provided to assist manual development. However, some existing techniques [30, 32, 56]

could be adopted to automate some codes such as CPU self-testing program.

• The TP should be automated to implement scenarios generated by the test-generator.

This automation requirement implies that the TP should be regularly structured.

This partitioning of verification software provides a valuable opportunity for the early in-

volvement of application software. The real-world software components, such as device-

drivers and applications, could respectively be decomposed and tailored into ISRs and
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soft-transfers. In this way, elements from the real-world application are involved in the

integration-stage verification

Although all simulation-based verification methods suffer the same intrinsic shortcoming –

simulation consumes a lot of time – we alleviate the problem by adopting the smart TP

structures. This alleviation is orthogonal to other techniques such as simulation accelerating

technologies.

The rest of this chapter discusses the structure of Role 3 (TP), Role 1 (ISRs) and Role 2

(soft-transfers) components.

4.2 Test-Program Structure

The transfer-resource-graph (TRG) is an abstract model for test-generation, but how the

resulting tests are structured in a test-program is a relatively independent issue. We have

developed three flavours of TP structure.

4.2.1 Polling-Based Test-Program

Our first structure is the polling-based TP [90]. The test-generator identifies the legal scenar-

ios in the TRG, then it outputs the transfers’ configuration and invocation instructions in the

TP. Consecutive scenarios are separated by polling statements to avoid resource-conflicts. In

simulation, these statements keep polling some software flags until all transfers in the current

scenario have finished, and then the TP can proceed to the next scenario. The execution

of the polling-based TP is illustrated in Figure 4.4(a). Figure 4.1 is a TP fragment, which

submits one scenario made up of transfers T1 and T2.

In this scheme, the test-generator has another level of freedom in arranging instructions by

shuffling and interleaving configuration instructions of the concurrent transfers (see Section

3.4.2). This is allowed because the test-generator already guarantees that the concurrent

transfers in a scenario are free of resource-conflicts.

The software flags being polled are called the “running-flags” of the transfers. However,

polling is not an efficient mechanism to utilise these flags. An event-driven TP uses these

running-flags much more efficiently.
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void main(){
......
/*Scenario x: Transfer T1 and T2*/

/*Configure T1 and T2:*/
T1_configuration_instructions;
T2_configuration_instructions;

/*Invoke T1 and T2:*/
T1_Running=True;
T1_invocation_instruction;
T2_Running=True;
T2_invocation_instruction;

/*Poll T1 and T2’s notification:*/
while (T1_Running or T2_Running) do_nothing;

/*Scenario x+1:*/
......

Figure 4.1: The pseudo code of a polling-based test-program. It configures and invokes
two transfers T1 and T2 as one scenario. After invocation, the polling statement prevents
the test-program from proceeding to the next scenario until both transfers are finished.

4.2.2 Event-Driven Test-Program

The second structure is the event-driven test-program also called scheduler, in which polling

statements are cancelled [89]. Figure 4.2 conceptually visualises the relation between some

transfers (shown as the jigsaw pieces) and the scheduler. The scheduler invokes some transfers

and then exits; in turn, transfers can re-activate the scheduler at their completion (notifica-

tion) event; again, the scheduler may submit (i.e., configure and invoke) new transfers since

some resources must have been released by the completed transfer.

When the current scheduler finds out that a waiting transfer would conflict with a running

transfer, it won’t submit this waiting transfer; but the waiting transfers will eventually be

submitted since the running transfers will re-activate the scheduler when they finish, and

the re-activated scheduler will attempt to submit any waiting transfer again.

The event-driven execution makes a TP work more like an OS kernel. An OS kernel uses a

data-structure called “process-control-block” to record each process’ scheduling information;

likewise, a TP needs a suitable data-structure to record the running status of transfers. Due

to the TP’s simplicity, in principle, the data-structure for transfer-scheduling purpose could
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Figure 4.2: The relation between the scheduler (event-driven test-program) and the
transfers. The scheduler submits some transfers and exits; a transfer re-activates the
scheduler when it completes; in turn, the scheduler could submit some new transfers.

be as simple as a single bit: 1 for running and 0 for not-running. (Also see Section 3.2.4.)

The running-flags naturally play this role. In the Nios SoC, we implement the running-

flag as an integer associated with each transfer. Some transfers’ running-flags carry other

information such as error status and transfer result, while others do contain only one bit of

information.

Running-flags are used by the Scheduler() to tell resource-conflict. The Scheduler() is

required to avoid resource-conflicts when it submits transfers; so it seems necessary for the

Scheduler() to have insight into resource availability, which, however, does not agree with

the automation requirement of simplicity. This problem can be circumvented by exploiting

the fact that transfers’ resource usage is static. A transfer’s resource usage is already known

during test-generation. The test-generator (in place of the test-program) predicts resource-

conflicts according to the TRG and then encode the constraints as the submission conditions

for each transfer. The submission condition for a transfer is expressed in terms of the

running-flags of its resource-conflicting counterparts. In this way, Scheduler() can avoid

conflicts by simply checking running-flags rather than managing the actual resource usage.

The majority of Scheduler() function is an “action table” of transfers, implemented as one

single switch statement, which could be very long. Each entry in the action table includes

four elements:

(1) an if checking-statement (not a while polling-statement) implementing the submission

conditions of a transfer;
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(2) the configuration instructions;

(3) setting up the running-flag; and

(4) the invocation instructions.

Obviously, this regularity makes the automation straightforward. It is for this action table

that the automation is possible.

The actual transfer scheduling algorithm is implemented in the function Scheduler(), which

needs one-time manual programming effort. Compared with the action table, the size of the

scheduling algorithm is negligible. Only thirty lines of of C code are for scheduling purpose

in the function Scheduler() for our Nios SoC.

Figure 4.3 is the pseudo code of the Scheduler() with its action table as a separate func-

tion. In each calling, function Scheduler() will pass a transfer index to the function

Action Table(), which executes the matched entry. As the figure suggests, the condition

to start the transfer T[0] is that the transfer T[7] is not running (line 4).

void Action_Table(int Index){ //Index: transfer ID
switch Index{

case 0: //Entry 0
if (T[7] is not running){ //Submission Condition

T[0] Configuration_Instructions; //Configure T[0]
T[0] Invocation_Instructions; //Invoke T[0]

}
break;

case 1: .....
case 2: .....

}
}

void Scheduler(){.....
for (each waiting transfer_instance T[id])

Action_Table(id);
}

Figure 4.3: This pseudo code fragment shows how the event-driven test-program works.
The Scheduler() function passes the ID of waiting transfer to the Action Table
function, which is one long switch statement. The entry of T[0] specifies that T[0]
conflicts with T[7].

To start up the Scheduler(), an initial list of the transfer IDs are put in a first-in-first-out

queue (FIFO) and then the Scheduler() is called. The Scheduler() acknowledges the
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content in the FIFO and submits the transfers by calling the Action Table() and then

exits. When a transfer finishes, its notification instructions will

(1) reset its running-flag;

(2) put its transfer ID in the FIFO; and

(3) reactivate the Scheduler().

The function Scheduler() then attempts to submit new transfers according to the finished

transfer ID.

Deadlock and starvation can be easily avoided because of the simplicity of the transfer

model. The requirement to avoid deadlock in transfer-scheduling is trivial since any transfer’s

resource-usage is static and already predicted by the test-generator. To avoid starvation (i.e.,

transfers being kept waiting) is also simple – when there are more than one transfer to be

submitted, Scheduler() submits the one having been waiting longest first.

The only challenge is to handle the typical synchronisation issues in concurrent programming;

these issues include (i) which parts of the TP should be atomic and which are preemptable,

and (ii) the possibility of re-entrance, namely, a new copy of TP running on top of a pre-

empted TP. A simple strategy is to make the entire Scheduler() (with its action table)

atomic. However, this approach actually disables many interesting software behaviours.

It is preferable to minimise the scope of atomic operations and to allow TP re-entrance.

One guideline to achieve this goal is to limit the atomic operations only to operations on

running-flags and the FIFO.

In the real implementation for the Nios SoC, in order to avoid the excessive checking of

submission-condition, transfers using the same master resource are organised in one queue

(hence, the number of queues is determined by the number of independent masters); and

Scheduler() only attempts to submit the current item in each of the queues. The action

table actually includes two tiers of switch: the outer switch switches on the queue ID and

the inner one on the transfer ID in that queue. Also, for efficiency reasons, the action table

is not a separate function but direct embedded in Scheduler(). The action table is mostly

interruptible, while the rest of Scheduler() is atomic. The possibility of Scheduler() re-

entrance is considered, and it turns out that at most two copies of Scheduler() could be

active. Details of Scheduler() implementation can be found in Appendix D.2.

Compared with the polling-based program, the event-driven TP is more advantageous: it

avoids inefficient polling statements, so the CPU could devote more time to stimulating
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(b) Event-driven TP. Scheduler attempts to submit new transfers when an old one finishes.
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(c) Hybrid-mode TP. Scheduler resubmits transfers in a scenario.

Figure 4.4: The execution of all test-program structures. In each sub-figure, the first
three rows represent three transfer-types that can potentially run concurrently. The
shading in the fourth row indicates the degree of concurrency. When an error happens in
a polling-based or hybrid test-program, it is possible to isolate the error in one single
scenario.

hardware. Meanwhile, the degree of concurrency is enhanced, because the scheduler may

submit new transfers as soon as an old one finishes.

The overhead of the event-driven TP is small. When dealing with the overhead of TP, it is

reasonable not to mix the overhead to schedule transfers (e.g., the FIFO operation and sub-

mission condition checking) with transfers’ own control overhead (i.e., the configuration/in-

vocation/notification instructions). Therefore, the real overhead for the event-driven scheme

is less than the combined execution-time of the Scheduler() and its Action Table(). From

another point of view, the event-driven TP requires a robust interrupt mechanism and ex-

poses many interrupt-related HW/SW behaviours; in this sense we shall no longer view an

event-driven TP as pure overhead; instead, it directly plays a value-added part in simulation.
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Nevertheless, the event-driven TP does have some shortcomings (not present in the polling-

based TP) due to the fact that the simulation-time scenarios are not pre-determined at the

generation-time.

• If we want to repeat a failure due to the interference among some specific transfers,

we have to re-run the whole simulation from the very beginning in order to replay the

exact temporal relation, even if the failure occurred near the end of the simulation.

The polling-based TP does not always have such a problem (compare Figure 4.4(a)

and 4.4(b)). Since scenarios are explicitly written in the polling-based TP, when a

failure happens in a scenario, we can comment out all the irrelevant scenarios in the

TP to directly repeat the failed scenario.

• For the event-driven TP, the only proper timing we can setup environment parameters

(see 3.2.3) is before the Scheduler() is initially started. After that, there could be no

proper timing to update the environment parameters since there always could be some

transfers running. In contrast, polling-based TP can update environment parameters

between consecutive scenarios.

These shortcomings lead us to a solution using a hybrid structure.

4.2.3 Hybrid Test-Program

To overcome the above shortcomings, we combine two TP structures into a hybrid scheme.

The test generator still predetermines scenarios, and the TP runs each scenario in an event-

driven manner. That is, whenever a transfer in one scenario has finished, the scheduler is

reactivated and simply re-submits the finished transfer. This process is repeated until a

certain condition is met, e.g., until each transfer in one scenario has completed at least once.

The execution of the hybrid TP is shown in Figure 4.4(c). In our current implementation,

the polling mechanism is reserved only for a special reason and the polling only works when

the scheduler no longer re-submits transfers. There is no principle difficulty in removing all

polling statements. The TP is “hybrid” not because the polling is reserved, but because the

scenarios are pre-determined.

Re-submitting a finished transfer is meaningful because more temporal relations among the

given set of transfers can be traversed. At the logical level, temporal relations specify the

order of logical events experienced by the concurrent transfers, such as which transfer starts

first or finishes first. At the physical level, temporal relations have finer granularity, up to
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a single clock cycle. Notice that most temporal relations (especially physical ones) cannot

be pre-determined at the generation-time, but can only be “performed” during simulation.

Rare temporal relations imply high-quality tests. For example, simultaneous bus accesses

and nesting interrupts are relatively rare relations but they are excellent circumstances to

verify whether the hardware and software can behave correctly.

Another advantage of the hybrid TP is that the scheduler has even less overhead than its

counterpart in the pure event-driven scheme. The scheduler now does not have to check

resource-conflicts when it re-submits one transfer, because the current scenario has already

been identified as conflict-free in the TRG. We use the hybrid TP structure substantially in

the research.

4.3 Interrupt and Interrupt Service Routine

4.3.1 Overview: The Semantics of Interrupts

Verifying the interrupt mechanism is an important aspect of system-level verification. The

most famous problem caused by incomplete verification of the interrupt mechanism happened

in the Apollo Project – flood of interrupts from radar overloaded the CPU on the Lunar

Landing Module, putting the whole project in danger [77].

The interrupt mechanism glues hardware components with software components, introducing

rich semantics in the behaviours of a computer system. The detailed description about the

interrupt mechanism is detailed by Hills in [46]. We understand the position of the interrupt

mechanism in a computer system in the following aspects.

Communication versus Computation

Nowadays, mainstream computer systems are still von-Neumann structured, in which

the processor executes instructions and accesses data from memories. Theoretically,

von-Neumann structure is just an approximate implementation of the ultimate computation-

model – the very simple but powerful Universal Turing Machine (UTM) model [88].

However, the interrupt mechanism implemented in any real-world computer system

endows a CPU with a capability that is even not modelled by the UTM. A processor

equipped with an interrupt mechanism can sense the events in its environment and

reactively jump around independent computation threads. It should be viewed that

the von-Neumann structure contributes to the computation capability of a processor,

while the interrupt mechanism contributes to its communication capability.
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Parallel versus Sequential

Interrupt sources across a system imply the existence of parallelism (the parallelism

within the system as well as the parallelism between a system and its environment).

The interrupt mechanism enables a processor, which is essentially a sequential device,

to manage the parallelism inherent to a hardware system. Besides hardware-level

parallelism or concurrency, interrupts also contribute to software-level parallelism. The

driving force to run multiple processes “in parallel” on a single-CPU computer is the

interrupt from a timer hardware. In fact, interrupt is the only entrance to an operating

system kernel to manage process-level parallelism.

Hardware versus Software

The interrupt mechanism straddles the hardware-software boundary. The hardware

part includes the interrupt issue/arbitration/response subsystem; the software part

refers to interrupt-service-routines (ISRs). Intelligent peripherals require simple ISR

services, whereas primitive peripherals need smart ISR services. Also, the context

switching associated with an interrupt can either be serviced by hardware or by soft-

ware. All these phenomena suggest that the interrupt mechanism is where HW-SW

transition takes place.

Because of these rich semantics, verifying the interrupt mechanism crosses the boundary

between hardware verification and software verification. Methods in [43, 91] focus on the

hardware side. These methods treat interrupt handling as the capability attached to the

processor. An important aspect is to verify the interference between the processor’s interrupt-

response behaviours and the processor’ pipeline behaviours. Interrupt could also be verified

from software point of view. Researches in [71, 72] attempt to encapsulate the interrupt

verification into thread verification, based on the observation that there exist some similarities

between the semantics of interrupt and thread, and thread is already a well defined object-

under-test in the field of software verification.

Since interrupt is a phenomenon crosses the HW/SW boundary, verifying it either purely in

the hardware domain or purely in the software domain is flawed. Encapsulating interrupts

as threads could suffer fidelity and coverage issues from hardware point of view; and such

approaches need OS support, which is impractical at the early integration stage. On the

other hand, treating the interrupt mechanism as signal-level request/response fails to verify

the new properties caused by HW-SW synergy. These new properties include

• the basic interrupt handling functionality,

• performance issues such as latency and turn-around time, and
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• reliability issues such as nesting, re-entrance and overloading.

The verification of the interrupt mechanism can be incorporated into our interaction-oriented

methodology. Again, we do not treat interrupts as the capability or property attached to

hardware components. The view that (a) some components have the capability to issue inter-

rupts and (b) some other components have the capability to handle interrupts is inherently

component-oriented. Instead, we interpret interrupts as properties associated interaction-

objects and incorporate the interrupt mechanism seamlessly into the transfer model.

4.3.2 Incorporating Interrupts into Transfer Model

Interrupts are incorporated into the transfer model in two forms; these two forms do not

cancel each other.

1. Data-intensive interrupts are modelled as virtual masters, which involves in virtual

transfers. (Also see Section 3.2.2.) In this case, the corresponding ISRs should be coded

to mimic a master devices’ behaviours. Treating a data-intensive ISR as a (virtual)

master is simply a reasonable reflection of the decision made at the HW-SW partition

stage that no hardware (real) master is dedicated to the data-flow. Figure 4.5 illustrates

the idea of treating one data-intensive interrupt (rrdy, or UART-receiver-ready) as a

virtual master in the Nios SoC, separately from the CPU’s normal operations.

Virtual 

Master

(trdy ISR)

Abstraction

Txdata Reg

(In UART)

Memory

Buffer 

(In Memory)

Memory

CPU UART

Data-intensive

Interrupt

CPU

Normal Operations
(Soft-transfer)

ISR operations (Virtual-transfer)
General Memory-Register Space Access

Figure 4.5: Modelling the UART transmission as a virtual-transfer. The CPU’s
behaviour in the UART interrupt-service-routine (ISR) is separated from the normal
operation of the CPU. The latter is modelled as a soft-transfer, and the former is
modelled as a virtual-transfer. The resources used by the ISR are also separated.

2. General interrupts that would be triggered in a transfer, regardless of data-intensive

or control-intensive, are regarded as events to that transfer; enabling/disabling these

events could be implemented as that transfer’s parameters. In this spirit, whenever
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possible, ISRs should be coded to map physical (hardware) events to logical (trans-

fer) events, and then perform proper operations in the name of the mapped transfer.

Again, this mapping reminds us to migrate from the component-oriented mindset to

the interaction-oriented mindset, namely, to bind events to transfers rather than to

hardware components.

Table 4.1 lists how each interrupt source in the Nios SoC is incorporated into the transfer

model.

Timer

DMA 

Engine

UART

Timer-countdownTransfer StatusYesTime-out

Any DMA transfersTransfer FinishNoLength Reached

TX-by-DMATransfer FinishNoWrite EOP

RX-by-DMATransfer FinishNoRead EOP

Any TX/RX transfersTransfer StatusNoEnd of Packet

RX-by-DMA/Interrupt/Polling
Transfer Status 

(always disabled)
YesReceive Ready

TX-by-DMA/Interrupt/Polling
Transfer Status 

(always disabled)
YesTransmit Ready

TX-by-DMA/Interrupt/PollingTransfer StatusNoTransmit Empty

TX-by-DMA/Interrupt/PollingTransfer ErrorNoTransmit Overrun

RX-by-DMA/Interrupt/PollingTransfer ErrorNoReceive Overran

RX-by-DMA/Interrupt/PollingTransfer ErrorNoBreak

RX-by-DMA/Interrupt/PollingTransfer ErrorNoFrame Err

RX-by-DMA/Interrupt/PollingTransfer ErrorNoParity Error

Applicable Transfers
Transfer 

Event

Virtual 

Master
ISR

Table 4.1: Incorporating Nios system interrupts into the transfer model.
Control-intensive interrupts are treated as events to transfers; and data-intensive
interrupts are treated as (virtual) transfers as well as events.

Both the above treatments are coherent with the transfer model. The first treatment gives

us a layer of abstraction to model data-intensive HW-SW interactions, while the second is

even more beneficial: once an interrupt is mapped to a transfer event, any subsequent code

in the ISR could be regarded as the extension of that transfer’s behaviour. In other words,

transfers are equipped with the “calling capability” to call other codes.

Hence, transfers are no longer passive objects merely subject to arrangement, but become

active building blocks which are potentially inter-connectible. Actually, the event-driven TP

described in Section 4.2.2 is realised by taking advantage of transfers’ calling capabilities at

their completion event. In Figure 4.6, an enhanced transfer model is conceptualised as a

jigsaw piece with more convexes and concaves. The convexes represent transfers’ “control-

handles” (including the configuration and the invocation), and the concaves represent their
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“calling-capabilities” at their events. With these convexes and concaves, it is possible to

interconnect transfers in more creative ways.

Configuration /

Invocation

Pause

Resume

Abort

Status

Change

Error /

Exception

Time-out

Completion

Figure 4.6: Enhanced transfer model. A convex represents a “handle” to control the
transfer; and a concave represents the “calling capability” of the transfer. Therefore,
transfers can potentially be interconnected in various ways, deserving the name of the
“building-blocks” of test-programs.

For instance, we currently treat “timer-counting” as a simple and stand-alone transfer which

uses dedicated resources. It is a peer to other transfers and never conflict or logically interact

with them (see Figure 3.4); but we could exploit this transfer’s calling-capabilities at its

time-out events to pause/resume and invoke/abort other transfers. This scheme is actually

implementing a time-division multi-tasking mechanism on a single CPU system. However,

if we implement a test-program in such a sophisticated manner, we are actually leaving the

domain of hardware verification and entering the domain of software verification. Here, we

see that the transfer model connects the two domains, and the transfer model simply with

configuration/invocation/notification is a good choice for SoC verification at the integration

stage.

In order to map a physical hardware-event into a logical transfer-event, an ISR should asso-

ciate the hardware-event (i.e., the interrupt firing) with a transfer. The relation between a

hardware-event and a transfer is many-to-many.

• One hardware-event may occur in many transfers. For example, the event “DMA Com-

pleted” could happen in (1) the transfer “Memory-to-Memory-by-DMA” and (2) the

transfer “UART-RX-by-DMA”.

• One transfer can have many hardware-events. For example, the transfer “UART-RX-

by-ISR” has (1) the event “RX Data Ready” and (2) the event “RX Parity Error”.

Table 4.1 also infers the many-to-many relation between hardware-events and transfer-types.

However, in order to convert a hardware-event to a transfer-event deterministically, there is
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a hidden assumption or restriction about the many-to-many relation. That is, one hardware-

event should correspond to only one currently active transfer-type. In other words, concur-

rent transfers in a valid scenario should not share interrupt sources. (In fact, this restriction

could still be modelled by the TRG model if we treat interrupt sources as exclusive resources.)

We believe that this assumption is reasonable. The following discussion shows that the only

violation of this assumption in the Nios SoC has caused negative consequences.

The only violation is the UART end-of-packet (EOP) interrupt, which happens either

(1) when the txdata register has be written with an EOP character – the same character

stored in the eop register, or (2) when the rxdata register has received the same EOP

character.

Although it is intuitive to treat a UART RX transfer-type and UART TX transfer-type

as two independent and concurrent interactions, the shared EOP interrupt caused some

complications in the UART ISR, since it is unclear whether an EOP event is caused by the

receiving (RX) or by the transmission (TX) or RX/TX simultaneously. In fact, it is quite

problematic for an ISR to differentiate these cases (and work accordingly).

Since the RX and the TX are two independent streams, it is always possible, though rare,

that an EOP is received and transmitted simultaneously ; so the eop ISR must check RX and

TX using two independent checks, which is obviously an undesired overhead considering the

rareness of the case. When checking whether the EOP event is happening during RX, we

might want to let the ISR compare the rxdata register with the EOP character. However,

reading the rxdata register has a side-effect – the rrdy (receiver ready) signal will be reset

by a rxdata read-operation. This side-effect will disrupt a normal RX stream. A working-

around is to let the RX stream leave a copy of rxdata in a variable, (which is an overhead

again) and let the eop ISR read the copy instead of the actual rxdata register. This solution

would work only if we also could make sure that the copy is strictly synchronised with

the rxdata register. This brings further overhead codes – the protection instructions to

guarantee that the copy is atomic. Even if we finally come up with a functionally correct ISR

to handle all these complications, we are already violating the general principle of composing

ISR of minimum turn-around time. This EOP issue is not just inconvenient for modelling

in the verification process; the real-world UART application will eventually face the same

dilemma: to sacrifice performance for functionality, or even worse – the functionality may

still be flawed even we agree to sacrifice performance. In Appendix A.1, plausible problems

related to this EOP issue are discussed in detail.

The most appropriate solution is to separate an RX-EOP event from a TX-EOP event in hard-

ware by providing additional hardware resources – either two independent interrupt sources
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or two separate EOP status bits in place of one. Therefore, we believe that this EOP mod-

elling issue reveals the inadequacy of the hardware design rather than the invalidity of the

assumption in the interrupt modelling.

4.3.3 General Form of Interrupt Service Routines

Unlike the TP, which is to be generated automatically, ISRs need to be manually pro-

grammed. However, since the interrupt mechanism seamlessly merges into the transfer

model, we are able to give strong guidances on how to compose ISRs. As a result, ISRs,

irrespective of the underlying hardware, could share a general form.

First, we discuss the general requirements to an average ISR.

Functionality:

• An ISR should map the hardware interrupt to a transfer-event and reflect the

status-change in the transfer’s running-flag. These mapping operations implement

the interaction-oriented mindset.

• An ISR should perform proper operations on the hardware to fulfil the design

functionality intended for the hardware. The mapping described above could

help an ISR to decide which operations are appropriate.

• An ISR may serve as the entrance to the Scheduler. This facilitates the “event-

driven” scheme.

Performance:

• Latency – the codes that service the interrupt source should be executed as soon

as possible.

• Turn-around time – the execution of an ISR should be brief enough compared

with a normal function. Our verification interest is more about the interaction

between the interrupt subsystem and other hardware/software components than

about the ISRs themselves. So we expect frequent interrupt firings and short ISR

executions instead of infrequent firings and long ISR executions.

Reliability:

• Preemption and re-entrance. An ISR should allow preemption by other interrupts

without losing its functionality. This will allow us to focus on the interactions

between interrupt subsystem and other HW/SW components.
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• Overloading – An ISR, should be stressed under extreme circumstances in order

to reveal potential HW/SW hazards not detectable in normal situations.

Some of these requirements to build ISRs may compete with each other. For instance,

a reliable ISR could gain safety by performing many checks before hardware operations,

sacrificing the latency; and when an ISR preempts another ISR, the former could achieve a

good latency at the cost of the longer turn-around of the latter. However, under the principle

of “pushing everything to the extreme of what is allowed”, we should not put too much

artificial constraints in composing ISRs, such as (i) disabling preemption and (ii) extensive

safety checks. Execution of ISRs should be reasonably fast, safe, independent and allowing

preemption.

The TRG-based test-generation method allows ISR-composing to meet the above require-

ments. This is because, a scenario in a TRG is formally defined as concurrent transfers

without contradictory resource usage; the resources here include any control/status bits

that will be accessed throughout the transfers’ life cycle, including the interrupt service

stage. Therefore, concurrently active ISRs are guaranteed to be logically un-interfering. As

a result, there is no need to resort to the arbitrary assigned interrupt priority scheme for

correct ISR execution.

For instance, in the Nios SoC, two concurrent transfers “UART-RX-by-ISR” and “UART-

TX-by-DMA” will respectively generate UART interrupts and DMA interrupts. Although

both the UART ISR and the DMA ISR will read-modify-update the same UART control

register, they do not functionally interfere with each other because each of them is accessing

a different set of bits in that register. The fact that the two sets are physically located in the

same register is the only reason to require the read-modify-update operations in both ISRs

to be atomic to each other. Meanwhile the read-modify-update operations are unnecessary

to be “atomic” to other irrelevant interrupts, e.g., interrupts from the Timer, which will

never touch the UART registers. This instance shows that the scope of atomic operation

can be minimised.

In a word, since the TRG has already avoided logical conflicts at the test-generation stage,

the ISRs can avoid excessive overhead of safety operations at the simulation stage; the codes

in the ISRs now can focus on their due functionalities. Also, the scope of atomic operations

is minimised, allowing interesting preempting behaviours to happen.

It is possible to follow a guideline to compose low-overhead ISRs in a general form, regardless

of the underlying hardware generating the interrupts. The simplicity and uniformity are

eventually due to the interaction-oriented TRG method. Figure 4.7 shows the proposed
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general ISR structure. The context-switching part is not included in the structure since it

could be implemented by hardware or firmware. The general ISR structure works in the

following manner.

1. The ISR firstly copies the control and status registers from relevant hardware to local

variables. The benefit is two-fold – (1) the subsequent ISR code could work faster

with the local copy, and (2) the subsequent operations on the copy do not need to be

atomic. Then the ISR identifies the physical reason of the interrupt.

2. The ISR maps the interrupt into transfer-event by checking transfers’ running-flags,

and obtains the transfer ID tid.

3. The ISR performs proper operations to service the interrupt. If the interrupt is data-

intensive, this is the place where the virtual-master’s behaviours are coded. Otherwise,

the proper control operations are written to the local copy of registers.

4. Optionally, the ISR could “log” the event, either as a physical event or as an logical

event bound up with transfer tid. The actual logging activity is performed by the test-

bench; the ISR simply issues a command to the test-bench. (The SW-TB relationship

will be discussed in the next chapter.)

5. The ISR proceeds to exit:

• If this event is not a transfer-finish event, then the ISR updates the real control

and status registers with the modified bits in the local copy and exits.

• Otherwise (transfer finishes), the ISR (1) resets the running-flag of transfer tid,

(2) resets the appropriate bits in the real control/status registers, then (3) pushes

tid into a FIFO, and (4) finally hands over the control to function Scheduler().

In this general form, ISRs only perform necessary operations and many of them are preempt-

able. The overhead (shaded boxes) caused by the transfer-model is reasonable, including the

mapping to tid, the optional logging and the possible calling to the Scheduler(). The

protected operations (shown as the underscored statements in Figure 4.7) include (1) the

operations on the real control registers; (2) resetting the running-flag; and (3) the FIFO

push operation.

Appendix D.3 lists the implementation of the ISR of the UART, which is the most interrupt-

intensive hardware in the Nios SoC.
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Interrupt Handling

•Data-intensive (virtual master): 

work on memory/registers directly

•Control-intensive: 

work on the register copies

Copy control/status registers to variables

(subsequent steps work on the copy)

ISR Entrance

Map interrupt to transfer-event and get 

transfer ID tid;

(by checking transfers’ running flags)

(Optional)  Instruct the test-bench to 

log the event

•against hardware, and/or

•against transfer tid

ISR Exit

Transfer-completion

Event?

Reset control/status registers

Push tid into FIFO;

Call (or jump to) scheduler()

(For polling-based TP, no this step)

No

Update control/status 

registers from the copyYes

Determine the interrupt reason

Reset transfer tid’s running flag

Figure 4.7: The general interrupt-service-routine (ISR) structure. The underlined
operations need to be protected. The shaded blocks represent overhead operations
induced by the methodology; even if these operations are removed, the remaining code is
still sensible as interrupt service.

4.4 Guidelines to Soft-Transfers

The Role 2 software components are supposed to stress the hardware; they literally imple-

ment the idea to “use software to test hardware”. This nature makes them very dependent

on hardware and generally requiring manual development. This section briefly discusses how

to seamlessly incorporate these components in the interaction-oriented verification method-

ology.

These software components could be modelled as transfers and hence referred to as the

“soft-transfers” (see Section 3.2.2). Therefore they should follow the general guidelines for

transfers, including (1) implementing data-intensive computation and/or communication to

stress relevant hardware, (2) having suitable life expectancy, (3) using resources in a static

manner, and (4) allowing interrupts.
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Software inherently has greater flexibilities than hardware. But we should prevent soft-

transfers from meddling with the roles of other software components. For instance, a soft-

transfer should not determine its own behaviour based on the behaviours of other transfers;

neither should it control other transfers’ behaviours. In fact, a soft-transfer is not supposed

to be aware of the existence of other transfers. Transfer management is the responsibility

of the TP (Role 3 software). Another requirement is that a soft-transfer should not disable

interrupt unless absolutely necessary; if it disables interrupt for some atomic operations, it

must re-enable it as soon as possible; otherwise, other concurrently active transfers will be

disrupted.

It is trivial to implement the “calling-capability” for a soft-transfer. Being software by itself,

a soft-transfer can call any other code right away. But it is an ideal situation to use a

different calling mechanism, i.e., the TRAP instruction, in place of a normal CALL instruction.

A TRAP instruction – also referred to as the software-induced interrupt – bears the similar

semantics as a hardware-induced interrupt.

• The TRAP instruction is associated with an interrupt vector just like a hardware-induced

interrupt.

• The TRAP instruction will be serviced by a service routine specified by the vector, just

like a hardware-induced ISR. At the end of the service routine, the control returns to

the soft-transfer.

• For advanced processors equipped with hardwired security features, the TRAP instruc-

tion, just like the hardware-induced interrupt, switches the processor from the “user

mode” to the “supervisor mode”. In contrast, a normal CALL instruction does not.

Therefore, using the TRAP instruction as soft-transfers’ calling capability reflects the rationale

to treat some software behaviours and hardware behaviours equivalently as “transfers”. In

addition to the opportunity to test the basic functionality of the TRAP instruction, taking into

account the parallelism we build in test-programs, we are also able to test the interactions

between the TRAP mechanism, which is the software-induced interrupt, and hardware-induced

interrupts.

Soft-transfers, explicitly using the processor as its resource, may still appear special compared

with hard- and virtual-transfers at the invocation. The program control remains in the TP

after TP invokes a non-soft transfer; while invoking a soft-transfer implies that the program

control moves from the TP to the soft-transfer itself. For the Nios SoC, our test-generator,

and thus the test-program as well, does consider this particular fact and treats soft-transfers
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slightly differently: when multiple transfers need to be invoked, the soft-transfer is always

invoked last.

As illustrated by Figure 4.8, this specialty can be abstracted away so that non-soft transfers

and soft-transfers can be invoked in any order. At the entrance of a soft-transfer, we could

arrange a special event – the “TRAP-to-TP” event. As the name suggests, this event is

simply a TRAP instruction which activates the TP. Thus, right after the soft-transfer is

invoked, the “TRAP-to-TP event” happens, and the TP regains the program control to

finish any operations left unfinished by the last invocation of the soft-transfer. After this

new execution of TP finishes its job, the program control returns to the soft-transfer.

Soft-Transfer’s Behaviour

(Use “TRAP” as event and calling-capability)

TRAP to TP

Soft-Transfer Entrance

Soft-Transfer Returns (to TP)

Clean up Remaining Tasks;

TP (Execution B)

Entrance

TP (Execution B)

Exit

In TP (Execution A) : 

Set the running-flag;

Invoke (CALL) Soft-Transfer

Continue TP (Execution A):

Reset the running-flag;

Push to FIFO

Figure 4.8: The general soft-transfer structure. The test-program (TP) sets the running
flag and invokes the soft-transfer using a normal CALL instruction. The soft-transfer
uses TRAP instruction to activate a second execution of the TP. It also uses TRAP
instructions as its calling capabilities and events. When the soft-transfer finishes, the
original TP resumes control. It resets the running flag and performs FIFO operations.
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In this scheme, the TRAP instruction is used to move the control from the user-defined

payload code (the soft-transfer) to user-independent overhead code (the TP). In the real-

world application, the TRAP instructions is used in a similar fashion: a user-mode application

uses TRAP to request OS services, which operate in supervisor mode.

Soft-transfers could come from various sources. They could be manually developed by veri-

fication engineers, or come from legacy hardware diagnostics. Soft-transfers for the purpose

of CPU-self-testing can be generated under another level of automation (beyond the scope of

this thesis), for which a number of methods have been proposed. For example, randomisation

techniques [14] could be good sources of soft-transfers. Soft-transfers can also be decomposed

and tailored from the real SoC application software so that application software can have an

earlier entrance in the SoC verification process.

Appendix D.4 lists the implementation of a soft-transfer for the Nios SoC which exercises

the CPU-to-memory read/write operations.

4.5 Summary

Software execution is the driving force of the TP-centric verification. Owing to its flexibility,

software could take various roles. We have partitioned software into three independent roles,

and proposed automation schemes or development guidelines for these roles. These roles

render the interaction-oriented mindset from different perspectives.

Although it is the test-program that drives the simulation in our methodology, the test-

bench, which is the driving mechanism in the traditional simulation-based verification, is

still needed. What is the relationship between the test-program and the test-bench? How

do they interact? The next chapter discusses these questions and shows how to place test-

programs and test-benches harmoniously in the verification framework.



Chapter 5

Test-Bench and Post-Simulation

Support

5.1 Overview: Unifying the TP, the TB and the DUT

In test-bench centric verification methodologies, it is the test-bench (TB) that provides both

stimulation and observation facilities to the design-under-test (DUT). However, the software

(SW) native to the SoC DUT is not taken into account, therefore the software’s position in

verification has not been well recognised. Although there is growing awareness that software

could take significant responsibilities in SoC verification and there are proposed techniques

about SW-TB interaction [20], the overall SW-TB relationship has not been clearly discussed.

This is because both the test-bench and the software can control and observe the SoC DUT,

and this overlap in responsibilities gives rise to conceptual confusions about their relationship.

In our methodology, the test-program (TP, the software native to the SoC) drives the simu-

lation process. Although a test-bench is still needed, we now have an opportunity to resolve

the conceptual confusions about the SW-TB relationship. This chapter discusses the test-

bench’s roles in our TP-centric SoC verification methodology and gives an overall solution

to the question about TB-TP-DUT relationship.

The control and observation capabilities provided by the TP and the TB have their respective

strengths and limitations as listed in Table 5.1. It should not be too surprising to see that

the TB’s strengths exactly complement the TP’s limitations and vice versa. This is because

the TP is software, slower but flexible, and the TB is hardware (in the simulated world),

faster but less flexible.

95
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•Ubiquitous observation;

•Un-instructive to DUT's behaviours.

•Physical level signal-feeding;

•Brute-force to DUT; 

•Parallel but poorly coordinated.

TB

•Limited to read-operation and 

interrupt mechanism;

•Affecting DUT's behaviour.

•Logical level write-operation;

•Native to DUT;

•Sequential but highly orchestrated.

TP

DUT ObservationDUT Control

Table 5.1: Comparison between test-benches and test-programs’ capabilities to control
and to observe.

Therefore, the TP and TB should cooperate with each other in control and observation. In

our TP-centric methodology, the TP replaces the TB for the more active tasks of parallelism

control ; while the TB is particularly suitable for the observation tasks. The term “ubiquitous

observation” in Table 5.1 refers to TB’s potential to observe anything, i.e., any register or

wire, at anytime, i.e., at any simulation cycle. Moreover, this type of observation is non-

intrusive to the DUT’s behaviour. In contrast, software could observe hardware only through

read operations and interrupts; and these limited observation mechanisms also modify the

DUT’s behaviour.

In Section 2.3.1, we have already presented the idea to treat the TB and the DUT uniformly

as a “DUT-TB super-system”. But this is still not the full picture. The boundary between

the software and the DUT is not clear-cut either; hence, we could treat the TP and the

DUT collectively as a “HW-SW super-system”. The idea of “super-system” in each case is

reasonable since

• for the DUT-TB super-system, a hardware component could be counted either on the

TB side or on the DUT side. For instance, an extensively verified DUT component

could work as a bus-function-model (a TB component) to another DUT component;

• for the HW-SW super-system, an interrupt-service-routine (ISR, a software compo-

nent) collaborating with the hardware actually fulfils the hardware’s intended func-

tionality. So this ISR could also be interpreted as one part of the DUT.

Therefore, from the pure simulation point of view, the DUT, the TP and the TB could be

collectively understood as one continuum rather than three stand-alone entities. Figure 5.1

illustrates this concept.

Nevertheless, different portion of the continuum should have different responsibilities in

verification. Since the TP is taking the more active “control” tasks, it is very natural
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Bus-Functional-Models Communication

Interfaces

Test-Bench Test-ProgramSystem-on-Chip DUT

Interaction Continuum

Masters Virtual-Masters

(Interrupt-Service-Routines)

Simulation Platform

Testware

Figure 5.1: The TP-TB-DUT Continuum. The TP is continuous with the DUT in the
sense that some software components work like a hardware component and are subject to
verification; the test-bench is continuous with the DUT in the sense that treating a
component on the DUT side or on the TB side is quite subjective. This continuum
connects the software phenomena in the real world (the TB) and the software phenomena
in the simulated world (the TP).

to “observe” the TP’s behaviour, or more generally, the software’s behaviour, in order to

understand the quality of the control. The TB is the right vehicle for software observation

(detailed in Section 5.3.2).

The overall TB-TP-DUT relationship, together with their responsibilities, can be visualised

in Figure 5.2. A single “DUT-TB super-system” is under the TP’s unified control ; mean-

while, a single “HW-SW super-system”, which is made of the SoC and its TB, is under the

TB’s ubiquitous observation. By this scheme, each of the test-program and the test-bench is

exerting its strengths to make up the other’s limitations.

The construction of test-benches is already the central topic of the mainstream verification

methodologies; therefore, this chapter does not intend to discuss the common facilities a

test-bench should provide. Instead, we will focus on

• how to realise the “DUT-TB super-system” by implementing the TP-control-TB mech-

anism, and

• how to realise the “HW-SW super-system” by implementing the TB-observe-TP mech-

anism and the post-simulation facility.
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SoC
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Unified
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Figure 5.2: Position the test-program and the test-bench in the verification framework.
The test-program and the test-bench co-operate with each other. The test-program takes
the creative high-level control, including controlling the test-bench; while the test-bench
is suitable for the onerous but mechanical observation tasks, including observing the
test-program.

5.2 TP Controls TB

A DUT and its TB are becoming two very different entities in TB-centric verification method-

ologies; developing a TB and developing a DUT require very different techniques. Costly pro-

priety hardware-verification-languages (HVLs), (alongside immature hardware-description-

verification-languages, or HDVLs, such as SystemVerilog), are replacing hardware-description-

languages (HDLs) in constructing complex TBs; HVLs provide sophisticated software con-

structs, allowing TBs to be composed under the true object-oriented-programming (OOP)

paradigm; while the DUT is still required to be constructed with the basic synthesisable

subset of HDL constructs. In this sense, the TB-centric verification methodologies promoted

by EDA vendors have enforced the “DUT-TB dualism”, which we intend to eliminate.

From the pure simulation point of view, a DUT and a TB share a common nature: they are

both hardware entities in the simulated world, or the virtual world; meanwhile, they are also

software entities in the real world. The current TB-centric methodologies tend to interpret

TBs as pure software phenomena in the real world and provide extensive support to TBs’

OOP capabilities and even beyond [16]. We argue that the ultimate purpose of simulation

is to study the DUT’s behaviours in the simulated world. Hence, we should not over-invest

on the TB’s software-aspect in the real-world, but understand the TB largely as hardware
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in the simulated world just as the DUT is. We should instead invest more efforts on the

software in the simulated world, for instance, on the test-program (TP).

Under the philosophy to treat a DUT and its TB as peers, the TP should be able to communi-

cate with the TB, just as it is able to communicate with the DUT through the “programming

interface” of the DUT. It follows that a TP-TB interface similar to the DUT’s programming

interface should be provided.

5.2.1 TP-TB Communication

A TP-TB interface helps to hide the distinction between the components in a DUT and the

components in its TB, validating the concept of “DUT-TB super-system”. For instance, to

configure the transfer “UART-RX-by-DMA”, the TP must set up the RX transactor, which

is in the TB, to generate the bit stream, just as the TP needs to set up the UART and the

DMA engine, which are in the DUT, to convey and receive the stream. In this sense, the TP

does not differentiate components in the DUT and components in the TB and treat them

uniformly. The TP programmer only sees one single system, i.e., the DUT-TB super-system,

under the TP’s unified control.

Nevertheless, the fact that TB components are not native to a DUT applies some constraints

to the TP-TB interface implementation:

• the TP cannot communicate with each TB component directly, since TB components

don’t provide their own programming interface;

• the TB-to-TP communication is harder than the TP-to-TB communication, since TB

components cannot interrupt the CPU as many DUT components can.

These constraints suggest the need to implement a central control in the TB and let TP

communicate with it through a centralised interface. Figure 5.3 illustrates this TP-TB com-

munication mechanism. Using some reserved memory locations as the TP-TB interface, the

TP issues logical-level commands and parameters to the TB-central-control (TBCC), which

in turn autonomously manages the rest of the TB without the TP’s further interventions.

This communication mechanism is mostly used to configure the bus-functional-models’ (BFMs)

behaviours; but it also allows the TP to gain some controllability over the simulation envi-

ronment, including the simulation process itself. For instance, if the TP detects an abnormal

event such as unexpected software failure, it has the option to instruct the TB to pause the
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Figure 5.3: The test-program controls the test-bench through an interface (the upper
gray box). The interface is implemented as a few reserved locations in the SoC memory.
Meanwhile, the test-program controls the SoC itself via the “programming interface” (i.e.,
program-accessible registers in the system). With these interfaces, the test-bench and the
SoC could be viewed as one single system, which is under the control of the test-program.

simulation. This usage provides valuable debugging opportunities without the support of a

software debugger, which is unavailable as well as inappropriate at the hardware integration

stage since it (if available) only freezes the software but not the hardware.

The cost to implement such a centralised TP-TB interface is low. For simulation, the inter-

face simply consumes a few memory locations. If the TB and the DUT are in the form of

hardware prototypes, the interface requires a couple of dedicated registers. For the Nios SoC

used in the research, we implemented the interface as 16 32-bit words at the beginning of

the on-chip RAM. Eight of them are for the TP-to-TB communication; and the other eight,

reserved for TB-to-TP communication, are not used. The C codes of the interface is listed

in Appendix D.1.

5.2.2 TB’s Control Facilities

What kind of “control facilities” should the TB provide in a TP-centric verification ap-

proach? Some of them are already shown in Figure 5.3 and described as follows.

• The TB-central-control (TBCC) module should implement the “autonomous control”

over various TB components. The TBCC does not need too much intelligence, since
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it simply performs whatever the TP instructs it to do. (The intelligence in the TP

is automated by the TRG-based test-generator.) In contrast, TB-centric verification

methodologies require additional TB layers and components for high-level control and

coordination, making a TB very sophisticated. For example, VMM [17] introduces

additional TB components called Extensible Verification Components (XVC) and XVC

manager [7] to schedule the user-specified test scenarios. In the end, it is still the user,

not the TB, who is responsible to generate abstract test scenarios.

• Each TB component performs whatever the TBCC tells it to do. Again, this kind of

mechanical tasks does not need too much intelligence. On the other hand, this is the

right place to exploit the “constrained-randomisation mechanism” in the hardware-

verification-language (HVL) to concretise properties that are not specified by the TP.

For example, via the TBCC, the TP may instruct the UART RX transactor to provide

an RX stream with the property “length equal to 50 and the last byte is 0x127”.

Then the RX transactor could create and feed an instance of byte-sequence with this

property using the constrained-randomisation mechanism. Here we see that we should

not misuse the TP’s control capability to control every aspect of stimulation. The TP

should provide logical control over the TB and the TB should provide stimulation at

the physical-level.

To thoroughly verify a DUT, the TB could inject errors into the physical-level stimulation.

The purpose is to simulate a real-world environment that is not always ideal for the DUT.

The DUT may respond the error with a rare sequence of hardware/software behaviours.

Combined with the parallelism constructed by the TP, the deliberately injected errors could

lead to un-conceivable (butterfly-effect) failure modes, greatly improving the test quality.

The error-injection by the TB may or may not be modelled as transfer parameters, giving

some flexibility in the TB development.

For the Nios SoC, a TP-configurable (up to 10% off) baud-rate is used to inject errors in

the UART RX stimulation; and this configurable bad baud-rate is treated as a parameter

of all UART RX transfer-types (RX-by-Interrupt, RX-by-DMA and RX-by-polling). This

deliberately bad baud-rate intends to check (1) the robustness of the UART receiver in

receiving an out-of-pace bit stream, and (2) the RX-error (parity, frame, break errors)

detecting mechanism in the UART. Interestingly, this error-injection targeting at the UART

eventually allows us to discover a strange behaviour in the DMA engine, which is detailed

in Appendix A.3.

To summarize, in a TP-centric verification approach, since the more active control respon-

sibilities, especially the parallelism management, are already taken by the TP, the TB is
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not required to have too much intelligence in providing stimulations. Nevertheless, the TB

should exert its powerful observation capabilities to observe the TP.

5.3 TB Observes TP

Software native to a DUT may still be interpreted as the behaviours attached to the hardware,

namely, the processor. However, considering software’s inherent flexibility, this interpretation

does not help to increase the abstraction level. Some software components cooperate with

hardware components to fulfil or even extend the latter’s design intentions, while some

other software components manage software- or hardware-natured behaviours. It is the

“HW-SW partition”, which has been decided in the earlier design stage, that determines

which functionalities are implemented in hardware and which in software. Therefore, it

is reasonable not to treat the software as the behaviour “attached” to the processor, but

independent entities comparable to hardware components. It follows naturally that we need

some mechanisms to observe the software’s behaviours as well as the hardware’s behaviours.

Test-bench is the right vehicle to observe the software’s (i.e., the TP’s) behaviours. To

observe the TP’s behaviours from the TB is both (a) necessary since the TP’s behaviours

could suggest the test efficiency and quality by showing how close the TP is working with

hardware, and (b) possible since the “software’s behaviour” is derived from the processor’s

behaviour, which is definitely under the test-bench’s ubiquitous observation.

5.3.1 Software’s Behaviours

What kind of phenomena should be counted as the “software’s behaviours”? Since software

is made of instructions and data, software’s behaviour could be interpreted as its instruction-

flow (i.e., the program-control) and its data-flow.

On a general-purpose computer, profiling is a powerful tool that gives software engineers visi-

bility into software’s instruction-flow, helping engineers to improve software quality. Profiling

provides critical software performance information including the CPU-time spent in execut-

ing user-mode code and supervisor-mode code, the CPU-time on each function, and the

calling relations among functions. This kind of software profiling needs support from the OS

(e.g., time-stamping). Likewise, in TP-centric verification, if a certain profiling facility is pro-

vided, verification engineers can closely monitor software components’ behaviours, improve

software quality and find coverage holes and anomalies. However, to perform TP profiling
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through OS support is infeasible. (Remember that the OS is unavailable and inappropriate

at the integration stage.) Also, software profiling should not be confused with the hardware

profiling facility [79] provided by the simulation environment. The hardware profiling gives

information about the real-world time spent in simulating each hardware component. The

software profiling information we expect is about the simulated world, including

• the calling relations among software functions,

• the function execution time, and

• interrupt-related information.

Another type of information about the instruction-flow refers to TP code coverage during

simulation. Like TP profiling, TP code coverage has a counterpart on a general-purpose

computer. Again, TP code coverage information can only be obtained by TB’s observation

capability. The coverage information will be especially useful when TP components (i.e.,

ISRs and soft-transfers, see Section 4.1) come from the real-world software.

For the data-flow, the software behaviour refers to the software’s accesses to critical data

structures. For easier implementation, these critical data should be declared as global or

static variables in the TP, so that their addresses are determined before software is executed.

For our transfer-oriented TP, critical data includes:

• transfer-related information, i.e., the running flags,

• scenario-related information,

• environment-related information, and

• the FIFO used by the ISRs and the Scheduler().

A variety of coverage information could be extracted from these data. For instance, the

running-flags’ history contains the information regarding high-level concurrency. Section 6.4

in the next chapter gives the application of the concurrency information.

5.3.2 TB’s Observation Facilities

Figure 5.4 shows the way we implement the software observation mechanism.
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Figure 5.4: The monitors in the test-bench can observe the software’s behaviours by
monitoring memory locations and context registers in the CPU, including the
program-counter (PC). The context monitor uses the addresses information from the
address-symbol table to transform the instruction-level changes into the function-level
changes, allowing program profiling and coverage. The actual analysis of data could be
performed by post-simulation utilities.

The program-counter (PC) in the SoC processor holds most information about instruction-

flow. Other registers in the processor could contain some auxiliary information. The

context-monitor is sensitive to PC’s changes, and transforms the instruction-level changes

into function-level changes by comparing the PC content with the functions’ entrance/exit

addresses. The address information could be obtained from the address-symbol table, which

is the output of the TP compilation/link tool set. The TP profiling data for the Nios SoC

is discussed in Section 6.5.2.

Similarly, the TB could also implement variable-monitors to observe software’s operations on

critical data structures. Again, the address information comes from the address-symbol table.

A variable-monitor is sensitive to the modifications to the variable and dumps these modifi-

cations. It uses the address information statically to refer to memory locations, whereas the

context-monitor uses the addresses for dynamic comparison.

It is worth mentioning that both kinds of the monitors in Figure 5.4 could be constructed

automatically from the information in the address-symbol table.

Equipped with the “ubiquitous and non-intrusive” observation capabilities, TB is competent

for many other observation tasks. The typical “observation” responsibilities which the TB

should provide include:

• test result checking,
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• coverage data collection,

• hardware property assertion, and

• event dumping.

We will not elaborate on these observation responsibilities, which are well practiced in the

mainstream TB-centric methodologies. Instead, we make two general points about using the

TB in the TP-centric methodology.

Using software-based result-checking. While it makes sense to let the TB observe

the DUT at physical level, we might wonder whether the software can act as a proper

logical-level observer. For instance, one transfer “DMA-copy 1,000 bytes from address

0xa000 to address 0xf000” takes 2,000 DUT cycles to complete; in order to check the

transfer result, is it appropriate to compare 1,000 destination and source locations,

byte-to-byte in software, which may consume 20,000 cycles? Obviously, software is not

in the position to perform such an observation task on a large amount of data. One

typical memory-read operation native to an SoC, called front-door access, not only

consumes 1 to 10 DUT cycles (the simulated time), but also wastes simulation time

(i.e., the wall-clock time). In contrast, a behavioural checker implemented in the TB

reads data two to three orders of magnitude faster than software in terms of simulation

time, and consumes strictly zero simulated time. This kind of memory/register access

is called back-door access. Result checking via back-door access is extensively used

and supported by the TB-centric verification methodologies [34]. The conclusion is

that the TB-based test checking should be extensively used. The SW-based checking

may supplement the TB-based checking in some special cases where no massive data

operations are needed; it may also find its applicability when the TB and the DUT are

prototyped as true hardware.

Retaining test-benches’ synthesisability. From the synthesis point of view, to let the

TB focus on mechanical observation tasks is especially reasonable and practical since

mechanical tasks can be easily synthesised into true hardware. For instance, El Shobaki

et al. proposed a HW/SW event monitor in true hardware for the purpose of FPGA-

based SoC verification [76]. In contrast, high-level control mechanism implemented in

a TB is not synthesisable. To let the TP (in place of the TB) take the responsibility

of high-level control avoids this problem and retains the TB’s synthesisability. A

synthesisable TB can accompany its DUT into lower abstraction levels. In this sense,

we could argue that TB synthesisability is also one form of TB reusability. This form
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of reusability is opposite to the reusability proposed by the mainstream verification

methodologies, in which TBs are constructed at increased abstraction-levels and thus

lose synthesisability. (See Section 2.1.2.2 and Section 2.1.2.4)

5.3.3 TB and Offline Support

The mainstream TB-centric approaches emphasise the online (i.e., simulation-time) stimuli-

generation, online information-extraction and online feedback between observation and gen-

eration. This scheme unavoidably requires a complex TB structure.

In contrast, in the TP-centric verification approach, since the more active role of paral-

lelism management is taken by the TP, which is automatically generated before simulation,

we can be less dependent on the online stimuli-generation. The requirement of the online

information-extraction of raw observation is also removed. The feedback loop can be achieved

offline.

The intelligence needed for test-generation and information-extraction does not need to be

expressed in HDLs/HVLs in the form of test-benches. Instead, the intelligence could be

expressed in any general-purpose languages in the form of offline tools, including the pre-

simulation test-generator and post-simulation data-analysers. This arrangement not only

matches the overall profile of current HDLs/HVLs, but also implements the concept of

language-independent verification [27].

The software observation mechanisms described in Figure 5.4 is a good example of where

the intelligence is required. The monitors in the Verilog test-bench simply collect and dump

data. The intelligence really goes to (a) the post-simulation data analysers, and (b) the

scripts to generate the Verilog monitors from the address-symbol table . For the Nios SoC,

both of the above facilities, together with the TP generator, are written in Python language

– a high-level script language not related to VLSI verification.

Powerful post-simulation analysers can extract rich information about simulation thorough-

ness buried in dump files. We implement the analysers for the Nios SoC as follows.

• The context analyser extracts the program-control from the dump file and reports the

actual profiling information (see Section 6.5);

• The running-flag analyser extracts the concurrency information from the dump file and

reports concurrency coverage based on Petri-net (Section 3.5); and further generates a
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parameterisation file to bias the next round of TP generation, completing the offline

feedback loop (see Section 6.4).

These post-simulation analysers written in languages other than HDL/HVL greatly relieve

the observation responsibilities required in a test-bench. The test-bench now simply performs

the raw data-collection.

5.4 Summary

This chapter has addressed the conceptual confusions about the relationship between the

test-program and the test-bench. The test-program provides high-level control over the test-

bench, and the test-bench returns the statistics about the test-program’s behaviours. Test-

benches may still require considerable programming efforts; however, the level of intelligence

required in TB programming is significantly reduced; meanwhile, the software’s behaviours

are vigorously taken into consideration. This arrangement solves the problem of TB-TP

relations naturally and harmoniously. Also we could treat the test-bench, the test-program

and the SoC as one continuum rather than disparate entities.

Here we see the defining difference between our methodology and the mainstream method-

ologies. The latter focus on test-bench construction and thus require enormous investment

on the real world software phenomena, i.e., building sophisticated test-benches under the

object-oriented-programming paradigm (and even beyond). In contrast, our methodology

allows the verification efforts to be concentrated on the software phenomena in the simulated

world. Checking the behaviours in the simulated world is the ultimate reason for simulation;

in this sense, our TP-centric approach to SoC verification captures the nature of simulation

more accurately.



Chapter 6

Experiments

6.1 Overview: The Verification Environment

This chapter demonstrates some quantitative aspects of the test-program centric verification

methodology. While the experiments are directly applied to the Nios SoC, our goal is not

about verifying this specific SoC, but about the the validity and feasibility of the test-

program (TP) centric and interaction-oriented methodology. In this sense, the construction

of the whole verification environment should also be regarded as an experiment to prove

the validity and feasibility. Figure 6.1 shows the main components and processes of the

verification environment.

One full cycle of the work flow includes several stages, most time being spent on simulation.

(1) Test Generation (approx. 1 second)

• Input: a list of transfer-types (Python); a parameterisation-bias file (Python);

• Output: a test-program (C);

• Tool: the TRG-based test-generator (Python).

(2) Software Compilation (approx. 1 minute)

• Input: the test-program (C); interrupt-service-routines (C); soft-transfers (C);

• Output: the executable TP (ROM.dat); the address-symbol table (ROM.nm);

• Tool: the Nios software development tool kit, including the C compiler and linker.

109
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Figure 6.1: The components and processes in the verification environment. The entire
process can be divided into these stages: test-generation, compilation (including software
compilation, hardware compilation and symbol parsing), simulation and post-simulation.
The feedback happens when the post-simulation utility updates the randomisation
strategy file. Except for the inputs provided by the user, the entire process can be
automated.

(3) Software Symbol Parsing (approx. 2 seconds)

• Input: the address-symbol table (ROM.nm);

• Output: a list of constants (Verilog constants); the program-counter monitor (Ver-

ilog); the running-flag monitor (Verilog); an alias table for simulation debugging

(text);

• Tool: the address-symbol-table parsers (Python).

(4) Hardware Compilation (approx. 2 minutes)

• Input: the system-on-chip design (Verilog); all test-bench components (Verilog);

• Output: a simulation executable program (simv);
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• Tool: Synopsys VCS.

(5) Simulation (minutes to days, but typically controlled between 30 minutes to two hours)

• Input: the simulation executable (simv); the TP executable (ROM.dat);

• Output: a statement coverage report; a hardware profiling report; log files (text);

• Tool: Synopsys VCS.

(6) Post-Simulation Analysis (approx. 1 minute)

• Input: the log files (text);

• Output: the TP profiling report; the concurrency coverage report; the updated

parameterisation bias file (Python);

• Tool: the post-simulation analysers (Python).

The main commercial tool being used is the Synopsys’s VCS for Verilog simulation (Stages 4

and 5). The software development tool kit (used in Stage 2) comes together with the Nios SoC

package. Our methodological contribution (in Stages 1, 3, 6) includes the TRG-based test-

generator, custom makefiles, symbol parsers and post-simulation utilities; they are mostly

written in Python language. The feedback loop is completed when the post-simulation utility

updates the randomisation-bias file. The time consumed by our methodology is insignificant

to that consumed by the simulation.

The experiment data in the remainder of this chapter come from the outputs of the above

stages.

6.2 Statement-Based Coverages

Statement-based coverages (or code coverages) are substantially used as indications of the

verification completeness in the realm of software verification. The term statement refers to

the program statement written in the programming language. Coverages of this type are

borrowed from the area of software verification to hardware verification, since hardware de-

sign can also be described in programming languages, namely, HDLs. The coverage facilities

should be provided by the simulator. In our cases, the simulation tool VCS provides this

facility. To use the facility, the proper coverage options should be specified when compiling

the DUT and the TB using VCS. The outcome of compilation is a simulation executable
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(program simv) that will dump coverage information into a working directory. After simu-

lation, a coverage viewer reads out the coverage information. Three types of coverages are

supported by VCS version 7.1.1:

• Line Coverage – the percentage of statements that have been activated in the simula-

tion.

• Toggle Coverage – the percentage of registers and wires that have toggled from 0 to 1

and 1 to 0;

• Conditional Coverage – the percentage of branching statements (e.g., if/else and

case) that have been taken.

The statement-based coverages are independent of the nature of the stimulation, providing

a general way to determine how a DUT has been exercised by a stimulation. It serves as

one indicator of test completeness as well as a platform to compare different test generation

methods.

We have observed that reasonable coverages can be achieved by the test-programs generated

by the TRG method. Since another software-centric test generation methodology called

SALVEM [25] is demonstrated on the same Nios SoC, we compare the results of SALVEM

tests with the test results of TRG-based tests. For each set of tests, 12 hours of simulation

(with all coverages enabled) was performed. Figure 6.2 shows the comparisons of the state-

ment coverages. (The line coverage was not compared because both methods achieve full

coverage).
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Figure 6.2: Toggle and conditional coverage comparison. TRG-based tests have higher
coverages on peripherals but lower on the CPU. This may be due to the fact that we have
not spent too much effort in stressing the CPU itself. Stressing the CPU itself can be
achieved by a different level of automation.
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For the toggle and conditional coverages, the TRG method has higher coverages on some

components but is marginally lower on the Nios CPU. The CPU has 11,000 lines of code

and is the most complex component in the system. The lower coverages on CPU using TRG

method may be attributed to the fact that we have not put too much effort in manually

creating subroutines stressing the processor itself, which could be addressed by another

level of automation. We believe that the TRG method imposes no restrictions on achieving

reasonably high statement-based coverages.

The statement-based coverage serves as the minimum requirement of component-level veri-

fication. However, they should not be the driving metrics for the system-level verification.

This is because there is no obvious correlation between the statement-based coverages and

the system-level concurrency. (For instance, we could achieve very high statement-based

metrics by stressing each component one after another.) Therefore we need some metrics

that can reveal information regarding the system-level concurrency.

6.3 State Space Traversing

The statement-based coverage measures give little information regarding the system-level

concurrency and the resource-contention [18]. Therefore, we attempt to indicate this infor-

mation using the “system state space”. We define the system state space as the space made

by the concatenation of the major control and status registers in the SoC components (CPU,

DMA, UART and Timer). We implement a simple module with a 64-bit input port tapped

to those registers. This module does nothing but log the state-changes and the corresponding

time stamps. The state traversing information is extracted by a post-simulation utility.

Since the theoretical size of the state-space is 264, it is impractical for any tests to traverse

it exhaustively. However, we can statistically measure how fast the states can change and

how fast the new (i.e., unprecedented) states will emerge. These values are useful since

the system states can give information regarding the concurrency. For example, from the

traversed states, we can tell if all peripherals have requested interrupts simultaneously.

We compare the capabilities to traverse the state-space between two sets of TPs. The TPs

in one set contain the scenarios made of one or two transfers, and the TPs in the other

set contain the scenarios made of maximum number of (i.e., three, four or five) transfers.

Figure 6.3 shows the rate of the state-change. The high-concurrency TPs have a state-change

rate roughly two times the rate of the low-concurrency TPs. The faster state-change rate

indicates that more events are happening simultaneously in the system.
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Figure 6.3: State-changes against simulation cycles. TRG-based tests has an almost
double rate of state-change, implying that the design is behaving more actively during
simulation.

However, the faster state-change rate does not necessarily mean the efficient state-space

traversing. This is because any state may recur many times. We further compare how

fast the unprecedented states emerge in simulation. Our experiments show that the low-

concurrency TPs have traversed about 105 distinct states in 420 million SoC cycles (12

computing hours on a 3.2 GHz workstation); in comparison, the high-concurrency TPs can

traverse 106 distinct states in the same simulation duration. In Figure 6.4, each data-point

represents one simulation of a TP. We observe that the high-concurrency TPs produce new

states at a much faster speed, and the speed is insensitive to the number of the known-states.

This encouraging comparison shows that concurrency is the key to efficient exploration of

the state-space.
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Figure 6.4: New-state emergence rate against the number of known-states. An overall
lower position of the curve of high-concurrency test-programs indicates that new states
are more easily to be exposed in high level of concurrency. This proves that maintaining
parallelism is important to verification efficiency.

Like the statement-based coverages, system state-space traversing is a metric independent

from the test-generation method. Therefore, it can serve as a fair comparison platform for
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stimuli from different sources. However, it is difficult to accurately separate a “feasible” state-

space from the simple concatenation of registers. There is no coverage to report because we

do not known the denominator of the coverage. Another limitation is that the system state

changes at a very fine temporal granularity. In the high-concurrency experiment (Figure

6.3), the state changes every 30 SoC-Cycles, consuming both simulation performance and

the dump size. For these reasons, state-space traversing is only suitable for methodology

characterisation, but not for verification completeness indication.

6.4 Petri-Net Based Coverages

In order to give the coverage information about the concurrency completeness of the sim-

ulation, a Petri-net model is used. The Petri-net is derived from the TRG used for test-

generation based on transfer model (see Section 3.5). The coverage space is defined based on

the reachability graph associated with the Petri-net; the reachability graph can be obtained

by a Petri-net tool [73]. The TRG-to-Petri-net conversion could be done automatically using

the algorithm introduced in Section 3.5.2. However, for our simple Nios SoC, we chose to do

it manually.

We model a TRG with 12 major transfer-types for the Nios SoC. Our generator can exhaus-

tively (but randomly) produce 139 unparameterised scenarios. This is well predicted by the

reachability graph, which has 140 states, with the additional state representing the empty

scenario. The reachability graph also contains 772 transitions.

We have achieved the test-generation with feedback at state-level and transition-level. We

insert a running-flag monitor in the test-bench as described in Figure 5.4 in Section 5.3.2,

which monitors the accesses to the software variables called running-flags and logs their

changes in a dump file. Also, a post-simulation running-flag analyser is developed. The

analyser is responsible for the following tasks:

(1) detecting states and transitions from the trace of the running-flags and counting them,

(2) comparing the counts with the total states and transitions in the reachability graph, and

then reporting the coverage,

(3) identifying the target (i.e. uncovered or less frequent) states and transitions, and

(4) in a bias file (see Section 3.4.2), adjusting the randomisation biases about transfer se-

lection and parameterisation.
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The state-level feedback is straightforward because a state in the reachability graph simply

represents a scenario in the TRG. Once a target scenario is identified, in the bias file, we

simply increase the selection weights of the transfer-types which make up the target scenario.

Thus the test-generator will be more likely to generate the target scenario.

The transition-level feedback requires additional consideration. A transition in the reacha-

bility graph is a transfer-start event Ts or a transfer-end event Te. A transition separates

two scenarios S1 and S2, i.e., S1
Ts→ S2 or S1

Te→ S2. Therefore, the analyser needs to manage

both target scenario (S1 or S2) and target event (Ts or Te).

First, we identify the target scenario:

• In case of S1
Ts→ S2, the target scenario is S2;

• In case of S1
Te→ S2, the target scenario is S1;

Once the target scenario is identified, we can apply the same mechanism as that used in

state-level feedback in order to make the target scenario more likely to happen.

Second, we need to make the target event happen earlier in the current scenario in order

to enter or leave the target scenario; otherwise the current scenario changes. For each

transfer-type, we define one of its parameters as its life-expectancy, which controls how long

that transfer will be running. For example, for a transfer-type “MEM-to-MEM DMA”, the

parameter “DMA length” is the life-expectancy parameter. The analyser then adjusts the

randomisation ranges of the life-expectancy parameters in the bias file: it reduces the life-

expectancy of the target transfer and/or extends the life-expectancy of the rest transfers in

the target scenario. Therefore, in simulation, the target event has more chance to fire earlier

to enter or leave the target scenario.

Figure 6.5 includes the accumulative state-coverage and transition-coverage comparisons

between two sets of 20 simulation-runs, one with feedback and the other without feedback

but with randomly generated scenarios. Each set needs approximately 15 computing hours

on a 3.2 GHz 1G RAM workstation. The figure shows that, with feedback, all states and

transitions are covered in the first several runs. For the 20 runs without feedback, the

state-coverage space is traversed 5 times slower; and the transition coverage space cannot be

traversed in 20 runs.

Like all feedback techniques, our feedback scheme only targets at one type of coverage.

It should also be noted that the fast traversing on states and transitions does not mean

that the whole verification process is complete. If more detailed temporal relations (e.g.,
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Figure 6.5: Petri-net based state-coverage and transition-coverage with and without
feedback. With feedback information, both state and transition coverages converge
rapidly.

paths and cycles) are taken into account, more scenarios are needed. Nevertheless, the fast

traversing does give us a chance to focus on other coverage areas. We could cross this

scenario-level feedback mechanism with the management on other test variations, including

transfer parameterisation and environment parameterisation.

Although the Petri-net based coverages can indicate the test completeness from a specific

angle, these metrics are strongly coupled with the TRG-based test-generation method (thus

cannot be used to compare different methodologies). In fact, the “verification completeness”

is a common problem faced by all simulation-based verification. No single coverage metric

can serve as the absolute criterion for simulation completeness.

6.5 Profiling: Simulation Efficiency

6.5.1 Overview: Profiling in Two Worlds

Accompanying the coverage issue is the efficiency issue since simulation is a time-consuming

process. We want simulation to be efficient – behaviours being simulated should mostly

contribute to the meaningful verification job. The efficiency can be evaluated by appropriate

profiling mechanisms, which give objective statistics on software components ’ performances.
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There are two categories of software components in a simulation, i.e., the components written

in HDLs/HVLs and the components written in languages native to the DUT. The former

is the software in the real-world (but the hardware in the simulated-world; notice that the

true hardware components do not have profiling issues since they are parallel); while the

latter is the software in the simulated-world. Therefore, there are two categories of profiling

mechanisms:

• the real-world profiling, which reports the real-world CPU-time (in seconds) spent in

computing the behaviours of the simulated-world hardware components, and

• the simulated-world profiling, which reports the simulated-world CPU-time (in DUT

cycles) spent in executing the simulated-world software components.

The former is already provided by the simulation tool (VCS in our case). Figure 6.6 is

a top-level profiling of one simulation run of duration 2735.04 seconds (wall-clock time),

which simulated an event-driven TP execution of 42 million SoC Cycles (simulated time).

We see that the TB components test bench and function logger sum up to 1.87% of the

simulation time. Although we did not specifically develop a TB-centric approach to compare

with the TP-centric approach, this low enough profiling matches our expectation that the

TP-centric approach does not introduce large overhead for computing TB’s behaviour.

The rest of this section focuses on the second type of profiling, which requires (a) a context

monitor inserted in the TB to collect raw data during simulation, and (b) a post-simulation

utility to extract various profiling information from the raw data. This kind of profiling gives

users the insight into how close the SoC software is interacting with the SoC hardware.

6.5.2 TP Profiling: Insight into the System Behaviour

The TP profiling experiments we show in this section serve two purposes:

• to validate the idea to use the TB and post-simulation utilities as a powerful TP

observers, by showing what kind of data can be profiled and how to interpret and use

these data;

• to validate the idea to use the TP as the efficient controller of parallelism, by showing

the profiling data themselves.
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// Synopsys VCS 7.1.1 Simulation profile: vcs.prof Simulation Time:    2735.040 seconds

TOP LEVEL VIEW

===========================================================================

TYPE       %Totaltime

---------------------------------------------------------------------------

PLI          0.00

VCD          0.00

KERNEL         11.25

DESIGN         88.75

MODULE VIEW

===========================================================================

Module(index)               %Totaltime No of Instances   Definition

---------------------------------------------------------------------------

altsyncram (1)     31.46          6             altera_mf.v:238.

CPU_32bit_instructio

n_decoder (2)      8.51          1             CPU_32bit.v:5826.

Ext_Shared_Bus_avalo

n_slave_arbitrator (3)      3.26          1             soc.v:2486.

CPU_32bit_alulogic    (4)      3.19          1             CPU_32bit.v:3495.

CPU_32bit_control_re

gister_unit (5)      3.18          1             CPU_32bit.v:4200.

CPU_32bit_pipeline    (6)      2.78          1             CPU_32bit.v:8688.

CPU_32bit_instructio

n_master_arbitrator (7)      1.62          1             soc.v:682.

CPU_32bit_cpu_instru

ction_fifo_fifo_modu

le                    (8)      1.61          1             CPU_32bit.v:537.

CPU_32bit_skip_unit   (9)      1.35          1             CPU_32bit.v:4074.

DMA_1                (10)      1.32          1             DMA_1.v:480.

test_bench (11)      1.31          1             TESTBENCH.v:51.

CPU_32bit_constant_g

enerator (12)      1.30          1             CPU_32bit.v:1516.

CPU_32bit_data_maste

r_arbitrator (13)      1.30          1             soc.v:31.

CPU_32bit_op_fetch   (14)      1.23          1             CPU_32bit.v:2751.

CPU_32bit_op_b_mux   (15)      1.17          1             CPU_32bit.v:2398.

CPU_32bit_index_matc

h_unit (16)      1.05          1             CPU_32bit.v:1923.

CPU_32bit_dcache     (17)      0.96          1             CPU_32bit.v:10525.

DMA_1_read_master_ar

bitrator (18)      0.89          1             soc.v:1362.

CPU_32bit_aluadder   (19)      0.86          1             CPU_32bit.v:3085.

CPU_32bit_reg_index_

calculator           (20)      0.84          1             CPU_32bit.v:1749.

CPU_32bit_byteshift_

control_unit (21)      0.82          1             CPU_32bit.v:3939.

CPU_32bit_instructio

n_receive (22)      0.70          1             CPU_32bit.v:734.

Uart_1_tx            (23)      0.70          2             Uart_1_without_stimulation.v:66.

on_chip_ROM_s1_arbit

rator (24)      0.67          1             soc.v:5265.

CPU_32bit_register_b

ank_a_module (25)      0.65          1             CPU_32bit.v:5421.

CPU_32bit_icache_vfi

fo_module (26)      0.65          1             CPU_32bit.v:9801.

CPU_32bit_alushifter (27)      0.63          1             CPU_32bit.v:3738.

Timer                (28)      0.59          1             Timer.v:26.

CPU_32bit_data_maste

r                    (29)      0.57          1             CPU_32bit.v:2225.

function_logger (30)      0.56          1             functionlogger.v:92.

CPU_32bit_subinstruc

tion_unit (31)      0.56          1             CPU_32bit.v:978.

CPU_32bit_icache     (32)      0.52          1             CPU_32bit.v:10138.

CPU_32bit_compact_al

u                    (33)      0.51          1             CPU_32bit.v:4929.

---------------------------------------------------------------------------

Figure 6.6: Simulation profiling data generated by Synopsys VCS. This report gives
wall-clock time consumed in simulating each hardware components. The report can tell
how much computation capability is spent on the hardware components in a DUT and its
test-bench.
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Figures 6.7 to 6.10 demonstrate a variety of software performances extracted by profiling.

The DUT in the experiment is the Nios SoC (see Figure 2.8) in register-transfer-level Verilog.

The TP is made of a set of functions, total size 49 KB-executable, including a 37 KB, event-

driven function scheduler (automatically generated using the TRG method). The TP took

42 million DUT-cycles to run, simulated in 2735.04 sec on a 3.2 GHz workstation (the same

simulation run as in Figure 6.6). It produced a reasonably sized (12 MB) dump of text

format, containing 355k context-switchings, analysed in 25 seconds by our profiling utility

written in Python language. Note the time-unit in these figures is “simulation-cycle”; one

SoC-Cycle equals 20 simulation-cycles.

Figure 6.7 provides basic information associated with each function.

• Column 1 lists the names of functions to be profiled.

• Columns 2-5 count the program-control’s switchings: entrances, interrupts, callings

and resumes.

• Columns 6 reports each function’s CPU time, including the time spent on callings and

interrupts.

• Columns 7 reports each function’s CPU time, excluding the time spent on callings and

interrupts. It is this column that partitions the CPU-time.

• Columns 8 (Prof(%)) is the CPU-time share for this function, based on Columen 7.

The entire table is sorted according to column 8. This report can tell how the profiling

of the payload and overhead (Role 1–3 functions, see 4.1) matches our expectation.

This particular report says that

– the Role 3 function (scheduler only) takes 4.44%;

– the Role 1 functions (all trap handlers, ISRs and ISR-wrappers) amounts to

28.75%; and

– the Role 2 functions (all remaining functions except main) accounts for 47.01%.

We thus conclude that the payload/overhead profiling basically matches our expecta-

tion.

• Columns 9-12 are information derived from the previous columns. From different

angles, they report the average duration the program-control stays in each function.

– Column 9 (Run Avg), which equals Column 6 ÷ Column 2, tells how long each

function has the program-control for each entry, callings and interrupts are in-

cluded.
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                Function Entry Inte rrupted Ca llings Resumed Exec w/ ca lls Exec w/o ca lls Prof (%) Run_Avg Ent_Avg

                    main 1 2654 141 2794 826947860 163721980 19.80% 826947860 163721980

       memoryblkrevbyCPU 1098 5714 235 5949 174466360 130329820 15.76% 158894 118697

                do_logic 233 5632 0 5632 160023220 111371640 13.47% 686794 477989

                 uartISR 17489 894 1106 1283 168592040 108945940 13.17% 9639 6229

          recursive_fibo 129356 4501 128678 133134 17610769620 102495880 12.39% 136141 792

 CWPUnderflowTrapHandler 1194 0 0 0 60685220 60685220 7.34% 50825 50825

               scheduler 2169 629 2051 2680 662509920 36686160 4.44% 305444 16913

  CWPOverflowTrapHandler 1194 0 0 0 26475040 26475040 3.20% 22173 22173

         uartISR_wrapper 17489 894 17489 18383 213993300 25007320 3.02% 12235 1429

     txdata1pollingbyCPU 32 618 0 618 27560660 22703540 2.75% 861270 709485

     rxdata1pollingbyCPU 10 318 0 318 19655500 15876180 1.92% 1965550 1587618

                TimerISR 3202 730 1123 730 37719960 10296280 1.25% 11780 3215

        TimerISR_wrapper 3202 564 3202 3766 69227060 4597580 0.56% 21619 1435

                 Unknown 75 0 0 0 2419900 2419900 0.29% 32265 32265

                  dmaISR 269 39 259 39 4640460 1356700 0.16% 17250 5043

               fibonacci 678 26 678 704 238660720 1350020 0.16% 352006 1991

      TerminateRunningRX 389 0 0 0 856200 856200 0.10% 2201 2201

     PrepareNextScenario 70 0 84 84 3206680 740260 0.09% 45809 10575

                __mulsi3 235 21 0 21 719140 576720 0.07% 3060 2454

          dmaISR_wrapper 269 114 269 383 6828020 408960 0.05% 25382 1520

       UpdateEnvironment 14 0 14 14 2159560 26420 0.00% 154254 1887

                 caching 14 0 5 5 2133140 20100 0.00% 152367 1435

Tota ls 178682 23348 155334 176537 Meaningless 826947860 100.0% 113723 4628

Tota ls Excl. Recursion 49326 18847 26656 43403 Meaningless 724451980 87.60% 54930 14687

                Function Entry Interrupted Callings Resumed Exec w/ calls Exec w/o calls Prof (%)

                    main 1 2654 141 2794 826947860 163721980 19.80%

       memoryblkrevbyCPU 1098 5714 235 5949 174466360 130329820 15.76%

                do_logic 233 5632 0 5632 160023220 111371640 13.47%

                 uartISR 17489 894 1106 1283 168592040 108945940 13.17%

          recursive_fibo 129356 4501 128678 133134 17610769620 102495880 12.39%

 CWPUnderflowTrapHandler 1194 0 0 0 60685220 60685220 7.34%

               scheduler 2169 629 2051 2680 662509920 36686160 4.44%

  CWPOverflowTrapHandler 1194 0 0 0 26475040 26475040 3.20%

         uartISR_wrapper 17489 894 17489 18383 213993300 25007320 3.02%

     txdata1pollingbyCPU 32 618 0 618 27560660 22703540 2.75%

     rxdata1pollingbyCPU 10 318 0 318 19655500 15876180 1.92%

                TimerISR 3202 730 1123 730 37719960 10296280 1.25%

        TimerISR_wrapper 3202 564 3202 3766 69227060 4597580 0.56%

                 Unknown 75 0 0 0 2419900 2419900 0.29%

                  dmaISR 269 39 259 39 4640460 1356700 0.16%

               fibonacci 678 26 678 704 238660720 1350020 0.16%

      TerminateRunningRX 389 0 0 0 856200 856200 0.10%

     PrepareNextScenario 70 0 84 84 3206680 740260 0.09%

                __mulsi3 235 21 0 21 719140 576720 0.07%

          dmaISR_wrapper 269 114 269 383 6828020 408960 0.05%

       UpdateEnvironment 14 0 14 14 2159560 26420 0.00%

                 caching 14 0 5 5 2133140 20100 0.00%

Totals 178682 23348 155334 176537 Meaningless 826947860 100.0%

Totals Excl. Recursion 49326 18847 26656 43403 Meaningless 724451980 87.60%

Col 1 Col 3Col 2 Col 4 Col 5 Col 6 Col 7 Col 8

(a) Function profiling: raw data and profiling. Program-control movement (Col 2 to 5), program-control
time (Col 6, 7) and profiling (Col 8)

Col 1 Col 10 Col 11 Col 12

                Function Run_Avg Ent_Avg Cnt_Avg Int_Avg

                    main 826947860 163721980 58576 61666

       memoryblkrevbyCPU 158894 118697 18494 19132

                do_logic 686794 477989 18989 18989

                 uartISR 9639 6229 5803 5926

          recursive_fibo 136141 792 390 766

 CWPUnderflowTrapHandler 50825 50825 50825 50825

               scheduler 305444 16913 7565 13112

  CWPOverflowTrapHandler 22173 22173 22173 22173

         uartISR_wrapper 12235 1429 697 1360

     txdata1pollingbyCPU 861270 709485 34928 34929

     rxdata1pollingbyCPU 1965550 1587618 48402 48403

                TimerISR 11780 3215 2618 2619

        TimerISR_wrapper 21619 1435 659 1221

                 Unknown 32265 32265 32265 32265

                  dmaISR 17250 5043 4404 4405

               fibonacci 352006 1991 976 1918

      TerminateRunningRX 2201 2201 2201 2201

     PrepareNextScenario 45809 10575 4806 10575

                __mulsi3 3060 2454 2252 2253

          dmaISR_wrapper 25382 1520 627 1068

       UpdateEnvironment 154254 1887 943 1887

                 caching 152367 1435 1057 1436

Tota ls 113723 4628 2328 4093

Tota ls Excl. Recursion 54930 14687 7813 10627

Col 9

(b) Function profiling: derived data.

Figure 6.7: Basic test-program profiling. This report gives statistics associated with
each software function. These statistics could be used to characterise the
overload/payload ratio of the test-program and direct further software improvement.
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– Column 10 (Ent Avg), which equals Column 7 ÷ Column 2, tells how long each

function has the program-control for each entry, callings and interrupts are ex-

cluded.

– Column 11 (Cnt Avg), which equals Column 7 ÷ (Column 2 + Column 3 + Col-

umn 4), tells how long each function retains the program-control until interrupted

or calling other functions.

– Column 12 (Int Avg), which equals Column 7 ÷ (Column 2 + Column 3), tells

how long each function retains the program-control until interrupted.

The difference between Column 10 and 12 reveals how each function’s execution is

fragmented by interrupts. This information implies the degree of parallelism in the

simulation. This particular report confirms that most Role 2 functions are strongly

fragmented by interrupts (e.g., memblkrevbyCPU is fragmented to 16%), due to the

parallelism.

Two total lines give gross total/average data for each column. (Since the recursion-intensive

function recursive fibo is special, the second total line excludes its impact.) The infor-

mation can be used to characterise our TP. For instance,

• The gross average of 14678 (simulation-cycles) on Column 10 tells that an average

function requires program-control for 14678/20 = 733 SoC-Cycles, which is already

fine-grained software behaviour, but this required length of program-control is still frag-

mented by interrupts: the average of 10627 Column 12 tells that the actual program-

control reduces to 10627/20 = 531 SoC-Cycles due to interrupt, an impact of (531 −
733)÷ 733 = −27.6%.

• This report confirms that the granularity of continuous program-control is in the order

of 102 to 103 SoC-Cycles. It is a reasonably fine granularity when Role 1, 2 and 3

software components are considered altogether, considering that (a) a typical UART

ISR turn-around time is about 350 SoC-Cycles [3], and (b) the life-expectancy of

transfers, including soft-transfers, is in the range of 104 to105 SoC-Cycles (see Section

3.2.4). Therefore, a soft-transfer will be interrupted at least dozens of times when it is

active – implying that the SoC is constantly busy during simulation.

This profiling could guide us to further improve the software structure. For instance, the

main function accounts for 19.8%, in which the CPU is basically locked (until interrupted)

in a strictly infinite loop of doing nothing (C code: “while 1;”) to emulate CPU idling.
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The CPU is idle because the rest of the system is so busy that the next soft-transfer has to

wait for the release of resources. The idle time can be exploited to contribute to hardware

verification: we could replace “while 1;” with “while 1 CPU self test();”. (Looping

the self-testing is meaningful, since each loop will experience different interrupt situations.)

This profiling tells us, if this scheme would be carried out, the meaningful verification job

on the CPU would increase by 19.8% .

Another instance about improving ISR-wrappers’ performance using the profiling informa-

tion is discussed in Appendix B.

Although the CPU is essentially a sequential device, due to interrupts, we still can obtain

information regarding parallelism from SW profiling. Figure 6.8 indicates how many times

each function is preempted by ISRs. From this report we can identify a coverage hole

in the parallelism: the DMA ISR had never preempted function mulsi3. (Many other

zeros are reasonable and don’t represent coverage holes.) The report may also be useful to

identify abnormal software behaviours. For instance, the CWPUnderflowTrapHandler and

CWPOverflowTrapHandler (see details in Appendix B) should be happening in pairs, one in

the calling function, and one in the called function. This report confirms this property.

If the dump includes a “program-counter (PC) when interrupted” field, we could obtain a

similar report but with more fine-grained “PC-interrupt cross” data.

The function-interrupt cross report does not give information regarding the nesting behav-

iours of interrupts, i.e., an ISR preempting another ISR and so on. Figure 6.9 shows such

information by summarising the CPU time spent on each nesting depth. The Column “INT-

DEP” is the depth of interrupt nesting; Column “T-Prof(%)” reports the CPU-time spent

on each depth. This report helps us to determine the impact of interrupt to the system

behaviour from another angle.

Figure 6.10 reports more detailed information regarding ISR nesting: all exact interrupt

nesting sequences that have occurred in the simulation. The report says that the deepest

interrupt nesting sequence first occurred at simulation cycle 640220650, when a recursive

function was preempted by the DMA ISR, which was in turn preempted by the Timer ISR,

which was in turn preempted by the UART ISR, which was finally preempted by a register-

window underflow handler. That this extremely rare corner-case has happened three times

in this simulation-run (and that it is allowed to happen) without software-induced error is

eventually the result of our TP-centric and interaction-oriented TRG method. Compared

with all possible nesting sequences, this report could also serve as a coverage measurement,

telling how much the parallelism has traversed the space of nesting relations.
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Report 2: Function-Interrupt Cross 

(Warning: Function names may be truncated)

Func/INT  dmaISR TimerI uartIS CWPUnd CWPOve

main      34     111    2509       0       0

memoryblkrevbyCPU 77    1205    4432       0       0

do_logic 62     866    4704       0       0

uartISR 0       0       0     894       0

recursive_fibo 69     694    3398     170     170

CWPUnderflowTrapHandler 0       0       0       0       0

scheduler      11      84     534       0       0

CWPOverflowTrapHandler 0       0       0       0       0

uartISR_wrapper 0       0       0       0     894

txdata1pollingbyCPU       9     188     421       0       0

rxdata1pollingbyCPU       7      30     281       0       0

TimerISR 0       0     608     122       0

TimerISR_wrapper 0       0     442       0     122

dmaISR 0       7      24       8       0

fibonacci 0       2      24       0       0

TerminateRunningRX 0       0       0       0       0

PrepareNextScenario 0       0       0       0       0

__mulsi3       0 6      15       0       0

dmaISR_wrapper 0       9      97       0       8

UpdateEnvironment 0       0       0       0       0

caching       0       0       0       0       0

Figure 6.8: Function-interrupt cross. The column headings are interrupt-service-routine
(ISR) names; the row headings are function names. The cross data represent how many
times a function has been preempted by an ISR.

Report 3: Interrupt Depth Profiling

5 interrupt-Depths switched 46697 times during 826947860 time units

INT-DEP  Occ'd Exist'd S-Prof(%)  T-Prof(%)   Avg-Dur

0  20100   570531040     43.04%     68.99%  28384.63

1  22762   162729320     48.74%     19.68%   7149.17

2   3243    67225520      6.94%      8.13%  20729.42

3    586    26329020      1.25%      3.18%  44930.07

4      6      132960      0.01%      0.02%  22160.00

Figure 6.9: Interrupt nesting depth profiling. This report gives statistics associated
with each “nesting depth”.
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Report 5: Interrupt Nesting Sequences

94 Interrupt Sequences Encountered. 

Warning: Function names in the history may be truncated.

Occur LEV      Debut@ Stack_History(INT'EE>INT'ER)..

2509   1     6158890 main>uartISR_wr

34   1    27536290 main>dmaISR_wra

2   2   267711570 main>dmaISR_wra..scheduler>TimerISR_w

111   1     6727650 main>TimerISR_w

170   1    43234970 recursive_>CWPOverflo

170   1    43207290 recursive_>CWPUnderfl

3398   1    43254430 recursive_>uartISR_wr

609   2    43256390 recursive_>uartISR_wr..uartISR>CWPUnderfl

609   2    43288350 recursive_>uartISR_wr..uartISR_wr>CWPOverflo

69   1    63326090 recursive_>dmaISR_wra

2   2   640600130 recursive_>dmaISR_wra..uartISR_wr>CWPOverflo

. . .

3   3   640195150 recursive_>dmaISR_wra..dmaISR>TimerISR_w..TimerISR_w>CWPOverflo

3   3   640219010 recursive_>dmaISR_wra..dmaISR>TimerISR_w..TimerISR_w>uartISR_wr

3   4   640220650 recursive_>3   4   640220650 recursive_>dmaISR_wra..dmaISRdmaISR_wra..dmaISR>>TimerISR_w..TimerISR_wTimerISR_w..TimerISR_w>>uartISR_wr..uartISRuartISR_wr..uartISR>>CWPUnderflCWPUnderfl

3   4   640249890 recursive_>3   4   640249890 recursive_>dmaISR_wra..dmaISRdmaISR_wra..dmaISR>>TimerISR_w..TimerISR_wTimerISR_w..TimerISR_w>>uartISR_wr..uartISR_wruartISR_wr..uartISR_wr>>CWPOverfloCWPOverflo

3   3   640164930 recursive_>dmaISR_wra..dmaISR>TimerISR_w..TimerISR>CWPUnderfl

3   3   640185950 recursive_>dmaISR_wra..dmaISR>TimerISR_w..TimerISR>uartISR_wr

. . .

Figure 6.10: Exact interrupt nesting sequences. A nesting sequence is a list of
(interruptee, interrupter) pairs.

To summarise, the rich information about software performances extracted by the profil-

ing mechanism illustrate that (a) the TB (with the post-simulation analyser) is a powerful

observer of software behaviours, and (b) the TRG-based TP is an efficient controller of

concurrent HW/SW behaviours. The profiling mechanism provides valuable opportunities

to monitor and improve simulation quality. Furthermore, since this profiling mechanism is

independent of the TP-generation method, it can serve as a fair comparison platform for dif-

ferent TP-generation methods. One example is to see whether a method can easily produce

a profiling in which all possible interrupt nestings are covered. The next section introduces

another experiment using the profiling mechanism: comparison of the efficiency of different

TP structures.

6.5.3 TP Structure Efficiency: Application of Profiling

In this experiment we compare the efficiency of the polling-based, the pure event-driven and

the hybrid TP structure. We expect that the event-driven TP should be much more efficient

than the polling-based TP; but we are not sure how different it will be when the event-driven

TP is compared with the hybrid TP. In order to compare them fairly, we need to reasonably

define the payload and overhead.
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Figure 6.11: Using profiling to compare different test-program structures.

As mentioned in Section 4.2.2, a TP’s scheduling overhead, i.e., the FIFO and running-flag

operations, should not be confused with a transfer’s control overhead, i.e., the configura-

tion/invocation instructions.

• For the polling-base TP, the overhead refers to the running-flag-polling statements in

function main;

• For the pure event-driven TP, the overhead refers to the submission-condition checks in

function Action- Table, the FIFO operations dispersed in the ISRs and the Scheduler,

and the infinite-loop-of-doing-nothing statement (C code: while 1;) in main.

• For the hybrid-based TP, the overhead refers to the FIFO operations dispersed in

the ISRs and the Scheduler, and the polling statements in main at the end of each

scenario.

Once the overhead operations are identified, they are organised into functions to be profiled.

Figure 6.11 plots the CPU-time profiling of the overhead versus the transfer-submissions in

the TP.



6.6. SUMMARY 127

We observe that the polling-based TP wastes a high percentage of the simulation time in

overhead, but the percentage is independent from the number of submitted transfers; the

event-driven TP consumes much less time (still have room to improve, as mentioned in Sec-

tion 6.5.2). However, as the number of transfers increase in the TP, there are more resource

dependencies between the transfers. As a result, more time is consumed in checking running-

flags. This explains the increasing overhead. For the hybrid TP, both the event-driven and

the polling mechanisms are used, so the percentage is comparable to the pure event-driven

case but is marginally higher. Like a polling-based TP, the percentage is independent from

the number of transfers. This is because no running-flag checking is needed for hybrid TP

(see Section 4.2.3). Hence, the hybrid mode TP is the most efficient among the three TPs

when a large number of transfers need to be submitted. Also because of its advantages for

debugging (see Section 4.2.3), we use the hybrid mode TP extensively in our research.

6.6 Summary

This chapter has quantitatively revealed various aspects of the proposed TP-centric and

interaction oriented verification methodology, focusing on the simulation completeness and

simulation efficiency. Although the criterion to decide simulation completeness remains to

be an intrinsic problem, we could monitor and improve the simulation efficiency to increase

the confidence level. While the mainstream methodologies are concentrating on hardware-

based coverage (for completeness) and profiling (for efficiency), our methodology extends the

coverage and profiling measurements to the software domain, allowing a coherent practice

of hardware-software co-verification.
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Conclusion

7.1 Thesis Summary

This thesis reviews the general practices in electronics design verification, and proposes a

novel but natural simulation-based approach to verifying one category of designs, namely,

system-on-chip (SoC), which features (a) integrated components and (b) mixed hardware

and software behaviours.

These two central features make an SoC subject to hard-to-conceive failure modes. The

mainstream verification practices, represented in the form of test-bench-centric verification

methodology promoted by EDA vendors, are not oriented toward these two specific SoC

features. Instead, they focus on simulation infrastructure, complex test-bench structures

and test-bench construction conventions. While proved to be productive for component-level

verification, these practices are not creative enough to address the SoC verification challenges.

In fact, they are experiencing conceptual confusions when being applied to SoC verification.

These confusions include vague verification emphasis and unclear responsibilities of software

in verification.

In our methodology, the efforts for system-level verification focus on the following:

• interactions between components;

• concurrency and the associated resource competition; and

• the roles of software (SW) in verification.

129
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These seemingly loosely related topics are systematically articulated into a uniform verifi-

cation methodology under the concepts of “interaction-oriented verification” and “software-

centric verification”.

In interaction-oriented verification, we abandon the component-oriented view of a system,

and adopt a view in which the system is made of a collection of dynamic objects – interactions.

“Interactions” are tests as well as objects-under-test.

• As “tests”, interactions stress the communication mechanisms between design compo-

nents. Moreover, by constructing concurrent interactions, the whole system can be

exercised vigorously, greatly improving the test quality.

• As “objects-under-test”, interactions have their own properties to be tested. Some

properties are simply the reorganisation of properties that were originally associated

with hardware components; interactions also introduce new properties – their temporal

relations.

The interaction-oriented mindset overturns the distinction between the “test” and the “object-

under-test”, which is deeply rooted in the conventional TB-centric methodologies.

In software-centric verification, it is the software native to the system, not the test-bench

(which is external to the system), that drives the simulation. Software does not have a

proper position in the mainstream TB-centric methodologies. In contrast, our software-

centric approach harmoniously positions the software and the test-bench in the verification

framework; the test-bench external to the DUT and the software native to the DUT cooperate

with each other harmoniously:

• the software provides high-level control over both the DUT and the test-bench;

• the test-bench provides powerful observation to both the DUT and the software.

As a result, we not only have a simpler test-bench, but also allow the early involvement

of application software in system-level verification, whereas the TB-centric verification is

dominated by the construction of complicated test-benches and the involvement of software

has to wait till much later.

The link between “interaction-oriented verification” and “software-centric verification” is the

“transfer” – a software-controllable interaction-model. Transfer is a model of interactions at

a certain temporal granularity. The configuration-invocation-notification model of transfer is
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(a) intuitive to understand, (b) simple to implement and (c) expressive enough to generalise

heterogeneous interaction forms, including hardware-natured behaviours, software-natured

behaviours and HW-SW collaborations.

Hardware properties are reorganised into transfer properties. As a result, details about

hardware implementation can be abstracted away; only very generic property of “bit-resource

availability” is left, consistent with a programmer’s view of the system.

Based on transfers and resources, the whole system can be modelled as a transfer-resource-

graph (TRG). A TRG could serve both as the test-generator of concurrency and as the

coverage model of concurrency. By providing the test-generation method and the cover-

age measures for SoC designs, the TRG model marks the semantic difference between the

interaction-oriented “methodology” proposed in this thesis and those “methodologies” pro-

moted by EDA vendors, which are simply conventions to construct test-benches (TBs).

The transfer model has a huge impact on the structure of software. Software’s roles are

partitioned into independent components; these components respectively work as (i) transfer

participants, (ii) transfers themselves, and (iii) the transfer manager, each contributing to the

interaction-oriented mindset from a different perspective. This partition shows its rationale

when compared with the software phenomena found in general-purpose computer system,

namely, operating systems and user applications. Indeed, these partitioned components

can be naturally organised into an event-driven test-program, which intelligently manages

parallelism somewhat like an operating system.

To summarise, under the concepts of interaction-oriented verification and software-centric

verification, which are linked by the transfer model, we now gain an insight into system-level

behaviours as well as a new approach to driving these behaviours.

7.2 Application, Implication and Future Direction

Our methodology will have a wide range of applications in simulation-based verification due

to its independence of the verification infrastructure (see Section 2.1.2.1). It is independent

from

• hardware abstraction levels (transaction level, RTL, gate level, etc),

• hardware modelling languages (HDLs, HVLs, HDVLs) and
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• simulation platforms (cycle-accurate simulators, event-driven simulators, HW-SW co-

simulation, hardware prototyping, etc).

As a result, our methodology is applicable throughout an SoC implementation-verification

cycle.

In fact, our methodology is not limited to the application of “verification”, which largely

refers to finding functional bugs in RTL implementation; it is applicable throughout the whole

design-manufacturing cycle, including the early specification validation and the manufacturing-

test. The reason is that the methodology focuses on the central phenomenon of a hardware

system, namely, the parallelism, which is the source of various potential problems in the

whole design-manufacturing span.

• In functional verification, parallelism is the source of functional bugs and corner cases.

• In the earlier design stage, e.g., hardware-software partition, parallelism and the asso-

ciated resource-competition should be taken in to vigorous consideration to evaluate

the “performance penalty” [19]. Therefore, methods to generate various scenarios of

parallelism are required.

• In SoC manufacturing, parallelism can expose manufacturing defects unique to the

deep-sub-micron manufacturing technologies, such as crosstalk [12] (i.e., signal inter-

ference among adjacent wires) and the associated extra power dissipations [94]. These

defects only occur in vigorous parallel behaviours. The problem of self-testing for

crosstalk and other technology-related defects at SoC level has not been addressed by

the existing methods [94].

Therefore, focusing on parallelism, our methodology is applicable to these areas. Especially

for the area of SoC manufacturing test, our software-centric methodology is consistent with

the idea of software-built-in-self-test (SBIST) [84].

Our methodology, which is demonstrated on a single-processor SoC, can be readily extended

to verifying other categories of VLSI designs, since the idea to construct resource-constrained

parallelism is very generic. For instance, the TRG model does not restrict that tests must

be organised by software (native to the DUT). The following design categories could adopt

verification methodology similar to ours.

• For multi-processor SoC (MPSoC), the concepts about transfers and resources are

still applicable. Our TRG method is able to make parallelism prevalent on a single-

processor SoC; there is no reason why parallelism cannot be constructed similarly on
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an MPSoC. We simply have more options to do that. A conceivable scheme is to

let multiple processors share the responsibility of transfer scheduling by executing a

globally accessible action-table.

• For designs with multiple components but without on-chip processor, we could intro-

duce a processor for verification purpose and then use the same methodology described

in this thesis. This verification processor can be regarded as a TB component, and the

software running on the processor can be regarded as the stimulation from the TB to

the DUT. Again, we see that the distinction between the TB, the TP and the DUT is

a matter of interpretation; they should be understood as one continuum (see Section

5.1).

• For component-level verification, where software is not present, the concept of “interaction-

oriented verification” still applies and the TRG model is still valid; but it is now natural

to resort to a test-bench for interaction scheduling. We should realise “TP- or TB-

centric” and “component- or interaction-oriented” are two independent differentiations,

as suggested in Table 7.1;

•Emerging, this thesis

•SoC verification

•Not very exciting common practice

•Hardware diagnostics

TP-centric

•Consciously practiced?

•Features? Applications?

•Traditional

•Component-level verification

TB-centric

Interaction-orientedComponent-orientedMethodology

Table 7.1: Methodology Differentiation.

Moreover, since the system-on-chip is not fundamentally different from the system-on-board

except the encapsulation and packaging, our methodology could find its application on a

wide range of digital designs.

The “interaction-oriented mindset” has simply reconfirmed the same philosophical impli-

cation derived from many other fields of scientific studies – a system is more a collection

of “processes” than a collection of “substances”. (The term “interaction” is even a better

appellation than “process”: it is a “process” with “substance” implicitly considered.) This

view provides insights into the nature of the universe. For instance, the fundamental matters

in the universe seem to be more like entanglement than particles ; the life is more the process
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of metabolism, i.e., the controlled flow of chemicals/energy/information, than the structure

of organisms.

The interaction-oriented mindset and software-centric verification will simply become more

dominant in the future VLSI design and verification. The International Technology Roadmap

for Semiconductors [49] suggests that (a) programmability and (b) communications are the

two sources of verification complexity – the underlying reasons for this unmanageable com-

plexity lie in the inability of verification to keep pace with highly integrated system-on-a-chip

(SoC) designs and parallel chip-multiprocessor systems, paired with highly interconnected

communication protocols implementing distributed computation strategies. Indeed, MPSoC

and Network-on-Chip (NoC) are the two important technology-nodes in the roadmap. De-

signing and verifying an MPSoC require more vigorous involvement of software since an

MPSoC’s behaviours are software intensive; while an NoC requires rigorous verification of its

intelligent on-chip communication mechanism. Software-centric verification and interaction-

oriented verification respectively satisfy the requirements from MPSoC (programmability)

and NoC (communication). Since an MPSoC could simultaneously have an NoC, the combi-

nation of the software-centric verification and the interaction-oriented verification proposed

in this thesis is simply natural.
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Major Bugs in the Nios SoC

This appendix provides the detailed description of three problems identified on the Nios

SoC used in our research. They are typical system-level bugs since they all occur during

interactions between multiple components; and it is sometimes arguable to blame a single

component to be responsible for a bug. Instead, the bug is revealed as ill-matched behaviour

between components. And interestingly, very often a problem is revealed in a seemingly un-

related arrangement. In some sense, the term “bug” is very subjective – it simply refers to the

situation in which the simulated reality does not match human expectation; and the human

expectation cannot always be exhaustively expressed before the mismatching happens. That

is why the formal methods are not at the position for system-level verification and we have

to resort to the simulation approach.

A.1 Weak end-of-packet (EOP) Arbitration

Symptom 1: A Memory-Memory-DMA transfer terminates unexpectedly before the desired

transfer length is reached.

Conditions:

• The MEM-MEM-by-DMA transfer is running concurrently with a UART-RX(TX)-by-

Interrupt transfer;

• In addition to the DMA engine’s len bit, its ween or reen bit is also set. (len, reen and

ween terminate the DMA engine respectively when (a) the length is reached, (b) the

135
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eop is sensed by the DMA-read master and (c) the eop is sensed by the DMA-write

master. )

Explanation/Cause: The root cause of the failure is due to the following problematic

assignments in the modules called DMA read/write master arbitrators (in file soc.v).

assign DMA_1_write_master_endofpacket = Uart_1_s1_endofpacket_from_sa;

assign DMA_1_read_master_endofpacket = Uart_1_s1_endofpacket_from_sa;

Although the UART is the only possible source of eop signal for the DMA engine, the DMA

engine should not be sensitive to the eop signal from the UART when the engine is not

accessing the UART. But these two statements do not match our expectation.

Workaround: Make sure that the ween (write-eop-enable) and reen (read-eop-enable) bit

in the DMA engine’s control-register are de-asserted if the DMA engine is not working with

the UART (e.g. in a memory-memory DMA copy).

But this workaround is not general enough. It assumes that the UART is the only device in

the system that could synchronise with the DMA engine on the eop signal.

Proposed Fix: We attempted to fix the problem in hardware by ANDing the eop with the

UART-grant signal, i.e.,

assign DMA_1_write_master_endofpacket =

Uart_1_s1_endofpacket_from_sa & DMA_1_write_master_granted_Uart_1_s1;

assign DMA_1_read_master_endofpacket =

Uart_1_s1_endofpacket_from_sa & DMA_1_read_master_granted_Uart_1_s1;

After modification, the unexpected memory-memory-DMA-copy termination issue is ad-

dressed.

Symptom 2: A UART-RX-by-DMA transfer terminates unexpectedly before the desired

length is reached or the eop character is received.

Conditions: The UART-RX-by-DMA transfer is running concurrently with a UART-TX-

by-Interrupt transfer.
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Explanation/Cause: The problem can be illustrated in Figure A.1. The UART is working

in full-duplex fashion. The DMA and the CPU are accessing the UART respectively for the

RX and the TX services. The UART arbitrator grants their access-requests by fine-grained

interleaving. The unexpected RX-by-DMA termination happens when an eop character

is sent in the TX stream. When this character is sent by the CPU, the UART asserts

its eop signal on the bus; when the arbitrator grants the DMA engine the UART access,

the eop signal makes the DMA engine terminate. Worse, the DMA engine may be out of

synchronisation and trapped in an illegal status, in which both the busy and the done bits

are set.

Arbitrator

CPU Data Port DMA Read Port

UART

txdata rxdata

2. EOP
Signal 

from UART

TX-by-INT

3. EOP
Signal

to DMA

RX-by-DMA

1. EOP
Char 

from CPU

Figure A.1: The arbitration problem of the end-of-packet (EOP) signal. During a
full-duplex scenario, where the RX stream and the TX stream are conducted by different
masters, the EOP signal in the TX (or the RX) stream will be mistakenly propagated to
the RX (or the TX) stream.

Workaround: It seems that any workaround in software will introduce some complications

or limitations. For instance, we could impose a limitation that the UART should not be

accessed by hardware masters when it is working in full-duplex.

Possible Fix: There seems no particular culprit in this ill-behaved scenario. It appears

that the proper modification could be done on both the UART arbitrator and the UART

itself, i.e.,
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• let the UART generate tx-eop and rx-eop signals separately; and

• let the arbitrator work logically on the eop signals – remembering which master is

responsible for which eop signal.

But this solution would be too complicated, since the AVALON bus only defined one eop

signal for each peripheral, while the UART is capable of two independent streams. As we

mentioned in Section 4.3.2, the shared EOP actually reflects the inadequacy in the UART

design; and therefore letting the arbitrator, which is supposed to be simple, to handle both

physical-level and logical-level arbitration is not reasonable.

The best solution is to separate the RX and the TX functionality in two peripherals; this

radical solution addresses the problem both at the physical level and the logical level:

• logically, each of the TX and the RX functionality has a dedicated interrupt and eop

signal, and

• physically, there will be no need for interleaving-based arbitration since the DMA

engine connects the RX and the CPU connects the TX peripheral (or vice versa).

A.2 Transient Interrupt Request

Symptom: During an RX-by-DMA transfer, an DMA-ISR is triggered. But strangely, the

ISR only finds that the transfer is still in progress; none of the possible triggering events

(reop and len, respectively means that an eop is read and the transfer length has reached)

has occurred. In short, the DMA-ISR finds that it is triggered for no reason. And the

DMA-ISR is triggered again and again until the transfer finally finishes.

Condition: For the RX-by-DMA transfer with this strange behaviour, the irrdy control

bit in the UART is set. The irrdy allows the rrdy interrupt (one of the UART interrupts)

to fire when the rxdata register in the UART has received a new character. This irrdy bit

must be set for an RX-by-ISR transfer, since it enables the virtual master, i.e., the rrdy

ISR, to conduct the RX-by-ISR transfer, but it is not required to be set in an RX-by-DMA

transfer. However, in order to implement the concept of treating a general interrupt as a

transfer event (see Sectionsubsec:modellinginterrupt), we also allow the rrdy ISR to fire in

an RX-by-DMA transfer; we expected that rrdy ISR could map the rrdy interrupts as events

to transfer RX-by-DMA. This should not slow down the RX-by-DMA transfer, since it is the

CPU that executes the ISR while the DMA is conducting the real transfer simultaneously.
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However, we did not see any rrdy event logged by the rrdy ISR; instead, we observed that

the DMA-ISR was repeatedly triggered for no reason.

Explanation/Cause: The cause of this strange behaviour is due to the fact that the DMA

engine reads the UART’s rxdata register very fast (as it should). Whenever the rxdata

register is ready, the rrdy interrupt is asserted to the interrupt-subsystem, and the UART’s

rrdy ISR is supposed to response to handle this interrupt request; however, since the DMA

also senses this rrdy event via the AVALON bus and immediately (in two SoC-cycle) read

out the rxdata register, the rrdy interrupt request is quickly de-asserted in two cycles. (In

contrast, during a normal RX-by-ISR transfer, the rrdy lasts more than 150 SoC-cycle before

the ISR reads the UART.) It is this transient (two cycles) UART interrupt-request that fools

the interrupt-subsystem.

When any interrupt happens, the interrupt-subsystem checks which peripheral is requesting

the interrupt; and each peripheral is associated with an ID called “irqnum”, or irq number,

which is used as the index to its entry in the interrupt-vector-table. The UART has a smaller

(higher-priority) irqnum of 16 and the DMA engine has a greater (lower-priority) irqnum of

19. Actually the DMA engine’s irqnum is the greatest in the Nios SoC. When an interrupt

request fires, the interrupt-subsystem is triggered to check the irqnum; but if the request

is too short, the corresponding irqnum would not be correctly captured. What would be

capture instead is the greatest irqnum in the Nios SoC, which, unfortunately, is the DMA’s

irqnum 19. The exact Verilog coding is as follows:

assign CPU_32bit_data_master_irqnumber =

(Uart_1_s1_irq_from_sa)? 16 : //16: UART IRQ number

(Timer_s1_irq_from_sa)? 17 : //17: Timer IRQ number

19; //19: DMA IRQ num. But the IRQ source is not checked.

This assignment states: if the interrupt request is not from the UART (16) or the Timer (17)

in that order, it must come from the DMA engine(19). Note that the right-hand-side does

not actually check the DMA engine as it checks the UART and the Timer. That is the root

cause why the DMA-ISR is triggered instead of the UART-ISR, and why the DMA-ISR finds

it is triggered for no reason. This problematic behaviour does not agree with the document

[3], which states that any transient interrupt request will be ignored. This illegal behaviour

is illustrated in Figure A.2.

Workaround: Enabling/disabling the rrdy event is a parameter to the transfer-type “RX-

by-DMA”. With the root cause clearly known, we simply disable this rrdy event by setting

the corresponding randomisation weight of enabling rrdy event-reporting to zero.
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Figure A.2: The transient interrupt-request problem. If the rrdy interrupt-request
(IRQ) fires but does not maintain long enough, the transient request is NOT ignored as it
should be. Instead, a wrong IRQ number representing DMA IRQ is sampled;
consequently, the DMA interrupt-service-routine is triggered illegally.

Implication: We should note that this mis-fired DMA ISR has nothing to do with the

DMA engine, who happens to be conducting a normal transfer; it also has nothing to do

with the UART, whose behaviour is reasonable. The mis-fired ISR happens to be the DMA-

ISR simply because the questionable implementation of the interrupt-subsystem. We could

generalise the risk in this way: any transient interrupt request could trigger a peripheral’s

ISR who owns the last irqnum in the right-hand-side of the above assignment. The mis-fired

ISR is potentially very hazardous.

Proposed Fix: To finally fix the problem in hardware, the assignment should explicitly

enumerate all HW peripheral’s irqnums, and include a default and “invalid” irqnum as shown

below; therefore, when a transient interrupt happens, the invalid irqnum is selected and the

CPU has a chance to choose to ignore this hardware event.

assign CPU_32bit_data_master_irqnumber =

(Uart_1_s1_irq_from_sa)? 16 : //16: UART IRQ number

(Timer_s1_irq_from_sa)? 17 : //17: Timer IRQ number

(Irq_From_DMA)? 19 : //19: DMA IRQ number

255; //255: the invalid IRQ number.

To summarise, this issue shows a typical “corner-case” bug which reveals itself in ill-matched

behaviours among hardware components (the UART, the DMA engine and the interrupt-

subsystem in the CPU). Although in the real application, the irrdy bit would not be enabled
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if we decide to use the DMA engine to serve the HW rrdy events, the idea to treat interrupts

as transfer event is logically valid and proves to be helpful to detect rare corner-cases.

A.3 Weak DMA Control

Symptom: After a failed RX-by-DMA transfer, a Memory-Memory-DMA-copy transfer

runs totally out of control –

• the DMA transfer starts ghostly and illegally BEFORE the invocation instruction

(setting the go bit in the DMA control-register) is issued;

• the source and destination addresses during the illegal transfer are not as configured;

• the busy status bit is NOT set during the illegal transfer; and

• when the illegal transfer finally stops, NO interrupt is raised.

Condition: The disastrous DMA behaviour happens when the DMA-engine is being recon-

figured for a new DMA transfer after a failed RX-by-DMA transfer. The reason why the

previous RX-by-DMA transfer has failed is the result of error injection to the RX stream.

The UART is able to detect four possible errors, (1) frame error, (2) parity error, (3) break,

(4) and receiver overrun. They are typical error modes for real-world asynchronous commu-

nication. In order to inject these errors easily, we let the RX transactor in the test-bench

to operate at a “bad” baud-rate which is different from the nominal baud-rate configured

for the UART in the SoC. The deviation is configurable and max 10% off the nominal value

set for the UART. Our intention is to (a) test the UART’s robustness in receiving a stream

that is not perfectly in pace with the nominal baud-rate, and (b) test if the UART’ error

detection mechanism could work as expected. When any error happens in an RX transfer,

it is treated as an “abortion-event” to that transfer. The transfer should be terminated by

software, i.e., the UART-error ISR. If the RX transfer is conducted via interrupt, the termi-

nation operations only involves the resetting of the UART receiver; when the RX transfer is

conducted by the DMA-engine, the termination operation should also terminate the DMA

engine’s behaviour; this is because the RX transactor (in the test-bench) may be out of

pace with the UART receiver (in the SoC), and then the DMA engine could be waiting for

transactions that are never to happen.

Explanation/Cause: However, the DMA implementation seems not robust enough to

handle the termination operation. In fact, the DMA engine does not have an “awareness
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for errors”. To start up a DMA transfer, it is sufficient to set the go bit; then the DMA

engine asserts its “busy” bit. And the user is supposed to expect the “busy” bit to be de-

asserted at the end of a successful DMA transfer. The Nios document [4] does not specify

the situation in which DMA termination is needed for an unsuccessful DMA transfer. We

have to implement the termination operation using common sense, i.e., to reset the control

register (which holds the go bit) and the length register, and verify the busy bit is reset.

Indeed, by using this commonsense abortion operation, the DMA transfer stops and the

busy bit is reset; however, the DMA engine’s internal control logic and data-path are not

really purged. In short, the DMA is now in an illegal status. At this moment, when there is

a further write operation to any DMA register (which is exactly what happens in configuring

a subsequent memory-to-memory-DMA-copy transfer), the DMA engine could fire illegally.

Workaround: To forbid this illegal DMA transfer using software seems not reliable – reset-

ting all five registers of DMA may or may not help. Using the simulation tool VIRSIM, we

still observe that the illegal DMA transfer could happen secretly after the control register is

zeroed out. We have to accept the fact that the illegal DMA transfer would fire, and attempt

to nullify its effect. To do that, in addition to zeroing out the control/status/length registers,

the content in the source/destination registers should be set to point to the ROM; so that

even if the DMA engine fires illegally, no RAM/register could possibly be corrupted. These

termination operation are organised in a special subroutine called TerminateRunningRX().

Proposed Fix: Obviously, the root cause is that the DMA engine’s implementation has

no awareness of errors and does not provide enough controllability for software. The best

solution is to allow an explicit reset-bit in the control register to allow clean purge of the

hardware.
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Address the Complications in the

Register-Window Mechanism

To facilitate fast context switching, the Nios CPU uses a register-window mechanism. The

processor is configured with 256 general-purpose registers; but only 24 of them (as one

register-window) are currently available in the current execution context. There are another

8 general-purpose registers for global information, so altogether a programmer has access

to 32 general-purpose registers. When a function (the caller) calls another function (the

callee), the register-window slides down 16 registers. Now the current window contains 16

new registers for the callee to use, and the overlapping 8 registers being the communication

mechanism between the caller and the callee, i.e., arguments from the caller to the callee

and return-values from the callee to the caller. When the callee returns, the register-window

slides up 16 registers to restore to the old window.

Since a new window uses 16 new registers, 256 registers contain at most 16 register-windows.

When the register-window is about to go over the limit, the underflow (i.e., no new window

to open) or the overflow (i.e., no old window to restore) exception is raised. These two excep-

tions have the highest interrupt priority (priority code 1 and 2 respectively), and are serviced

by respective exception handlers supplied in the Nios software package. The underflow han-

dler saves the all register-windows to reserved memory locations; and the overflow handler

restores the register-windows from the reserved memory locations. With these handlers, in

most cases, a programmer does not have to worry about the details of the register-window

mechanism.

It seems that the original intention of the Nios CPU instruction-set-architecture allows and

prefers interrupts to be serviced in a new register-window just like a normal function call.
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REGISTER-WINDOW MECHANISM
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Figure B.1: 256 registers in the Nios SoC are organised as 16 register-windows. The
current function occupies 24 continuous registers as one register-window. When the
function calls or returns from another function, the register-window slide down or up 16
registers. The 8 overlapping registers are used for arguments/return values. There are
another 8 registers for global access. When the register-window slides out of range,
underflow or overflow exception will be triggered.

When an interrupt happens, the register-window automatically slides down 16 registers just

like a normal function call; so an interrupt is also possible to cause the register-window

underflow. Unfortunately, such an underflow caused by interrupt will not be triggered.

Hence, the ISR programmer should explicitly handle a possible underflow situation. To

circumvent this complication, the programmer may choose to wrap his/her ISR within an

ISR-wrapper, which is shared by all user-ISRs. This ISR-wrapper is also provided in the Nios

package. This wrapper, for safety reasons, performs very special operations to circumvent

the using of the new register-window.

(1) The wrapper firstly uses special instructions to undo the new register-window already

automatically opened for the interrupt, in order to recover from an possibly missed

underflow-exception.

(2) The wrapper then saves the general- and special-purpose registers that could be over-

written by the user-ISR to reserved memory locations;

(3) It CALLs the user-ISR. Using a normal CALL allows the possible underflow-exception to

be captured.

(4) When the user-ISR returns, the wrapper restores the saved context from the memory

locations.
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(5) Finally, the wrapper uses special instructions to artificially open a new window only in

order to close it and return the interruptee using the IRET (interrupt-return) instruction,

emulating a true interrupt-return.

In a normal function, sliding the register-window is automatically accompanied with the

passing of program-control, i.e., the jump in program-counter; but the ISR-wrapper is so

special that it modifies the current window at step 1 and 5 without losing program-control.

Using the ISR-wrapper, the problem of possible un-attended underflow exceptions is ad-

dressed, transparently to the user-ISR. However, the cost includes 30 memory-operations (14

STOREs, and 16 LOADs) in the wrapper, making the wrapper a severe overhead to run the

user-ISR. The overhead is around 55% if it is defined as

wrapper time÷ (wrapper time + user ISR time).

The overhead data is obtained from the TP profiling mechanism described in Section 5.3.2.

It is this high overhead that motivates us to reduce it by composing a custom ISR-wrapper.

The new wrapper firstly checks the register-window status: if the underflow is about to

happen (1/16 chance), the same special treatment described above is carried out; otherwise

(15/16 chance), it is safe to utilise the wrapper’s register window to save the interruptee’s

context. In this case, the interruptee’s 8 OUT registers are already secured in the wrapper’s

8 IN registers; and the 16 new registers in the wrapper’s window can be used to save the

global and special-purpose registers before the user-ISR is CALLed. Now, for 15/16 chance,

the 30 memory-operations are reduced to only 18 register-operations. This treatment agrees

with the original intention of the processor design by fully exploiting the register-window.

As a result, the overhead caused by the ISR-wrapper decreases to about 20%.

The optimised ISR-wrapper works correctly in extensive simulation-runs. Therefore, the

wrapper not only helps to improve simulation efficiency, it is also proved to be correct code

ready for real application.
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Test Generator Implementation

Conceptually, the TRG-based test-generator consists of the following two types of informa-

tion.

• SoC-independent information, which we also refer to as methodology-knowledge. This

part basically includes (a) class definitions (transfer-types, transfer-instances, resources,

scenarios, etc) and (b) the scenario generation code that implements the algorithm de-

scribed in Section 3.4.2.

• SoC-dependent information, which we also refer to as system-knowledge. This part

includes the data and functions that will be instantiated as transfer-type-objects and

resource-objects.

For instance, transfer-types-objects’ P ()’s, I()’s are system-knowledge, whereas the method

to organise all I()’s outputs into the action-table (see Appendix D.2) belongs to methodology-

knowledge.

Decoupling system-knowledge from methodology-knowledge makes it easy to maintain the

generator; and the generator could be easily applied to another system with minimum

modification. Since the TRG methodology is intuitive and simple, for our Nios SoC, the

ratio between methodology-knowledge and system-knowledge is roughly 1:2 in terms of

code size (Python language). The test-generator combines the system-knowledge and the

methodology-knowledge in the form of object-instantiation.

In addition to the system-knowledge and the methodology-knowledge, a user is allowed to

specify randomisation strategies (i.e., biases) that are either system-dependent or system-

independent.

147



148 APPENDIX C. TEST GENERATOR IMPLEMENTATION

One System-object

(TRG)

One “Scenarios” Object

Scenario 0

Scenario 1

. . .

Scenario n

One List of Transfer-Types

Transfer-Type Objects

Transfer-Type Objects
Transfer-Type 

Object

Resource Objects
Resource ObjectsResource

Object

One List of Resources

Has
Has

Instantiates

List of Transfer-Instances

Transfer-Instance 

Object

Is

Produces

Snapshot to

Generator Program
Instantiates

Default/Custom

Randomization

Strategy

Reads

Figure C.1: Implementation of the test-generator. Solid boxes are objects instantiated
from the classes contributed by the methodology; dashed boxes are objects of types
built-in the Python language. Arrows represent the relation between objects.

Figure C.1 illustrates our implementation of the generator (for the hybrid-mode test-programs).

Dashed-boxes are Python’s built-in data objects, and solid boxes contain methodology/system-

knowledge; here we briefly introduce some important objects and their data/method mem-

bers. Their functionalities can be easily implied from their names.

(A) A resource-object has the following important methods:

• InquireResourceAvailability(): return a data-structure representing available re-

sources in this object.

• AllocateResourceToTransfer(): allocate an available resources and update the

internal resource usage.

• ReturnUnrealisticTransferTypes(): return a list of transfer-types that cannot

obtain sufficient resources from this object.

(B) A transfer-type-object has the following data and method members:

• MinimumResourceRequirment: the minimum resource requirement of this transfer-

type.
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• SetupInstructions: the static instructions that setup this transfer-type, not con-

figuration.

• ParameterizationAlgo: this is a reference to the function that implements the

P () operation.

• InterpreteToConfigurationAlgo: this is a reference to the function that imple-

ments the I() operation, which interpret transfer-parameters into configuration

instructions.

• InterpreteToInvocationAlgo: similar to InterpreteToConfigurationAlgo, but

for invocation instruction.

• Parameterization(): this method uses the reference ParameterizationAlgo for

parameterisation.

• InterpreteToConfiguration(): this method uses the reference

InterpreteToConfigurationAlgo to generate configuration-instructions.

• InterpreteToInvocation(): this method uses the reference

InterpretToinvocationAlgo to generate invocation-instructions.

Here, we use a programming technique to avoid a conceptual pitfall. Note that we do

not implement P () and I() directly as the method-members in the class definition of

transfer-type, this is because P () and I() are conceptually associated with the objects

of transfer-type, not the transfer-type class i.e., the model called “transfer-type”. We

treat P () and I() as data-members (e.g., the references ParameterizationAlgo) rather

than method-members. To invoke them, the class uses the formal method-members

(e.g. Parameterization()) which use the reference to call the actual P () and I(). In

this way, all transfer-type-objects formally share an exactly the same class, having

the same formal data-members and method-members, but have different actual P ()’s

and I()’s. One class is enough – this class is the transfer-type “model”. We think

that this “reference technique” is conceptually important, because the methodology-

knowledge (the class definition) and the system-knowledge (the information for object

instantiation) are clearly separated.

Alternatively, it is possible to directly treat P () and I() as method-members of a class,

however, since each object’s P () and I() are specific, we have to resort to the inheritance

technique, i.e., for each transfer-type, we derive a class from a base class (in which P ()

and I() are declared but not implemented) and implement the real P () and I() in

the derived class. This “inheritance technique” does not naturally reflect the transfer-

type as a “model”, since now each transfer-type-object is instantiated form a different
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derived-class, and each such class only instantiates one object. Obviously, the system-

knowledge (the objects) and the methodology-knowledge (the classes) are mixed in the

inheritance technique.

(C) A transfer-instance-object are only the containers of the results of a transfer-type’s para-

meterisation and interpretation operations, snapshot from the corresponding transfer-

type-object; so the transfer-type-object can be reset for the next round of scenario-

generation. Transfer-type-objects are not bound up with scenarios, but transfer-instance-

objects are. For a hybrid-mode test-generator, a transfer-instance do not have method-

members that support test-generation.

(D) The system-object implements the transfer-resource-graph (TRG). It includes:

• TransferTypeObjs: a list of transfer-type-objects.

• ResourceObjs: a list of resource-objects.

• LinkTransfersAndResources(): link resource-objects and transfer-type-objects

using transfer-type-object’s MinimumResourceRequirment. This method actu-

ally constructs the TRG.

• SelectOneTranferInstanceAndUpdate(): a method that generates a transfer-

instance from the current available resources and update resource-usage and transfer-

type validity; this is the central step of scenario generation, incorporating many

services provided by transfer-types and resources.

• Reset(): reset the TRG for the next round of scenario generation.

We may choose to implement the complete scenario-generation algorithm as this system-

object(TRG)’s method; however, since scenario-generation should allow for users’ in-

tervention, to make the TRG, which is suppose to be a abstract model, dealing with

the user-defined options is not very appropriate. Therefore, the complete scenario-

generation algorithm is implemented in the top-level generator program (F).

(E) The “scenarios” object is basically a placeholder for scenarios, each of which is in turn

the placeholder for transfer-instances. And this object provides the method that actually

organises configuration/invocation instruction fragments into the action-table. Thus

this object essentially has

• ScenarioList: a list of scenarios, each scenario is a set of transfer-instances, and

• GenerateActionTable(): this method assembles all transfer-instances’ configura-

tion/invocation instructions into the action table – a single switch statement,

which contains a lower level of switch statements.
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(F) the top-level generator program interacts with the system-object (D) to produce scenar-

ios, and place them into the scenarios-object (E), which finally returns the action-table.

In this process, it applies the default or custom randomisation strategy. It also gener-

ates the code that updates environment parameters. The program eventually generates

hybrid.c, hybrid.h and scheduler.c files, which will be detailed in Appendix D.

Finally, in the following program-listing (in Python language), we show all system-knowledge

necessary for instantiating the transfer-type-object “UART TX by DMA”. Comments are

lead with “#’; and “//” marks the comment in C, which is treated as normal C code.

1

2 ......

3 # Part 1: Information to instantiate the transfer-type-object.

4

5 TransferDefinitionList.append((’TXBUF2TXDATAbyDMA’, #The internal-name for this transfer-type-object

6 [’DMA1READ’,’DMA1WRITE’], #The required resources -- masters

7 [’TXBUF1’,’TXDATA1’], #The required resources -- memory-ranges and registers

8 [’temp=na_DMA_1->np_dmacontrol; //Read-modify-update DMA Control_reg\n’+\

9 ’temp&=~(np_dmacontrol_rcon_mask+np_dmacontrol_wcon_mask+np_dmacontrol_byte_mask+\

10 np_dmacontrol_hw_mask+np_dmacontrol_word_mask);\n’+

11 ’temp|=(np_dmacontrol_wcon_mask+np_dmacontrol_byte_mask);\n’+

12 ’na_DMA_1->np_dmacontrol=temp; //Finished setting DMA rcon/wcon=0/1;b/hw/w=1;’,

13 ’na_DMA_1->np_dmareadaddress=(int) txbuf;//set DMA Read_addr=int(char*(txbuf));’,

14 ’na_DMA_1->np_dmawriteaddress=(int) &(na_Uart_1->np_uarttxdata); //set DMA Write_addr’],

15 #The above ugly list contains the static instructions to set up this transfer-type

16 P_D_TXBUF2TXDATAbyDMA, #The reference to P()

17 P_I_TXBUF2TXDATAbyDMA, #The reference to the configuration part of I()

18 S_H_TXBUF2TXDATAbyDMA, #The reference to the invokation part of I()

19 R_F_TXBUF2TXDATAbyDMA)) #Not used for event-driven/hybrid TP. (For RF polling.)

20 ......

21

22 #Part2: The Randomisation Strategy of the transfer-type: a couple of (SelectionWeight, ParameteraisationStrategy).

23 TransferStrategyTable[’TXBUF2TXDATAbyDMA’]=(1,{ #Selection Weight = 1

24 ’ws_finish_mode’:([’LENGTH’,’WEOP’,’LENGTH_OR_WEOP’],[1,1,1]), #How this transfer finishes.

25 ’wc_enabled_INT’:([’leen_m’,’ween_m’,’ieop_s’,’itrdy_s’,’itmt_s’,’itoe_s’],[1,1,1,1,1,1],3), #Event enabling

26 ’rs_length’:(1,512), #Length, valid only when finish_mode=’LENGTH’ or ’LENGTH_OR_WEOP’

27 ’ws_RFclear_INT’:([’enable’,’disable’],[3,0])}) #Always enabled in event-driven/hybrid TP.

28

29 ......

30 #Part 3: Thea actual implementation of P() and I() of the transfer-type.

31

32 #Part 3.1: The P().

33 #Input: (a): parameterisation strategy; (b) ALL resource objects

34 #Output: (a): concrete parameters; (b) allocated resource (Not used in polling/hybrid TP!)

35

36 def P_D_TXBUF2TXDATAbyDMA(PARA_STRAT,RES_OBJ_LIST):

37 value_dict={}; resource_dict={’MEMORYBLOCK’:[],’DATAREGBIT’:[],’MASTER’:[]}

38

39 #now decide the parameter: finish_mode

40 finish_mode=WeightedChoice(PARA_STRAT[’ws_finish_mode’])

41 value_dict[’finish_mode’]=finish_mode

42 if finish_mode==’NONE_CHOICE’:

43 print ’zero weight!!!’
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44 sys.exit(1)

45

46 #now decide the parameter enabled_INT; firstly intercept the strategy table for one constraint consideration

47 INTlist=PARA_STRAT[’wc_enabled_INT’][0]

48 Weightlist=PARA_STRAT[’wc_enabled_INT’][1][:]

49 BaseWeight=PARA_STRAT[’wc_enabled_INT’][2]

50 #there is an constraint between enable_INT and finish_mode: if finish_mode

51 #is ’LENGTH’, (length only); ’ween_m’ should NOT be included in enabled_INT. modify the Weight for ween to 0

52 if finish_mode==’LENGTH’:

53 Weightlist[1]=0 #ween is on position 1 in the list

54

55

56 enabled_INT=WeightedCombination((INTlist,Weightlist),BaseWeight) #free parameter

57 value_dict[’enabled_INT’]=enabled_INT

58

59 #The next parameter to be decide is the eop character, however,

60 #since eop is more appropriate to be an environment variable than a transfer parameter, so the

61 #next ’if’ is simply passed;

62 if finish_mode==’WEOP’ or finish_mode==’LENGTH_OR_WEOP’:

63 #dependent parameter;

64 pass

65

66 #Now decide the parameter length, it is dependent on finish_mode;

67 if finish_mode==’LENGTH’ or finish_mode==’LENGTH_OR_WEOP’:

68 length=randgen.randint(PARA_STRAT[’rs_length’][0],PARA_STRAT[’rs_length’][1])

69 else:#when finish_mode is ’REOP’ there will be no length being specified

70 #however, length should still be set to the maximum buffer size to make the transfer safe

71 length=’TXBUF_SIZE’

72 value_dict[’length’]=length

73

74 #now decide the parameter, RFclear_INT, which is heavily dependent on finish_mode

75 RFclear_INT_enable=WeightedChoice(PARA_STRAT[’ws_RFclear_INT’])

76 RFclear_INT=([],0)

77

78 if finish_mode==’LENGTH_OR_WEOP’:

79 if RFclear_INT_enable==’enable’:

80 RFclear_INT=([’ween_m’,’leen_m’],3) #bit 0 indicate leen(dma); bit 1 indicate ween (dma);

81

82 elif finish_mode==’LENGTH’:

83 if RFclear_INT_enable==’enable’:

84 RFclear_INT=([’leen_m’],1)

85

86 else: # finish_mode==’WEOP’: in this case leen_m should still be enabled to make sure at the end of buffer

87 if RFclear_INT_enable==’enable’:

88 RFclear_INT=([’ween_m’,’leen_m’],3)

89

90 value_dict[’RFclear_INT’]=RFclear_INT

91 #bit 0 indicate leen(dma); bit 1 indicate ween (dma);

92

93 return (value_dict,resource_dict)

94

95 #Part 3.2 -- The configuration part of I()

96 #Input: concrete parameters;

97 #Output: a SET of instructions (in form of a list)

98

99 def P_I_TXBUF2TXDATAbyDMA(PARA_VAL_DICT):

100
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101 instruction_list=[]

102

103 instruction_list.append(’FM[TXBUF2TXDATAbyDMA]=’+PARA_VAL_DICT[’finish_mode’]+’;//finish_mode’)

104

105 dmaie=0;dmamask=0

106 uartie=0; uartmask=0

107

108 dmamask |= 1<<7

109 if ’leen_m’ in PARA_VAL_DICT[’enabled_INT’][0]:

110 dmaie |= 1<<7 #leen

111 dmaie |= 1<<4 #i_en

112 dmamask |= 1<<4

113 dmamask |= 1<<6

114 if ’ween_m’ in PARA_VAL_DICT[’enabled_INT’][0]:

115 dmaie |= 1<<6 #ween bit 6

116 dmaie |= 1<<4 #i_en

117 dmamask |= 1<<4

118

119 if ’ieop_s’ in PARA_VAL_DICT[’enabled_INT’][0]:

120 uartie |= 1<<12 #bit 12 is ieop

121 uartmask |=1<<12

122 uartmask |=1<<6

123 if ’itrdy_s’ in PARA_VAL_DICT[’enabled_INT’][0]:

124 #uartie |= 1<<6 #itrdy bit 6

125 pass

126 uartmask |=1<<5

127 if ’itmt_s’ in PARA_VAL_DICT[’enabled_INT’][0]:

128 uartie |= 1<<5 #itmt bit 5

129 uartmask |=1<<4

130 if ’itoe_s’ in PARA_VAL_DICT[’enabled_INT’][0]:

131 uartie |= 1<<4 #itoe bit 4; also need enable ie bit

132 uartie |= 1<<8

133 uartmask |= 1<<8

134 instruction_list.append(’IE[TXBUF2TXDATAbyDMA]=’+hex(PARA_VAL_DICT[’enabled_INT’][1])+’;’)

135

136 dmaie |= 1<<7 #leen

137 instruction_list.append(’na_DMA_1->np_dmalength=’+str(PARA_VAL_DICT[’length’])+’;’)

138

139

140 if PARA_VAL_DICT[’finish_mode’]==’WEOP’ or PARA_VAL_DICT[’finish_mode’]==’LENGTH_OR_WEOP’:

141 dmaie |= 1<<6 #ween

142

143 dmamask |= 1<<4

144 if PARA_VAL_DICT[’RFclear_INT’][1]:

145 dmaie |= 1<<4 #i_en bit

146

147 instruction_list.append(’temp=na_DMA_1->np_dmacontrol; //now setting up the DMA interruptions\n’+

148 ’temp &=’+hex(dmamask^0xffff)+’; temp |=’+hex(dmaie)+’; \n’+

149 ’na_DMA_1->np_dmacontrol=temp; //completed setup the DMA interruptions’)

150 instruction_list.append(’temp=na_Uart_1->np_uartcontrol; //now setting up the UART interruptions\n’+

151 ’temp &=’+hex(uartmask^0xffff)+’; temp |=’+hex(uartie)+’; \n’+

152 ’na_Uart_1->np_uartcontrol=temp; //completed setting up the UART interruptions’)

153

154 return instruction_list

155

156 #Part 3.3 -- The invocation part of I()

157 #Input: concrete parameters;



154 APPENDIX C. TEST GENERATOR IMPLEMENTATION

158 #Output: a SEQUENCE of instructions (in form of a string).

159

160 def S_H_TXBUF2TXDATAbyDMA(PARA_VAL_DICT):

161 if PARA_VAL_DICT[’RFclear_INT’][1]!=0:

162 handle=’(na_Uart_1->np_uartstatus)=0;(na_DMA_1->np_dmastatus)=0;’

163 #this is because the hardware constraint:

164 #uart eop will trigger DMA reop or weop even before dma really start.

165

166 handle+=’RF[TXBUF2TXDATAbyDMA]=’+hex(PARA_VAL_DICT[’RFclear_INT’][1])

167 handle+=’;(na_Uart_1->np_uartcontrol) |= np_uartcontrol_itrdy_mask;’

168 return handle

169 else:

170 handle=’(na_Uart_1->np_uartstatus)=0;(na_DMA_1->np_dmastatus)=0;’ #reset the EOP signal

171 handle+=’RF[TXBUF2TXDATAbyDMA]=128;(na_Uart_1->np_uartcontrol) |= np_uartcontrol_itrdy_mask;’

172

173 return handle



Appendix D

Software Structure Implementation

In this appendix, some codes implemented for the hybrid-mode TP are listed. Except for the

omission of very lengthy automatically generated parts , the codes are ready for compilation.

The four sections respectively list

• the function main() implemented in hybrid.c and hybrid.h.

• the Role 3 function scheduler() implemented in scheduler.c and scheduler.h.

• a Role 1 function uartISR() implemented in ISR.c and ISR.h, and

• a Role 2 function memoryblkrev() implemented in soft transfer.c.

Our implementation does treat soft-transfers differently (especially in the scheduler() func-

tion). But this specialty can be generalized. See the discussion in Section 4.4.

D.1 The main() Function

The main() function (which contributes to Role 3 SW) is implemented in the file hybrid.c;

while some supporting declaration/typedefs are in the hybrid.h. We list both files here

with detailed comments. For the hybrid.c file, it would be easier to directly read main()’s

implementation at the end of the file before referring to the functions defined earlier. The

hybrid.h file includes some supporting macros and constants, especially the implementation

of the TP-TB interface, and the pre-defined commands that control the test-bench.

The following is the content of file hybrid.c.

155
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1

2 /*****************************************************************************************/

3 /* Auto-commenting of the generation parameters passed to the generator.*/

4 /*****************************************************************************************/

5

6 //Generated with options: "-p default_parameters -s 60" :

7 //Generating 60 scenarios, with the default randomisation strategies.

8

9 /*****************************************************************************************/

10 /* The Head Files this file depends on*/

11 /*****************************************************************************************/

12

13 #include <excalibur.h> //excalibur.h: Symbols of Constants defined in the Nios SoC

14 #include "hybrid.h" //hybrid.h: the head of this c file

15 #include "scheduler.h" //scheduler.c is the main

16 #include "ISR.h" //

17 #include "isr_wrapper.h"

18

19 /*****************************************************************************************/

20 /* A Table for TP to decide which transfer-types are soft-transfers.*/

21 /* When multiple transfers needed to be submitted; soft-transfer needs to be submitted last.*/

22 /*****************************************************************************************/

23

24 int IsSoftTransfer[TRANS_TYPE_NUM]={1,0,0,0,0,0,1,1,1,1,0,1,0,1,0};

25

26 /*****************************************************************************************/

27 /* A table for TP to initialising scenarios

28 (1) set up the current scenario running-flag;

29 (2) set the minimum transfer-repetition in the current scenario.

30 Also, transfer-instance’s description is auto-commented here;

31 together with the auto-comment of environment.*/

32 /*****************************************************************************************/

33

34 Scenario_t Scenario_List[SCENARIO_NUM]={

35

36 //Scenario 0;

37 //TransType RXDATA2RXBUFbyDMA; bad_baud: 512; RFclear_INT: ([’reen_m’, ’leen_m’], 3); ......

38 //TransType Fibonacci; fib: 11;

39 //TransType TIMERCountingDown; count: 8; continuous: 1; period: 100;

40 //TransType TXBUF2TXDATAbyV_Master; RFclear_INT: ([], 0); length: 48; finish_mode: ......

41

42 //Using environment 0

43 {0xc24,1},

44

45 /* ........ Scenario 1 to 58 are omitted in this representation.*/

46

47 //Scenario 59;

48 //TransType M2MDMA; length: 5939; dest_Addr: 3941862; src_Addr: 223232; ......

49 //TransType RXDATA1POLLINGbyCPU; bad_baud: 512; length: 0; finish_mode: REOP; enabled_INT: ([], 0);

50 //TransType TXBUF2TXDATAbyV_Master; RFclear_INT: ([’ieop_s’], 1); length: 56;......

51 //TransType TIMERCountingDown; count: 3; continuous: 1; period: 557;

52

53 //Using environment 5

54 {0x4604,1}}; //End of Scenario Initialisation Table.

55

56 /*****************************************************************************************/
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57 /* A table of environment settings, used by the TP to change environment settings */

58 /* The auto-commenting for each setting is also included. */

59 /*****************************************************************************************/

60

61 Environment_t Env_List[ENV_NUM]={

62

63 //Environment 0:

64 //baud rate=115200;eop=0x83 [131];(d_caching,i_caching)=(0, 0)

65

66 {289,0x83,0, 0},

67

68 /* ........ Environment 1 to 4 are omitted in this representation.*/

69

70 //Environment 5:

71 //baud rate=225828;eop=0xe5 [229];(d_caching,i_caching)=(1, 1)

72

73 {148,0xe5,1, 1}}; //End of Environment Table.

74

75 /*****************************************************************************************/

76 /* The following is the definition (not declaration) of other globally visible variables

77 for various purposes.*/

78 /* Volatile ones circumvent cached behaviours, so could be detected by the TB. */

79 /* Firstly, The definition of critical data-structure for

80 (1) scheduling purpose;

81 (2) TP-ISR communication. */

82 /*****************************************************************************************/

83

84 int RF[TRANS_TYPE_NUM]; //The running-flag of each transfer-type. Critical.

85 int IE[TRANS_TYPE_NUM]; //The interrupt-enable flag. Implementation-dependent.

86 int FM[TRANS_TYPE_NUM]; //The flag for virtual-transfers to determine their behaviour.

87 int RepetitionCounter[TRANS_TYPE_NUM]; //The counter for each transfer in a scenario. Necessary.

88 int done_trans_FIFO[MAX_FIFO_LENG]; //The FIFO used by the scheduler. Critical.

89 int FIFO_P=0; //The pointer to the FIFO. Critical

90 int min_repetition; //The minimum repetition of a transfer in a scenario. Important.

91 int ScenarioNotDone=0; //The flag that decides re-submitting transfers in a scenario. Important.

92 volatile int ScenarioRF=0; //The (bit-mask) flag that marks if any transfer is running. Critical.

93 int CurrentScenario=0-1; //The current scenario number.

94 int EnvironmentCounter=0; //The current environment setting.

95

96 /*****************************************************************************************/

97 /* Then the start-point of the general-purpose memory-range in the data-memory (SRAM of the SoC).*/

98 /* This GP-Buffer size is 512KB -- the 2nd half of the 1MB SRAM, not exactly, because --

99 -- the interrupt vector table (256B) is at the tail of the SRAM. */

100 /* This GP-Buffer is volatile since the DMA-engine could dump raw data in it.*/

101 /*****************************************************************************************/

102

103 volatile void* GP_BUFFER = (void*) (((int)nasys_vector_table) - 512*1024);

104

105 /* End of Definition of All Global Variables. */

106

107 /*****************************************************************************************/

108 /* The Polling Mechanism. It polls the running-flag of the current SCENARIO (not transfer’s RF).

109 When the scenarioRF is False, we attempt to update environment, and initialise the next scenario.

110 It is not really an idling operation but a polling operation. The name of "Idle_CPU" is a legacy

111 of the pure event-driven TP; in which Idle_CPU is implemented as "while 1;".*/

112 /* It is PrepareNextScenario() that detects the last scenario and terminates the simulation.*/

113 /*****************************************************************************************/
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114

115 #define Idle_CPU {\

116 while(1){\

117 if (!ScenarioRF) {\

118 SHUT_SYS_INT;\

119 PrepareNextScenario();\

120 scheduler();\

121 OPEN_SYS_INT;\

122 }\

123 }\

124 }

125

126 /*****************************************************************************************/

127 /* The Implementation of UpdateEnvironment and PrepareNextScenario.

128 We could choose to implement them as macros instead of subroutines.

129 But implementing them as subroutines makes them profilable by the TB.

130 PrepareNextScenario() detects the need to finish simulation.*/

131 /*****************************************************************************************/

132

133 void UpdateEnvironment(){

134 Environment_t E = Env_List[EnvironmentCounter++];

135

136 //EOP

137 na_Uart_1->np_uartendofpacket=(int) E.eop; //Set the eop physically in the UART

138 EOP= E.eop; //set the eop softly for the virtual masters

139 na_Uart_1->np_uartdivisor=E.baud; //Set the baud-rate physically in the UART

140 caching(E.d_caching, E.i_caching); //Enabling/Disabling the D-cache/I-cache.

141 }

142

143 void PrepareNextScenario(){

144 Scenario_t S;

145 int mask;

146 int TransID=0;

147

148 CurrentScenario++; //Proceed the current scenario

149

150 if (CurrentScenario==SCENARIO_NUM) FINISH_SIMULATION; //When all scenarios are done, terminate simulation.

151

152 if (CurrentScenario%CHANGE_ENV==0){ //Update environment.

153 UpdateEnvironment();

154 }

155

156 S=Scenario_List[CurrentScenario]; //Begin to initialise current scenario.

157

158 ScenarioNotDone =S.S_mask; //The bit-mask that reflect which transfer-types are running

159 ScenarioRF =S.S_mask;

160 min_repetition =S.Min_Repetition;

161

162 mask = S.S_mask;

163 while (mask){ //According to the mask, push transfers into the FIFO.

164 if (mask & (1<<TransID)){

165 RepetitionCounter[TransID]=0;

166 push_FIFO(TransID);

167 mask &=(~(1<<TransID));

168 }

169 TransID++;

170 }
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171 }

172 /*****************************************************************************************/

173 /* The Implementation of installation of user-ISR. We do not use the default one

174 provided by Altera since we are going to install our faster customised ISR_wrappers.

175 It is a single in-line assembly instruction.*/

176 /*****************************************************************************************/

177

178 #define installisr(irq,prog)\

179 asm volatile (\

180 "ST [%0], %1;"\

181 :\

182 :"r"((irq<<2)+(int)nasys_vector_table),"r"(prog)\

183 :"memory")

184

185 /*****************************************************************************************/

186 /* The main() function. It sequentially perform these tasks:

187 (1). Reset data-structures (running-flags, the FIFO);

188 (2). Install ISRs;

189 (3). Prepare scenario 0;

190 (4). Invoke the scheduler();

191 (5). Poll the current scenario’s running-flag and proceed to the next scenario.

192 */

193 /*****************************************************************************************/

194

195 main(){

196 //(0). Define the Working Variables.

197 int dma_control_reg=0;

198 int uart_control_reg=0;

199 int timer_control_reg=0;

200 int temp;

201

202 START_SIMULATION;//Give TB the signal to start logging. Macro defined in hybrid.h.

203

204 //(1). Reset data-structures (running-flags, the FIFO);

205 for (temp=0;temp<TRANS_TYPE_NUM;temp++){

206 RF[temp]=0;

207 IE[temp]=0;

208 FM[temp]=0;

209 RepetitionCounter[temp]=0;

210 }

211 for (temp=0;temp<MAX_FIFO_LENG;temp++)

212 done_trans_FIFO[temp]=-1;

213

214 //(2). Install ISRs;

215 SHUT_SYS_INT;

216 SHUT_UART1_INT;

217 SHUT_DMA1_INT;

218 SHUT_TIMER_INT;

219 installisr(na_Uart_1_irq,(nios_isrhandlerproc) uartISR_wrapper);

220 installisr(na_DMA_1_irq,(nios_isrhandlerproc)dmaISR_wrapper);

221 installisr(na_Timer_irq,(nios_isrhandlerproc)TimerISR_wrapper);

222

223 //(3). Prepare scenario 0; (4). Invoke the scheduler(); (5). Polling for next scenario.

224 PrepareNextScenario();

225 scheduler();

226 OPEN_SYS_INT; //Now main() is ready for polling. Make sure interrupt can happen.

227 Idle_CPU; //Not really idling. Polling and proceeds to a new scenario.
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228 }

229

230 //End of File hybrid.c

The following is the content of file hybrid.h.

1

2 /* hybrid.h: Most of hybrid.h content is fixed.*/

3 //Only two constants are inserted by the Test Generator:

4

5 #define TRANS_TYPE_NUM 15

6 #define SCENARIO_NUM 60

7

8 //Typedefs for TB-control data-structure.

9

10 //Firstly, re-interpret a 32-bit word in three alternative ways;

11 typedef struct{ //One word = one integer

12 int i;

13 }t_int_word;

14

15 typedef struct{ //One word = 2 short integers

16 short h0;

17 short h1;

18 } t_short_word;

19

20 typedef struct{ //One word = 4 bytes

21 char b0;

22 char b1;

23 char b2;

24 char b3;

25 } t_char_word;

26

27 //Secondly, put these interpretations in one union to represent a flexible 32-bit word.

28 typedef union{ //One flexible word = one integer, two short-integers OR, four bytes.

29 t_int_word int_para;

30 t_short_word short_para;

31 t_char_word char_para;

32 } flex_word;

33

34

35 //Thirdly, typedef the TB-control structure: 1 command (int) and 7 flexible-words;

36 typedef struct

37 { int command;

38 flex_word p1;

39 flex_word p2;

40 flex_word p3;

41 flex_word p4;

42 flex_word p5;

43 flex_word p6;

44 flex_word p7;

45 } tb_control;

46

47 // Finally, locate the TB-control structure at the first 8 word of the on-chip RAM

48 #define tb_control_p (volatile tb_control *)(na_on_chip_RAM)

49

50 //Now, we define constants/macros that use the above TB-control structure.
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51 //The Following negative numbers are command-code for the TB to understand:

52 #define SIMULATION_FINISH (-1)

53 #define DEBUG_INFO (-2)

54 #define RX_STIMULATION_SETUP (-3)

55 #define RX_STIMULATION_START (-4)

56 #define RX_STIMULATION_STOP (-5)

57 #define SIMULATION_STOP (-6)

58 #define SIMULATION_START (-7)

59

60 //The next macro is defined for the TB to execute a specific command;

61 //but it is not recommended to use it directly by the TP.

62 #define EXECUTE(ins) {tb_control_p->command=0;tb_control_p->command=(ins);}

63

64 //The following user-level macros are used for TB-control by TP.

65 //They use the above EXECUTE(ins) macro.

66 #define FINISH_SIMULATION EXECUTE(SIMULATION_FINISH)

67 #define DISPLAY_DEBUG_INFO(d,nm) (tb_control_p->p1).int_para.i=(d);(tb_control_p->p2).char_para.b0=(nm);\

68 EXECUTE(DEBUG_INFO)

69 #define SETUP_RX_STIMULATION(BB,L,EM) (tb_control_p->p1).short_para.h0=(BB);(tb_control_p->p1).short_para.h1=(L);\

70 (tb_control_p->p2).char_para.b0=(EM);EXECUTE(RX_STIMULATION_SETUP)

71 #define START_RX_STIMULATION EXECUTE(RX_STIMULATION_START)

72 #define STOP_RX_STIMULATION EXECUTE(RX_STIMULATION_STOP)

73 #define STOP_SIMULATION EXECUTE(SIMULATION_STOP)

74 #define START_SIMULATION EXECUTE(SIMULATION_START)

75

76 //Typdef the content of an environment entry;

77 typedef struct{

78 int baud;

79 unsigned char eop;

80 char d_caching;

81 char i_caching;

82 }Environment_t;

83

84 //Typedef the content of a FIFO entry: a bit-mask and a minimum transfer iteration.

85 //Typedef the content of a scenario entry;

86 typedef struct{

87 int S_mask;

88 int Min_Repetition;

89 }Scenario_t;

90

91 //FIFO-related macros and constants.

92 #define MAX_FIFO_LENG 32 //be large enough....

93 #define FIFO_NOT_EMPTY (FIFO_P)

94 #define pop_FIFO (FIFO_NOT_EMPTY?done_trans_FIFO[--FIFO_P]:-1)

95 #define push_FIFO(tid) if(FIFO_P<MAX_FIFO_LENG)done_trans_FIFO[FIFO_P++]=(tid)

96

97 //Miscellaneous but critical system-level macros for ISR/scheduler/main to use.

98 #define SHUT_SYS_INT asm("PFX 8");asm("WRCTL %g0") //disable system-wide interrupt.

99 #define OPEN_SYS_INT asm("PFX 9");asm("WRCTL %g0") //enable system-wide interrupt

100 #define IDLE_CPU while(1) //The real CPU-Idling operation. Not used in the hybrid mode.

101

102 //Now publish (declare) all globally accessible symbols defined in hybrid.c

103 extern int RF[TRANS_TYPE_NUM]; //For the scheduler and ISRs

104 extern int IE[TRANS_TYPE_NUM]; //For ISRs

105 extern int FM[TRANS_TYPE_NUM]; //For ISRs

106 extern int IsSoftTransfer[TRANS_TYPE_NUM]; //For the scheduler

107 extern int RepetitionCounter[TRANS_TYPE_NUM]; //For the scheduler
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108 extern int done_trans_FIFO[MAX_FIFO_LENG]; //For the scheduler and ISRs

109 extern int FIFO_P; //For the scheduler and ISRs

110 extern int CurrentScenario; //For the scheduler and ISRs

111 extern int ScenarioNotDone; //For the scheduler

112 extern volatile int ScenarioRF; //For the scheduler

113 extern volatile void* GP_BUFFER; //For the scheduler

114 extern int min_repetition; //For the scheduler

115 extern Scenario_t Scenario_List[SCENARIO_NUM];//For the scheduler and ISRs

D.2 scheduler() – the “Test-Program”

The scheduler() function is the main body of the “TP”. Since it is a hybrid-mode TP, it

simply (re-)submitted the transfers specified by the transfer-IDs, until all transfers in the

current scenario have completed at least Min Repetition times. This is a simple scheduling

scheme, very much like a juggler who throws, receives and re-throws several balls, each ball

with different travel-duration in the air. This part of code is fixed and account for only

dozens of lines of C code.

The majority of scheduler() is single, but probably very long, switch statement which

we call the “action-table”. Essentially, it switches against a transfer-ID and executes the

matching entry. The action-table is actually the main output of the test-generator.

For efficiency reasons, we make the following arrangements:

• the action-table is a normal switch statement directly embedded in the scheduler()

rather than a subroutine.

• the transfer-instance-ID is in fact a pair of (a) the scenario-ID and (b) the transfer-

type-ID. We assume that transfer-instances of the same transfer-type use the same

master resource, so a scenario cannot contain two instances of the same type; it follows

that a transfer-type-ID is enough to identify a transfer-instance in a given scenario.

• Accordingly, the action-table has two tiers of switch statements.

– The outer tier is a single switch, switching against the scenario-ID, and

– its entry is a second tier of switch, switching against the transfer-type-ID; and

– the entry of the second tier is the transfer’s configuration/invocation sequence.

Because the action-table is a single switch statement, scheduler() returns very fast al-

though its size could be quite big.
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Before we list scheduler()’s implementation code, we describe how scheduler() interaction

with other software components. scheduler() has three types of entrance-points, namely,

• being called from main();

• being called from an ISR which notifies a transfer-finish event; and

• returning from a finished soft-transfer (i.e., the notification of soft-transfers).

In any case, scheduler() receives transfer-IDs from the FIFO (done trans FIFO).

Scheduler() has three types of exit-points:

• returning to main() with transfer(s) being submitted;

• returning to the caller ISR either (a) with transfer(s) being re-submitted, or (b) with

re-submission cancelled (to run-down a scenario).

• invoking (i.e., calling) a soft-transfer.

In any case, scheduler() guarantees the FIFO is cleared before it loses control.

The following is the code of one scheduler() with 60 scenarios; but only one entry is shown

in the action-table.

1 //Generated with options: -p default_parameters -s 60

2

3 #include <excalibur.h>

4 #include "hybrid.h"

5 #include "CPUTransTypeImple.h"

6 #include "ISR.h"

7 #include "scheduler.h"

8

9 //Remember: the caller of scheduler must have already disabled system-wide interrupts (for atomic FIFO operation).

10 //The scheduler is responsible to re-enable interrupts when appropriate.

11

12 void scheduler(){ //scheduler receives its input from the FIFO.

13

14 /*Local working variables*/

15 register int temp; //The general-purpose working variable. Typically used in read-modify-update operations.

16 int TransType; //The current Transfer Type; combined with the global CurrentScenario, forms the Transfer-ID.

17 int RestartTransfers[TRANS_TYPE_NUM]; //Used for remembering which transfers need to be (re-)submitted.

18 int RestartTransferCount=0; // And its pointer.

19 int tid; //A working variable. Not important.

20

21

22 do{

23 //This top-level do-while loop guarantees that when scheduler exits, the FIFO is empty.
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24 //This loop executes only once unless a soft-transfer is (re-)submitted.

25 //This is because submitting a soft-transfer is simple CALL to that soft-transfer.

26 //When this happens, we regard that the scheduler has finished its current running.

27 //But since it the submission is just a normal CALL, when

28 //the soft-transfer returns, it leaves its ID in the FIFO, but the control now

29 //returns to scheduler. That is why this do-while loop exists: it emulates that

30 //the scheduler is triggered by the soft-transfer that just completed.

31

32 RestartTransferCount=0; //Resetting how many transfers to submit.

33 while (FIFO_NOT_EMPTY){

34

35 // This while loop move entries from the FIFO to a list for (re-)submission.

36 // For most cases, there is only one entry in the FIFO.

37 // The exception includes the beginning of a new scenario.

38

39 TransType = pop_FIFO; //Pop the FIFO, get the Transfer-type-ID.

40

41 RepetitionCounter[TransType]++; // Repetition-counting.

42

43 if (RepetitionCounter[TransType]<=MAX_REPETITION) // MAX_REPITITION prevents too many re-submissions.

44 RestartTransfers[RestartTransferCount++]=TransType; // The popped transfers recorded.

45 else ScenarioRF&=~(1<<TransType); // This finished transfer won’t be re-submitted.

46

47

48 if (RepetitionCounter[TransType]>min_repetition) // min_repetition prevents too few re-submission.

49 ScenarioNotDone&=(~(1<<TransType)); // Flag that this finished transfer is "done", i.e.,

50 // it is nice but not required to re-submit

51 } //End of popping all FIFO entries (the while loop).

52

53 /* At this stage, all FIFO is popped. */

54

55 /* Now judge if re-submission is needed. If not, exit scheduler.*/

56 /* The still running transfers will trigger scheduler at their notification time. */

57 /* When that happens, the scheduler also exits here.*/

58 /* It is the main() function that detects ScenarioRF and proceed to the next scenario.*/

59

60 if (!ScenarioNotDone) { //If ALL transfers in the scenario have been "done",

61 for (temp=0;temp<RestartTransferCount;temp++) //the FINISHED transfers will NOT be re-submitted;

62 ScenarioRF&=(~(1<<RestartTransfers[temp])); //so they are flagged as NOT physically running;

63 OPEN_SYS_INT; //Re-enable system-wide interrupts before --

64 return; //-- exiting scheduler with re-submission cancelled.

65 }

66

67 /* At this stage, the scheduler decides to proceed to re-submission.*/

68

69 /* The following for-loop moves a soft-transfer to the end of the re-submission list, if it exists.*/

70 /* For most of time, this loop is skipped altogether since only one transfer need be re-submitted.*/

71 /* The exception is the beginning of a new scenario.*/

72

73 for (tid=0;tid<RestartTransferCount-1;tid++){

74 if (IsSoftTransfer[RestartTransfers[tid]]) {

75 int tid2;

76 int SoftTransferID=RestartTransfers[tid];

77 for (tid2=tid+1;tid2<RestartTransferCount;tid2++)

78 RestartTransfers[tid2-1]=RestartTransfers[tid2];

79 RestartTransfers[RestartTransferCount-1]=SoftTransferID;

80 break;
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81 }

82 }

83

84 /* At this stage, it is safe to (re-)submit transfers */

85 /* The following for-loop does the (re-)submission. Again, for most cases, this loop execute only once.*/

86

87 for (tid=0;tid<RestartTransferCount;tid++){ //Proceed to (re-)submit transfers!

88

89 /* The transfer-instance-ID is made of CurrentScenario and TransType */

90

91 TransType=RestartTransfers[tid];

92

93 /* !!! Here is the ENTRY POINT of the ACTION-TABLE !!! */

94 /* All comments in the action-table are automatically scripted.*/

95

96 switch (CurrentScenario) { //The 1st-tier switch.

97

98 case 0: //Scenario 0

99

100 switch (TransType) {//The 2nd tier switch. TransType was popped from the FIFO

101 case RXDATA2RXBUFbyDMA:

102

103 //Here Are the Setup Configurations -- non-parametric:

104 temp=na_DMA_1->np_dmacontrol; //now setting DMA rcon/wcon=1/0; b/bw/w=1;

105 temp&=~(np_dmacontrol_rcon_mask+np_dmacontrol_wcon_mask+

106 np_dmacontrol_byte_mask+np_dmacontrol_hw_mask+np_dmacontrol_word_mask);

107 temp|=(np_dmacontrol_rcon_mask+np_dmacontrol_byte_mask);

108 na_DMA_1->np_dmacontrol=temp; //completed setting DMA rcon/wcon=1/0; b/hw/w=1;

109 na_DMA_1->np_dmareadaddress=(int) &(na_Uart_1->np_uartrxdata);//DMA Read_addr=0x910800;

110 na_DMA_1->np_dmawriteaddress=(int) rxbuf; //set DMA Write_addr=int(char*(rxbuf));

111

112 //Here Are the Configurations -- parametric:

113 FM[RXDATA2RXBUFbyDMA]=REOP; //finish_mode

114 IE[RXDATA2RXBUFbyDMA]=0xf7;

115 na_DMA_1->np_dmalength=RXBUF_SIZE; //set DMA leng_Reg=RXBUF_SIZE;

116 temp=na_DMA_1->np_dmacontrol; //now setting up the DMA interruptions

117 temp &=0xff4f; temp |=0xb0;

118 na_DMA_1->np_dmacontrol=temp; //completed setup the DMA interruptions

119 temp=na_Uart_1->np_uartcontrol; //now setting up the UART interruptions

120 temp &=0xee70; temp |=0x110f;

121 na_Uart_1->np_uartcontrol=temp; //completed setting up the UART interruptions

122 SETUP_RX_STIMULATION(512,RXBUF_SIZE,REOP);

123

124 //Now start this transfers instance;

125 (na_DMA_1->np_dmastatus)=0;RF[RXDATA2RXBUFbyDMA]=0x3;

126 (na_DMA_1->np_dmacontrol) |= np_dmacontrol_go_mask; START_RX_STIMULATION;

127

128 break; //end of case: Instance ID=(0,RXDATA2RXBUFbyDMA);

129

130 case Fibonacci://Transfer_Type Case

131

132 //Here Are the Setup Configurations:

133 fib_result=0;

134 fib_level=0;

135

136 //Here Are the Parameterisations:

137 expected_fibonacci_result=144;
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138

139 //Now start this transfers instance;

140 //since it is a soft-transfer, we are leaving the scheduler!!!

141 RF[Fibonacci]=1;

142 OPEN_SYS_INT;

143 RF[Fibonacci]=fibonacci(11);

144 // Now we are back to scheduler from the soft-transfer!!!

145 //Since an Soft-Transfer is finished:

146 SHUT_SYS_INT; //Need to re-shut the interrupt from here;

147 push_FIFO(Fibonacci); //Need to feed the scheduler;

148

149 break; //end of case: Instance ID=(0,Fibonacci);

150

151 case TIMERCountingDown: //Transfer_Type Case

152

153 //Here Are the Setup Configurations: Empty

154

155 //Here Are the Parameterisations:

156 na_Timer->np_timerperiodh=0x0; //setting the periodh register

157 na_Timer->np_timerperiodl=0xd04; //setting the periodl register

158 Timer_Counter=8; //setting how the count down of the timer ISR

159

160 //Now start this transfers instance;

161 RF[TIMERCountingDown]=1;na_Timer->np_timercontrol =0x7 ;//#bit 0-3

162

163 break; //end of case: Instance ID=(0,TIMERCountingDown);

164

165 case TXBUF2TXDATAbyV_Master: //Transfer_Type Case

166

167 //Here Are the Setup Configurations:

168 last_txdata=~EOP; tx_counter=0; //clearing the virtual master

169

170 //Here Are the Parameterisations:

171 FM[TXBUF2TXDATAbyV_Master]=LENGTH;

172 IE[TXBUF2TXDATAbyV_Master]=0x4; //for ISR

173 txLength=48; //for ISR

174 temp=na_Uart_1->np_uartcontrol; //now setting up the UART interruptions

175 temp &=0xff8f; temp |=0x20;

176 na_Uart_1->np_uartcontrol=temp; //completed setting up the UART interruptions

177

178 //Now start this transfers instance;

179 RF[TXBUF2TXDATAbyV_Master]=128;

180 (na_Uart_1->np_uartcontrol) |= np_uartcontrol_itrdy_mask; //UART itrdy=1;

181

182 break; //end of case: Instance ID=(0,TXBUF2TXDATAbyV_Master);

183

184 } //end of tier-2 switching (on transfer-types);

185

186 break; //end of Scenario ID=0;

187

188 /* .......Scenario 1 to 59 are omitted........*/

189

190 } //end of tier-1 switching (on scenarios);

191

192 /* !!! END of the ACTION-TABLE!!! */

193

194 } // end of the for-loop; each loop is for a (re-)submission.
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195

196 } while (FIFO_NOT_EMPTY); //End of the do-while loop.

197

198 /* Repair to exit the scheduler -- re-enable the system-wide interrupts before exit. */

199 OPEN_SYS_INT;

200 } //Normal end of scheduler -- (re-)submission is performed.

D.3 uartISR() – an interrupt-service-routine

ISRs are critical codes that provide service to hardware interrupts. The UART in our Nios

SoC is the most interrupt-intensive device, with both data-intensive sources and control-

intensive ones. Therefore we choose to list uartISR()’s implementation code, in order to

see how to implement the idea of “general ISR structure” described in Section 4.3.3. The

uartISR() is a function that deals with all interrupt sources from the UART, so it actually

encapsulates multiple “ISRs”. They perform system-dependent behaviours. We do not

suggest readers to grasp every lines of the function. The important thing is the overall

structure of the function and the flag/FIFO operations which contributes to the execution

of the entire TP.

1 #include <excalibur.h>

2 #include "ISR.h"

3 #include "hybrid.h"

4 #include "scheduler.h"

5 #include "isr_wrapper.h"

6

7 void uartISR(){

8

9 /* Overview: this function handles all 9 possible UART interrupt reasons.

10 Reason Description Modelling

11 -----------------------------------------------------------------------------------

12 rrdy: receiver-ready: virtual-master/general transfer-event

13 trdy: transmitter-ready: virtual-master/general transfer-event

14 pe: parity error: transfer-abortion-event (error in RX-streams)

15 fe: frame error: transfer-abortion-event (error in RX-streams)

16 brk: RX-strem break: transfer-abortion-event (error in RX-streams)

17 roe: RX overrun: transfer-abortion-event (error in RX-streams)

18 toe: TX overrun: transfer-abortion-event (error in TX-streams)

19 tmt: TX empty: transfer-event (warning in TX-streams)

20 eop: end-of-packed: transfer-event (in RX or TX stream, Problematic)

21

22 The mapping from a HW-interrupt to an transfer-event is done by checking the running flags.

23 Matched code can be regarded as transfers’ extended behaviour, or, transfers are

24 equipped with the "calling capabilities".

25 Only the transfer-finish or transfer-abortion events currently use the capabilities

26 (to reactivate the scheduler). General events can also trigger the logging behaviour,

27 which, for efficiency reason, is not implemented in the code.

28

29 There are some treatments out of efficiency considerations.
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30

31 A. It is rare (in normal situation) that the uartISR is triggered for more than

32 one reason, so after servicing one interrupt reason, we attempt to exit uartISR.

33

34 B. ISRs behave themselves on UART registers. We minimise read/write operations

35 on physical registers using such a technique (with reasonable exceptions):

36

37 1. copy registers to variables at uartISR entrance;

38 2. make modifications to the copies;

39 3. update the physical registers with the modified copy BEFORE uartISR hand over the control.

40

41 Soft flags used by ISRs:

42 A. RF: transfers’ running-flag;

43 B. IE and FM: Other transfer variables controlling ISRs’ behaviours.*/

44

45 register int uart_control_reg=(na_Uart_1->np_uartcontrol); //Copy the control-register

46 int uart_status_reg=(na_Uart_1->np_uartstatus); //Copy the status-register

47 register int status_vs_control = (uart_control_reg & uart_status_reg); //A handy working variable.

48

49 /*The rrdy ISR*/

50 if (status_vs_control & np_uartstatus_rrdy_mask){

51

52 /*Mapping: Checking the running flags*/

53

54 if (RF[RXDATA2RXBUFbyV_Master]>0){ //Mapping: is it an RX-by-Virtual_master transfer?

55 //Yes. Virtual-master behaviour: read from rxdata and send to rxbuf, leave a copy for the EOP issue.

56

57 last_rxdata= (unsigned char) na_Uart_1->np_uartrxdata; //Read to the copy first;

58 rxbuf[rx_counter++]=last_rxdata; //Send the copy to receiving buffer.

59

60 //Virtual-master behaviour: detect the finish event of the RX stream and perform notification.

61 if ((rx_counter>=RXBUF_SIZE)||

62 ((rx_counter == rxLength) && (FM[RXDATA2RXBUFbyV_Master]&1))||

63 ((RF[RXDATA2RXBUFbyV_Master]==128)&&(last_rxdata==EOP) && (FM[RXDATA2RXBUFbyV_Master]&2))){

64 //Begin notification!

65 int rx_err=(na_Uart_1->np_uartstatus) & UART_RX_ERR_MASKS; //Error-awareness

66 uart_control_reg&=(~UART_RX_INT_MASKS); //Operation on the fake control register

67 RF[RXDATA2RXBUFbyV_Master]=-rx_err; //Running-flag operation!

68 if (rx_err) STOP_RX_STIMULATION; //Error-awareness.

69 IE[RXDATA2RXBUFbyV_Master]=0;

70 SHUT_SYS_INT;

71 push_FIFO(RXDATA2RXBUFbyV_Master); //FIFO operation!

72 }

73 } //End of mapping to a transfer.

74

75 else if (RF[RXDATA2RXBUFbyDMA]>0){ //Mapping: is it an RX-by-DMA transfer?

76

77 if (na_DMA_1->np_dmastatus & np_dmastatus_done_mask)

78 uart_control_reg&=(~np_uartcontrol_irrdy_mask);

79 } //End of mapping to a transfer.

80

81 else; //End of Mapping: no other transfer could possibly cause rrdy!

82

83 /* Now rrdy ISR is done; attempt to quit uartISR: is rrdy the only reason for this interrupt? */

84 if (!(status_vs_control &= (~np_uartstatus_rrdy_mask))){

85 //Yes. So we begin the exit sequence.

86 UPDATE_UART1_INT; //Update the physical register.
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87 SHUT_SYS_INT;

88 if (FIFO_NOT_EMPTY) scheduler(); //Re-activate scheduler() if there is something in FIFO.

89 OPEN_SYS_INT;

90 return; //The quick exit of uartISR

91 }

92 } //End of rrdy ISR.

93

94

95 /* The trdy ISR */

96 if (status_vs_control & np_uartstatus_trdy_mask){ /

97 //Begin Mapping.

98 if (RF[TXBUF2TXDATAbyV_Master]>0) { //Mapping: is it a TX-by-Virtual_Master transfer?

99 //Mapped. It is TX-by-ISR. Starting Virtual-master’s behaviours.

100 //The uart-transmitter could be empty (tmt) as well as ready (trdy). In that case,

101 //we should be able to send 2 bytes instead of 1, saving one interrupt without risk of overrun.

102

103 int repetition=(uart_status_reg & np_uartstatus_tmt_mask)?2:1;//Initialise a short loop.

104 while (repetition){

105 //Begin sending a byte to the txdata (transmitter).

106 //Considering the EOP issue, make a copy of the sent byte.

107 last_txdata=txbuf[tx_counter++]; //Make a copy of the sent byte first;

108 na_Uart_1->np_uarttxdata=(int) last_txdata; //Now send the copy physically.

109

110 //Now, a shortcut to reset eop status set; do not wait for the eop ISR.

111 if ((last_txdata==EOP) && (uart_control_reg & np_uartcontrol_ieop_mask))

112 status_vs_control |= np_uartstatus_eop_mask;

113

114 //Virtual master checking transfer-finish event.

115 if (((RF[TXBUF2TXDATAbyV_Master]==128)&&(last_txdata==EOP) && (FM[TXBUF2TXDATAbyV_Master]&2))||

116 (tx_counter>=TXBUF_SIZE)||((tx_counter == txLength) && (FM[TXBUF2TXDATAbyV_Master]&1))){

117 //It IS an TX-finish event! Do as many preparation before lose control.

118

119 uart_control_reg&=(~UART_TX_INT_MASKS); //Disable trdy! Otherwise the CPU will be choked!

120 RF[TXBUF2TXDATAbyV_Master]=0; //Clear running-flag!

121 IE[TXBUF2TXDATAbyV_Master]=0;

122 SHUT_SYS_INT;

123 push_FIFO(TXBUF2TXDATAbyV_Master); //FIFO operation!

124 break;

125 }//end of TX-finish judgment

126 repetition--;

127 } //end of the short while loop.

128 } //end of one mapped entry.

129

130 else if (RF[TXBUF2TXDATAbyDMA]>0) { //Mapping: the TX-by-DMA transfer.

131

132 //Disable trdy itself (since it is an TX-by-DMA), unless this trdy is a general transfer-event.

133 //This will cause the Transient DMA interrupt problem. Let dmaISR() handle that.

134 if (!(IE[TXBUF2TXDATAbyDMA]&8)) uart_control_reg&=(~np_uartcontrol_itrdy_mask);

135

136 //What the scheduler has done to invoke the TX-by-DMA is only enabling the trdy. Therefor,

137 //here is the REAL invocation: let the first trdy INT to physically invoke the RX-by-DMA.

138 //set DMA to ’go’; (Configuration is already done in the scheduler.)

139 if (!(na_DMA_1->np_dmacontrol & np_dmacontrol_go_mask))

140 na_DMA_1->np_dmacontrol|=np_dmacontrol_go_mask;

141

142 else if (!(na_DMA_1->np_dmastatus & np_dmastatus_busy_mask))

143 uart_control_reg&=(~np_uartcontrol_itrdy_mask);
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144 //this ’else if’ works around such a failure: t(r)rdy is enabled during DMA transfer;

145 //however, after DMA is done, DMA interrupt cannot take control to disable UART interrupt,

146 //since UART has higher interrupt priority than DMA.

147 }

148

149 else; //Mapping end.

150

151 //trdy ISR done. The quick exit of uartISR.

152

153 if (!(status_vs_control &= (~np_uartstatus_trdy_mask))){

154 UPDATE_UART1_INT;

155 SHUT_SYS_INT;

156 if (FIFO_NOT_EMPTY){scheduler();}

157 OPEN_SYS_INT;

158 return;

159 }

160 }

161

162 /* The eop ISR */

163 if (status_vs_control & np_uartstatus_eop_mask){

164

165 status_vs_control |= (uart_control_reg & UART_ERR_MASKS & (na_Uart_1->np_uartstatus));

166

167 //The following is a write to the REAL status-register (not the copy) of UART.

168 //This is a requirement of the nature of the interrupt: the eop bit need to be reset.

169 na_Uart_1->np_uartstatus=0;

170

171 //Begin Mapping. But use independent "if"s instead of "else if".

172 //It is possible to have an RX-eop AND a TX-eop simultaneously

173 //But compare with the COPY of rxdata/txdata instead of the real rxdata/txdata.

174 //And perform some finishing jobs, since eop means the end of a transfer.

175

176 if (RF[TXBUF2TXDATAbyV_Master]==1) { //1: Expect the eop ISR to finish the TX transfer.

177 if ((last_txdata==EOP)||(tx_counter>=TXBUF_SIZE)){

178 uart_control_reg&=(~UART_TX_INT_MASKS);

179 RF[TXBUF2TXDATAbyV_Master]=0; //Running-flag operation.

180 IE[TXBUF2TXDATAbyV_Master]=0;

181 SHUT_SYS_INT;

182 push_FIFO(TXBUF2TXDATAbyV_Master);//FIFO Operation

183 }

184 }

185

186 if (RF[RXDATA2RXBUFbyV_Master]==1){ //1: Expect the eop ISR to finish the RX transfer.

187 if ((last_rxdata==EOP)||(rx_counter>=RXBUF_SIZE)) {

188 uart_control_reg&=(~UART_RX_INT_MASKS);

189 RF[RXDATA2RXBUFbyV_Master]=0; //Running-flag operation.

190 IE[RXDATA2RXBUFbyV_Master]=0;

191 SHUT_SYS_INT;

192 push_FIFO(RXDATA2RXBUFbyV_Master);//FIFO operation

193 }

194 }

195

196 //The quick exit of uartISR

197

198 if (!(status_vs_control &= (~np_uartstatus_eop_mask))){

199 UPDATE_UART1_INT; //Update the REAL register

200 SHUT_SYS_INT;
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201 if (FIFO_NOT_EMPTY){ scheduler();}

202 OPEN_SYS_INT;

203 return;

204 }

205 }//End of eop ISR.

206

207 /* ISRs to handle RX/TX errors */

208 if (status_vs_control & np_uartstatus_e_mask){

209

210 //Firstly, checking RX errors.

211 int rx_err = status_vs_control & UART_RX_ERR_MASKS;

212 if (rx_err){ // Error awareness code.

213 int tid=TerminateRunningRX(-rx_err); //Function TerminateRunningRX will:

214 //1) stop the RX external stimulation;

215 //2) find out which RX transfer-type is running (the mapping)

216 //3) reset UART and reset DMA if the transfer is rx-by-DMA;

217 //4) reset the running flag RF, etc;

218 //5) return the ID of the mapped transfer-type as tid.

219

220 na_Uart_1->np_uartstatus=0; //Reset the REAL uart status reg err bits;

221 uart_control_reg&=(~rx_err);

222 last_rxdata= (unsigned char) na_Uart_1->np_uartrxdata;//Read-off the garbage data in rxdata

223

224 if (TidIsValid(tid)){

225 SHUT_SYS_INT;

226 push_FIFO(tid); //FIFO. Aborted transfer is also a finished transfer.

227 OPEN_SYS_INT;

228 }

229

230 //The quick exit of uart ISR.

231 if (!(status_vs_control &= (~UART_RX_ERR_MASKS))){

232 UPDATE_UART1_INT;

233 SHUT_SYS_INT;

234 if (FIFO_NOT_EMPTY) { scheduler();}

235 OPEN_SYS_INT;

236 return;

237 }

238

239 } // End of RX errors

240

241 //Secondly, Checking TX error. (only toe is possible)

242 if (status_vs_control & np_uartstatus_toe_mask){

243 //Since the error resetting is a common task already done in treating RX errors,

244 //no HW is operation needed.

245 if (!(status_vs_control &= (~np_uartstatus_toe_mask))){

246 UPDATE_UART1_INT;

247 SHUT_SYS_INT;

248 if (FIFO_NOT_EMPTY) { scheduler();}

249 OPEN_SYS_INT;

250 return;

251 }

252 } //End of TX error.

253 } // End of error handling

254

255 if (status_vs_control & np_uartstatus_tmt_mask){

256 // tmt (transmitter empty) is not a critical event. It happens either after

257 // the last byte is physically sent or when the bit stream outruns the byte stream.
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258 // Since tmt ISR is a UART interrupt, which has higher priority of DMA interrupt,

259 // the tmt ISR should disable tmt itself when a TX-by-DMA transfer finishes.

260 // Otherwise, even if the TX-by-DMA finishes physically, DMA interrupt could not

261 // take control and reset tmt interrupt, and the CPU is choked with tmt interrupt.

262 if ((RF[TXBUF2TXDATAbyDMA]>0) && (IE[TXBUF2TXDATAbyDMA]&16)&&

263 !(na_DMA_1->np_dmastatus & np_dmastatus_busy_mask) &&

264 (((int) na_DMA_1->np_dmareadaddress) > (int) txbuf))

265 uart_control_reg &= ~(np_uartcontrol_itmt_mask);

266 }//End of handling tmt interrupt

267

268 //Now exit the uart ISR

269 SHUT_SYS_INT;

270 UPDATE_UART1_INT;

271 if (FIFO_NOT_EMPTY) { scheduler();}

272 OPEN_SYS_INT;

273

274 } //End of uartISR.

D.4 memoryblkrevbyCPU() – a soft-transfer

This section demonstrates a simple soft-transfer in the form of subroutine. This soft-transfer

reverses the content in a memory range. The width of reversion could be 8-, 16- or 32-bit.

For debugging visibility, configuration is passed to the subroutine by global variables instead

of by subroutine arguments.

A soft-transfer should allow interrupt, and it should not modify the interrupt settings unless

absolutely necessary. This subroutine does modify the interrupt settings but just momen-

tarily; the reason is hardware-dependent – in the Nios SoC, the current interrupt-priority

will disable interrupts of lower priorities. Therefore, the subroutine must lower its interrupt-

priority to allow other interrupts. The reason why a subroutine may have a high priority is

because of the event-driven nature of the test-program – the soft-transfer is invoked by the

Scheduler() function, which in turn could be invoked by an ISR, which may have a high

interrupt priority; hence the soft-transfer inherits the interrupt priority.

Also notice that soft-transfers do not have to perform operations on their running-flags

and the FIFO in themselves. These operations can be automated into their invocation

instructions.

1 /* The soft-transfer named memory-block-reversion is implemented as a subroutine.

2 It reverse the content in a specified memory block. accepting three parameters:

3 1. the width: rev_width (1=byte, 2=short, 4=integer)

4 2. the length: rev_length

5 3. the raw, starting memory address: rev_start_a

6

7 The subroutine originally accepts its parameters as function arguments. However, in order to
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8 let the TB has a visibility of the parameters (for debugging purpose), function

9 arguments are replaced by volatile global variables. Being volatile, TB can observe

10 non-cached accesses to these parameters.

11

12 As a soft-transfer, the subroutine should allow interrupt for most of its execution. */

13

14 volatile char rev_width;

15 volatile int rev_length;

16 volatile int rev_start_a;

17

18 void memoryblkrevbyCPU() {

19

20 int i_priority; //used by the macro SAVE_AND_RESET_I_PRIORITY.

21

22 // The following three macros allows the subroutine to be interrupted.

23 // Due to a Nios-specific reason,

24 // enabling system-wide interrupt is not sufficient to allow interrupt.

25 // The current interrupt-priority also needs to be reset.

26 SHUT_SYS_INT;

27 SAVE_AND_RESET_I_PRIORITY;

28 OPEN_SYS_INT;

29

30 revcounter=0; //Another global for debugging purpose.

31

32 if (rev_width==1){ //Reverse in byte

33 volatile char* sa=(volatile char*) rev_start_a; //Head and Tail

34 volatile char* ea=(volatile char*) (rev_start_a+(rev_length-1));

35 char temp;

36 while (sa<ea){ //The kernel operation of the soft-transfer.

37 temp=*sa;

38 *sa=*ea;

39 *ea=temp;

40 sa++;

41 ea--;

42 revcounter++;

43 }

44 }

45 else if (rev_width==2) { //Reverse in short-integer.

46 volatile short* sa=(volatile short*) rev_start_a; //Head and Tail

47 volatile short* ea=(volatile short*) (rev_start_a+(rev_length-1)*rev_width);

48 short temp;

49 while (sa<ea){ //The kernel operation of the soft-transfer.

50 temp=*sa;

51 *sa=*ea;

52 *ea=temp;

53 sa++;

54 ea--;

55 revcounter++;

56 }

57 }

58 else {//rev_width ==4; reverse in integer

59 volatile int* sa=(volatile int*) rev_start_a; //Head and Tail

60 volatile int* ea=(volatile int*) (rev_start_a+((rev_length-1)<<(rev_width>>1)));

61 int temp;

62 while (sa<ea){ //The kernel operation of the soft-transfer.

63 temp=*sa;

64 *sa=*ea;
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65 *ea=temp;

66 sa++;

67 ea--;

68 revcounter++;

69 }

70 }

71 SHUT_SYS_INT;

72 RESTORE_I_PRIORITY;

73 OPEN_SYS_INT;

74 }
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