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Abstract

Object recognition is one of the most important problems in computer vision. Tra-

ditional object recognition techniques are usually performed on optical images that

are 2D projections of the 3D world. Information about the depth of objects in the

scene is not provided explicitly in these images and thus, it makes 2D object recog-

nition techniques sensitive to changes in illumination and shadowing. As surface

acquisition methods such as LADAR or range scanners are becoming more popu-

lar, there is an increasing interest in the use of three-dimensional geometric data in

object recognition to overcome these limitations.

However, the matching of 3D free-form surfaces is also a difficult problem due to

the shape and topological complexity of 3D surfaces. In addition, the problem is

further complicated by other issues such as variations in surface sampling resolution,

occlusion, clutter and sensor noise. The huge amount of information required to

describe a 3D surface is also another challenge that 3D surface matching techniques

have to deal with.

This thesis investigates the problems of 3D surface matching that include 3D surface

registration and object recognition from range images. It focuses on developing a

novel and efficient framework for aligning 3D surfaces in different coordinate systems

and from this, recognizing 3D models from scenes with high levels of occlusion and

clutter using multi-scale local features.

The first part of the thesis presents two different schemes for extracting salient

geometric features from 3D surfaces using surface curvature measures known as the

curvedness and shape index. By deriving the scale-space representation of the input

surface, surface positions with high local curvature or high local shape variations

are selected as features at various degrees of scale. One advantage of the proposed

approaches is their applicability to both 3D meshes with connectivity information

and unstructured point clouds.

ix



In the second part of the thesis, an application of the multi-scale feature extrac-

tion framework to 3D surface registration and object recognition is proposed. A

Delaunay tetrahedrization is performed on the features extracted from each in-

put range image to obtain a set of triangles. Possible correspondences are found

by matching all possible pairs of triangles between the scene and model surfaces.

From these correspondences, possible transformations between the two surfaces can

be hypothesized and tested. In order to increase the accuracy and efficiency of the

algorithm, various surface geometric and rigidity constraints are applied to prune

unlikely correspondences. By finding the match that aligns the largest number of

features between the two surfaces, the best transformation can be estimated. In

the case of surface registration, this transformation can be used to coarse-align two

different views of the same object. In the case of 3D object recognition, it provides

information about the possible pose (location and orientation) of the model in the

scene surface. Experimental results on a variety of 3D models and real scenes are

shown to verify the effectiveness and robustness of the approach.
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Chapter 1

Introduction

1.1 Motivation

Object recognition is one of the most important problems in computer vision. It

is the process of determining the identities, locations and orientations of objects

in an image. There are many applications of object recognition including, but not

limited to, autonomous navigation and surveillance [22], industrial machine vision

[28], content-base image retrieval [42] and medical image analysis [14].

Traditional object recognition techniques are usually performed on optical images

that are 2D projections of the 3D world. Information about the depth of objects

in the scene is not provided explicitly in these images. As most 2D recognition

algorithms use the intensity values of the images to recognize objects, they are very

sensitive to changes in illumination and shadowing. This is not the case in 3D object

recognition from range input data [46, 56]. A range image is a set of 3D points rep-

resenting a surface obtained by using specialized sensor hardwares or reconstructed

from two or more regular images using multiple view geometry. If the connectivity

information between the points is available in the range image, the surface is rep-

resented as a mesh with vertices and facets. If the range image does not contain

this connectivity information, the surface is represented as a point cloud. Figure

1
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(a) Mesh (b) Point Cloud

Figure 1.1: 3D surface of the ‘Dragon’ model. (a) The surface is represented as
a mesh with connectivity information between the vertices. (b) The surface is
represented as a point cloud. The point cloud is colour-coded using the z coordinates
of the 3D points.

1.1 shows an example of a 3D surface of the ‘Dragon’ model represented by both a

mesh and a point cloud. Range images provide more complete information about

object geometry and thus allow the geometric relations to be compared between the

scene and the training data [5]. As surface acquisition methods such as LADAR

(Laser Detection and Ranging) or range scanners are becoming more popular, there

is an increasing interest in the use of three-dimensional geometric data in not only

object recognition but also other computer vision applications.

The problem of 3D object recognition from range images can be considered as the

process of matching the shape of the object’s surface to the shape of the scene’s

surface [34]. The way 3D data are represented decides how the recognition sys-

tem will process this information [54]. There are many different ways to represent

the shapes from the information stored in the sensed points of the range images.

For instance, surface shapes can be represented in parametric forms such as the

nonuniform rational B-spline (NURBS) [41]. The geometry of surfaces can also be

characterized globally using deformable shapes [16] or locally using surface curva-

ture [13]. Choosing the appropriate representation for shape in order to compare

surfaces efficiently and accurately is still considered an open research question in

computer vision [26].
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The matching of 3D free-form surfaces is a very difficult problem due to the shape

and topological complexity of 3D surfaces. Two different surfaces representing the

same object may have different topologies, thus making the global matching be-

tween them difficult to conduct [87]. Variations in sampling resolution are another

challenge that 3D surface matching techniques have to deal with. Such resolution

differences make it difficult to compare two surfaces as it is hard to establish the

point-wise correspondences between them. In addition, the problem is further com-

plicated by partial occlusion and the present of other structures such as clutter in

the scene. A surface matching algorithm must be able to handle scenes with clutter

and occlusion in order to be applicable to the real world.

This thesis investigates the problems of 3D surface matching that include 3D surface

registration and object recognition from range images. It proposes a novel and

efficient framework for aligning 3D surfaces in different coordinate systems which

can be used in recognizing 3D models from scenes with high levels of occlusion

and clutter using multi-scale local features. The ability of this novel framework is

demonstrated using a standard set of 3D test objects and cluttered scenes.

1.2 Outline of the Thesis

In this section, an overview of the structure of the thesis is presented. In Chapter 2,

several techniques for matching 3D surfaces represented by range images are exam-

ined. Matching methods using local surface descriptors are particularly considered

as they prove to be robust and less sensitive to occlusion and clutter than other

approaches. A review of different techniques for extracting local geometric features

from 3D surfaces which have application to 3D surface matching is also presented

in this chapter.

In Chapter 3, two different schemes for extracting salient features from 3D datasets

using local surface curvature are discussed. Two surface curvature measures known

as curvedness and shape index are used to create the scale-space representations of
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3D surfaces.

Chapter 4 presents a method for registering 3D scans that differ by a rigid body

transformation using a proposed multi-scale feature extraction framework. The

proposed approach is also compared with the spin-image algorithm [35] in order to

evaluate its robustness and effectiveness.

In Chapter 5, results of using multi-scale features in recognizing 3D models from

scenes with occlusion and clutter are described. Experimental results on a number of

different 3D models and scenes are presented to measure the merits of the proposed

approach.

Finally, Chapter 6 summarizes the main contributions of the thesis and discusses

possible future directions for this research.

1.3 Contributions

The following is an outline of the key contributions of the research:

• Two novel schemes for extracting salient features from 3D datasets at multi-

ple scales using local surface curvature. Features can be selected as surface

positions with either high local curvature or high shape variation. Methods

for building the scale-space representations of a 3D surface are also presented.

The proposed framework can be applied to both 3D meshes with connectiv-

ity information between the vertices and unstructured point clouds. Another

advantage of the proposed method is that it does not introduce any shrinking

artefact to the input surface unlike other approaches using smoothing filters

[82].

• An automatic and unified framework for the registration of both 3D meshes

and point clouds using multi-scale local features, assuming that they differ

by a rigid body transformation. A Delaunay tetrahedrization is performed

on the features extracted from each input range image to obtain a set of
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triangles. Possible correspondences are found by matching all possible pairs of

triangles between the scene and model surfaces. From these correspondences,

possible transformations between the two surfaces can be hypothesized and

tested. In order to increase the accuracy and efficiency of the algorithm,

various surface geometric and rigidity constraints can also be applied to prune

unlikely correspondences. By finding the match that aligns the largest number

of features between the two surfaces, the best transformation is able to be

estimated. The proposed method outperforms the spin-images [35] in terms

of accuracy and efficiency when compared on the same datasets. It is also

able to provide good results for noisy surfaces and those sampled at different

resolutions.

• Automatic 3D object recognition from range images with occlusion and clutter

based on the same triangle pair matching approach. Here the quality of the

registration fit is used to determine the correct matched object. The proposed

approach is able to recognize a 3D model from highly occluded scenes with the

presence of other objects. It can also handle scenes with noise and variations

in surface resolution.



Chapter 2

Background

2.1 Introduction

This chapter provides an overview of several popular techniques for matching 3D

surfaces represented by range images. Many 3D surface matching methods have

been proposed in the literature including appearance-based techniques [38, 60, 81,

4], methods that perform the matching using object silhouettes [59, 66], 3D correla-

tion techniques [69, 25], algorithms based on an exhaustive search for corresponding

points [9, 11] and approaches that use local surface descriptors [12, 19, 36, 27, 23,

56, 46]. However, none of these techniques could fully meet all the important re-

quirements of 3D surface matching such as:

• Applicability to free-form surfaces represented by either 3D meshes or un-

structured point clouds.

• Robustness to noise and surface resolution.

• Accuracy and efficiency.

• Ability to handle occlusion and clutter.

6
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In addition, this chapter also discusses different approaches to the problem of feature

extraction from range images which have applications to 3D surface registration

and object recognition. These feature extraction algorithms have a common goal of

providing a systematic way to obtain a representative set of features from the input

surface. The selected features can be used to improve the effectiveness as well as

the robustness of any 3D surface matching algorithm.

2.2 3D Surface Matching Algorithms

2.2.1 Appearance-based Approaches

In an appearance-based approach, each individual object view is encoded as a point

in one or more multidimensional spaces [5]. From a statistical analysis of the train-

ing images, the bases for these spaces can be built using Principle Component

Analysis (PCA) [60]. The basis vectors are termed eigenpictures or eigenimages for

2D imagery and eigenshapes for 3D imagery [5]. An unknown view is recognized by

projecting this view into the spaces along the basis vectors. A match can be found

by finding the nearest projected view of a training image. The advantage of this

method is that it is quite robust under changes of illumination, shape, pose and

reflectance [67]. However, this approach lacks the ability to handle more than one

object in the scene with the possibility of occlusion [30]. In order to handle scenes

with multiple objects, the input image needs to be segmented into parts before per-

forming the recognition on these parts to identify the objects as well as their pose

[5]. The major disadvantage is that only objects that are reliably segmented can

be recognized. Furthermore, the segmentation of 3D scenes is not always a trivial

process [29, 86].
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2.2.2 Silhouette-based Approaches

Object silhouettes can be used to characterize free-form objects in order to deter-

mine their identities and pose [5]. A complete system developed by Mokhtarian [59]

based on closed object silhouettes can be used to perform object recognition. This

system has the same limitation as the appearance-based approach; it can only work

when there is no more than one object in the scene. Another approach proposed by

[66] could handle multiple object scenes with a moderate amount of occlusion by

using contours of discontinuous surface normals and occluding contours to recognize

3D objects. Another system that also employs object silhouettes to recognize 3D

objects is the one proposed by Joshi et al. [37]. In this technique, HOT (high-order

tangent) curves identified from points on an object’s silhouette are used to model a

smooth object for recognition. The disadvantage of all of these approaches is that

they can only be used in a controlled environment [5].

2.2.3 Correlation Filter Approaches

Correlation techniques have been used extensively for object recognition in 2D im-

agery [51, 50]. Some research has also been carried out in the area of 3D object

recognition using correlation [69, 25]. A technique using three-dimensional correla-

tion of range images to identify an object in a 3D scene was presented in [25]. In

this approach, a 3D discrete Fourier Transform algorithm (3D-DFT) is performed

on both the scene and reference data volume r(x, y, z) and h(x, y, z), respectively.

The 3D correlation is the inverse 3D-DFT of the product of these two transforms

R(u, v, w) and H(u, v, w):

C(x, y, z) = 3D-DFT−1[R(u, v, w)H∗(u, v, w)] (2.1)

where H∗ is the complex conjugate of H. The position of the peak in the correlation

surface C(x, y, z) denotes the position of the object in the scene. However, the main

limitations of this approach are the inability to handle pose variations, occlusion

and the presence of clutter in the scene.
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2.2.4 Exhaustive Search Approaches

In order to align two views with n data points each, it is necessary to find a mini-

mum of three non-collinear corresponding point pairs in order to estimate the rigid

transformation. By applying techniques based on an exhaustive search for corre-

sponding points, the best solution is guaranteed to be found. However, even with a

medium size dataset, the search space is still very large (Cn
3 C3

n), and thus increasing

the computational cost of the technique (complexity of O(n6)) [55]. One of the most

popular approaches based on an exhaustive search is the RANSAC-based DARCES

(Random Sample Consensus based Data Aligned Rigidity Constrained Exhaustive

Search) [9].

In the RANSAC-based DARCES, a triangle containing three control points Sp (pri-

mary), Ss (secondary) and Sa (auxiliary) is formed from a set of reference points

created by uniformly sampling the scene surface. A possible correspondence Mp for

the primary point Sp can be chosen from any point in the model data set. Once Mp

is selected, a sphere Cs whose center is Mp and radius dps = ||Sp − Ss|| is used to

constrain the search for Ms - the corresponding point of Ss. If Sq is the orthogonal

projection of Sa onto the line segment SpSs and Mq is the corresponding point to

Sq, the search for Ma, the corresponding model point of Sa, is limited to a circle

centered at Mq with radius dqa = ||Sq − Sa||. Figure 2.1 shows the search regions

for Ms and Ma used in the approach. After the three corresponding points have

been found on the model surface, a rigid transformation Tc can be determined from

the three point pairs. The transformation is then verified by transforming all the

scene reference points by Tc and then counting the number of occurrences, No, on

the model surface. An occurrence is counted if the distance from a transformed

scene reference point Sr′ to the model surface is smaller than a threshold. No is

called the overlapping number and it is calculated for each possible three point cor-

respondences. The transformation Tc with the largest No is selected as the solution.

More than 3 control points can be used to improve the efficiency of the algorithm
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Figure 2.1: (a) Three control points Sp, Ss and Sa. Sq is the orthogonal projection
of Sa onto the line segment SpSs. (b) The search region for Ms. (c) The search
region for Ma. (Figures taken from [55]).

by finding all their possible candidates before computing the overlapping number.

The main drawback of the RANSAC-based DARCES is its high computational cost

as it is based on an exhaustive search. The technique is also sensitive to variations

in surface sampling and noise since it uses a point-wise rather than a surface-wise

approach [55].

2.2.5 Matching using 3D Surface Descriptors

Matching 3D surface descriptors has become one of the most effective methods in

3D surface registration and object recognition for range images. In this approach, a

region of points is characterized in such a way that it can be recognized between dif-

ferent datasets representing the same object. The representations of these regions

of points are called 3D surface descriptors and they need to be both robust and

discriminative. The key problem lies in finding pose independent 3D surface de-

scriptors that can capture the local geometrical characteristics of surfaces effectively

and how to match the surfaces using the selected representation [10].

In the early literature, Nevatia and Binford [61] proposed a method that uses sym-

bolic descriptions derived from a generalized cone part segmentation of range im-

ages. This technique could recognize free-form articulated objects (doll, horse,

snake, glove, and a ring) in the presence of occlusion. However, this approach only

a1172507
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works for objects with very different symbolic descriptions if there are multiple ob-

jects in the scene [5]. Another approach developed by Raja and Jain [68] fits a

deformable superquadric to range data in order to classify the shape into one of

12 different shape classes. Superquadrics are geometric shapes that are generaliza-

tions of quadrics (ellipsoids, hyperboloids of one or two sheets, paraboloids). Their

formulae resemble those of quadrics, except that the power on the coordinate does

not have to be 2 [1]. This method is very sensitive to noise and discontinuities in

rough range images and it cannot handle occlusion in the scene [5]. Another class

of methods uses surface curvature-based features for 3D object recognition such

as Gaussian curvature [80], mean curvature [2], principal curvatures [19]. In these

methods, the radius for collecting surface points to estimate the local curvature is

fixed. In other words, as the local surface curvature is estimated at only a sin-

gle scale, they are very sensitive to noise and also can not capture the geometric

features of the surface at other scales.

Methods that rely on global properties of the object are vulnerable to occlusion

and clutter in the scene [27], and approaches that are based on using local features

to represent free-form surfaces have emerged as solutions to this problem. The

splash features scheme proposed by Stein and Medioni [76] matches local patches

of surfaces by using changes in surface orientation. In this approach, they defined

splash as the distribution of all the normals on the surface within a distance ρ around

a given point p (Figure 2.2). A spherical coordinate system is used to encode relative

information about the normals Nρ(θ), where the relative orientation of Nρ(θ) with

respect to p’s normal N and the X(θ) axis is given by the angles φ(θ) and ψ(θ).

The X(θ) axis is chosen so that it is perpendicular to N . It also lies in the plane

containing p, N and the point ρ distance away from p and angle θ from where the

encoding started. The values of φ(θ) and ψ(θ) form a 3D curve as θ is varied from

0 to 2π

v(θ) =

⎛
⎝ φ(θ)

ψ(θ)

⎞
⎠ (2.2)

In order to quicker match a pair of curves, the curves are polygonized starting at θ



12 Chapter 2. Background

Figure 2.2: The distribution of all the normals on the surface around a given point is
encoded to form the splash feature at that point. Nρ(θ) is the normal at a distance
ρ away from the central point and angle θ from where the encoding started. (Figure
taken from [76]).

where φ(θ) is maximum. The polygonal curve is finally encoded into a representa-

tion called the 3D supersegment that stores the curvature angles between links κi

and the torsion angles τi as shown in Figure 2.3. Figure 2.4 shows an example of a

splash feature descriptor. The distance from the origin of the graph represents the

angle κ and the direction, starting north and rotating counter-clockwise, represents

the angle τ [76]. Areas of high curvature are the best places to encode splash fea-

tures as they provide splashes with a rich structural description of the local surface

shape of the object. Finally, the matching of splash features is performed using

structural indexing, which is a variant on hashing where the indices to the hash

table are related to structures formed from the features [5].

Similarly, a representation called point signatures formulated by Chua and Jarvis

[12] encodes the minimum distances of points on a 3D contour to a reference plane.

In order to extract the signature at a point p, a 3D curve C is obtained by inter-

secting a sphere of radius r centered at p with the object surface. Next, a plane P

is fitted to the contour C using a principal component analysis of C. The normal

vector n1 of the plane can be considered as an approximation of the surface normal

around p. The plane is then translated in the direction of n1 to the point p, forming

a1172507
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Figure 2.3: Orientation coordinates for splash features. (Figure taken from [5]).

Figure 2.4: An example of a splash feature. The distance from the origin of the
graph represents the angle κ and the direction, starting north and rotating counter-
clockwise, represents the angle τ . (Figure taken from [76]).

a new plane P′. A signed distance profile represented by a 1D parametric curve d(θ)

(0 ≤ θ ≤ 360◦) is formed by projecting C perpendicularly to the plane P′. The 1D

curve dθ is called the point signature of p and θ is the rotation angle about n1 from

the reference direction n2 as shown in Figure 2.5 (n2 is chosen as the unit vector

from p to a projected point of C on P′ that gives the largest positive distance).

Point signatures are pose invariant and they provide a compact way of representing

the local structure of the surface [5]. Positions on a grid evenly spaced over the scene

are used to estimate point signatures during recognition. Partial correspondence

search is used to determined the rotation and translation transformation between

a1172507
Text Box
                           NOTE:     This figure is included on page 13  of the print copy of the thesis held in    the University of Adelaide Library.
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Figure 2.5: (a) Contour of a surface point p at radius r. (b) Reference direction.
(c) The point signature d(θ) of p. (Figure taken from [12]).

the scene point and model [12]. The main drawback of this approach lies in the

extraction of the reference vector n2. The reference vector n2 is not robust to noise

and also ambiguous in the case of planar and spherical regions [55].

A representation using object-centered local histograms of surface locations known

as Spin-images was proposed by Johnson and Hebert [36]. This employed point

features for 3D object recognition in scenes with occlusion and clutter. Each spin

image is a local surface descriptor calculated at an oriented point (p,n) (3D point

with normal vector) by encoding two of the three cylindrical coordinates of its

surrounding points (Figure 2.6). The spin image X for a surface point p is a 2D

histogram in which each pixel is a bin that stores the number of neighbours that

are a distance α from n along its tangent plane P and a depth β from P. Figure

2.7 shows the ‘Chef’ model [53] and a spin-image extracted at a vertex on its

face. Spin images have been proved to be a powerful method for object recognition

in range images because they are translation, rotation and pose invariant [18, 7]

as long as the local surface normal can be accurately obtained. Carmichael and

Hebert extended the method to work with large and non-uniform sampling 3D

datasets [7, 6]. Other extensions of this approach including the multi-resolution

[18] and spherical [71] spin-image approaches tried to reduce the computational

time and automatically select the appropriate parameters such as bin size and

histogram width. However, the main disadvantage of the spin-image representation

is that it has a low discriminating capability and thus, may lead to many ambiguous
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Figure 2.6: The (α, β) coordinate of the surface point q relative to p.

correspondences [55].

Although most local surface descriptors are defined using a single selected point,

a recently proposed matching algorithm uses a tensor-based surface representation

defined on pairs of oriented points [56]. The variation of surface position is measured

by high dimensional surface histograms (tensors) that include several hundred to

several thousand elements in each descriptor. Tensors are matched between the

model and the scene by using a modified geometric hashing algorithm [44]. However,

this tensor-based approach requires a re-sampling of surfaces before constructing

local descriptors. This may incorrectly change the surface topology and thereby

reduce the accuracy of the registration result. Another recognition algorithm based

on high dimensional surface histograms is the 3D shape context proposed by Frome

et al. [23]. This algorithm also performs well on the problem of object recognition

from range data.

2.2.6 Iterative Closest Point (ICP) Algorithm

The Iterative Closest Point (ICP) algorithm is a fine registration algorithm devel-

oped by Besl and McKay [3]. The aim of the algorithm is to make small changes
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Figure 2.7: A spin-image extracted at a vertice on the face of the ‘Chef’ model.
The location of the vertex is marked in red. Surface points contributing to the
spin-image are highlighted by blue line segments oriented along the surface normals
at these positions.

to the coarse registration results provided by the previously described methods in

order to improve the overall quality of the registration. The quality of a registration

is usually decided by the distance between points in the corresponding surfaces of

two overlapping views [5].

Given two sets of points P1 = {p1
1,p

1
2, . . . ,p

1
N1
} and P2 = {p2

1,p
2
2, . . . ,p

2
N2
} where

N1 and N2 are the number of points in P1 and P2, respectively; the ICP algorithm

employs a nonlinear optimization procedure to further align the point sets. The

algorithm is outlined in [5] and is summarized in Algorithm 1. The transformation

matrix T(l) can be estimated using the quaternion-based algorithm in [3]. The

registration error between P1 and P2(l) is calculated as

E =
1

N2

N2∑
k=1

||yk − p2
k(l)||2 (2.3)

The initial transformation of the ICP must be chosen as close to the true value



2.2. 3D Surface Matching Algorithms 17

Algorithm 1 Iterative Closest Point (ICP) Algorithm

Data:
P1 = {p1

1,p
1
2, . . . ,p

1
N1
}

P2(0) = P2 = {p2
1,p

2
2, . . . ,p

2
N2
}

Algorithm:

1: repeat
2: for every point in P2(l) do
3: Find the closest point in P1

4: end for
5: The closest points form a new point set Y(l) where the pairs of points

{(p2
1,y1), (p

2
2,y2), . . . , (p

2
N2

,yN2)} form the correspondences between P1 and
P2(l)

6: if registration error between P1 and P2(l) is too large then
7: Compute the transformation T(l) between (P2(l),Y(l))
8: Apply registration P2(l + 1) = T(l) · P2(l)
9: else

10: STOP
11: end if
12: until ||P2(l + 1) − P2(l)|| > threshold

as possible to avoid converging to a non-optimal solution as the parameter space

explored by the algorithm may have many local minima. This is the reason why

it is necessary to use coarse registration algorithms such as the RANSAC-based

technique or the spin-image method before refining the registration results using

ICP.

The search for closest points can be expedited by implementing a space-partitioning

data structure called the k-d tree. A k-d tree is a binary tree1 in which each node

is a k-dimensional point. A hyperplane at each non-leaf node splits the space into

two subspaces. The left sub-tree of that node contains points left to the hyperplane

and the right sub-tree includes all points right to the hyperplane. Each hyperplane

is chosen so that it is perpendicular to one of the dimension vectors of the k-

dimensional space. In the case of N randomly distributed points, the search for the

nearest point is an O(log N) operation [15].

1A binary tree is a tree data structure in which each node has at most two children.
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2.3 Multi-scale Feature Extraction from 3D Sur-

faces

2.3.1 Scale-space Representation using Smoothing Kernels

In the 2D image domain, the scale-space representation is a well-established problem

[84, 47, 49]. The fundamental idea of the scale-space representation, first introduced

in 1983 [84], is to transform an input signal f(x) : Rd → R (x is a d-dimensional

vector) at different scales σ as L(x, σ) : Rd×R+ → R. Rd×R denotes the Cartesian

product of sets Rd and R, which is the set of all possible ordered pairs (x, σ) with

x ∈ Rd and σ ∈ R+ (R+ is the set of all positive real numbers). The Gaussian scale-

space representation could be obtained by convolving f(x) with Gaussian kernels

G of increasing width σ [47]

L(x, σ) = G(x, σ) ⊗ f(x) (2.4)

Figure 2.8 shows an example of applying Gaussian kernels of increasing widths to

a 2D image in order to create its scale-space representation. After constructing

the scale-space representation of the input image, features are usually selected as

positions having extremal values in their local neighborhoods in the scale-space

representation.

The connection between the Gaussian scale-space and the diffusion equation was

obtained in [39]

∂L(x, σ)

∂σ
= �L(x, σ) ≡

d∑
i=1

∂2L(x, σ)

∂x2
i

(2.5)

where � denotes the Laplacian operator. Successive convolutions of the signal may

be obtained by linearizing the diffusion equation with an explicit Euler scheme [49]

L(x, σ + δσ) = L(x, σ) + δσ�L(x, σ) (2.6)

There are many methods that extend the above idea of 2D scale-space representation

to point-sampled surfaces. One method is the iterative Laplacian smoothing [78]
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(a) Original image (640 × 480) (b) σ = 10

(c) σ = 20 (d) σ = 40

Figure 2.8: Scale-space representation of a 2D image with increasing Gaussian
kernel width.

that uses the graph Laplacian Lg instead of the continuous second order Laplacian

operator �

Lgf(xi) =
∑

j,{i,j}∈E
(f(xi) − f(xj))wij (2.7)

where xi is a set of vertices of a graph, the summation is over graph edges (i, j) in

the edge set E and wij are positive edge weights. However, the drawback of this

method is that its smoothing kernel often produces surface deformation artefacts

such as volume shrinkage and thus may incorrectly change the surface geometry

[64, 82].
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2.3.2 Feature Extraction using Surface Variation

Another extension of the scale-space representation of 3D images is the surface

variation measure, σn(p), proposed by Pauly et al. [64]

σn(p) =
λ0

λ0 + λ1 + λ2

(2.8)

where λi’s are eigenvalues of the sample covariance matrix C evaluated in a local

neighbourhood Np of the sample point p. If the local neighbourhood contains k

points, the 3 × 3 covariance matrix C is evaluated as

C =
1

k

⎡
⎢⎢⎢⎣
pi1 − p̄

. . .

pik − p̄

⎤
⎥⎥⎥⎦

T

·

⎡
⎢⎢⎢⎣
pi1 − p̄

. . .

pik − p̄

⎤
⎥⎥⎥⎦ ,pij ∈ Np (2.9)

where p̄ is given by

p̄ =
1

k

k∑
j=1

pij (2.10)

Features are selected as range points with maximum local shape variation. The

neighbourhood size for which σn(p) gets a local extremum is chosen as the scale of

the corresponding feature. However, the drawback of this method is that it requires

heuristic pre-smoothing procedures to be applied to the surface and σn(p) is very

sensitive to noise [82].

2.3.3 Corner and Edge Detectors

A recent work proposed by Novatnack and Nishino [62, 63] aims at detecting multi-

scale corner and edge features from 3D meshes. In this approach, the surface mesh

of the model is first parameterised on a 2D plane. A 2D representation of the

original surface called the normal map is then created by interpolating over the

surface normals at each 2D-embedded vertex. A distortion map is also computed

by encoding the relative change in the model edge lengths. The scale-space rep-

resentation of the normal map is constructed by convolving the vector field with
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Figure 2.9: (a) A 3D model of a hand. (b) The 2D normal map of the 3D model.
(c) the 2D distortion map of the 3D model. Iso-contour lines illustrate the various
levels of distortion. (Figure taken from [62]).

modified Gaussian kernels of increasing width σ. Figure 2.9 shows a 3D model and

its 2D normal map and distortion map.

In this approach, the geodesic distance2 is used as the distance metric to construct

a geometric scale-space that encodes the surface geometry. Given u,v ∈ R2 be two

points on a normal map, the geodesic Gaussian kernel at v is defined as

g(v,u, σ) =
1

2πσ2
exp

[−d(v,u)2

2σ2

]
(2.11)

where d : R2 × R2 → R is the geodesic distance between the corresponding 3D

surface points φ(v) and φ(u) of v and u, respectively.

Corner and edge detectors are derived using the first and second-order partial deriva-

tives of the normal map in the horizontal (s) and vertical direction (t). The corner

response at a point u = (s, t) of the normal map Nσ at the scale σ is defined as the

maximum eigenvalue of the Gram matrix M calculated at that point

M(u; σ, τ) =
∑
v∈W

⎡
⎣ Nσ

s (v)2 Nσ
s (v)Nσ

t (v)

Nσ
s (v)Nσ

t (v) Nσ
t (v)2

⎤
⎦ g(v;u, τ) (2.12)

where σ is the particular scale, W is the local window around u and τ is the

weighting of each point in the Gram matrix. Nσ
s (v) and Nσ

t (v) are the derivative

2In graph theory, the geodesic distance between two vertices is the number of edges in the
shortest path connecting them.
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of Nσ(v) with respect to s and t, respectively

Nσ
s (v) =

∂Nσ(v)

∂s
(2.13)

Nσ
t (v) =

∂Nσ(v)

∂t
(2.14)

The corners lying along the 3D edges can be pruned using the second order deriva-

tives of the normal map. Edges can be located using the zero crossing of the

Laplacian of the normal map

∇2Nσ = Nσ
ss + Nσ

tt (2.15)

where

Nσ
ss =

∂2Nσ

∂s2
(2.16)

Nσ
tt =

∂2Nσ

∂t2
(2.17)

The disadvantage of this approach is that the 2D normal map can only be created

from a 3D mesh with connectivity information between vertices. It also suffers from

the same limitation as in [45] that good surface normals must be available in order

to construct the scale-space representation.

2.3.4 Feature Extraction using 3D Hessian

Recently, Flint et al. [20, 21] proposed the use of a 3D version of the Hessian

to measure the distinctiveness of candidate interest points. In this technique, the

normalised density map of an input range image whose domain is I ⊂ Z
3 is first

constructed as

D(i, j, k) =
n(Bijk)

argmax(i,j,k)∈I{n(Bijk)} (2.18)

where B = {Bijk}(i,j,k)∈I is a set of equal-size boxes distributed regularly in each

spatial dimension and n(Bijk) is the number of range points inside the box Bijk.

The scale-space representation is then constructed similarly to other approaches by
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convolving the density map with Gaussian kernels of increasing standard deviation

σ as in Equation (2.4). In this case, f is the normalised density map D.

The 3D Hessian H(x, σ) is computed at each sampled location x for each scale σ

H(x, σ) =

⎡
⎢⎢⎢⎣

Lxx(x; σ) Lxy(x; σ) Lxz(x; σ)

Lyx(x; σ) Lyy(x; σ) Lyz(x; σ)

Lzx(x; σ) Lzy(x; σ) Lzz(x; σ)

⎤
⎥⎥⎥⎦ (2.19)

where

Lxx =
∂2L

∂x2
Lyy =

∂2L

∂2y
Lzz =

∂2L

∂2z
(2.20)

Lxy =
∂2L

∂x∂y
Lxz =

∂2L

∂x∂z
Lyz =

∂2L

∂y∂z
(2.21)

A detailed discussion of the computational cost of estimating the Hessian matrix can

be found in [43]. Weak responses are pruned by applying a user defined threshold

TD to the determinant of the Hessian. Features are selected by comparing each voxel

with its scale-space neighbours and selecting the local maxima. One disadvantage

of this method is the cost of resampling regularly in space throughout the data

which may also destroy fine structures relevant to recognition. Another drawback

is the stability of the Hessian determinant used for searching local maxima in the

presence of noise.

2.4 Summary

In this chapter, a review on previous approaches to the problem of 3D surface

matching from range images was presented. Different techniques for extracting

local features from 3D data sets were also discussed. These methods can be applied

to 3D surface matching algorithms as a preprocessing step to improve their accuracy

and efficiency. In the next chapter, two novel schemes for extracting salient features

from 3D data sets using local surface curvature will be described.
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Multiscale Feature Extraction

3.1 Introduction

The processing of 3D datasets such as range images is a demanding job due to not

only the huge amount of surface information but also the noise and non-uniform

sampling introduced by the sensors or the reconstruction process. It is therefore

desirable to have a more compact intermediate representation of 3D images that

can be used efficiently in computer vision tasks such as 3D scene registration or

object recognition.

As mentioned in Section 2.2.5, one of the most popular approaches uses local de-

scriptors, or signatures that describe local surface regions, to represent a surface

[23, 36, 52, 56, 63]. This strategy has been proven to be robust to partial occlusion,

clutter and intra-class variation [82]. However, in those techniques, the surface lo-

cations used for estimating local descriptors are either selected exhaustively at each

point, or randomly from the data [23, 36]. In the case of exhaustive selection, this

is very inefficient because of the redundancy in areas with little shape variation.

In the case of randomly selection, distinctive geometric structures may be missed

thus reducing the accuracy of the algorithm [82]. Therefore, it is desirable to have

a principled way to sample a representative set of feature points from the surface

24
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[45].

Surface curvature has been used extensively in the literature for mesh simplification

and smoothing [17], object recognition [19, 58, 85] and mesh segmentation [33].

However, there is a lack of a systematic approach in extracting local feature points

from an input surface using its local curvature information at multiple scales. In this

chapter, we address the above issue by proposing two different schemes for multi-

scale feature extraction from 3D datasets using two surface curvature measures

known as the curvedness and shape index.

3.2 Local Surface Curvature

3.2.1 Shape Operator

Let M ⊂ R3 be a regular surface, and let n be a surface normal to M defined in a

neighbourhood of a point p ∈ M . The shape operator applied to a tangent vector

vp to M at p is defined as below [24]

S(vp) = −Dvn (3.1)

where Dvn is the directional derivative of n in the direction of vp at the point p

Dvn = lim
h→0

n(p + hvp) − n(p)

h
(3.2)

The shape operator can be used to measure how the regular surface M bends in

R3 as it estimates how the surface normal n changes from point to point. It can

be seen that the shape operator of a plane is identically zero at all points. It is

nonzero for non-planar surface patches as in this case, the surface normal n twists

and turns from point to point.
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3.2.2 Principal Curvatures

If up is a tangent vector to a regular surface M ⊂ R3 at point p ∈ M with ||up|| = 1,

the normal curvature of M in the direction of up is defined as

k(up) = S(up) · up (3.3)

where S(up) is the shape operator as defined above.

The maximum and minimum values, k1 and k2 respectively, of the normal curvature

k(up) are called principal curvatures of M at point p. These values measure the

maximum and minimum bending of M at p [40]. Unit vectors e1, e2 at which these

extreme values occur are called principal vectors and the corresponding directions

are called principal directions. The principal curvatures are related to the two classic

shape measures, the Gaussian curvature K and mean curvature H, by

k1 = H +
√

H2 − K (3.4)

k2 = H −
√

H2 − K (3.5)

Figure 3.1 shows the principal curvatures for a point p with the normal vector n on

a surface. The curvature is positive if the curve turns in the same direction as the

surface normal n. Otherwise, it will be negative. Figure 3.2 shows the maximum

and minimum principal curvatures estimated for the Stanford ‘Buddha’ model [75].

The colormap is shown in Figure 3.2c.

3.2.3 Shape Index and Curvedness

The local surface topology of a 3D model at a point p can be represented by a

single-value, angular measure called the shape index SI(p) [40]

SI(p) =
2

π
arctan

k1 + k2

k2 − k1

(3.6)

From (3.6), it can be seen that the range of the shape index is [−1, 1]. Except for

a plane where the shape index is undefined (k1 = k2 = 0), every distinct surface
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Figure 3.1: Principal curvatures at a point P on a surface.

shape corresponds to a unique value of SI . Whereas both the Gaussian and mean

curvatures are necessary to describe the local surface curvature, only a single shape

index value is needed for the same task [40].

The local geometric aspect of a 3D model can also be defined using a bending

energy measure of the surface called the curvedness. The curvedness at a point p

on a surface can be estimated as [40, 19]

cp =

√
k2

1 + k2
2

2
(3.7)

The curvedness could be used to indicate how highly or gently curved a surface is

[33]. Unlike Gaussian curvature which vanishes on parabolic surfaces such as ruts

and cylindrical ridges, the curvedness is zero only for planar patches as k1 = k2 = 0

in this case. Both the shape index and curvedness are invariant to rotation as well as

translation. Furthermore, the shape index is also independent of scale [40]. Figure

3.3 plots the shape index and curvedness of the Stanford ‘Dragon’ model [75]. The

colormap is the same as in Figure 3.2c.

3.2.4 Local Differential Properties of 3D Surfaces

There are many methods to estimate the local curvature information such as Gaus-

sian, mean or principal curvatures for 3D surfaces [65]. One of the most popular

approaches that provides quite accurate approximations is using the estimation of
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(a) k1 (b) k2 (c) Colormap

Figure 3.2: Principal curvatures of the ‘Buddha’ model.

the differential properties of a smooth manifold - a curve or a surface in 3D [8].

This method fits the local representation of the manifold using a truncated Taylor

expansion called the jet. All local geometric quantities such as normal, curvatures,

extrema of curvatures are encoded in the jets [8].

It has been proven that any regular embedded smooth curve or surface can be

locally written as the graph of a bi-variate function termed the height function [74]

f(x) = JB,n(x) + O(xn+1) (3.8)

where x = (x, y) and z = f(x) for a point p = (x, y, z) in 3D space and O(xn+1)

contains higher order terms of the expansion. The n-jet JB,n(x) is the n-th order

Taylor expansion of the height function

JB,n(x, y) =
n∑

k=1

k∑
j=0

Bk−j,jx
k−jyj (3.9)

where

Bk−j,j =
1

(k − j)!j!

∂kf(0, 0)

∂xk−j∂yj
(3.10)
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(a) Shape index (b) Curvedness

Figure 3.3: Shape index and curvedness of the ‘Dragon’ model.

First order properties of the above expansion correspond to the normal or tan-

gent plane. The principal curvatures and directions are provided by its second or-

der properties. Furthermore, the directional derivatives of the principal curvatures

along the curvature lines could be estimated from the third order properties. The

jet has a canonical form for non-umbilical points where their principal curvatures

are not identical [8]

JB,3(x, y) =
1

2
(k1x

2 + k2y
2) +

1

6
(b0x

3 + 3b1x
2y + 3b2xy2 + b3y

3) (3.11)

where k1 and k2 are the principal curvatures as defined in Section 3.2.2. The

shape index and curvedness can be easily calculated from (3.6) and (3.7). The two

vectors, u = (b0, b1) and v = (b3, b2), are the directional derivatives of k1, k2 along

their curvature lines, respectively. The advantage of this fitting method is that it

needs only a set of 3D points as input. It does not require the mesh connectivity

to estimate the local curvature information.
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3.3 Feature Extraction using Curvedness

3.3.1 Algorithm Description

As we have already discussed in Section 2.3.1, there are 3D smoothing kernels that

can be used to estimate the 3D scale space representation of a surface. However,

these methods usually produce undesired artefacts such as changes in the geometric

structures of the models. In the proposed framework, the scale of a point on the

surface is defined as the size of the neighbourhood that we use to collect points as

the input to the fitting. For unstructured point clouds, the scale r could be chosen

as either Euclidean distance or geodesic distance [24]. All the surface points that

are closer to the fitting point p than this distance will be picked. In this thesis, we

use the Euclidean distance to specify the radius of the neighourhood. A drawback

of using the Euclidean distance for collecting fitting points is that even the distance

between two points is small, they may not be close neighbours on the underlying

surface represented by the point cloud. However, it is inevitable as the connectivity

information of surface points is not available. For 3D meshes, the scale r is the

number of rings surrounding the fitting vertex v. The scale r can also be called the

radius of the neighbourhood. The first ring contains all vertices that are directly

connected to the vertex v. The second ring contains all the direct neighbours of

the vertices in the first ring and so on1. Figure 3.4 shows an example of a vertex

and its neighbourhoods of radius r = 1 and r = 2.

The proposed multi-scale curvedness-based feature selection algorithm is outlined in

Algorithm 2. Features are surface positions p having extremum curvedness values

cp both in the neighbourhood of radius rk as well as over the above and below scales

(rk−1, rk+1). It can be seen that increasing the size of the local neighbourhood is

similar to applying a smoothing filter but it avoids making direct changes to the 3D

surfaces [64]. Thus, in addition to the ability to detect features at multiple scales,

another benefit of this approach is that it reduces the effect of noise on the models.

1It is assumed that the mesh is relatively uniformly distributed across the surface.
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(a) One ring (r = 1) (b) Two rings (r = 2)

Figure 3.4: An example of rings. The fitting vertex is marked with blue color.

It is also worth noting that the scales rk where features are selected can be used as

support regions for many 3D object recognition algorithms such as spin-images [36]

or the tensor-based approach [56]. Figure 3.5 shows the curvedness of the ‘Buddha’

models at different scale levels rk.

Algorithm 2 Multi-scale Curvedness-based Feature Extraction Algorithm
Data:
P = {pi ∈ R3}: set of 3D points sampled from the surface.
R = {rk}: a set of scales.
Algorithm:

1: for r ∈ {rk} do
2: for p ∈ {pi} do
3: Find the neighbourhood Nr at scale r
4: Fit a jet to Nr

5: Compute principal curvatures k1 and k2

6: Compute the curvedness cp
cp =

√
(k2

1 + k2
2)/2

7: end for
8: Features are positions p having extremum values cp both in the neighbour-

hood of radius rk as well as over the above and below scales (rk−1, rk+1).
9: end for

3.3.2 Feature Distinctiveness

In this work, the perceived reliability of a local feature is represented by its distinc-

tiveness value. If the distinctiveness value is small, the feature may not be reliable
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(a) rk = 2 (b) rk = 5 (c) rk = 7 (d) Colormap

Figure 3.5: Curvedness of the ‘Buddha’ model estimated at different scale levels rk.
It can be seen that increasing the scale is similar to applying a smoothing filter to
the 3D surface before calculating the surface curvature.

because its curvedness value does not deviate far enough from the other values in

the immediate neighbourhood. The distinctiveness of a feature located at a surface

point p at scale rk is defined as

γ(p, rk) =
|cp − μNp|

σNp

(3.12)

where Np is a set of all n 3D points in the neighbourhood of p at not only scale rk

but also at the two adjacent scales rk−1 and rk+1. cp is the curvedness of p as defined

in (3.7). μNp and σNp are the mean and standard deviation of the curvedness of all

vertices in Np respectively

μNp =

∑
pj∈Np

cpj

n
(3.13)

σNp =

√∑
pj∈Np

(cpj
− μNp)2

n
(3.14)

It can be seen that if the distinctiveness value is small, the local maxima or minima

may be due to measurement noise on the object’s surface rather than a change

in local object structure. Assuming the distribution of the curvedness of a surface
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(a) Non-thresholded (γt = 0) (b) Thresholded (γt = 1.5)

Figure 3.6: Local features detected on the ‘Dragon’ model. Features are selected
from each model using 7 different scales (r = 1 to r = 7). The colormap of the
features is from blue to red corresponding to low to high distinctiveness values.
Figures are best seen in color.

region is approximated by a normal distribution, about 68% of the curvedness values

would be within [μNp −σNp , μNp +σNp ] and a threshold γt could be used to remove

less reliable features. Figure 3.6 shows the features extracted by the proposed

algorithm from the Stanford ‘Dragon’ model [75] using two different values for the

threshold.

3.3.3 Experiments

The proposed curvedness-based multi-scale feature extraction approach was tested

on a variety of standard 3D models represented by triangular meshes. The ‘Dragon’

and ‘Buddha’ together with many other models are part of the Stanford 3D Scanning

Repository [75]. The ‘Chef’, ‘Chicken’ and ‘T-rex’ models were found at Mian’s

website [53]. Figures 3.6 and 3.7 visualise the features extracted from 5 different

3D models with two levels of threshold γt = 0 and γt = 1.5. It can be seen from

the figures that most of the salient positions in the models such as positions near

the noses, mouths or eyes of the Buddha and Chef or the tail of the Chicken were

selected as feature points.

Table 3.1 shows the comparison between the number of features and the number of



34 Chapter 3. Multiscale Feature Extraction

(a) Buddha (b) Chef (c) Chicken (d) T-rex

(e) Buddha (f) Chef (g) Chicken (h) T-rex

Figure 3.7: Feature extraction results for four different 3D models with different
distinctiveness thresholds γt = 0 and γt = 1.5 on the first row and second row,
respectively. Features are selected from each model using 7 different scales (r = 1
to r = 7).

vertices in each model. It can be seen from the table that the number of features

is significantly smaller than the number of vertices for all 5 surfaces. Without

thresholding, the number of features is about 2% of the number of vertices in each

model. When the threshold is set to γt = 1.5, the number of features reduces to

just about 0.5% of the number of vertices. Although the set of features contains

just a small percentage of the surface data, it is still a sparse but well-described

representation of the geometric structures in the model as evident in Figures 3.6

and 3.7.
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Table 3.1: Comparison between the number of vertices and number of features for
all 5 models with different distinctiveness thresholds.

Model No. of vertices No. of features (γt = 0) No. of features (γt = 1.5)
Dragon 134559 2910 (2.16%) 927 (0.69%)
Buddha 133127 2760 (2.07%) 745 (0.56%)

Chef 176920 2439 (1.38%) 804 (0.45%)
Chicken 135142 2273 (1.68%) 740 (0.55%)
T-rex 176508 2910 (1.65%) 983 (0.56%)

Figure 3.8 shows the features detected on the head of the ‘Chicken’ model using

two different numbers of scales in the scale-space representations. Two different

numbers of scales, 4 and 7, are used in estimating the local features in Figure 3.8a

and Figure 3.8b, respectively. It can also be seen from Figure 3.9 that the more

scales used in the scale-space representation, the more geometric structures of the

surface are extracted. One advantage of the multi-scale approach is that it can

detect coarse-scale features even though the curvature might be low. We can see

that important feature points such as the one on the tip of the nose can only be

detected using a high number of scales. There is, of course, a trade-off between the

number of scales and the time taken to extract local features from 3D surfaces. The

more scales used, the more number of salient features can be detected. However, it

is also more computationally expensive to process the scale-space representation of

a 3D surface.

In order to evaluate the repeatability of the feature points, white Gaussian Noise

with standard deviation σG ranging from 0.001 to 0.1 was added to the 3D surfaces.

When noise is introduced to the meshes, the variation of the local surface patches

will increase. As a result, there would be more feature points detected in noisy

images compared to the original one. However, it is important that the majority of

the local features detected in the original surface will still be present in the noisy

data.

Figure 3.10 shows the features extracted from the face of the ‘Chef’ model for
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(a) 4 scales (b) 7 scales

Figure 3.8: Local features detected on the head of the ‘Chicken’ model using dif-
ferent numbers of scales in the scale-space representations.

different levels of noise. It can be seen from the figure that a large portion of local

features from the original, smooth face are presented in the noisy versions. For

example, there are still many feature points lying around salient structures such as

the nose, chin, eyes, mouth and ears even in the noisiest surface in Figure 3.10d.

With the noise level of σG = 0.005, most of the features in the original image appear

in the noisy version. A quantitative evaluation of the repeatability of the features

for five different 3D models is shown in Figure 3.11. At the noise level of σG = 0.001,

nearly all of the features in the original model can be detected in the noisy surface.

Even when the standard deviation of the noise goes to σG = 0.1, about 40% of the

original features repeat in the noisy data.

The proposed approach was also employed to extract local features from different

unstructured point clouds without connectivity information between the vertices.

When applying to 3D point clouds, the Euclidean distance is used as the radius

of the neighbourhood for collecting surrounding points. A kd-tree data structure

is implemented to perform the local neighbour search efficiently. By fitting local

manifolds directly to the surface points, the scale-space representation of the model

can be created without the need to reconstruct the surface from the point cloud in

advance which is a very error-prone and non-trivial process. Figure 3.12 shows the
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Figure 3.9: Number of features detected at different numbers of scales at two thresh-
old levels γt = 0 and γt = 1.5 for the ‘Chicken’ model.

(a) Original (b) σG = 0.005 (c) σG = 0.05 (d) σG = 0.1

Figure 3.10: Features detected from the face of the ’Chef’ model with different noise
levels.

features extracted from two different point clouds of a truck and a tank constructed

from simulated LADAR range images. The sizes of the spheres represent the scales

where the features are extracted.
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Figure 3.11: Repeatability of the features for 5 different models in different noise
conditions.

3.4 Feature Extraction using Local Shape Index

Variation

3.4.1 Algorithm Description

While in Section 3.3, surface points with high local curvature were selected as

salient features, another metric for choosing features is the variation in the local

shape index. It is intuitively clear that regions with uniform shape index variation

would not provide as much information about the surface as regions with high

shape index variation. As the local surface topology at a point p is represented by

its shape index, the local shape variation around p can be estimated by the standard

deviation of the shape index values of p’s neighbours based on the assumption that

the distribution is Gaussian

σNp =

√∑
pj∈Np

(SI(pj) − μNp)2

n
(3.15)

where Np is a set of all n vertices in the neighbourhood of p, μNp is the mean of

the shape index in Np and SI(pj) is the shape index at the point pj as defined in
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(a) View 1 (b) View 2 (c) View 3

(d) View 1 (e) View 2 (f) View 3

Figure 3.12: Feature extraction results for two different unstructured point clouds,
a truck and a tank, respectively. The size of each sphere denotes the scale at which
the feature is selected. The point clouds are colour-coded using the z coordinates
of the 3D points.

Equation (3.6).

μNp =

∑
pj∈Np

SI(pj)

n
(3.16)

The multi-scale feature selection algorithm based on local shape variation is outlined

in Algorithm 3. Features are selected at surface positions p having maximum values

σNr both in the neighbourhood of radius rk as well as over the above and below scales

(rk−1, rk+1). In order to reduce the effect of noise on the algorithm and improve the

reliability of the extracted features, the value of σNr must also be greater than a

threshold σt.
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Algorithm 3 Multi-scale Feature Extraction using Local Shape Variation
Data:
P = {pi ∈ R3}: set of 3D points sampled from the surface.
R = {rk}: a set of scales.
Algorithm:

1: for r ∈ {rk} do
2: for p ∈ {pi} do
3: Find the neighbourhood Nr at scale r
4: Fit a jet to Nr

5: Compute principal curvatures k1 and k2

6: Compute the shape index SI(p)
SI(p) = 2

π
arctan k1+k2

k2−k1

7: Compute the mean μNr of the shape index

μNr =

P
pj∈Nr

SI(pj)

nr

where nr is the number of vertices in Nr

8: Compute the local shape variation σNp

σNr =

√
P

pj∈Nr
(SI(pj)−μNr )2

nr

9: end for
10: Features are positions p having maximum values σNr both in the neighbour-

hood of radius rk as well as over the above and below scales (rk−1, rk+1) and
σNr must also be greater than a threshold σt.

11: end for

3.4.2 Experiments

The proposed framework for multi-scale feature extraction using local shape vari-

ation was also tested using the same standard 3D models as used in Section 3.3.

Figure 3.13 shows the features extracted from four of these 3D models. The scales

at which the features are selected are described by the size of the glyphs (blue

spheres used to mark the positions of the features in each model). It can be seen

that most surface positions with high local shape variation were chosen as features

such as points on the head of the dragon model from Figure 3.13a.

The comparisons between the number of features and the number of vertices for

each model are also shown in Table 3.2. In all the cases, the number of features was

less than 0.5% of the number of vertices. This arose naturally from the selection

process and was not a hard limit applied on the number of feature points.
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(a) Dragon (b) Buddha (c) Chef (d) T-rex

Figure 3.13: Feature extraction results for four different 3D models using local
shape variation. Different sizes of the glyphs correspond to different scales of the
extracted features.

Table 3.2: Comparison between the number of vertices and number of features for
all 4 models.

Model No. of vertices No. of features Percentage
Dragon 134559 592 0.44%
Buddha 176920 640 0.36%

Chef 176508 698 0.39%
T-rex 99793 457 0.46%

A quantitative evaluation of the repeatability of features extracted from the pro-

posed technique in different noisy conditions is shown in Figure 3.14. It can be seen

that the repeatability of features extracted using local shape variation is better than

the curvedness-based approach presented in Section 3.3 (Figure 3.11).

3.5 Surface Registration using Multi-scale Fea-

tures and Spin-Images

In this section, the results of combining the proposed feature extraction framework

and the spin-image algorithm to register 3D surfaces are presented. Without loss of
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Figure 3.14: Repeatability of extracted features in different noise conditions.

generality, the feature extraction technique using local shape variation presented in

Section 3.4 is selected as a preprocessing step in order to improve the accuracy and

efficiency of the spin-image registration algorithm. Due to the limitation of the spin

image implementation [36] in dealing with large datasets, each scan was re-sampled

to contain about 10000 vertices using the cost driven approach proposed in [48].

Figures 3.15a and 3.15c show the features selected from the re-sampled scans of

the ‘Chef’ and ‘T-rex’ models, respectively. To register two different views, we only

performed the feature extraction on one view. The correspondences of these features

were searched through all vertices of the other view to improve the probability of

finding matches. Furthermore, the feature extraction step was performed off-line

on the model scan so that it would not affect the actual matching time. The

registration results of the two models are shown in Figure 3.15b and 3.15d.

A quantitative comparison of the registration results for two scans of the ‘Chef’

and ‘T-rex’ models by using randomly selected points and the proposed feature

extraction approach is shown in Table 3.3. It can be seen from the table that the

number of selected features is much smaller compared to the number of points if

randomly selected. As a result, the registration time reduced significantly in both
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(a) ‘Chef’ scan (b) Registration result

(c) ‘T-rex’ scan (d) Registration result

Figure 3.15: Registration results for 2 different views of the ‘Chef’ and ‘T-rex’
models. Positions marked in darker color are the scene scan aligned w.r.t the model
scan using the estimated transformation.

cases by employing the proposed feature extraction technique. The experiments

were done on a Intel Core2Duo 2.4 GHz laptop with 2GB of memory running

Linux. Beside the improvement in the speed of the matching process, the proposed

method also produced more accurate results as the average registration errors for

the ‘Chef’ and ’T-rex’ were 0.801 and 0.615 compared to 0.887 and 0.615 if using

random points, respectively. This error represents the average distance between all

correspondences in a match after model points have been transformed by the match

transformation [36]. The resolutions of the ‘Chef’ and ‘T-rex’ meshes were 2.06 and

1.48, respectively.
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Table 3.3: Quantitative comparison of the registration using randomly selected
points and local features.

Random Points Local Features
Model No. of Reg. Avg. No. of Reg. Avg.

selected points time error selected features time error

‘Chef’ 5371 2m54s 0.887 187 3s 0.801
‘T-rex’ 5183 2m34s 0.663 106 7s 0.615

3.6 Summary

In this chapter, we have presented two different schemes for locating salient features

from 3D models as regions with high local curvature or shape variation. By fitting

a truncated Taylor expansion called the jet to the neighbourhood of a surface point

at different sizes, the two principal curvatures at that point are approximated at

multiple scales. These principal curvature values are then used to calculate the

curvedness or the shape index of the local patches in order to construct a scale-space

representation of the surface. Surface positions corresponding to local extrema of

the scale-space representation are chosen as feature points. The proposed algorithms

are applicable to both 3D meshes with connectivity information or unstructured

point clouds.

In order to demonstrate the approach, spin-images were selected as surface descrip-

tors in order to perform surface registration with the proposed feature extraction

framework. Experimental results on a number of different standard 3D models

showed the effectiveness and robustness of the approach. In the next chapter, a

novel registration framework for 3D datasets that searches for three pairs of corre-

sponding features on the scene and model surfaces in order to recover the transfor-

mation between them will be presented.



Chapter 4

Surface Registration using Local

Features

4.1 Introduction

In Chapter 3, the registration results of different 3D scans by combining the pro-

posed feature extraction framework and the spin-image algorithm have been shown.

It can be seen that the feature extraction technique has improved the alignment pro-

cess both in terms of accuracy and efficiency. However, the registration approach

using spin-images is only applicable to 3D meshes with connectivity information

between the vertices. In addition, spin-images are also very sensitive to noise and

variations in surface sampling [55].

In this chapter, the above issues are addressed by proposing an automatic and

unified framework for the registration of both 3D meshes and unstructured point

clouds using multi-scale local features, assuming that they differ by a rigid body

transformation. By applying the feature extraction technique introduced in Chapter

3, salient features are automatically selected from each range image at multiple

scales. A Delaunay tetrahedrization is then performed on the features to obtain

a set of triangles from each range image. Possible correspondences are found by

45
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matching all possible pairs of triangles between the two views. Various geometric

and rigidity constraints can be applied to prune unlikely correspondences. This

pruning step is also the basis of other registration algorithms [9, 13, 70]. By finding

the match that aligns the largest number of features between the two range images,

the best transformation is able to be estimated. This transformation can be further

refined using a variant of the Iterative Closest Point (ICP) algorithm [72]. Finally,

the proposed approach is tested on a variety of 3D surfaces and point clouds with

varying geometric complexity to demonstrate its effectiveness. The robustness of

the proposed framework is also evaluated by applying it to register range images

with different noise levels, different amounts of overlapping as well as variations in

surface sampling. The block diagram of the 3D surface registration algorithm is

shown in Figure 4.1.

4.2 Delaunay Tetrahedrization

Before performing the registration, scale-space representations of the input range

images are constructed in order to extract local features using the curvedness-based

technique discussed in Chapter 3. Without loss of generality, the method intro-

duced in Section 3.3 is used for the feature extraction step in all experiments.

Instead of trying to register all features directly, an estimate of the rigid transfor-

mation between two views of the same object can be recovered efficiently by just

a pair of 3D triangles formed from the local features on each view [13]. Inspired

by the approach in [70], rather than using all possible triangle combinations, the

Delaunay tetrahedrization of the interest points at each scale in the scale-space can

be computed. It is worth noting that the Delaunay tetrahedrization is unique and

invariant to both rotation and translation [70]. The search for correspondences is

only carried out between triangles at the same scale. This helps reduce the search

space significantly as only a small subset of all possible triangles needs be chosen.

It is not expected that all features extracted from one view are present on the other
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Figure 4.1: Block diagram of the proposed 3D surface registration algorithm.

view. However, it is very likely that a majority of features chosen from the over-

lapping regions of the two views are similar. Thus, there is a high probability of

finding a pair of matched triangles from the range images.

4.3 Rigidity Constraints

As it is still not practical to consider all possible matches from triangles at the same

scale, further geometric and rigidity constraints are employed to improve both the
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efficiency and robustness of the registration process. If s0, s1 and s2 are the three

vertices of a given scene triangle and m0, m1 and m2 are the known corresponding

vertices of the matched triangle on the model view, there is always a slight mismatch

error between the transformed scene vertices s′0, s′1 and s′2 and the model vertices.

This is a result of measurement errors and noise introduced by the sampling process

as well as the fact that only discrete surface points are available from each view.

It can be seen that the greater the areas of the matched triangles are, the less

their alignment error will propagate to the whole surface [13]. In other words, any

alignment error between the transformed scene points s′0, s′1 and s′2 and the model

points m0, m1 and m2 would cause greater errors for other points away from the

triangles. Alternatively, choosing triangles with larger areas will result in smaller

errors and better registration.

In the proposed framework, only triangles whose areas are greater than a threshold,

At, will be considered in the subsequent steps. This will help both reduce the

number of possible correspondences and minimize the possible error introduced

when considering small triangles as the best matches. The value of At for each view

was chosen as the average area of the scan’s triangles for all experiments. Figure

4.2 plots the number of triangles whose areas are greater than the threshold for four

different 3D models at different mesh resolutions. It can be seen that the number

of triangles increases linearly with the number of vertices of each view. The use of

the area threshold will prevent the algorithm from suffering combinatorial explosion

when dealing with large 3D datasets. It is worth noting that the threshold value

At can also be chosen so that selected triangles are in the upper quantile of the

distribution of triangle areas.

Because the distance between two particular points does not change under a rigid

transformation, it is expected that the corresponding edges of the matched triangles
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Figure 4.2: Number of triangles at different mesh resolutions.

on the scene and model views are approximately equal.

|d(s0, s1) − d(m0,m1)| < τd(d(s0, s1), d(m0,m1)) (4.1)

|d(s0, s2) − d(m0,m2)| < τd(d(s0, s2), d(m0,m2)) (4.2)

|d(s1, s2) − d(m1,m2)| < τd(d(s1, s2), d(m1,m2)) (4.3)

where d(p,q) is the Euclidean distance between two 3D points p and q. The

distance tolerance τd(d1, d2) can be estimated as a percentage of the maximum edge

length dmax = max(d1, d2). The reason for varying the value of τd with the edge

length is to give more tolerance to correspondences based on larger triangles than

those based on smaller ones.

The curvedness of a surface point is invariant to translation and rotation and so,

a pair of triangles is only considered a possible match if the curvedness values of

their corresponding vertices are similar

|csi
− cmi

| < εc i = 0, 1, 2 (4.4)

where cp is the normalised curvedness of the 3D point p and εc is the error tolerance.

This compatibility test can also be considered as a geometric constraint on surface

patches as their shapes do not change under the rigid transformation.
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4.4 Transformation Estimation

If a pair of two triangles satisfies all the above rigidity and curvedness constraints,

the transformation that aligns them is computed. In order to estimate the rigid

transformation between them, two additional vertices, s3 and m3, are introduced

to the scene and model triangles, respectively (Fig. 4.3)

s3 = s0 +
(s1 − s0) × (s2 − s0)

|(s1 − s0) × (s2 − s0)| (4.5)

m3 = m0 +
(m1 − m0) × (m2 − m0)

|(m1 − m0) × (m2 − m0)| (4.6)

where the × operator denotes the cross product of two vectors in the 3D Euclidean

space.

The rigid transformation T between the two triangles contains a rotation matrix R

and a translation vector t satisfying

Rsi + t = mi i = 0, 1, 2, 3 (4.7)

Assume that S−1 exists, the rotation matrix R can be estimated in closed form as

[77]

R = MS−1 (4.8)

where

S = [s1 − s0 s2 − s0 s3 − s0] (4.9)

M = [m1 − m0 m2 − m0 m3 − m0] (4.10)

Once the rotation matrix has been caculated, the translation vector t can be ob-

tained from (4.7)

t = m − Rs (4.11)

where s and m are the average of si and mi

s =

∑3
i=0 si

4
m =

∑3
i=0 mi

4
(4.12)
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Figure 4.3: Estimating transformation from two 3D triangles.

4.5 Optimal Transformation Validation

As there is a possibility that more than one pair of triangles satisfy the above com-

patibility tests, the pair of triangles whose transformation aligns the most number

of features is chosen as the best correspondence. This is carried out in the follow-

ing way. After finding two matched triangles, the transformation is computed and

applied to the rest of the scene features to align them with respect to the model fea-

tures. Next, a search for the closest model feature for each of the above transformed

scene features is performed. A k-d tree is implemented to do the nearest neighbor

search efficiently. The alignment error between the transformed scene feature s′i

and its closest model feature mi is estimated using the Gaussian weighted distance

metric [73]

Gi = e−d2
i /2σ2

(4.13)

where d2
i = ||s′i − mi||2 is the squared Euclidean distance between a transformed

feature and its closest model feature. The degree of interaction between the two sets

of features is controlled by σ. Global interactions between the features are achieved

with large σ while local interactions are enforced with a smaller value. The value

of Gi ranges from 0 (the features are far away (di = ∞)) to 1 (the features are in

exactly the same position (di = 0)). If the number of scene features is N , the global

quality of the alignment can be calculated as

E =
N−1∑
i=0

Gi (4.14)
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The larger the value of E, the more features in the two scans are aligned. This

metric works well in the case of little overlap between the views as the Gaussian

distance limits the effect of outliers to the total alignment error.

The process is repeated for all pairs of triangles that satisfy the compatibility tests.

The best correspondence is chosen as the pair of triangles whose transformation

gives the largest value of the alignment quality metric E. The proposed pairwise

surface registration algorithm using multi-scale local features is outlined in Algo-

rithm 4.

Algorithm 4 Pairwise Surface Registration using Multi-scale Local Features
Data:
M = {mi ∈ R3}: set of features extracted from the model surface.
S = {si ∈ R3}: set of features extracted from the scene surface.
R = {rk}: a set of scales.
At: area threshold.
Algorithm:

1: for r ∈ {rk} do
2: Delaunay tetrahedrization of the features at scale r in M

TMr = {tmri
}: set of triangles obtained on the model surface at scale r

3: Delaunay tetrahedrization of the features at scale r in S
TSr = {tsri

}: set of triangles obtained on the scene surface at scale r
4: for tsr ∈ {tsri

} do
5: Calculate the area Atsrof the scene triangle tsr

6: if Atsr > At then
7: for tmr ∈ {tmri

} do
8: Calculate the area Atmrof the model triangle tmr

9: if Atmr > At then
10: if tsr and tmr satisfy rigidity constraints then
11: Estimate the transformation T between the triangles
12: Transform all features in S using T

S′ = {s′i}: set of transformed scene features
13: Calculate the alignment quality metric E between S′ and M
14: end if
15: end if
16: end for
17: end if
18: end for
19: The best correspondence is the pair of triangles whose transformation gives

the largest value of the alignment quality metric E.
20: end for
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4.6 Experiments

The proposed registration framework was tested on a broad range of 3D datasets

including both 3D meshes and unstructured point clouds. All the range images

used in the experiments were taken from publicly available databases [53, 75, 79].

Furthermore, the robustness of the proposed algorithm is evaluated by testing it

using range images with different noise conditions and surface resolutions. In all

of experiments conducted, feature points are extracted from the input range image

using five different scales. In the case of 3D meshes, the scales correspond to r = 1

to r = 5 (from the first to the fifth ring). For unstructured point clouds, the radius

of the neighborhood for searching fitting points ranges from 1% to 10% of the length

of the diagonal of the point cloud’s bounding box.

4.6.1 3D Surfaces

In this section, the results of applying the above approach on different 3D meshes

are presented. In order to better demonstrate the proposed method, the coarse

registration results obtained from the above technique are compared with the ones

using the spin-image algorithm [36]. The C++ implementation of the spin-image

algorithm was downloaded from the authors’ website [83].

Figure 4.4 shows the results of coarsely registering two views of the ‘T-rex’ model

using the above approach and the spin-image method without any prior knowledge

about the initial alignment. Each view has about 10k vertices. The corresponding

vertices of the triangles used for matching are shown with the same color (Figures

4.4a and 4.4b). Positions marked in darker color are the scene scan aligned with

respect to the model scan. The fine registration result obtained by applying the

ICP [3] is shown in Figure 4.4e. From Figures 4.4a and 4.4b, it can be seen that the

proposed method can accurately locate a pair of matched triangles from the two

different views of the ‘T-rex’ model and calculate the transformation between the

views. It is also obvious from Figures 4.4c and 4.4d that the two range images are
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(a) Scene view (b) Model view

(c) Spin-image result (d) The proposed approach (e) Result of the proposed ap-
proach after ICP

Figure 4.4: Pairwise registration results for the ‘T-rex’ model. Positions marked in
darker color are the scene scan aligned w.r.t. the model scan using the estimated
transformation.

aligned better using the proposed method than the spin-image technique. Further

comparisons of the approach and the spin-image technique for three other models,

namely, the ‘Chef’, ‘Chicken’ and ‘Buddha’, are shown in Figure 4.5. The proposed

method clearly provides better alignments for the ‘Buddha’ and ‘Chef’ models.

However, the proposed method has higher translation error in one direction in the

case of the ‘Chicken’ model compared to the result by using spin-images.

These qualitative results are confirmed by the quantitative comparisons of the trans-

lation and rotation errors between the spin-image and the proposed approach in Ta-

bles 4.1 and 4.2, respectively. All models used in the experiments are at the same
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scale. For the Buddha model, the errors were estimated by comparing the coarse

transformations obtained from the proposed approach and the spin-image method

with the ground truth transformation. However, as the ground truth transforma-

tions of the scans of the ‘Chef’, ‘Chicken’ and ‘T-rex’ models are not available, the

errors were calculated by comparing the coarse transformations with the refined

transformations using ICP. It can be seen that the proposed method outperforms

the spin-image approach in both the translation and rotation error metrics. For the

‘Chicken’ model, the proposed method has slightly higher translation error in the

x axis that is consistent with the observations in Figure 4.5. Most of the rotation

errors in the registration results using the proposed technique are smaller than 1◦.

This is a very desirable result for any coarse registration algorithm.

Table 4.1: Comparison of the translation errors.

Spin-image The proposed method
Model tx(mm) ty(mm) tz(mm) tx(mm) ty(mm) tz(mm)

Chef 2.29 23.78 111.29 1.64 5.94 12.67
T-rex 14.84 38.92 26.43 1.95 1.49 0.54

Chicken 0.41 22.05 24.21 3.25 9.42 10.21
Buddha 6.09 0.11 0.08 5.94 0.57 0.08

Table 4.2: Comparison of the rotation errors.

Spin-image The proposed method
Model θx(

◦) θy(
◦) θz(

◦) θx(
◦) θy(

◦) θz(
◦)

Chef 22.95 1.39 1.92 0.18 0.39 0.19
T-rex 5.84 2.25 6.65 0.36 1.15 2.01

Chicken 4.08 0.45 0.68 0.79 0.36 0.82
Buddha 0.57 18.63 2.66 0.31 3.39 1.02

Table 4.3 compares the registration time between the proposed approach and the

spin-image method for two views of the ‘Chef’ model. Each original scan of the

Chef model which contains about 70k vertices was simplified to smaller meshes
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using the approach in [48]. The registration time was measured at five different

mesh resolutions for both the proposed approach and the spin-image method. The

executing time for the proposed method includes both the time taken for extracting

local features at different scales as well as finding the best pair of matched triangles.

It can be seen from the table that the proposed approach is much more efficient

than the spin-image method. In all the cases, it took the proposed method less

than one minute to register the scans. For the pair of scans with 25k vertices, the

spin-image took more than 2.7 hours to calculate the best transformation. Even

at the original mesh resolution of 70k, the proposed approach only spent about

2 minutes for each pair of scans. Both the spin-image method and the proposed

technique were implemented in C++ and tested on an Intel 2.4GHz laptop with

2GB of memory.

Table 4.3: Comparison of the registration time for the Chef model.

Number of Vertices Spin-images The proposed approach

5k 71s 12s
10k 2m54s 22s
15k 16m12s 34s
20k 60m56s 44s
25k 166m 52s

4.6.2 Noise and varying sampling densities

In order to evaluate the robustness of the proposed approach in the presence of

noise, white Gaussian noise with standard deviation σ ranging from 0.025 to 0.5

was injected into the range scans. Figures 4.7a and 4.7b plot the average translation

and rotation errors at different values of σ for the registration of two views of the

T-rex model using the approach. It can be seen that even at the noise level of

σ = 0.5, the proposed framework can still accurately align the scans with the

average translation error less than 7mm and average rotation error less than 3◦.
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The registration result at σ = 0.5 is shown in Figure 4.6.

The performance of the proposed approach in registering range images with very

different mesh resolutions was also tested. Figure 4.8a shows the scene scan of the

T-rex model with 1k vertices. It is registered with the model scan containing 10k

vertices. The results using the spin-image technique and the proposed approach are

given in Figures 4.8c and 4.8d respectively. It is clear that the proposed framework

still outperforms the spin-image method and provides relatively accurate results.

4.6.3 Unstructured Point Clouds

Results of using the proposed framework for registering unorganized point clouds are

shown in Figure 4.9. Each view of the helicopter and carrier model contains about

10k and 24k data points, respectively. For the car model, there are approximately

50k points for each scan. All the views of the three models were obtained from the

Stuttgart Range Image Database [79]. Despite a large rotation angle of about 90◦

between the two scans of the helicopter, the method was still able to align them

accurately as seen in Figure 4.9c. Figures 4.9f and 4.9i present other successful

registration results for the carrier and car model, respectively.

4.7 Summary

In this chapter, an automatic framework for registering two range scans that differ

by a rigid body transformation has been presented. First, salient features are ex-

tracted from the input range images. A set of triangles is then created from each

scan by performing the Delaunay tetrahedrization on its feature points. Rather

than using an exhaustive searching strategy, possible pairs of matched triangles

between the two views are found based on various surface geometric and rigidity

constraints. The best correspondence is the pair of triangles whose transformation
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aligns the most number of features on the two range scans. The proposed tech-

nique provides a unified approach to the registration of both triangulated meshes

and point clouds. Furthermore, it is robust to surface resolution as well as noise.

Results of applying the framework to a number of different 3D models illustrate its

effectiveness and robustness. In the next chapter, the algorithm will be extended to

the problem of 3D object recognition from range images. Using a similar approach

to this framework, it will be shown that the proposed method is able to recognize

objects from 3D scenes with occlusion, clutter and noise.
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(a) Spin-image (b) The proposed
approach

(c) Result of
the proposed
approach after
ICP

Figure 4.5: Pairwise registration results for other 3D models.
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(a) Noisy scene scan (b) Noisy model scan

(c) Spin-image (d) The proposed approach

Figure 4.6: Pairwise registration results of noisy T-rex scans at σ = 0.5 .

(a) Average translation error (b) Average rotation error

Figure 4.7: Transformation errors for noisy scans of the T-rex model
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(a) Scene view (1k) (b) Model view (10k)

(c) Spin-image (d) Our approach

Figure 4.8: Pairwise coarse registration of T-rex scans with different mesh resolu-
tions.



62 Chapter 4. Surface Registration using Local Features

(a) Scene view (b) Model view (c) Registration result

(d) Scene view (e) Model view (f) Registration result

(g) Scene view (h) Model view (i) Registration result

Figure 4.9: Pairwise coarse registration results for unstructured point clouds. Points
in each scan are color coded according to their z coordinates. The colormap is from
blue to red corresponding to low to high values of z. In the registered views, the
model points and scene points are shown in blue and red, respectively. Figures are
best seen in color.



Chapter 5

3D Object Recognition from

Range Images

5.1 3D Object Recognition Framework

Automatic recognition of objects in a 3D scene is an important task in computer

vision and robotics. However, it is also a challenging problem due to occlusion and

clutter generated by the presence of multiple objects and noise in the scene. As

discussed in Chapter 2, existing 3D object recognition techniques still have many

limitations in terms of accuracy, efficiency and especially the ability to handle scenes

with a high degree of clutter and occlusion.

In this chapter, experimental results of applying the proposed multi-scale feature

extraction framework in recognizing 3D objects from range images are presented.

The approach is similar to the registration method presented in Chapter 4. First,

local features are extracted from both the 3D model and the scene at multiple scales.

Two sets of triangles are obtained by performing the Delaunay tetrahedrization

both for the features on the scene and model surfaces. In order to estimate the

location and orientation of the object in the scene, a pair of matched triangles

between the scene and the model is found using the rigidity constraints as presented

63
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in Section 4.3. The verification step is performed by transforming the model’s

features to the scene coordinate system using the estimated transformation matrix

and calculating the overlapping metric E as in Equation (4.14). The pair of triangles

whose transformation matrix gives the largest value of E is chosen as the optimal

correspondence. If the overlapping metric E is greater than a threshold Et, we

decide that the searched model exists in the scene and its pose is given by the

transformation estimated from the optimal correspondence. The block diagram of

the 3D object recognition algorithm is shown in Figure 5.1.

Figure 5.1: Block diagram of the proposed 3D object recognition algorithm.

In order to improve the recognition results in scenes with a high degree of occlusion
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(a) (b) (c)

Figure 5.2: Recognition result for a highly occluded scene. Only about 5% of the
model’s surface area appears in the scene. Location of the Chef is shown as model
vertices superimposed on the scene.

and clutter, the features’ distinctiveness values can be used in estimating the Gaus-

sian error metric in the verification step. The Gaussian weighted distance metric

between two features i and j in Equation (4.13) introduced in Section 4.5 can be

rewritten as

Gij = e−d2
ij/(2γiγjσ2) (5.1)

where γi and γj are the distinctiveness values of the two corresponding features i

and j, respectively. These values are estimated using Equation (3.12). The purpose

of adding the distinctiveness values in calculating the overlapping error metric is

that a pair of highly distinctive features would contribute more significantly to the

metric than a pair of features with low distinctiveness values. Figure 5.2 shows a

successful example of recognizing the Chef model in a highly occluded scene using

the above modified error metric. The amount of occlusion in the scene is about 95%.

Without using the distinctiveness values in the overlapping metric, the technique

has failed to locate the position of the Chef in this scene.

In experiments carried out, the level of occlusion and clutter are calculated using
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the formula defined in [36, 57]

occlusion = 1 − Sm

SM

(5.2)

clutter = 1 − Sm

SS

(5.3)

where Sm is the surface area of the model presented in the scene, SM is the total

surface area of the complete model and SS is the total surface area of the scene. In

order to calculate the amount of occlusion and clutter, it is necessary to estimate the

overlap area of the model and the scene. This can be achieved by transforming the

complete model to the scene coordinate system using the location and orientation

parameters obtained after the recognition process. For each vertex on the model

surface, the closest vertex on the scene surface is considered as overlapping if their

normals are similar (the angle difference is within a threshold) [31]. The overlapping

area is estimated by summing the area of all triangle facets in the overlapping region.

For models that could not be automatically recognized from the scene, they were

manually segmented in order to calculate the overlapping area.

5.2 Experimental Results

Figure 5.3 shows five different 3D models used in recognition experiments con-

ducted, namely the Chef, Chicken, T-rex, Parasaurolophus and Rhino. These mod-

els were downloaded from A. Mian’s homepage [53]. It is worth noting that the

Rhino model was intentionally reconstructed with large holes in order to test the

robustness of the matching algorithm with incomplete data [57]. The models were

matched against 50 real scenes generated by randomly placing four or five of the

objects together and scanning with the Minolta Vivid 910 scanner. The scenes are

also available from the same website. Some sample scenes and the recognition re-

sults using the proposed approach are shown in Figure 5.4. It can be seen that the

method was able to correctly recognize all five objects in these scenes.

Before performing the matching, salient local features are selected from the 3D
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(a) Chef (b) Chicken (c) T-rex

(d) Parasaurolophus (e) Rhino

Figure 5.3: Five different 3D models used in the recognition.

models and scenes at 5 different scales corresponding to r = 1 to r = 5. The feature

extraction step for all the models can be done off-line, thus it does not affect the

actual matching time. Figure 5.5 shows the recognition results for the ‘Chef’ model

in three real scenes with different amounts of occlusion and clutter. It can be seen

that the method can accurately find the pair of matched triangles between the model

and scene surfaces and thus, estimate the locations and orientations of the ‘Chef’

model in the scenes. Even with a highly occluded scene shown in Figure 5.5h, the

recognition process was still successful when only about 15% of the model surface

present in the scene. Further experimental results for other models including the

T-rex, Rhino, Parasaurolophus and Chicken are shown in Figure 5.6.

To further gauge the performance of the matching approach, it is possible to break
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the success or failure of the recognition results into four states: true positive, false

positive, false negative and true negative [36]. A recognition result is classified as

true positive if the model exists and the algorithm can find it in the scene. The

false positive is used if the algorithm decides that the model exists when it does

not or the algorithm locates the model in an entirely wrong position in the scene.

If the model exists in the scene and the algorithm concludes that it does not, this

is termed as false negative. As the searched model was always in the scene, the

true negative state was not used in the experiments. It is worth noting that if the

threshold value Et is too small, e.g. Et ≈ 0, false negatives can be eliminated.

However, this will increase the false positive rate significantly.

Each of the five 3D models was recognized using the proposed algorithm on all

50 real scenes resulting in 250 recognition trials. Figure 5.7 shows the recognition

rate of the approach versus occlusion and clutter. It can be seen from Figure 5.7a

that when the amount of occlusion is smaller than 80%, the recognition rate (true

positives) of the algorithm is always greater than 95%. This is an indication that

the technique will almost always work if there is sufficient surface area of the model

in the scene. However, the recognition rate drops significantly and the number

of false negatives increases rapidly when the occlusion is higher than 85%. This is

expected since, with high occlusion, the value of the overlapping metric E estimated

from the verification step is very small as a result of little overlapping surface area

between the model and the scene. The average recognition rate of the approach is

97.7% for the amount of occlusion up to 85% compared to the reported results of

87.8% of the spin-images [36] and 96.6% of the tensor-based approach [57] on these

50 real scenes. The recognition rate of the algorithm versus clutter is shown in

Figure 5.7b. It is clear from the figure that the approach performs well in cluttered

scenes. The effect of clutter on the recognition results only becomes significant

when there is more than 90% clutter in the scene. However, it can be seen that

even at 95% clutter, the number of true positives is still 60% of the total number of

recognition trials. As the level of clutter reaches 90% and beyond, the false positive
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rate increases quickly as the method starts making more incorrect matches. This

is an expected behaviour for any matching algorithm using local surface geometric

features in highly confusing scenes.

The average recognition time per scene for each model using the proposed method

is shown in Table 5.1. It can be seen from the table that the proposed approach

takes on average about 3 minutes to recognize a model from a real scene. It is

worth knowing that any preprocessing or simplification of the input range images

before the recognition is not required. In the case of the spin-image algorithm

[36] or the approach using 3D tensors [57], the input meshes have to be simplified

or smoothed before performing the matching process. It took the spin-images an

average recognition time of about 480 minutes per scene. The recognition time for

the 3D tensor approach was reported by the authors at approximately 6 minutes

per scene [57] or about 2 minutes per single object per scene. It can be seen that

the algorithm is significantly faster than the spin-images and only slightly slower

than the tensor-based method despite that it operates on full resolution meshes and

the other techniques work on simplified versions.

Table 5.1: Recognition time for five 3D models.

Model Number of vertices Average recognition time

Chef 176920 175s
T-rex 176508 203s
Rhino 79902 151s

Parasaurolophus 184879 213s
Chicken 135142 148s
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5.3 Robustness to Noise and Variations in Sur-

face Sampling

In order to evaluate the robustness of the recognition framework to noise, Gaussian

noise with standard deviation σ ranging from 0.05 to 0.5 was added to the 3D scenes.

The recognition results for the Chef and Parasaurolophus models in a noisy scene

with σ = 0.5 are shown in Figure 5.8. The first two columns of the figure show the

pairs of the matched triangles used in locating the models in the scene. Even in this

highly contaminated scene, the algorithm can still find the optimal correspondences

and thus, accurately identify the models and determine their poses. The robustness

of the method with respect to noise is a result of matching features extracted from

multiple scales. It can be seen that features extracted at higher scales are not

so affected by noise as using a large neighbourhood for collecting fitting points is

similar to applying a smoothing filter to the noisy surface.

Figure 5.9 shows the recognition results for the Chef and Parasaurolophus models

in the same 3D scene but with lower resolution. The original scene containing

114k vertices was down-sampled to about 52k vertices using the mesh simplification

algorithm in [48]. It can be seen from the results that the framework was able to

correctly locate both objects in despite of the large variations in the surface sampling

between the models and the scene.

5.4 Summary

In this chapter, an extension of the surface matching framework using multi-scale

features to the problem of 3D object recognition has been presented. Experiments

were performed on 5 models and 50 real scenes. Recognition results show that

the method is able to accurately locate a 3D model from highly occluded scenes

with the presence of other objects. The proposed method also outperforms the

spin-images [36] and tensor-based approach [57] in terms of recognition rate. It is
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comparable to the tensor-based approach regarding the recognition time. It has

also been demonstrated that the framework is robust to both noise and variations

in surface resolution.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Some real scenes used in the recognition and the simultaneous recogni-
tion results for five models. All models are correctly recognized and their positions
are shown by superimposing model vertices on the scenes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.5: Recognition results for the Chef model. (a), (d), (g) The matched
triangle found on the model surface. (b), (e), (h) The matched triangle found on
the scene surface. (c), (f), (i) Location of the Chef is shown as model vertices
superimposed on the scene.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.6: Additional recognition results for other models.
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(a) (b)

Figure 5.7: (a) Recognition rate of the proposed algorithm versus occlusion. (b)
Recognition rate of the proposed algorithm versus clutter

(a) (b) (c)

(d) (e) (f)

Figure 5.8: Recognition results for the Chef and Parasaurolophus models with Gaus-
sian noise in the scene (σ = 0.5). The algorithm could accurately find the pairs of
matched triangles and thus, correctly locate the their poses in this very noisy scene.
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(a) (b) (c)

(d) (e) (f)

Figure 5.9: Recognition results for the Chef and Parasaurolophus models with dif-
ferent mesh resolution in the scene. The original mesh of the scene containing 114k
vertices was down-sampled to 52k vertices. The poses of the Chef and Parasaurolo-
phus were accurately estimated in despite of the large variations in the surface
sampling between the models and the scene.
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Conclusions and Future Research

6.1 Conclusions

In this thesis, two different schemes for extracting salient local features from 3D

datasets have been proposed. By fitting a truncated Taylor expansion called the

jet to the local surface patch at different sizes, the two principal curvatures are

estimated at multiple scales. These principal curvature values are then used to cal-

culate the curvedness or the shape index of the local patches in order to construct

a scale-space representation of the input surface. Feature points are selected at sur-

face positions corresponding to the local extrema of the scale-space representation.

Furthermore, the distintiveness of each feature is evaluated by using a value that

measures how far the local surface curvature at the point is from the mean value

of its neighbourhood. The proposed framework is applicable to 3D meshes as well

as unstructured point clouds and thus, creates a generic approach to both types of

datasets. It is also demonstrated to work well in noisy conditions given the high

repeatability of the features between the original and noisy range images. In order

to demonstrate the benefits of the technique, it was applied as a preprocessing step

to a surface registration algorithm using spin-images as local descriptors. The pro-

posed feature extraction method helped to improve the registration results in both

77
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terms of accuracy and efficiency.

This thesis also presents an automatic framework for registering two range scans

that differ by a rigid body transformation. The transformation between two views of

the same object can be estimated by finding a pair of matched triangles created from

the triangulations of the features on the scene and model views. In order to increase

the accuracy and efficiency of the algorithm, various surface geometric and rigidity

constraints are applied to prune unlikely correspondences. The method can provide

good alignment results for noisy surfaces and those with different resolutions. When

compared on the same datasets, the proposed technique was shown to be faster and

more accurate than the spin-image algorithm.

As a natural extension to the 3D surface registration algorithm, the framework was

extended to perform the recognition of 3D models on scenes with occlusion and

clutter. The proposed 3D recognition technique was used to recognize 5 objects

on 50 real scenes. Experimental results shows that the method could achieve an

average recognition rate of 97.7% compared to 87.8% of the spin-images [36] and

96.6% of the tensor-based approach [57]. The method was also able to recognize

3D objects from scenes with noise and variations in surface resolutions.

6.2 Future Research

There are several directions that can be further investigated to improve this work.

When extracting salient features for 3D point clouds, the Euclidean distance was

used to search for fitting points in the local neighbourhood at different scales. If

portions of the surface are close in 3D space but their geodesic distance is large, the

feature extraction method may include these portions simultaneously. As a result,

erroneous features may be created if the Euclidean distance is used as the distance

measure [62]. It would be of further research interest to investigate the use of the

geodesic distance in creating the scale-space representation of unstructured point

clouds in order to improve the reliability of extracted features.
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In this thesis, only the problem of pairwise registration of 3D surfaces was investi-

gated. An approach similar to the graph method proposed by Huber [31, 32] can be

used to perform the automatic registration of unordered views. In this method, each

view is considered as a vertex in the graph and the weighted edges are represented

by the pairwise transformations and areas of overlap between the views. Edges with

areas of overlap less than a threshold are pruned. A global optimization is applied

to search for the maximum spanning tree of the graph in order to compute the final

poses of all views.

In the proposed approach, the transformation between two surfaces was limited to

rigid body transformation, i.e. translation and rotation. However, as the informa-

tion about the scale is already contained in each feature, the method can be further

developed to register range scans with inconsistent global scales. The geometric

constraints used in finding correspondences need to be adjusted to incorporate the

scale difference between range scans.

Another one of future work would be to develop a new type of surface descriptor

that uses not only the curvature information but also the spatial distribution of

vertices on a local surface patch to improve the recognition results. Unlike exist-

ing descriptors like spin-images, 3D shape-context or 3D tensors only encoding the

spatial information of surface vertices, it is believed that incorporating the curva-

ture information will increase the discrimination as well as the reliability of the

descriptors.
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