Investigating chromosome pairing in bread wheat using ASYNAPSIS I

by

Scott Andrew Boden B. Science (Hons.), The University of Adelaide

> A thesis submitted for the degree of Doctor of Philosophy

> > at

The University of Adelaide Faculty of Sciences School of Agriculture, Food and Wine Discipline of Plant and Food Science Waite Campus

July 2008

Table of Contents

Table of Contents	II
List of Figures	IX
List of Tables	XI
Abstract	XII
Declaration	XIV
Acknowledgements	XV
Glossary of Abbreviations	XVII
Chapter 1 - Literature Review	1
1.1 - Meiosis	1
1.1.1 - Stages of meiosis	1
1.1.2 - Prophase I	3
1.1.3 - Metaphase I to telophase II	4
1.2 - Molecular analysis of prophase I	5
1.2.1 - Recombination – from structure to functional analysis	6
1.2.2 – Alignment and recognition of homologous chromosomes	
1.2.3 - Synaptonemal Complex – structure and function	
1.3 - Meiosis in bread wheat – a hexaploid acting as a diploid	12
1.4 - <i>ASY1</i> – a gene required for successful chromosome synapsis	16
1.4.1 - ScHOP1: A gene essential for homologous chromosome pairing in yeast	17
1.4.2 - AtASY1, BoASY1 and OsPAIR2: three genes required for synapsis of homologo	ous
chromosomes	19
1.5 – RNA interference	
1.6 – Rationale of current study	
Chapter 2 - Genetic and Transcriptional Analyses of <i>TaASY1</i>	
2.1 – Introduction	
2.2 – Materials and methods	
	II

2.2.1 – Plant growth conditions	
2.2.2 – Staging meiotic material	
2.2.3 – Isolation of <i>TaASY1</i> cDNA	
2.2.3.1 – RNA isolation and gel electrophoresis	
2.2.3.2 – cDNA synthesis	
2.2.3.3 – Isolation of full-length <i>TaASY1</i> open reading frame	
2.2.3.4 – Cloning of PCR products	
2.2.3.4.1 – Purification of DNA from agarose gels	
2.2.3.4.2 – DNA ligation	
2.2.3.4.3 – Bacteria transformation and colony PCR	
2.2.3.5 – Sequencing of <i>TaASY1</i> clones	
2.2.4 – <i>TaASY1</i> genome location	
2.2.4.1 – DNA isolation	
2.2.4.2 – Identifying genome location	
2.2.4.2.1 – Southern blot analysis	
2.2.4.2.2 – Mutant PCR analysis	
2.2.5 – <i>TaASY1</i> genomic DNA and native promoter isolation	
2.2.5.1 – Genomic clone isolation and sequencing	
2.2.5.2 – Native promoter isolation	
2.2.5.2.1 – Production of genome walking libraries	
2.2.5.2.2 – PCR based genome walking	
2.2.5.2.3 – Cloning and sequencing of genome walking fragments	
2.2.5.2.4 – Confirmation of promoter specificity to <i>TaASY1</i>	
2.2.6 – Sequence analysis	
2.2.7 – <i>TaASY1</i> transcriptional analysis	
2.2.7.1 – RNA isolation and gel electrophoresis	
2.2.7.2 – Northern blot analysis	

2.2.7.3 – Microarray analysis	42
2.2.7.4 – Quantitative real time PCR (Q-PCR) analysis	42
2.2.8 – Digital image capture	44
2.3 – Results	44
2.3.1 – Isolation and analysis of the <i>TaASY1</i> cDNA clone	44
2.3.2 – <i>TaASY1</i> gene structure and genome location	47
2.3.3 – Isolation of the native <i>TaASY1</i> promoter sequence	49
2.3.4 – Transcript expression analysis of <i>TaASY1</i>	54
2.4 – Discussion	57
2.4.1 – The genetics of <i>TaASY1</i>	57
2.4.2 – <i>TaASY1</i> transcripts are highly abundant in meiotic tissue	60
Chapter 3 - Investigation of the <i>Ta</i> ASY1 Protein	64
3.1 – Introduction	64
3.2 – Materials and methods	65
3.2.1 - Production of <i>Ta</i> ASY1 protein	65
3.2.1.1 - Development of protein expression vectors	65
3.2.1.2 - TaASY1 protein production in E. coli	66
3.2.1.3 – Purification and gel electrophoresis of recombinant <i>Ta</i> ASY1 protein	66
3.2.1.4 - MS/MS analysis of recombinant <i>Ta</i> ASY1 protein	67
3.2.2 - Production of anti- <i>Ta</i> ASY1 antibodies	68
3.2.2.1 - Production of mouse anti- <i>Ta</i> ASY1 antibody	68
3.2.2.2 - Production of rabbit polyclonal anti- <i>Ta</i> ASY1 antibody	68
3.2.3 - <i>Ta</i> ASY1 western blot analysis	69
3.2.3.1 - Plant protein extraction	69
3.2.3.2 - Gel electrophoresis and protein transfer to membrane	
3.2.3.3 – Western blot analysis and protein detection	
3.2.3.4 - Image capture	

3.2.4 - Immuno-localisation of <i>Ta</i> ASY1 by transmission electron microscopy (TEM)	72
3.2.4.1 - Anther fixation and sample preparation	72
3.2.4.2 - Immunisation and counter-staining of sectioned tissue	73
3.2.4.3 - Sample visualisation using TEM and image capture	73
3.2.5 - Immuno-localisation of <i>Ta</i> ASY1 by fluorescence microscopy	74
3.2.5.1 - Anther fixation	74
3.2.5.2 – Acrylamide embedding of meiocytes	74
3.2.5.3 - Immunisation and counter-staining of poly-acrylamide pads	75
3.2.5.4 - Sample visualisation and image capture	76
3.3 – Results	
3.3.1 – Production of <i>Ta</i> ASY1 recombinant protein	76
3.3.2 – Western blot analysis	78
3.3.3 – Immuno-gold localisation of <i>Ta</i> ASY1 using TEM	78
3.3.4 – Immuno-fluorescence localisation of <i>Ta</i> ASY1	82
3.4 – Discussion	85
3.4.1 – Using localisation studies to understand the role of <i>Ta</i> ASY1	85
Chapter 4 - Investigating Meiosis in <i>Taasy1</i> and <i>ph1b</i> Mutants	91
4.1 – Introduction	91
4.2 – Materials and methods	
4.2.1 – Plant material and growth conditions	93
4.2.2 – Generating <i>Taasy1</i> mutant plants	95
4.2.2.1 – Construction of the RNA interference (RNAi) vector	95
4.2.2.2 – Transformation of Bread Wheat (Bob White MPB26)	96
4.2.3 – Genotype analysis	96
4.2.3.1 – Identification of positive transgenic plants via PCR	96
4.2.3.1.1 – Identification of positive T ₁ transgenic plants	96
4.2.3.1.2 – Identification of positive T ₂ transgenic plants	97

4.2.3.2 – Southern blot hybridisation	
4.2.3.2.1 – DNA extraction	
4.2.3.2.2 – Genomic DNA digestion and transfer to membrane	
4.2.3.2.3 – Southern blot analysis	
4.2.4 – RNA and protein analysis	
4.2.4.1 – Collection of meiotic tissue from <i>Taasy1</i> mutants	
4.2.4.2 – Collection of meiotic tissue from <i>ph1b</i>	
4.2.4.3 – RNA and protein extraction	
4.2.5 – <i>TaASY1</i> expression analysis in <i>Taasy1</i> and <i>ph1b</i>	
4.2.5.1 – Q-PCR analysis of <i>Taasy1</i> mutants	100
4.2.5.2 – Q-PCR analysis of <i>ph1b</i>	
4.2.5.3 – Western blot analysis of <i>ph1b</i> mutants	
4.2.6 – Fertility analysis of <i>Taasy1</i> mutants	
4.2.6.1 – Analysis of whole plant morphology	
4.2.6.2 – Analysis of pollen viability	
4.2.6.3 – Analysis of seed set in <i>Taasy1</i> mutants	
4.2.6.3.1 – Seed collection from T_1 and T_2 generation plants	
4.2.6.4 – Data analysis	
4.2.7 – Analysis of chromosome morphology during meiosis	
4.2.7.1 – Collection of staged anthers	
4.2.7.2 – Analysis of chromosome morphology using Feulgen's stain	
4.2.7.3 – Image capture	
4.2.8 – Immuno-localisation of <i>Ta</i> ASY1 in <i>Taasy1</i> and <i>ph1b</i> mutants	
4.2.8.1 – Collection of staged anthers	
4.2.8.2 – Sample preparation and immunisation	
4.2.8.3 – Sample visualisation and image capture	
4.3 – Results	
	VI
	11

$4.3.1 - Taasy I$ mutant analysis $-T_1$ generation	
4.3.1.1 – Genotype analysis	106
4.3.1.2 - Q-PCR analysis of T ₁ generation <i>Taasy1</i> mutants	
4.3.1.3 – T ₁ generation <i>Taasy1</i> plants display reduced fertility	109
$4.3.2 - Taasy1$ mutant analysis $-T_2$ generation	110
4.3.2.1 – Genotype analysis	110
4.3.2.2 – Q-PCR analysis of T ₂ generation <i>Taasy1</i> mutants	112
4.3.2.3 – <i>Taasy1</i> mutants display significant reduction in fertility	113
4.3.2.4 – Meiotic chromosome morphology is disrupted in the <i>Taasy1</i> mutants	116
4.3.2.5 – <i>Ta</i> ASY1 localisation in the <i>Taasy1</i> mutants	119
4.3.3 – Investigation of <i>TaASY1</i> in <i>ph1b</i>	122
4.3.3.1 – Q-PCR analysis of meiotic candidate genes in <i>ph1b</i>	122
4.3.3.2 – Western blot analysis of <i>Ta</i> ASY1 in <i>ph1b</i>	125
4.3.3.3 – Localisation of <i>Ta</i> ASY1 in <i>ph1b</i>	125
4.4 – Discussion	
4.4.1 – Genetic analysis of the <i>Taasy1</i> mutants	129
4.4.2 – Expression analysis of <i>Taaasy1</i> mutants	
4.4.3 – Whole plant morphology of <i>Taasy1</i> mutants	
4.4.4 – Investigating meiosis of the <i>Taasy1</i> mutants	
4.4.5 – Investigation of <i>TaASY1</i> in the <i>ph1b</i> mutant	
Chapter 5 - General Discussion and Future Directions	
5.1 – General discussion	
5.1.1 – Investigating <i>TaASY1</i> in wild-type wheat	
5.1.2 – Using TaASY1 RNA interference mutants to define the role of TaASY1	
5.1.3 – Using <i>TaASY1</i> to solve the mystery of <i>Ph1</i>	
5.1.4 – A model for the involvement of chromosome pairing in bread wheat	152
5.2 – Future directions	

5.2.1 – Further investigati	ons of <i>Ta</i> ASY1 in bread wheat	
5.2.2 – Analysis of <i>Taasy</i>	1 mutants	
5.2.3 – Further analysis of	f Ph1	
5.2.4 – The bigger picture		
References		
Appendix A		
Appendix B		
Appendix C		
Appendix D		

List of Figures

Figure 1.1 – Meiotic divisions I and II as observed in <i>Secale cereale</i> microsporocytes	3
Figure 2.1 - Alignment and comparison of the deduced amino acid sequences within the HORMA	
domains of TaASY1, OsPAIR2 (O. sativa), AtASY1 (A. thaliana), BoASY1 (B. oleracea) and	
ScHOP1 (S. cerevisiae).	46
Figure 2.2 - Schematic representation of <i>TaASY1</i> gene structure with exons and introns	47
Figure 2.3 - Chromosomal location of <i>TaASY1</i> determined by Southern blot.	48
Figure 2.4 - Chromosomal location of <i>TaASY1</i> determined by PCR Analysis	49
Figure 2.5 – Isolation of the <i>TaASY1</i> promoter by genome walking.	51
Figure 2.6 – Diagrammatic representation of products amplified <i>via</i> genome walking	52
Figure 2.7 – Tissue series and meiosis stage specific northern blot analysis of <i>TaASY1</i>	54
Figure 2.8 – Meiosis staged microarray analysis of <i>TaASY1</i>	56
Figure 2.9 - Meiosis staged and vegetative tissue Q-PCR analysis of <i>TaASY1</i>	56
Figure 3.1 – Production of recombinant <i>Ta</i> ASY1 in <i>E coli</i>	77
Figure 3.2 – Western blot analysis of <i>TaASY1</i> .	78
Figure 3.3 – Immuno-gold localisation of <i>Ta</i> ASY1 <i>via</i> electron microscopy	79
Figure 3.4 – Schematic diagrams of <i>Ta</i> ASY1 localisation as detected by electron microscopy	81
Figure 3.5 – Immuno-fluorescence localisation using anti- $TaASY1$ immune sera detected $TaASY1$	
only in meiocytes during prophase I.	83
Figure 3.6 – Immuno-fluorescence localisation of <i>Ta</i> ASY1 during pre-meiotic interphase and	
throughout prophase I.	83
Figure 4.1 – Schematic diagram of the construct used to generate the <i>Taasy1</i> RNAi lines	95
Figure 4.2 – Genotype analysis of T_1 generation <i>Taasy1</i> mutants	. 108
Figure 4.3 – Q-PCR analysis of T ₁ generation <i>Taasy1</i> mutants.	. 109
Figure 4.4 – Genotype analysis of T_2 generation <i>Taasy1</i> mutants <i>via</i> PCR	. 111
Figure 4.5 – Q-PCR analysis of T ₂ generation <i>Taasy1</i> mutants.	. 112

Figure 4.6 - Phenotype of <i>Taasy1</i> mutants (T ₂ generation) compared to wild-type wheat during
vegetative and reproductive development
Figure 4.7 – Alexander stain shows increased pollen abortion in <i>Taasy1</i> mutants (T_2 generation) 116
Figure 4.8 – Feulgen's-stained chromosome preparation of <i>Taasy1</i> mutants (T_2 generation) and <i>ph1b</i> .
Figure 4.9 – Feulgen's-stained chromosome spreads of <i>Taasy1</i> mutants displaying various anaphase I
phenotypes
Figure 4.10 – Feulgen's-stained metaphase I chromosome spreads of independent transgenic lines (T_2
generation)
Figure 4.11 – Immuno-fluorescence localisation of TaASY1 during prophase I of Taasy1 mutants 122
Figure 4.12 – Merged images of <i>Taasy1</i> cells lacking any detectable ASY1 protein
Figure 4.13 – Q-PCR analysis of <i>TaASY1</i> and meiotic candidate genes during meiosis in <i>ph1b</i> 123
Figure 4.14 – Western blot analysis of <i>Ta</i> ASY1 protein during meiosis in <i>ph1b</i> and wild-type wheat
(cv. Chinese Spring)
Figure 4.15 – Immuno-fluorescence localisation of <i>Ta</i> ASY1 during prophase I of <i>ph1b</i> 128
Figure 5.1 - A proposed model for the control of homologous chromosome pairing in bread wheat
developed using the results from this study

List of Tables

Table 2.1 – The list of primers used to isolate the <i>TaASY1</i> genomic DNA sequence	
Table 2.2 – List of primers used during genome walking experiments to isolate the <i>TaASY1</i> pro	moter.
	38
Table 2.3 – List of primers used to confirm that the obtained promoter sequence was specific to)
TaASY1	39
Table 2.4 - Percentage identity between the full-length TaASY1 protein sequence and character	rised
asynaptic proteins from other species.	45
Table 2.5 - Percentage identity between the HORMA domain sequence of $TaASY1$ and the HO)RMA
domains of characterised asynaptic proteins from other species.	46
Table 2.6 – A summary of the three main groups of <i>cis</i> -elements identified within the 2355 bp	TaASY1
promoter sequence.	53
Table 4.1 – A summary of selected T_1 <i>Taasy1</i> mutant plant lines	94
Table 4.2 – A summary of selected T_2 <i>Taasy1</i> mutant plant lines	94
Table 4.3 – A summary of genotype analysis performed on <i>Taasy1</i> mutants from the T_1 generate	tion. 107
Table 4.4 – A summary of genotype analysis performed on <i>Taasy1</i> mutants from the T_2 generate	tion. 111
Table 4.5 - Statistics of the number of seeds per floret, seeds per head and pollen abortion in RN	NAi
<i>Taasy1</i> transgenic wheat plants (T_2) compared to wild-type wheat plants (Bob White MPB26).	115

Abstract

Pairing and synapsis of homologous chromosomes are required for normal chromosome segregation and the exchange of genetic material during meiosis. Pairing is defined as the recognition and alignment of chromosomes that occurs either pre-meiotically or during early prophase I to ensure that associations *via* synapsis and recombination occur only between homologues. Synapsis is the intimate juxtaposition of homologous chromosomes that is complete at pachytene following formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is an essential component of the SC that localises along chromosome axes during prophase I and promotes homologous chromosome interactions. Homologues in Arabidopsis (*AtASY1*), *Brassica* (*BoASY1*) and rice (*OsPAIR2*) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC. In this study, we have characterised the bread wheat homologue of *HOP1*, *TaASY1*, and its encoded protein.

The full length cDNA and genomic DNA clones of *TaASY1* have been isolated, sequenced and characterised. *TaASY1* is located on chromosome group 5 and the open reading frame displays significant similarity to *OsPAIR2* (84%) and *AtASY1* (63%). In addition to *OsPAIR2* and *AtASY1*, the deduced amino acid sequence also displays sequence similarity to *Sc*HOP1, with all four proteins containing a HORMA domain. Transcript and protein analysis showed that expression is largely restricted to meiotic tissue, with elevated levels during the stages of prophase I when pairing and synapsis of homologous chromosomes occurs.

Antibodies specific to TaASY1 were used in immuno-fluorescence microscopy and immuno-gold transmission electron microscopy to investigate the localisation of TaASY1 in

meiotic cells. Immuno-fluorescence analysis initially detected ASY1 in pollen mother cells (PMCs) during meiotic interphase as foci randomly distributed over the chromatin. The ASY1 signal became increasingly continuous during leptotene, reflecting the changes occurring in chromosome morphology. Throughout zygotene, the signal became progressively more continuous, localising along the entire length of the axial elements as chromosomes synapsed. This signal appeared to persist until pachytene, before disappearing from the chromatin as the SC disassociated through late pachytene and early diplotene. The immuno-gold based electron microscopy displayed that *Ta*ASY1 localises to chromatin that is associated with both axial elements before SC formation as well as chromatin of lateral elements within formed SCs.

Analysis of RNAi *Taasy1* mutants was performed to further define the role of ASY1 in bread wheat meiosis. ASY1 localisation was disrupted in these mutants, with a diffuse and non-continuous signal observed through leptotene and zygotene. Feulgen staining of meiotic chromosomes displayed reduced synapsis during prophase I, as well as multivalents at metaphase I and abnormal chromosome segregation during anaphase I. These observations are consistent with the presence of homoeologous chromosome interactions. TaASY1 expression and localisation was also investigated in the bread wheat pairing mutant, ph1b. Quantitative real-time PCR (Q-PCR) revealed that TaASYI is significantly up-regulated in ph1b, with greater then 20-fold expression compared to wild-type Chinese Spring, while maintaining the same pattern of expression as wild-type through progressive stages of meiosis. ASY1 localisation was significantly disrupted in phlb, with irregular loading on axial elements during mid to late zygotene, indicative of abnormal chromatin remodelling and multiple axial element associations that have previously been reported in *ph1b*. Taken together, these results indicate that TaASY1 is essential for promoting homologous chromosome interactions during meiosis, and that impairment of ASY1 function in bread wheat meiosis results in reduced restriction of chromosome associations to homologues.

Declaration

I declare that the work presented in this thesis contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution. To the best of my knowledge and belief, this thesis does not contain any material previously written or published by another person, except where due reference is made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the copyright Act 1968.

The author acknowledges that copyright of the published works contained within this thesis resides with the copyright holder(s) of those works.

Scott Boden

July 2008

Acknowledgements

Firstly, I would like to thank my principal supervisor and dear friend, Jason Able, who became the mentor that every student should have. Thank you for your enthusiasm for science, your constant guidance throughout this project, and your genuine willingness to do everything in your power to make my project as successful and enjoyable as possible. I will be eternally grateful.

Secondly, thank you to my co-supervisors and the many people along the way that have provided me with crucial technical support, without which the results of my project would not have been achieved. These people include: Andrew Milligan, Chunyuan Huang, Peter Langridge, Neil Shirley, Nadim Shadiac, Gwen Mayo, Margie Pallotta, Marilyn Henderson, Lyn Waterhouse, Ursula Langridge, Ian Dundas, Dawn Verlin, Alfio Comis, Chris Bagley and Juan Juttner. Thank you sincerely for your fantastic expertise at various stages of my project.

I would like to give special thanks to three groups who have provided significant help during the last three years. Firstly, to Professor Takashi R. Endo and his group at Kyoto University. I am extremely grateful to you all, especially Prof. Endo and Taiji Nomura, for making my stay in Kyoto so enjoyable and rewarding. Secondly, I would like to thank Dr Wojtek Pawlowski and his group at Cornell University for teaching me the wonders of fluorescent microscopy. Thank you to you all for making my dream of seeing chromatin within a meiotic nucleus come true, and for being so generous with your knowledge about this difficult technique. And finally, to Professor German Spangenberg and his group from Molecular Plant Breeding CRC, who provided me with the wonderful gift of the *Taasy1* mutants. Many thanks also to my current and past lab members; Hayley Jolly, Kelvin Khoo, Andrew Lloyd, Caroline Abrahamse, Bill Bovill, Ryan Walker, Tim Sutton, Elise Tucker, Tim March, Annette Boettcher, James Chand and especially, Wayne Crismani, who have provided ever-useful technical knowledge, plenty of laughs and a greatly appreciated release from the pressures of a PhD.

I would also like to thank Heather Bray, Amanda Able and Michael McLean, who have provided amazing educational support throughout this project, especially at the student retreats. The success and enjoyment of the students has a lot to do with your efforts, and I for one am truly grateful.

Thank you to the Grains Research and Development Corporation and Molecular Plant Breeding CRC for your generous funding of this project. Also, thank you to the Department of Primary Industries N.S.W., the Australian Society of Plant Scientists, the former Department of Education, Science and Technology and Cheung Kong Holdings for the funding that you generously provided for travel at various stages of my PhD.

On a personal note, thank you to my family, Andrew, Anthea, Justin and James for your love, support and constant source of happiness that you have provided throughout my education. Thank you also to Anna's parents, Don and Gail, who have provided great support during the last stages of my PhD. And finally, thank you Anna, for being the loving person who makes the great days even more enjoyable, and who puts a smile on my face even after a crappy day.

Glossary of Abbreviations

Abbreviation	Full term
3'	three prime
5'	five prime
9mer	9 base pair nucleotide
α-dCTP	alpha-deoxycytidine triphosphate
°C	degrees Celcius
Amp	Ampicillin
ASYI	<u>ASY</u> napsis <u>1</u>
At	Arabidopsis thaliana
bar	bialaphos resistance gene
BCIP/NBT	5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium
BLAST	Basic Local Alignment and Search Tool
Во	Brassica oleracea
bp	base pair
BSA	Bovine Serum Albumin
BW26	Bob White 26 cultivar of bread wheat
Cdk	<u>C</u> yclin <u>D</u> ependent <u>K</u> inase
cDNA	complimentary deoxyribonucleic acid
Ce	Caenorhabditis elegans
СТ	cycle threshold
CV.	cultivar
DABCO	diazabicyclo-[2,2,2] octane

DAPI	4',6-diamidino-2-phenylindole
DMC1	<u>D</u> isrupted <u>M</u> eiotic <u>cD</u> NA <u>1</u>
DNA	deoxyribonucleic acid
DPSS	diode-pumped solid state (laser)
dNTP	deoxynucleoside triphosphate
DTT	dithiothreitol
EDTA	ethylene diamine tetra-acetic acid
EFA	<u>E</u> longation <u>F</u> actor 1 <u>A</u> lpha
EGTA	ethylene glycol tetra-acetic acid
EST	expressed sequence tag
FISH	fluorescent in situ hybridisation
g	gram
g	relative centrifugal force
GAPdH	<u>G</u> lycer <u>A</u> ldehyde-3- <u>P</u> hosphate <u>DeH</u> ydrogenase
h	hour(s)
HIM-3	<u>H</u> igh <u>I</u> ncidence of <u>M</u> ales <u>3</u>
His	histidine
HOP1	<u>HO</u> mologous <u>P</u> airing <u>1</u>
HORMA	Hop1p, Rev7p, MAd2
IgG	immunoglobulin G
IPTG	isopropyl-1-thio-β-D-galactoside
kb	kilobase
kDa	kilo Dalton
KLH	keyhole limpet hemocyanin
LASER	Light Amplification by Stimulated Emission of Radiation

LB	Luria Bertani
М	molar
mg	milli gram
mM	milli molar
mCi mL ⁻¹	milli Curie per milli litre
MEC1	<u>M</u> itosis <u>E</u> ntry <u>C</u> heckpoint <u>1</u>
min	minute(s)
MLH1/3	<u>Mut L H</u> omologue <u>1/3</u>
mRNA	messenger ribonucleic acid
MPB CRC	Molecular Plant Breeding Co-operative Research Centre
MRE11	<u>M</u> eiotic <u>RE</u> combination 11
MSH4/5	<u>M</u> ut <u>S H</u> omologue 4/5
MS/MS	tandem mass spectrometry
N/A	not applicable
NCBI	National Center of Biotechnology Information
n.d.	not determined
ng	nano gram
nm	nano metre
NT	nullisomic-tetrasomic
ORF	open reading frame
Os	Oryza sativa
Р	probability
PAIR2	homologous <u>P</u> airing <u>A</u> berration <u>In R</u> ice meiosis <u>2</u>
PBS	phosphate buffered saline
PCR	polymerase chain reaction

PLACE	PLAnt Cis-acting Regulatory DNA Elements
РМС	pollen mother cell
PVDF	polyvinylidene difluoride
PVP	polyvinyl pyrrolidone
PVPP	polyvinyl polypyrrolidone
Q-PCR	quantitative real-time PCR
Q-TOF ²	quadruple time of flight squared
R40	40 μ g μ L ⁻¹ RNAse in 1X TE
RAD51	<u>RAD</u> iation sensitive <u>51</u>
REC8	<u>REC</u> ombination 8
RED1	<u>RED</u> uctional division <u>1</u>
RNA	ribonucleic acid
RNAse	ribonuclease
RNAi	RNA interference
rpm	revolutions per minute
Sc	Saccharomyces cerevisiae
SC	synaptonemal complex
sec	second(s)
SDS	sodium dodecyl sulphate
SDS-PAGE	SDS - polyacrylamide gel electrophoresis
SNP	single nucleotide polymorphism
SSC	standard saline citrate
SPO11	<u>SPO</u> rulation-deficient 11
Та	Triticum aestivum
Taq	Thermus aquaticus

TBS	tris-buffered saline
T-DNA	transfer DNA
TE	Tris EDTA solution
TEL1	<u>TEL</u> omere <u>1</u>
TEM	transmission electron microscopy
T _m	melting temperature
Tris	tris(hydroxymethyl)aminomethane
U	units
μL	micro litre
μg	micro gram
μΜ	micro molar
UV	ultra-violet
V	volts
v/v	volume/volume
w/v	weight/volume
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyrano-side