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Executive Summary 

Large scale power generation commences with the combustion of coal or other fuel, which in 

turn converts high pressure water into steam which then drives a turbine thus generating 

electricity.  Burning high moisture coal, such as lignite, for power generation implies that a 

significant amount of energy is wasted in vaporising the moisture, which could otherwise be 

used in the steam raising process.  This implies that more moist coal would be required to drive 

the same process than if the coal was drier, thus increasing the amount of combustion products 

such as greenhouses gases.  Introducing a dried coal in an existing boiler will significantly 

change the heat flux profiles, which could result in boiler damage or excessive fouling.  Flame 

temperature is influenced by the supply of reactants; in most cases the limiting reactant will be 

oxygen.  The supply of oxygen (through air) to a pneumatically transported coal stream and 

subsequent reaction is controlled by the localised fluid mechanics or ‘mixing’.  This research 

aims to provide an understanding of the mixing process between the pneumatically transported 

coal and air in brown coal fired boilers by modelling the individual jets.  The effects of the 

change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners 

typical of those found in brown coal fired boilers has been studied experimentally and is reported 

in this thesis.  In particular, scientific analysis was used to investigate the physical mechanisms 

which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid.  

The concentration data was used in a regression model in conjunction with a reactive combustion 

model, developed from a 1:30 scale cold model of the Yallourn W’ stage 2 boiler, in order that 

overall boiler performance can be assessed.  This overall study is fundamental as a result of the 

questions raised concerning the future of brown coal in modern society.   

A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent 

rectangular jets, was conducted using single colour planar laser induced fluorescence.  The 

characteristics of the jet flow were examined by imaging individually seeded primary and 

secondary jets and were visualised through four different planes longitudinally, on the axes of 

each jet.  In addition, a transverse qualitative and quantitative study on the rectangular jets was 

also conducted for the individually seeded jets, and was visualised through planes of flow 

perpendicular to the direction flow, specifically at axial stations of x/D =0.1, 0.2, 0.5, 1, 2, 4, 6 

and 8.  The flow characteristics were also examined under different co-flow conditions, 

particularly secondary to primary jet velocity ratios ( ) of 0, 0.55, 1.4, 2.8, 3.6 and .  This 

quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual 
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boilers.  A semi-quantitative investigation into some geometrical modifications on the 

rectangular jets was also conducted at velocity ratios of =0, 0.55 and 1.4.  The rectangular 

nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of 

flow.

The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field 

of the primary and secondary jets.  In particular it showed that the main structures of the primary 

and secondary jets are sensitive to the co-flowing conditions.  The primary jet also experienced 

the formation of coherent structures close to the bluff body re-circulation region for >2.8.

The quantitative transverse analysis of the rectangular jets showed that the primary jet and 

secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions.  

The primary jet experienced distortion for >1.4, and the secondary jets experienced distortion 

for  <1.4.  A plausible mechanism for this “distortion” can be explained by different co-flowing 

conditions altering the velocity gradients of the jet, thus changing the denomination of the 

counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet 

shape.

The transverse quantitative analysis of the rectangular jets allowed for graphical representation 

of the normalised concentration of the primary and secondary jets in the radial direction and the 

centreline mixture fraction decay.  The analysis of the latter showed that the primary jet, under 

all co-flow conditions, reached self-similarity at approximately x/D =4, whereas the secondary 

jets did so at x/D =2.  The primary jets observed greater rates of centreline dilution at high 

velocity ratios, whereas the secondary jets did so at =0.55.  The quantification of the centreline 

concentration decay obeyed the inverse rate law for all co-flowing conditions.  The first order 

decay constant K1, was found to be heavily dependant on velocity ratio. 

The planar transverse quantitative data of the primary and secondary jets was used with the 

method of weighted squares to develop a regression model that would three-dimensionally 

reproduce the scalar mixing field as a function of velocity ratio.  The regression model 

reproduces scalar quantities for =0 and =0.55 to 3.6 for the primary jet and =0.55 to 3.6 and 

 for the secondary jet, and is capable of predicting primary and secondary bulk fluid 

concentrations within 30 to 40 % of the measured values.  A sensitivity analysis on the 

regression model revealed that it is highly responsive to the momentum-controlling region 

between the jets with a change in velocity ratio.
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R
2 Coefficient of determination

Ri Model response

S Spacing between Jets

Si Sensitivity of Model response

T Temperature

t Time

u Velocity

us Slip velocity between fluid and Particle

W Nozzle Width

x Jet axial direction

X Averaged column of the laser fluorescent response minus background matrix

Xc Axis switching cross over point

xo,1 First order virtual origin

xo,2 Second order virtual origin

y Jet radial direction (major axis)

z Jet radial direction (minor axis)

yo Regression coefficient

zo Regression coefficient

Greek Symbols 

Regression Coefficient
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Secondary to primary jet momentum ratio
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Batchelor Scale
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Dimensionless radial coordinate
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Standard Deviation

Temporal Batchelor Scale 

f Fluid response time

p Particle response time

Kinematic Viscosity

Level of uncertainty

Mixture fraction

Non Dimensional Parameters 

Pe
Peclet number = 

fD

Du

Re, Ref
Fluid Reynolds number = 

Du

Rebv

Local velocity based half width Reynolds number = 
Du

Rep

Particle Reynolds Number = psdu

Sc
Schmidt number = 

fD

St
Stokes number = 

L

du p

18

2

Stl
Strouhal Number = 

ut

D

Subscripts/Superscripts

1 Denotes quantity from primary jet 

2 Denotes quantity from secondary jet 

3 Denotes quantity from surrounding fluid

' Denotes fluctuating quantity

Denotes time-averaged quantity 

Denotes range of confidence for F-test

B Bulk mixture quantity

c Denotes centreline quantity 

i Matrix column

j Matrix row

k Matrix number in a 3-D matrix

m Degrees of freedom

n Degrees of freedom
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rms Random mean square quantity
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SB Secondary bulk mixture quantity

TB Denotes total combined bulk mixture quantity
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