The University of Adelaide

School of Chemical Engineering

Cooperative Research Centre for Clean Power from Lignite

Physical Modelling of Mixing Between Rectangular Jets Present in Tangentially Fired Brown Coal Boilers

Ph.D. Thesis

Alessio Angelo Scarsella
.......... A tutti coloro che hanno lasciato la loro terra per permettere una vita migliore per i propri figli.......
'I am an old man now, and when I die and go to heaven there are two matters on which I hope enlightenment. One is quantum electrodynamics and the other is turbulence in fluids. About the former I am rather optimistic'.

Sir Horace Lamb, 1932.

Acknowledgement

The completion of this research project has only been possible thanks to the help of many people. Firstly the invaluable academic leadership of Associate Professors Peter Mullinger and Gus Nathan and Drs Peter Ashman and Barrie Jenkins. The technical support, feedback and guidance supplied by Dr Neil Smith was second to none; his assistance and participation was fundamental in the completion of this project. I thank Associate Professor Richard Kelso who allowed me to access the Coherent Innova 90 argon ion continuous wave laser and the Phantom v 4.1 camera. I also wish to thank the school of Chemical Engineering's workshop staff, in particular Mr Peter Kay, Mr Brian Mulchay and Mr Jason Peak. Their assistance in the assembly of the dark room, and experimental facility is much appreciated. Motivation behind the project and financial assistance would not have been possible without the Cooperative Research Centre from Clean Power from Lignite.

Thanks are also extended to the administrative staff of the School of Chemical Engineering, namely Ms Terri Withworth, Ms Mary Barrow and Ms Elaine Minerds. To my office mates thank you for ideas, assistance and conversation during the three and a half year period.

I am very grateful for the love and support of my family: My sisters Helen and Angela, brothers in law Manuel and Tony and nieces and nephews, Nadia, Georgia, Anthony and Nicholas. To Carla thank you for your support, motivation, and never ending happiness, may that be the case for many years to come.

A Mamma e Papa';

Tutto cio' la dedico a voi, gli sacfrici che avete fatto, lasciando la vostra terra per permettermi di asprirare ad una vita migliore, sacrifici che soltano il genitore emigrato possa capire.

Statement of originality

The Material in this thesis is original and has not been submitted or accepted for the award of degree or diploma at any other university and to the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis.

Alessio Scarsella

Permission to Copy

The author consents to the thesis being made available for loan and photocopying provided that the thesis is accepted for the award of the degree.

Alessio Scarsella

Executive Summary

Large scale power generation commences with the combustion of coal or other fuel, which in turn converts high pressure water into steam which then drives a turbine thus generating electricity. Burning high moisture coal, such as lignite, for power generation implies that a significant amount of energy is wasted in vaporising the moisture, which could otherwise be used in the steam raising process. This implies that more moist coal would be required to drive the same process than if the coal was drier, thus increasing the amount of combustion products such as greenhouses gases. Introducing a dried coal in an existing boiler will significantly change the heat flux profiles, which could result in boiler damage or excessive fouling. Flame temperature is influenced by the supply of reactants; in most cases the limiting reactant will be oxygen. The supply of oxygen (through air) to a pneumatically transported coal stream and subsequent reaction is controlled by the localised fluid mechanics or 'mixing'. This research aims to provide an understanding of the mixing process between the pneumatically transported coal and air in brown coal fired boilers by modelling the individual jets. The effects of the change in velocity ratio for the air (secondary) jets and fuel (primary) jets of rectangular burners typical of those found in brown coal fired boilers has been studied experimentally and is reported in this thesis. In particular, scientific analysis was used to investigate the physical mechanisms which control fuel-air mixing, and to quantify the concentration of primary and secondary fluid. The concentration data was used in a regression model in conjunction with a reactive combustion model, developed from a 1:30 scale cold model of the Yallourn W' stage 2 boiler, in order that overall boiler performance can be assessed. This overall study is fundamental as a result of the questions raised concerning the future of brown coal in modern society.

A qualitative flow visualisation study of the unconfined 1:30 scaled primary, and two adjacent rectangular jets, was conducted using single colour planar laser induced fluorescence. The characteristics of the jet flow were examined by imaging individually seeded primary and secondary jets and were visualised through four different planes longitudinally, on the axes of each jet. In addition, a transverse qualitative and quantitative study on the rectangular jets was also conducted for the individually seeded jets, and was visualised through planes of flow perpendicular to the direction flow, specifically at axial stations of $x / D=0.1,0.2,0.5,1,2,4,6$ and 8 . The flow characteristics were also examined under different co-flow conditions, particularly secondary to primary jet velocity ratios (λ) of $0,0.55,1.4,2.8,3.6$ and ∞. This quantitative data yields the basis for a 3D regression model to predict fuel-air mixing in actual
boilers. A semi-quantitative investigation into some geometrical modifications on the rectangular jets was also conducted at velocity ratios of $\lambda=0,0.55$ and 1.4 . The rectangular nozzles were fitted with base plates orientated at 90 degrees and 60 degrees to the direction of flow.

The longitudinal flow visualisation study highlighted the effect of velocity ratio on the flow field of the primary and secondary jets. In particular it showed that the main structures of the primary and secondary jets are sensitive to the co-flowing conditions. The primary jet also experienced the formation of coherent structures close to the bluff body re-circulation region for $\lambda>2.8$.

The quantitative transverse analysis of the rectangular jets showed that the primary jet and secondary jets close to the nozzle exit plane distorted with a change in co-flowing conditions. The primary jet experienced distortion for $\lambda>1.4$, and the secondary jets experienced distortion for $\lambda<1.4$. A plausible mechanism for this "distortion" can be explained by different co-flowing conditions altering the velocity gradients of the jet, thus changing the denomination of the counter rotating vortices present in the corners of rectangular jets, allowing them to alter jet shape.

The transverse quantitative analysis of the rectangular jets allowed for graphical representation of the normalised concentration of the primary and secondary jets in the radial direction and the centreline mixture fraction decay. The analysis of the latter showed that the primary jet, under all co-flow conditions, reached self-similarity at approximately $x / D=4$, whereas the secondary jets did so at $x / D=2$. The primary jets observed greater rates of centreline dilution at high velocity ratios, whereas the secondary jets did so at $\lambda=0.55$. The quantification of the centreline concentration decay obeyed the inverse rate law for all co-flowing conditions. The first order decay constant K_{l}, was found to be heavily dependant on velocity ratio.

The planar transverse quantitative data of the primary and secondary jets was used with the method of weighted squares to develop a regression model that would three-dimensionally reproduce the scalar mixing field as a function of velocity ratio. The regression model reproduces scalar quantities for $\lambda=0$ and $\lambda=0.55$ to 3.6 for the primary jet and $\lambda=0.55$ to 3.6 and ∞ for the secondary jet, and is capable of predicting primary and secondary bulk fluid concentrations within 30 to 40% of the measured values. A sensitivity analysis on the regression model revealed that it is highly responsive to the momentum-controlling region between the jets with a change in velocity ratio.

Table of Contents

Acknowledgement iii
Statement of originality iv
Permission to Copy iv
Executive Summary v
Table of Contents vii
List of Tables xiii
List of Figures xxi
Nomenclature xlviii

1. Introduction 1
1.1. Background and Motivation 1
1.2. Utilisation of De-watered Lignite in Existing Technologies 2
1.3. Tangentially Fired Boilers 6
1.4. Rectangular Slot Burners 10
2 Literature Review 14
2.1 Scales of Turbulence 14
2.2 Equations of Motion 16
2.3 Velocity and Concentration under Turbulent Conditions 17
2.4 Turbulent Jets 19
2.4.1 Circular Jets 21
2.4.2 Concentric (co-annular) jets 29
2.4.3 Rectangular jets 30
2.4.4 Multiple jets 41
2.4.5 Rectangular Jets Studies on Multiple Jets Rectangular Jets Commonly found on Brown Coal Fired Boilers 45
2.5 Scaling Analysis of the Aerodynamic Trajectories of Coal Particles in Brown Coal Fired Boilers 50
2.6 Conclusion 54
3 Experimental 56
3.1 Isothermal Jet Modelling 56
3.2 Quantification of Mixing 57
3.3 Range of Experimental Variables 60
3.3.1 Downstream Distance 60
3.3.2 Range of Velocity Ratios in the Yallourn W1 Furnace 62
3.4 Experimental Jet Nozzles 64
3.4.1 Rectangular Jet Nozzles for Qualitative and Quantitative Investigation 64
3.4.1.1 Free Rectangular Jet Nozzles for Longitudinal and Transverse Investigation. 64
3.4.1.2 Rectangular Jet Nozzles for Investigation of Wall Effects 65
3.4.1.3 Rectangular Jet Nozzles for Investigation of Wall Inclination 65
3.4.2 Conventional Jet Nozzles 72
3.5 Isothermal Experiments 72
3.5.1 Selection of Diagnostic Techniques 72
3.5.1.1 Invasive Techniques 72
3.5.1.2 Non-Invasive Techniques 72
3.5.1.3 Laser Induced Fluorescence Fundamentals 75
3.5.2 Experimental Apparatus 76
3.5.2.1 Water Tank 76
3.5.2.2 Laser Source and Optics 77
3.5.3 Experimental Procedure 79
3.5.3.1 Qualitative Measurements 79
3.5.3.2 Quantitative Measurements 79
4 Qualitative Longitudinal Flow Visualisation 81
4.1 Introduction 81
4.2 Experimental Conditions 82
4.3 Flow Visualisation Results 85
4.3.1 Primary Jet 85
4.3.1.1 Plane A 85
4.3.1.2 Plane C 101
4.3.2 Secondary Jet 108
4.3.2.1 Plane A 108
4.3.2.2 Plane B 116
4.3.3 Discussion 120
4.4 Time Averaged Analysis 123
4.4.1 Introduction 123
4.4.2 Image Processing Technique 123
4.4.3 Time Averaged Results 124
4.4.4 Statistical Analysis 133
4.5 Conclusions 137
5 Quantitative Methodology 139
5.1 Introduction 139
5.2 Quantitative PLIF 139
5.3 Quantitative PLIF Image Processing Fundamentals 140
5.4 Quantitative PLIF Technique 141
5.4.1 Experimental 141
5.4.2 Image Processing Technique 141
5.4.2.1 Correction for Background. 142
5.4.2.2 Correction for Laser Spatial Intensity 142
5.4.2.3 Image Processing Procedure. 143
5.4.3 Experimental Procedure 146
5.4.4 Sources of Error 147
5.4.4.1 Spatial Resolution 147
5.4.4.2 Temporal Resolution 150
5.4.4.3 Measurement Length 151
5.4.4.4 Laser Sheet Distribution and Power 151
5.4.4.5 Photobleaching 151
5.4.4.6 Absorbance 152
5.4.4.7 Mie Scattering 152
5.4.4.8 Signal to Noise Ratio 153
5.4.4.9 Water Quality 153
5.5 Experiment Validation 154
5.5.1 Introduction 154
5.5.2 Schmidt number Effects on Turbulent Mixing 154
5.5.3 Validation Experiments 158
5.5.4 Results of Validation Experiments 158
5.5.4.1 Planar Data 158
5.5.4.2 Statistical Analysis and Validation. 159
5.6 Conclusion 163
6 Transverse Imaging of Multiple Rectangular Jets 164
6.1 Introduction 164
6.2 Experimental Design and Conditions 166
6.3 Quantitative Analysis 167
6.3.1 Primary Jet 167
6.3.1.1 Planar Data 167
6.3.1.2 Primary Fluid Mixture Fraction on the Jet Axis 176
6.3.1.3 Primary Jet Cross Stream Mixture Fraction 178
6.3.1.4 Discussion 190
6.3.2 Secondary Jet 191
6.3.2.1 Planar Data 191
6.3.2.2 Secondary Fluid Mixture Fraction on the Jet Axis 201
6.3.2.3 Secondary Jet Cross Stream Mixture Fraction 203
6.3.2.4 Discussion 213
6.3.3 Axis Switching 213
6.3.4 Bulk Entrainment 218
6.4 Conclusion 221
7 Mathematical Modelling of the Mean Scalar Mixing Field of Rectangular Jets 223
7.1 Introduction 223
7.2 Model Development 225
7.2.1 Model Selection 225
7.2.2 Regression Procedure 226
7.3 Model Results 229
7.3.1 Assessment of Mean Axial Data 229
7.3.2 Assessment of Cross Stream Concentration Profiles 230
7.3.3 Analysis of Variance 242
7.4 Applicability of the Mixing Model to an Overall Combustion Model for Coal Fired Boilers 254
7.5 Sensitivity Analysis 255
7.6 Conclusion 257
8 Conclusions and Further Work 259
8.1 Overview 259
8.1.1 Mixing Characteristics of Rectangular Jets under different Co-flowing Conditions 259
8.1.1.1 Qualitative Description of mixing Characteristics 259
8.1.1.2 Quantitative Description of the Control of Mixing Characteristics 260
8.1.2 Three Dimensional Modelling of Rectangular Jets under Different Co-flowing Conditions 261
8.2 Recommendations for Further Work 262
8.2.1 Variation of the Momentum Ratio Independently of Velocity Ratio 262
8.2.2 Velocity Measurements 262
8.2.3 Quantification of Fluctuating Scalar Statistics 263
8.2.4 Variations in Geometry 263
9 Publications Arising From This Thesis 265
10 References 266
Appendices
A Calculation Methodology and Example of Determination of Experimental Flow Rates 279
A. 1 Proposed Experimental Flow Rates 279
A.1.1 Determination of Secondary to Primary Velocity Ratio in one of the Yallourn 'W' Boilers 279
A.1.2 Determination of Experimental Flow Rates. 282
B Cross Stream Concentration of the Primary and Secondary Jet. 284
B. 1 Primary Jet Cross Stream Normalised Concentration 284
B. 2 Secondary Jet Cross Stream Normalised Concentration 296
C Transverse Flow Visualization 310
C. 1 Transverse Flow Visualization of the Primary Jet 310
C. 2 Transverse Flow Visualisation of the Secondary Jet 324
D Evaluation of the Effects of Changes in Boundary Conditions on the Scalar Mixing Field of Three Adjacent Rectangular Jets 338
D. 1 Introduction 338
D. 2 Experimental Conditions 340
D.2.1. Errors and Image Processing Technique 340
D. 3 Scalar Mixing Field of Rectangular Jets with a Base Plate Perpendicular to the Flow. 341
D.3.1. Statistical Analysis of the Effects of Base Plate at 90 Degrees to the Burners. 343
D.3.2. Conclusion 344
D. 4 Scalar Mixing Field of the Rectangular Jets with a Base Plate Inclined at 60 Degrees 349
D.4.1. Statistical Analysis 351
D.4.2. Conclusion 353
E. Modelling Parameters for Prediction of Time-Averaged Scalar Mixing 358
E. 1 Primary Jet Regression Parameters 358
E.1.1 Parameters for the Determination of the b-Regression Coefficient 359
E.1.2 Parameters for the Determination of the c-Regression Coefficient 361
E.1.3 Parameters for the Determination of the d-Regression Coefficient 363
E.1.4 Parameters for the Determination of the e-Regression Coefficient 365
E.1.5 Centreline Mixture Fraction Regression Parameters 367
E. 2 Secondary Jet Regression Parameters 368
E.2.1 Parameters for the Determination of the b-Regression Coefficient 369
E.2.2 Parameters for the Determination of the c-Regression Coefficient. 370
E.2.3 Parameters for the Determination of the d-Regression Coefficient 372
E.2.4 Parameters for the Determination of the e-Regression Coefficient 374
E.2.5 Centreline Mixture Fraction Regression parameters 376
E.2.6 Parameters for the Determination of the y_{o} Regression Coefficient 377
E.2.7 Parameters for the Determination of the z_{o} Regression Coefficient 380
F. Analysis of Variance Data 385

List of Tables

Table 1.1: Moisture Content of Brown Coal Fields in Victoria, (Durie, 1991)................... 6
Table 2.1: A comparison of the scalar mixing statistics measured by previous experimentalists from simple axissymmetric smooth contraction jets with low Schmidt number 27

Table 2.2: A comparison of the scalar mixing statistics measured by previous experimentalists from simple axissymmetric smooth contraction jets with high Schmidt number. 27

Table 2.3: A comparison of the scalar mixing statistics measured by previous experimentalists from simple axissymmetric pipe jets with low Schmidt number...

28
Table 2.4: A comparison of the scalar mixing statistics measured by previous experimentalists from simple axissymmetric pipe jets with high Schmidt number..

Table 2.5: Empirical values of n, derived from experimental data for concentration profiles for a rectangular turbulent jet (Grandmaison and Pollard, 1991). .37

Table 2.6: Model data for centerline mixture fraction and jet spread as a function of secondary to primary velocity ratio for a three plane jet system, $\mathrm{AR}=40, s / D$ $=0.56$ (Grandmaison and Zettler, 1989).
Table 2.7: Average particle size distribution of coal particles feed to Yallourn W power station boilers, Salter and Nguyen, (2001).
Table 3.1: Operating Flow rates of coal feed system to Yallourn 'W' Boilers (Simpson and McIntosh, 1998 and Yallourn Energy Pty. Ltd., 2004).
Table 3.2: Operating air flow rates for the main secondary burners in the Yallourn W furnace with calculated secondary to primary velocity ratio (λ) using the calculated primary burner fow rate of 1368 tph (${ }^{\text {i Simpson }}$ and McIntosh, 1998, ${ }^{\text {ii }}$ Yallourn Energy Pty. Ltd., 2004). 63

Table 3.3: Experimental secondary jet velocities, flow rates and Reynolds numbers, calculated using a constant primary Reynolds number of $10,000(0.45 \mathrm{~L} / \mathrm{min})$ and experimental nozzle geometry (Section 3.4)63
Table 3.4: Values of characteristic lengths for Figures 3.5, 3.8 and 3.9 66
Table 3.5: Experimental Procedure for the Qualitative Investigation 80

Table 4.1: Laser orientation and marked stream, the shaded green indicates the marking of either the primary or secondary jet, the horizontal or vertical line highlights the laser orientation.84

Table 4.2: The calculated Momentum flux and momentum ratios for each experimental velocity ratio84

Table 4.3: Secondary to primary, velocity ratio, momentum flux ratio, momentum ratio, velocity and momentum gradients for the Yallourn W1 using velocity ratio similarity 123

Table 4.4: Secondary to primary, velocity ratio, momentum flux ratio, momentum ratio, velocity and momentum gradients for the experimental conditions. 123
Table 5.1: Values of K_{l} for different nozzle exit conditions for a pipe flow issuing into a stagnant fluid 157

Table 5.2: Values of K_{l} for different nozzle exit conditions for a fluid issuing from a smooth contraction into a stagnant fluid. 157

Table 6.1: Secondary to primary jet momentum flux and momentum ratios with corresponding velocity ratio to be investigated with the transverse imaging...... 166

Table 6.2: Measured values of the Centreline decay constant K_{l} and the primary virtual origin of the primary jet as a function of velocity ratio obtained between $4<x / D$ <8. 178
Table 6.3: Calculated values of the Centreline decay constant K_{l} and the primary virtual origin of the secondary jet as a function of velocity ratio.

203
Table 7.1: Average estimated error between measured and predicted centreline mixture fraction for the primary and secondary jets.
Table 7.2: Analysis of variance results for the measured and predicted centreline mixture fraction of the primary jet.
Table 7.3: Analysis of variance results for the measured and predicted centreline mixture fraction of the secondary jet. 249

Table 7.4: Calculated values of F_{o} for the primary jet $x / D=0.1, \lambda=0$ and $\lambda=3.6$, with $\mathrm{F}_{\text {crit }}$ ${ }_{(a=0.05)}=2.61, F_{\text {crit }(\alpha=0.1)}=2$
Table 7.5: Calculated values of F_{o} for the primary jet, $x / D=2, \lambda=0$ and $\lambda=3.6$, with $\mathrm{F}_{\text {crit }}$ ${ }_{(\alpha=0.05)}=2.45, F_{\text {crit }(\alpha=0.1)}=2.0$. 253
Table 7.6: Calculated values of F_{o} for the primary jet $x / D=8, \lambda=0$ and $\lambda=3.6$, with $\mathrm{F}_{\text {crit }}$ ${ }_{(\alpha=0.05)}=2.45, F_{\text {crit }(\alpha=0.1)}=2.0$. 253

Table 7.7: Calculated values of F_{o} for the secondary jet, for $x / D=0.1, \lambda=0$ and $\lambda=3.6$, with $\mathrm{F}_{\text {crit }(\alpha=0.05)}=2.37, F_{\text {crit }(\alpha=0.1)}=1.85$. 253
Table 7.8: Calculated values of F_{o} for the secondary jet, for $x / D=2, \lambda=0$ and $\lambda=3.6$, with $\mathrm{F}_{\text {crit }}$ ${ }_{(\alpha=0.05)}=2.37, F_{\text {crit }(\alpha=0.1)}=1.85$ 253
Table 7.9: Calculated values of F_{o} for the secondary jet, for $x / D=8, \lambda=0.55$ and $\lambda=3.6$, with$F_{\text {crit }(\alpha=0.05)}=2.37, F_{\text {crit }(\alpha=0.1)}=1.85$.253
Table A. 1: Operating Flow rates of coal feed system to Yallourn 'W' Boilers 280
Table A. 2: Flue gas composition 280
Table A. 3: Composition of Morwell raw coal (Durie, (Durie 1991)) 281
Table A. 4: Operating secondary flow-rates, velocities and velocity ratios 282
Table A.5: Experimental secondary jet flow rates. 283
Table D. 1: Laser orientation and marked stream (green indicates the marked flow) for the rectangular nozzles fitted with a base plate at 90 and 60 degrees to the direction of flow. 340
Table E. 1: Parameters and intervals for the determination of b regression coefficient at $\lambda=0 \ldots$ 359
Table E. 2: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$. 359
Table E. 3: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$ 359
Table E. 4: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$. 360
Table E. 5: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$ 360
Table E. 6: Parameters and intervals for the determination of a ' regression coefficient for $2.8<\lambda<3.6$. 360
Table E. 7: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$. 360
Table E. 8: Parameters and intervals for the determination of c regression coefficient at $\lambda=0 \ldots$ 361
Table E. 9: Parameters and intervals for the determination of a ' regression coefficient for $0.55<\lambda<1.4$ 361
Table E. 10: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$ 362

Table E. 11: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$.. 362

Table E. 12: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$ 362
Table E. 13: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$ 362
Table E. 14: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$ 363
Table E. 15: Parameters and intervals for the determination of a^{\prime} regression coefficient for $\lambda=0$ 363

Table E. 16: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$... 364
Table E. 17: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$... 364

Table E. 18: Parameters and intervals for the determination of a ' regression coefficient for $1.4<\lambda<2.8$... 364
Table E. 19: Parameters and intervals for the determination of b^{\prime} regression coefficient 1.4<ג<2.8.. 364

Table E. 20: Parameters and intervals for the determination of a ' regression coefficient for $2.8<\lambda<3.6$.. 365
Table E. 21: Parameters and intervals for the determination of b ' regression coefficient for 2.8< $1<3.6 . ~ 365 ~$

Table E. 22: Parameters and intervals for the determination of a ' regression coefficient for $\lambda=0$ 365

Table E. 23: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$... 366

Table E. 24: Parameters and intervals for the determination of b ' regression coefficient for

Table E. 25: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8 . ~ 366 ~$

Table E. 26: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$... 366
Table E. 27: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$.367

Table E. 28: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$ 367

Table E. 29: Parameters and intervals for the determination of α, for centreline mixture fraction determination 368

Table E. 30: Parameters and intervals for the determination of β, for centreline mixture fraction determination. 368

Table E. 31: Parameters and intervals for the determination of γ, for centreline mixture fraction determination 368

Table E. 32: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$ 369

Table E. 33: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$ 369

Table E. 34: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$. 369

Table E. 35: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$... 369

Table E. 36: Parameters and intervals for the determination of a^{\prime} regression coefficient for 2.8< $\lambda<3.6$... 370

Table E. 37: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$ 370

Table E. 38: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$ 370

Table E. 39: Parameters and intervals for the determination of b^{\prime} regression coefficient for $0.55<\lambda<1.4$ 371

Table E.40: Parameters and intervals for the determination of a^{\prime} regression coefficient for 1.4< $\lambda<2.8$... 371

Table E.41: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$... 371

Table E.42: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$ 371

Table E.43: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$ 371

Table E. 44: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$ 372
Table E.45: Parameters and intervals for the determination of b^{\prime} regression coefficient for $0.55<\lambda<1.4$ 372
Table E.46: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$ 372
Table E.47: Parameters and intervals for the determination of b^{\prime} regression coefficient for $1.4<\lambda<2.8$. 373
Table E.48: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$ 373
Table E.49: Parameters and intervals for the determination of b^{\prime} regression coefficient for $2.8<\lambda<3.6$. 373
Table E.50: Parameters and intervals for the determination of d regression coefficient for $\lambda=$ ∞. 373
Table E.51: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$. 374
Table E.52: Parameters and intervals for the determination of b^{\prime} regression coefficient for $0.55<\lambda<1.4$ 374
Table E.53: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$. 374
Table E.54: Parameters and intervals for the determination of b^{\prime} regression coefficient for $1.4<\lambda<2.8$. 375
Table E.55: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$. 375
Table E.56: Parameters and intervals for the determination of b^{\prime} regression coefficient for $2.8<\lambda<3.6$ 375
Table E.57: \quad Parameters and intervals for the determination of e regression coefficient for $\lambda=$ ∞. 375
Table E.58: Values of a^{\prime} and b^{\prime} for calculation of α at different intervals of λ. 376
Table E.59: \quad Values of a^{\prime} and b^{\prime} for calculation of β at different intervals of λ 376
Table E.60: Values of a^{\prime} and b^{\prime} for calculation of γ at different intervals of λ. 376
Table E.61: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$, for $z / D<0$. 377
Table E.62: Parameters and intervals for the determination of b^{\prime} regression coefficient for $0.55<\lambda<1.4$, for $z / D<0$. 377

Table E.63: Parameters and intervals for the determination of a ' regression coefficient for $0.55<\lambda<1.4$, for $z / D>0$. 377

Table E.64: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$, for $z / D>0$. 378

Table E.65: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$, for $z / D<0$. 378

Table E.66: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$, for $z / D<0$. 378

Table E.67: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$, for $z / D>0$. 378

Table E.68: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$, for $z / D>0$. 379

Table E.69: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$, for $z / D<0$. 379

Table E.70: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$, for $z / D<0$. 379

Table E.71: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$, for $z / D>0$. 379

Table E.72: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$, for $z / D>0$. 380

Table E.73: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$, for $z / D<0$. 380

Table E.74: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$, for $z / D<0$. 381

Table E.75: Parameters and intervals for the determination of a^{\prime} regression coefficient for $0.55<\lambda<1.4$, for $z / D>0$. 381

Table E.76: Parameters and intervals for the determination of b ' regression coefficient for $0.55<\lambda<1.4$, for $z / D>0$. 381

Table E.77: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$, for $z / D<0$. 381

Table E.78: Parameters and intervals for the determination of b ' regression coefficient for $1.4<\lambda<2.8$, for $z / D<0$. 382

Table E.79: Parameters and intervals for the determination of a^{\prime} regression coefficient for $1.4<\lambda<2.8$, for $z / D>0$.
$\begin{array}{ll}\text { Table E.80: Parameters and intervals for the determination of } b^{\prime} \text { regression coefficient for } \\ & 1.4<\lambda<2.8 \text {, for } z / D>0 \ldots \ldots . ~\end{array} 382$
Table E.81: Parameters and intervals for the determination of a ' regression coefficient for $2.8<\lambda<3.6$, for $z / D<0$. 382

Table E.82: Parameters and intervals for the determination of b ' regression coefficient for $2.8<\lambda<3.6$, for $z / D<0$. 383

Table E.83: Parameters and intervals for the determination of a^{\prime} regression coefficient for $2.8<\lambda<3.6$, for $z / D>0$. 383

Table E.84: Parameters and intervals for the determination of b ' regression coefficient for
$2.8<\lambda<3.6$, for $z / D>0$.
383

Table E.85: Parameters and intervals for the determination of a ' regression coefficient for $\lambda=$
∞, for $z / D<0$.
384
Table E.86: Parameters and intervals for the determination of b ' regression coefficient for $\lambda=$ ∞, for $z / D>0$. 384
Table F.1: Analysis of variance data of the primary jet, $x / D=0.1, \lambda=0$ 385
Table F.2: Analysis of variance data of the primary jet, $x / D=0.1, \lambda=3.6$ 385
Table F.3: Analysis of variance data of the primary jet, $x / D=2, \lambda=0$ 386
Table F.4: Analysis of variance data of the primary jet, $x / D=2, \lambda=3.6$ 386
Table F.5: Analysis of variance data of the primary jet, $x / D=8, \lambda=0$ 386
Table F.6: Analysis of variance data of the primary jet, $x / D=8, \lambda=3.6$ 387
Table F.7: Analysis of variance data of the secondary jet, $x / D=0.1, \lambda=0$ 387
Table F.8: Analysis of variance data of the secondary jet, $x / D=0.1, \lambda=3.6$ 387
Table F.9: Analysis of variance data of the secondary jet, $x / D=2, \lambda=0$. 387
Table F.10: Analysis of variance data of the secondary jet, $x / D=2, \lambda=3.6$. 388
Table F.11: Analysis of variance data of the secondary jet, $x / D=8, \lambda=0.55$ 388
Table F.12: Analysis of variance data of the secondary jet, $x / D=8, \lambda=3.6$. 388

List of Figures

$\begin{aligned} \text { Figure 1.1: } & \text { Variation of net specific energy with bed moisture content for Latrobe Valley } \\ & \text { brown coals (Durie, 1991)... } 4\end{aligned}$
Figure 1.2: Effect of different fuels on heat flux patterns in a combustion system (Jenkins and Moles, 1981).
Figure 1.3: Effect of using pre-dried coal, on mean boiler operation. Illustrated are the 0-D model outputs of the adiabatic flame temperature and flue gas temperature versus coal moisture content (Smith et al., 2001).
.5
Figure 1.4: Effect of using pre-dried coal, on mean boiler operation. Illustrated are the 0-D model outputs of the radiative and sensible heat transfers versus coal moisture content (Smith et al., 2001)
.6
Figure 1.5: Power generation cycle from brown coal for The Loy Yang Power Station. 8
Figure 1.6: Schematic diagram of a typical tangentially fired boiler with cross sectional view of the main central vortex, source: (Hart, 2001).9

Figure 1.7: \quad Schematic diagram of typical coal drying and milling system used in Victorian coal fired power stations a) together with a fireside view of the burners b) (Mullinger et al., 2002). .9

Figure 1.8: Basic used burner geometries. P - primary Jet, S - secondary jet a)Type I burner, b) Type II burner and c)Type III burner.. 11

Figure 1.9: Schematic diagram of the front view of a Loy Yang burner bank a) and a magnified view of a single burner illustrating primary and secondary jets b). 12
$\begin{array}{ll}\text { Figure 1.10: } & \text { Orientation of refractory cooling Air Jets a) and photograph refractory jet position } \\ & \text { with respect to the main burners b). ... } 12\end{array}$
Figure 1.11: Schematic diagram of a circular co-axial jet configuration typically used in many other combustion systems, illustrating primary and secondary streams.13

Figure 2.1: Eulerian description of the variation of the single point velocity component u in
turbulent flow. 18

Figure 2.2: Diagram of a confined jet with external recirculation zone highlighted 20
Figure 2.3: Schematic diagram of the developing regions of a round turbulent jet issuing from a smooth contraction.

Figure 2.4: Developing regions of a rectangular turbulent jet Trentacoste and Sforza (1967). However, it has been noted by Deo, (2005) and Mi et al., (2005) that the potential core only arises when a top-hat velocity profile is encountoured similar to that of a smooth contraction. 38

Figure 2.5: Dimensionless scalar profiles of a rectangular orifice jet in the radial direction with emphasis on the "saddle back" profile effect on the scalar in the near field where T_{c} is the centreline temperature T_{y} is the temperature at a radial position, y is the coordinate on the major axis (spanwise plane) and $r_{1 / 2}$ is the temperature half width (Tschuyia et al., 1986). 38

Figure 2.6: Predicted dimensionless entrainment ratios versus axial distance for rectangular free jets of different aspect ratios of $\mathrm{AR}=1,2,3$ and 4 (Elrod, 1954, Trentacoste and Sforza 1967, Miller et al., 1995, Grinstein, 2001)
Figure 2.7: Experimental spanwise (major axis) and transverse (minor axis) half widths for a series of turbulent rectangular jets of aspect ratios of $\mathrm{AR}=2,10$ and 30 (Sfier 1976, Grandmaison et al., 1991, Sforza et al., 1979 and Tsuchyia et al., 1986).

39
Figure 2.8: Comparison of Experimental dimensionless scalars versus dimensionless radial distance in the transverse (minor axis) direction at axial stations of $x / D=5.6,8.4$ and 11.2 for a rectangular turbulent jet with $\mathrm{AR}=10$ (Grandmaison and Pollard 1991, Sfier 1976). .40
Figure 2.9: Comparison of Experimental dimensionless scalars versus dimensionless radial distance in the spanwise (major axis) direction at axial stations of $x / D=5.6,8.4$ and 11.2 for a rectangular turbulent jet with $\mathrm{AR}=10$ (Grandmaison and Pollard 1991, Sfier 1976) 40
Figure 2.10: Schematic Diagram of the three flow regions for a multiple plane jet system, highlighting the converging, merging and combined regions (Lin et al., 1991)....

Figure 2.11: Models of flow patterns of three parallel plane jets described by Tanaka et al., (1975), for operating at different velocity ratios: a) for $\lambda<1_{\text {both secondary jets }}$ are entrained into the primary, b) for $\lambda \sim 1$ the primary jet is equal entrained into the secondaries which merge further downstream and c) $\lambda>1$, where the primary merges first into one secondary and the resultant into the other.
Figure 2.12: Schematic diagram of the triple jet configuration present in the Yallourn W boilers

Figure 2.13: Diagram of different geometries used in the study conducted by Perry and Pleasance (1983b), Geometry A; perpendicular to wall, Geometry B; at 60 degrees to the wall, Geometry C with the removed separation plates at 60 degrees to wall, Geometry D, with removal of separation plates as well as an expanded recess. 48
Figure 2.14: Schematic of Refractory cooling Air Jets... 48
Figure 2.15: Photograph of Rectangular Jets Present in a Brown Coal Fired Boiler, illustrating the primary and secondary jet pairings and refractory cooling air jets (Loy Yang Power Station, Courtesy of Loy Yang Power). 49
Figure 2.16: Dimensionless centreline jet velocity versus dimensionless axial distance for Geometries A, B, C and D, at $\lambda=1$ (Perry et al., 1982), \bar{u}_{o} is the source velocity and \bar{u}_{c} is the centreline velocity. 49
Figure 2.17: Dimensionless centreline jet velocity versus dimensionless axial distance for Geometries C and D, at $\lambda=1, \lambda=1.4$ and $\lambda=3$ (Perry et al., 1986)................. 50
Figure 2.18: Dependence of Particle Reynolds number on particle size for coal particles fed to the Yallourn W1 boilers.
Figure 2.19: The effect of particle diameter on the Stokes number of the particle calculated for four characteristic length scales.
Figure 3.1: Top view of a tangentially coal fired boiler, with reference to the projected distance of the rectangular jets.
Figure 3.2: Top view of a tangentially fired boiler indicating jet directions of 8 burner banks a). Front on view of a single burner bank b). Front view of a single burner indicating primary and secondary jets and position of the Cartesian coordinates y and z. Source of diagram: Goodhand et al., (2001).
$\begin{aligned} \text { Figure 3.3: } & \text { Block diagram of coal conveying process in the Yallourn Power station.(Simpson } \\ & \text { and McIntosh, 1998).. } 64\end{aligned}$
Figure 3.4: Schematic of cross sectional view of the rectangular jet system........................... 65
Figure 3.5: Schematic of side view of the free rectangular jet system with base plate angled at 60 degrees, top view with associated characteristic lengths in Table 2.1. 66
Figure 3.6: Major axis a), minor axis b) and cross sectional c) views of the round to rectangular transition encountered in the primary experimental nozzles.............. 67
Figure 3.7: Major axis a), minor axis b) and cross sectional c) views of the round to rectangular transition encountered in the secondary experimental nozzles. 68

Figure 3.8: Schematic of side view of the rectangular system with associated characteristic lengths in Table 3.4

Figure 3.9: Schematic of side view of the rectangular jet system with base plate angled at 60 degrees, top view a), side view, b)71

Figure 3.10: Illustration of the basic process involved in Stokes a) and anti-Stokes b) Raman scattering (Warnatz et al., 1999).
Figure 3.11: A comparison for different signal strength laser diagnostic Techniques (Eckbreth 1988).

Figure 3.12 Schematic diagram of experimental setup for longitudinal flow visualisation with rectangular nozzles vertically immersed into the water tunnel, optics orientated giving a vertical sheet with camera position at 90 degrees
Figure 3.13: Schematic diagram of experimental setup for transverse flow visualisation with rectangular nozzles vertically immersed into the water tunnel, optics orientated giving a horizontal sheet delivering a fluorescent signal to a mirror below the tank positioned at 45 degrees to a camera positioned also below the tank. 79

Figure 4.1 Generic Laser Orientation and Nomenclature of Plane of Visualised Flow. 83
Figure 4.2: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=0$, flow region is $0<x / D<6$.89

Figure 4.3: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=0$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A an estimate of the amplitude and 1 , an estimate of the wavelength.
Figure 4.4: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=0.55$, flow region is $0<x / D<6$. 90

Figure 4.5: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=0.55$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A an estimate of the amplitude and 1 , an estimate of the wavelength.
Figure 4.6: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=1.4$, flow region is $0<x / D<6$.

Figure 4.7: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=1.4$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A an estimate of the amplitude and 1 , an estimate of the wavelength.

Figure 4.8: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=2.8$, flow region is $0<x / D<6$.92

Figure 4.9: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=2.8$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A an estimate of the amplitude and 1 , an estimate of the wavelength 92

Figure 4.10: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=3.6$, flow region is $0<x / D<6$.
Figure 4.11: Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=3.6$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A an estimate of the amplitude and 1 , an estimate of the wavelength
Figure 4.12: High resolution image of the instantaneous flow field of the primary jet through plane A, for $\lambda=0$, and $0<x / D<6$. 94

Figure 4.13: High resolution image of the instantaneous flow field of the primary jet through plane A, for $\lambda=0.55$, and $0<x / D<6$. 94
Figure 4.14: High resolution image of the instantaneous flow field of the primary jet through plane A , and $\lambda=1.4$, and $0<x / D<6$. 95

Figure 4.15: High resolution image of the instantaneous flow field of the primary jet through plane A, for $\lambda=2.8$, and $0<x / D<6$. 95
Figure 4.16: High resolution image of the instantaneous flow field of the primary jet through plane A, for $\lambda=3.6$, and $0<x / D<6$. 96
Figure 4.17: Dependence on the velocity ratio of the dimensionless wavelength, l / D and amplitude, A / D of the sinuous motion of the main coherent structure of the primary jet through Plane A, as estimated visually and time averaged over ten sequential frames
Figure 4.18: Wake region in the vicinity of the bluff body between the primary and secondary jets, a) $\lambda=0$, b) $\lambda<1$, c) $\lambda>1$... 97
Figure 4.19: Schematic diagrams of the first order analysis of large-scale structures of the primary jet through Plane $\mathrm{A}, \mathrm{a}), \lambda=0, \mathrm{~b}), \lambda=0.55, \mathrm{c}), \lambda=1.4-3.6$.
Figure 4.20: α / D versus λ for the primary jet through plane A. α / D was measured over ten frames of sequential footage and then time-averaged. ... 98
Figure 4.21: Schematic diagrams of the second order analysis of intermediate-scale structures of the Primary jet through Plane A, a), $\lambda=0-0.55, b), \lambda=1.4, c), \lambda=2.8-3.6$.

Figure 4.22: Schematic Diagrams for the instantaneous and time-averaged entrainment mechanisms for the primary jet at $\lambda=0-0.55 \mathrm{a}$), and $\lambda=1.4-3.6 \mathrm{~b}$).
Figure 4.23: A sequence of video images of the primary jet with the laser orientated through Plane C at 0.08 second intervals. Velocity ratio: $\lambda=0$, flow region: $0<x / D<6$. \qquad

Figure 4.24: A sequence of video images of the primary jet at 0.12 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=0$, flow region: $6<x / D<12 \ldots . . .$.

Figure 4.25: A sequence of Video images of the primary jet with the laser orientated through Plane C at 0.08 second intervals. Velocity ratio: $\lambda=0.55$, flow region: $0<x / D<6 \ldots$

Figure 4.26: A sequence of Video images of the primary jet at 0.12 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=0.55$, flow region: $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.
Figure 4.27: A sequence of Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=1.4$, flow region: $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and 1 , being the wavelength.
Figure 4.28: A sequence of Video images of the primary jet at 0.16 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=1.4$, flow region: $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.
Figure 4.29: A sequence of Video images of the primary jet with the laser orientated through Plane C at 0.08 second intervals. Velocity ratio: $\lambda=2.8$, flow region: $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.
Figure 4.30: A sequence of Video images of the primary jet at 0.16 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=2.8$, flow region: $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.

Figure 4.31: A sequence of Video images of the primary jet at 0.08 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=3.6$, flow region: $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.

104
Figure 4.32: A sequence of Video images of the primary jet at 0.16 second intervals with the laser orientated through Plane C. Velocity ratio: $\lambda=3.6$, flow region: $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength. 105
Figure 4.33: High resolution image of the instantaneous flow field of the primary jet through plane C , for $\lambda=0$, and $0<x / D<6$.
Figure 4.34: High resolution image of the instantaneous flow field of the primary jet through plane C , for $\lambda=0.55$, and $0<x / D<6$ 106
Figure 4.35: High resolution image of the instantaneous flow field of the primary jet through plane C, for $\lambda=1.4$, and $0<x / D<6$ 106

Figure 4.36: High resolution image of the instantaneous flow field of the primary jet through plane C, for $\lambda=2.8$, and $0<x / D<6$ 107
Figure 4.37: High resolution image of the instantaneous flow field of the primary jet through plane C , and $\lambda=3.6$, between $0<x / D<6$ 107

Figure 4.38: Dependency on the velocity ratio of the dimensionless wavelength, l / D and amplitude A / D of the sinuous motion of the main coherent structure of the primary jet through Plane C, as estimated visually and time averaged over ten sequential frames 108
Figure 4.39: Video images of the secondary jet at 0.12 second intervals with the laser orientated through Plane A. Velocity ratio is $=0.55$, flow region is $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength. 109

Figure 4.40: Video images of the secondary jet at 0.12 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=1.4$, flow region is $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.

Figure 4.41: Video images of the secondary jet at 0.12 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=2.8$, flow region is $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.110

Figure 4.42: Video images of the secondary jet at 0.12 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=3.6$, flow region is $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.
Figure 4.43: Video images of the secondary jet at 0.12 second intervals with the laser orientated through Plane A. Velocity ratio is $\lambda=\infty$, flow region is $0<x / D<6$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and 1 , being the wavelength.

Figure 4.44: High resolution image of the instantaneous flow field of the secondary jet through plane A, and $\lambda=0.55$, between $0<x / D<6$
Figure 4.45: High resolution image of the instantaneous flow field of the secondary jet through plane A , and $\lambda=1.4$, between $0<x / D<6$. 112

Figure 4.46: High resolution image of the instantaneous flow field of the secondary jet through plane A, and $\lambda=2.8$, between $0<x / D<6$112

Figure 4.47: High resolution image of the instantaneous flow field of the secondary jet through plane A , and $\lambda=3.6$, between $0<x / D<6$.

Figure 4.48: High resolution image of the instantaneous flow field of the secondary jet through plane A , and $\lambda=\infty$, between $0<x / D<6$.113

Figure 4.49: Dependency on the velocity ratio of the dimensionless wavelength, l / D and amplitude A / D, of the sinuous motion of the main coherent structure of the secondary jet through Plane A, as estimated visually and time averaged over ten sequential frames
Figure 4.50: Schematic diagram of the nature of the shear layer between the primary and secondary jet for the cases when a) $\lambda=0.55$, b) $1.4 \leq \lambda \leq 3.6$ and c) $\lambda=\infty114$

Figure 4.51: Video images of the secondary jet at 0.08 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=0.55$, flow region is $0<x / D<6$.

Figure 4.52: Video images of the secondary jet at 0.16 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=0.55$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.
Figure 4.53: Video images of the secondary jet at 0.08 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=1.4$, flow region is $0<x / D<6$.

Figure 4.54: Video images of the secondary jet at 0.16 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=1.4$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.

Figure 4.55: Video images of the secondary jet at 0.08 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=2.8$, flow region is $0<x / D<6 \ldots 11$
Figure 4.56: Video images of the secondary jet at 0.16 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=2.8$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength. 118
Figure 4.57: Video images of the secondary jet at 0.08 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=3.6$, flow region is $0<x / D<6$.

Figure 4.58: Video images of the secondary jet at 0.16 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=3.6$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.
Figure 4.59: Video images of the secondary jet at 0.08 second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=\infty$, flow region is $0<x / D<6$.

Figure 4.60: Video images of the secondary jet at 0.16 -second intervals with the laser orientated through Plane B. Velocity ratio is $\lambda=\infty$, flow region is $6<x / D<12$. The white lines highlight the sinuous motion of the main coherent structure, A being the amplitude and l, being the wavelength.

Figure 4.61: Dependency on the velocity ratio of the dimensionless wavelength, l / D and amplitude, A / D of the sinuous motion of the main coherent structure of the secondary jet through Plane B, as estimated visually and time averaged over ten sequential frames
Figure 4.62: Normalised intensity for the primary jet with the laser orientated through Plane A in the region between $0<x / D<6$. Refer to Table 4.2 for jet conditions............... 126
Figure 4.63: Normalised intensity for the primary jet with the laser orientated through Plane A in the region between $6<x / D<12$. Refer to Table 4.2 for jet conditions. 127

Figure 4.64: Normalised intensity for the primary jet with the laser orientated through Plane C in the region between $0<x / D<6$. Refer to Table 4.2 for jet conditions. 128
Figure 4.65: Normalised intensity for the primary jet with the laser orientated through Plane C in the region between $6<x / D<12$. Refer to Table 4.2 for jet conditions............. 129
Figure 4.66: Normalised intensity for the secondary jet with the laser orientated through Plane A in the region between $0<x / D<6$. Refer to Table 4.2 for jet conditions........... 130

Figure 4.67: Normalised intensity for the secondary jet with the laser orientated through Plane B in the region between $0<x / D<6$. Refer to Table 4.2 for jet conditions 131

Figure 4.68: Normalised intensity for the secondary jet with the laser orientated through Plane B in the region between $6<x / D<12$. Refer to Table 4.2 for jet conditions. 132
Figure 4.69: Normalised half width versus axial distance for the primary jet on plane A. Refer to Table 4.2 for jet conditions 134
Figure 4.70: Normalised half width versus axial distance for the primary jet on plane C. Refer to Table 4.2 for jet conditions. 135

Figure 4.71: Normalised half width versus axial distance for the secondary jet on plane A, with the origin positioned on the axis of the secondary jets. The side sharing an interface with the primary jet is $r_{1 / 2} / D<0$. Refer to Table 4.2 for jet conditions. ...

Figure 4.72: Summary and comparison of the normalised half width versus axial distance of the secondary jet on plane B. Refer to Table 4.2 for jet conditions. 136

Figure 4.73: The half-width spread constant for the secondary jet, K_{2}, and spread virtual origin, $x_{o, 2} / D$, for the primary jet on planes A and C. 136
Figure 4.74: The half-width spread constant, K_{2} and spread virtual origin, $x_{o, 2} / D$, of the secondary jet interfacing with the primary jet and stagnant fluid on plane A and plane B

Figure 5.1: Time averaged background corrections with a) laser off, with b) laser on and c) fluorescent response for a $0.1 \mathrm{mg} / \mathrm{L}$ Flourescein solution. 145

Figure 5.2: Laser sheet intensity profile, with respect to the direction of flow 146
Figure 5.3 Ratio between probe size and Kolomogrov and Batchelor scales versus axial distance, for a 15 mm round jet operated at $R e=10,000$.
Figure 5.4: Instantaneous a) and time-averaged b) mixture fraction of the 15 mm round jet at, $x / D<12.79, \operatorname{Re}=10,000, \tau_{\text {shutter }}=1 / 50$ secs 158

Figure 5.5 Instantaneous a) and time-averaged b) mixture fraction of the 15 mm round jet at, $12.79<x / D<25.58, \operatorname{Re}=10,000, \tau_{\text {shutter }}=1 / 50$ secs. 159

Figure 5.6 Time-averaged centreline mixture fraction of the 15 mm jet at compared with the results of other liquid $(S c \sim 1000)$ and gaseous $(S c \sim 1)$ pipe jets.
Figure 5.7: Jet spread of the 15 mm jet at compared with the results of a other liquid ($S c \sim$ 1000) jet. 162

Figure 5.8 Radial profiles of the mean jet concentration normalised to the centreline value. Comparison between data for high Schmidt number jets. 162

Figure 6.1: Vortices formed in free rectangular pipe jet (Gutmark and Grinstein, 1999). ... 166
Figure 6.2: Time averaged normalised concentration of the primary jet at $x / D=0.1$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The white arrows highlight the coherent vortices on corners of the primary jet. 169

Figure 6.3: Time averaged normalised concentration of the primary jet at $x / D=0.2$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The white arrows highlight the change in jet structure at the corners of the primary jet.
Figure 6.4: Time averaged normalised concentration of the primary jet at $x / D=0.5$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The white arrows highlight the change in jet structure vortices at the corners of the primary jet. The red arrows outline the shortening of the primary jet in the y-direction.
Figure 6.5: \quad Time averaged normalised concentration of the primary jet at $x / D=1$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The white arrows highlight the change in jet structure at the corners of the primary jet. The red arrows outline the contraction of the primary jet in the y-direction. 170
Figure 6.6: Time averaged normalised concentration of the primary jet at $x / D=2$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The red arrows outline the contraction of
the primary jet in the y-direction. .. 171

Figure 6.7: \quad Time averaged normalised concentration of the primary jet at $x / D=4$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The white arrows highlight the expansion with respect to $x / D=2$ (Figure 6.6) in the y-direction, the red arrows outline the contraction of the primary jet in the z-direction. 171

Figure 6.8: Time averaged normalised concentration of the primary jet at $x / D=6$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The red arrows outline the contraction of the primary jet in the y-direction. The white arrows highlight the progressive expansion of the primary jet in the z-direction with respect to $x / D=4, \lambda=3.6$ (Figure 6.7 e). 172

Figure 6.9: Time averaged normalised concentration of the primary jet at $x / D=8$, for a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The white arrows highlight the progressive expansion of the primary jet in the z-direction with respect to $x / D=4$, $\lambda=1.4,2.8$ and 3.6 (Figures 6.7 c , d and e).. 172
Figure 6.10: $\quad y$ and z-direction velocity gradients of the primary jet alone 173
Figure 6.11: y and z-direction velocity gradients of the primary and secondary jets............... 173
Figure 6.12: Sketch of the progressive formation of the coherent corner vortices on the primary jet for $\lambda=0,0.55,1.4,2.8$ and $3.6, x / D=0.1 \ldots \ldots$

Figure 6.13: Sketch of the progressive development of the coherent corner vortices on the primary jet for $\lambda=0,0.55,1.4,2.8$ and $3.6, x / D=0.5$. The terms $\mathrm{L}_{\lambda=0.55}, \mathrm{~L}_{\lambda=1.4}$ $\mathrm{L}_{\lambda=2.8} \mathrm{~L}_{\lambda=3.6}$ are the length scales of the corner vortices. 174

Figure 6.14: Sketch of the progressive development with λ of the coherent corner vortices on the primary jet for $\lambda=0,0.55,1.4,2.8$ and $3.6, x / D=1$. The terms $\mathrm{L}_{\lambda=0.55}, \mathrm{~L}_{\lambda=1.4}$ $\mathrm{L}_{\lambda=2.8} \mathrm{~L}_{\lambda=3.6}$ are the length scales of the corner vortices. 175

Figure 6.15: Sketch of the progressive development of the primary jet for a progressive increase in velocity ratio from $\lambda=0$ to 3.6 at $x / D=2$. 175
Figure 6.16 Inverse centreline mixture fraction versus dimensionless axial distance for the primary jet at velocity ratios of $\lambda=0,0.55,1.4,2.8$ and 3.6 compared with round pipe jet data (Current results, Section 5.5.4 and Parham, 2000). The straight line represents the linear fits in the self-similar region 177

Figure 6.17 Correlation between K_{l} of the primary and the secondary to primary velocity ratio.

Figure 6.18: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=0.1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows highlight the peaks corresponding to the distortion of the exit jet by the emergence of the corner vortex
Figure 6.19: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=0.2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows highlight the peaks corresponding to the distortion of the exit jet by the emergence of the corner vortex
Figure 6.20: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=0.5$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows highlight the peaks corresponding, to the coherent corner vortices of fluid in close proximity to the corners of the primary jet 182

Figure 6.21: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions (λ) 183

Figure 6.22: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions (λ) 184

Figure 6.23: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=4$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions of $\lambda=0.55,1.4$ and 2.8 . The white arrows highlight a decrease in concentration gradient at $\lambda=3.6$. 185

Figure 6.24: Absolute value of the dimensionless concentration gradient in the y-direction versus velocity ratio of the primary jet, for $z / D=0$. 186

Figure 6.25: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows outline a progressive decrease in concentration gradient with an increase in co-flowing conditions (λ).

Figure 6.26: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions from $\lambda=0.55$ to 1.4 and 2.8. The white arrows highlight a decrease in concentration gradient at $\lambda=3.6$. 188

Figure 6.27: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=4$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions of $\lambda=0.55,1.4$ and 2.8. The white arrows highlight a decrease in concentration gradient at $\lambda=3.6$. 189

Figure 6.28: Absolute value of the dimensionless concentration gradient in the z-direction versus velocity ratio of the primary jet for $y / D=0$.190

Figure 6.29: Time averaged normalised concentration of the primary jet at $x / D=0.1$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The white arrows highlight the mean field distortion by increased strength of corner vortices of the secondary jets192

Figure 6.30: Time averaged normalised concentration of the primary jet at $x / D=0.2$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. Mean field distortion by increased strength of corner vortices of the secondary jets. 193

Figure 6.31: Time averaged normalised concentration of the primary jet at $x / D=0.5$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. Mean field distortion by increased strength of corner vortices of the secondary jets. The black arrows outline a deformation of the secondary jet from a rectangular structure to a rhombus like shape 194

Figure 6.32: Time averaged normalised concentration of the primary jet at $x / D=1$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. Mean field distortion by increased strength of corner vortices of the secondary jets. The black arrows outline a deformation of the secondary jet from a rectangular structure to a rhombus like shape195

Figure 6.33: Time averaged normalised concentration of the primary jet at $x / D=2$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$... 196

Figure 6.34: Time averaged normalised concentration of the primary jet at $x / D=4$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The white arrows highlight the deviation of the secondary jets from their geometric axis when $\lambda=0.55$.
Figure 6.35: Time averaged normalised concentration of the primary jet at $x / D=6$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The white arrows highlight the deviation of the secondary jets from their geometric axis when $\lambda=0.55 \ldots \ldots198$
Figure 6.36: Time averaged normalised concentration of the primary jet at $x / D=8$, for a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The white arrows highlight the deviation of the secondary jets from their geometric axis when $\lambda=0.55$ 199

Figure 6.37: Sketch of the progressive development with λ of the coherent corner vortices on the secondary jet for $\lambda=0.55,1.4,2.8,3.6$ and $\infty, x / D=0.1$. 200

Figure 6.38: Sketch of the progressive development with λ of the coherent corner vortices on the secondary jet and their effect on general jet distortion, for $\lambda=0.55,1.4,2.8$, 3.6 and $\infty, x / D=0.5$

Figure 6.39: Sketch of the progressive development with λ of the coherent corner vortices on the secondary jet their effect on general jet distortion, for $\lambda=0.55,1.4,2.8,3.6$ and $\infty, x / D=1$

Figure 6.40 Inverse centreline mixture fraction versus dimensionless axial distance for the secondary jet at velocity ratios of $\lambda=0.55,1.4,2.8,3.6$ and ∞. The straight lines represent the linear fits in the self-similar region.
Figure 6.41: Correlation between K_{l} of the secondary and the secondary to primary velocity ratio.
Figure 6.42: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=0.1$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows highlight the peaks corresponding, to the coherent corner vortices in close proximity to the corners of the secondary jet.
Figure 6.43: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=0.2$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows highlight the peaks corresponding, to the coherent corner vortices of fluid in close proximity to the corners of the secondary jet.
Figure 6.44: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=0.5$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrow highlights the peak corresponding, to the coherent corner vortex in close proximity to the corners of the secondary jet.

Figure 6.45: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=2$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions. 207
Figure 6.46: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=4$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows outline a progressive increase in concentration gradient with an increase in co-flowing conditions. 208
Figure 6.47: Absolute value of the dimensionless concentration gradient in the y-direction versus velocity ratio of the secondary jet, for $z / D=0$. .209
Figure 6.48: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=4$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows highlight a favoured merging between the two jets for $\lambda=\infty$.
Figure 6.49: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=6$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows highlight the merging point between the two jets for $\lambda=1.4, \lambda=2.8, \lambda=3.6$, and $\lambda=\infty$. .211
Figure 6.50: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=8$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. The black arrows highlight the merged jets for $\lambda=2.8, \lambda=3.6$, and $\lambda=\infty$............................. 212
Figure 6.51: Normalised lengths of the major and minor axis sides of the primary jet as a function of downstream distance, x / D, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e), $\lambda=3.6$. The black arrows show positions of axis switching.
Figure 6.52: Normalised lengths of the major and minor axis sides of the secondary jet as a function of downstream distance, x / D, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e), $\lambda=3.6$.
Figure 6.53: Point of cross-over between the major and minor axis lengths versus aspect ratio various rectangular jets, illustrating the strong linear correlation between the first point of axis switching and jet aspect ratio (Gutmark and Grinstein, 1999)....... 218
Figure 6.54: Relative entrainment ratio of the primary/secondary jet versus axial distance x / D system for $\lambda=0,0.55,1.4,2.8,3.6, \infty$ and round pipe jet (Ricou and Spalding, 1963). 220
Figure 6.55: Entrainment coefficient of the primary/secondary jet system versus velocity ratio.

Figure 7.1: \quad Schematic diagram of a form of the modified Gaussian error curve (Equation 7.1) with upper and lower tangential intersections illustrating the effect of parameters b, c, d and e on the modified Gaussian error curve. 226

Figure 7.2: A time averaged primary flow image at $x / D=0.1$ for $\lambda=0$ a) the original image, b) cropped image and c) reduced image

Figure 7.3: Comparison of measured and predicted values of centreline mean mixture fraction of the primary jet at velocity ratios of $\lambda=0,0.55,1.4,2.8$ and 3.6. 229

Figure 7.4: Comparison of measured and predicted values of centreline mean mixture fraction of the secondary jet at velocity ratios of $\lambda=0.55,1.4,2.8,3.6$ and ∞ 230

Figure 7.5: Comparison of the measured and predicted normalised concentration of the primary jet varying z / D at $\lambda=0, x / D=0.1$. 233

Figure 7.6: Comparison of the measured and predicted normalised concentration of the primary jet varying z / D at $\lambda=3.6, x / D=0.1$. 234

Figure 7.7: Comparison of the measured and predicted normalised concentration of the primary jet varying of z / D at $\lambda=0, x / D=1$. 234

Figure 7.8: Comparison of the measured and predicted normalised concentration of the primary jet for different values of $z / D, \lambda=3.6, x / D=1$ 235

Figure 7.9: Comparison of the measured and predicted normalised concentration of the primary jet for different values of $z / D, \lambda=0, x / D=2$. 235

Figure 7.10: Comparison of the measured and predicted normalised concentration of the primary jet varying of z / D at $\lambda=3.6, x / D=2$. 236

Figure 7.11: Comparison of the measured and predicted normalised concentration of the primary jet for different values of $z / D, \lambda=0, x / D=8$. 236

Figure 7.12: Comparison of the measured and predicted normalised concentration of the primary jet varying z / D at $\lambda=3.6, x / D=8$

Figure 7.13: Relative Error of model predictions of the primary jet at axial stations of $x / D=$ $0.1,1,2$ and 8 , for $\lambda=0$ and 3.6.237

Figure 7.14: Comparison of the measured and predicted normalised concentration of the secondary jet varying z / D at $\lambda=0.55, x / D=0.1$ 238

Figure 7.15: Comparison of the measured and predicted normalised concentration of the secondary jet for varying $z / D, \lambda=3.6$ at $x / D=0.1$. 238

Figure 7.16: Comparison of the measured and predicted normalised concentration of the secondary jet for different values of $z / D, \lambda=0.55, x / D=1$

Figure 7.17: Comparison of the measured and predicted normalised concentration of the secondary jet for different values of $z / D, \lambda=3.6, x / D=1$ 239

Figure 7.18: Comparison of the measured and predicted normalised concentration of the secondary jet for different values of $z / D, \lambda=0.55, x / D=2$. 240

Figure 7.19: Comparison of the measured and predicted normalised concentration of the secondary jet for different values of $z / D, \lambda=3.6, x / D=2$. 240

Figure 7.20: Comparison of the measured and predicted normalised concentration of the secondary jet for different values of $z / D, \lambda=0.55, x / D=8$. 241

Figure 7.21: Comparison of the measured and predicted normalised concentration of the secondary jet for different values of $z / D, \lambda=3.6, x / D=8$.
Figure 7.22: Relative Error of model predictions of the primary jet at axial stations of $x / D=$ $0.1,1,2$ and 8 , for $\lambda=0$ and 3.6.242

Figure 7.23: Standardised residuals versus normalised axial distance for the primary jet. 247
Figure 7.24: Standardised residuals versus normalised axial distance for the secondary jet... 248
Figure 7.25: Localised R^{2} versus y / D for the primary jet at $x / D=0.1,2$ and 8 for velocity ratios of $\lambda=0$ and $\lambda=3.6$ 249
Figure 7.26: Localised R^{2} versus y / D for the secondary jet at $x / D=0.1,2$ and 8 for velocity ratios of $\lambda=0$ and $\lambda=3.6$. 250

Figure 7.27: Averaged mean square error versus x / D for the primary jet at velocity ratios of $\lambda=0,0.55,1.4,2.8$ and 3.6 250
Figure 7.28: Averaged mean square error versus x / D for the secondary jet at velocity ratios of $\lambda=0.55,1.4,2.8,3.6$ and ∞. 251
Figure 7.29: Averaged R^{2} values versus x / D for the primary jet at velocity ratios of $\lambda=0,0.55,1.4,2.8$ and 3.6. 251
Figure 7.30: Averaged R^{2} values versus x / D for the secondary jet at velocity ratios of $\lambda=0.55,1.4,2.8,3.6$ and ∞. 252

Figure 7.31: Dimensionless sensitivity of the response of bulk mixture fraction change with a change in secondary to primary velocity ratio versus downstream distance x / D of the primary jet.
Figure A.1: Block diagram of coal conveying process in the Yallourn Power station........... 280
Figure B. 1: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=0.1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$............ 284
Figure B. 2: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=0.1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6 \ldots285$

Figure B. 3: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=0.2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. 286

Figure B. 4: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=0.2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$............. 287

Figure B. 5: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=0.5$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$. 288
Figure B. 6: Normalised Concentration of the primary jet versus z/D through different y / D planes, at $x / D=0.5$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$............ 289

Figure B. 7: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$ 290

Figure B. 8: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=1$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6291$

Figure B. 9: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$ 292

Figure B. 10: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=2$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$................ 293

Figure B. 11: Normalised Concentration of the primary jet versus y / D through different z / D planes, at $x / D=4$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$294

Figure B. 12: Normalised Concentration of the primary jet versus z / D through different y / D planes, at $x / D=4$, a) $\lambda=0$, b) $\lambda=0.55$, c) $\lambda=1.4$, d) $\lambda=2.8$, e) $\lambda=3.6$................ 295

Figure B. 13: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=0.1$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty296$

Figure B. 14: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=0.1$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$.

Figure B. 15: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=0.2$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty298$

Figure B. 16: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=0.2$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty299$

Figure B. 17: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=0.5$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. 300

Figure B. 18: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=0.5$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty \ldots301$

Figure B. 19: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=1$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$.

Figure B. 20: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=1$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. 303
Figure B. 21: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=2$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$................. 304
Figure B. 22: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=2$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. 305
Figure B. 23: Normalised Concentration of the secondary jet versus y / D through different z / D planes, at $x / D=4$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty \ldots306$
Figure B. 24: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=4$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. 307
Figure B. 25: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=6$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty \ldots308$
Figure B. 26: Normalised Concentration of the secondary jet versus z / D through different y / D planes, at $x / D=8$, a) $\lambda=0.55$, b) $\lambda=1.4$, c) $\lambda=2.8$, d) $\lambda=3.6$, e) $\lambda=\infty$. 309

Figure C. 1: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=0.1$, at 0.05 second intervals and $\lambda=0, \gamma=0, \kappa=0$. 310
Figure C. 2: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=0.1$, at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. 310
Figure C. 3: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=0.1$, at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18$.
Figure C. 4: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=0.1$, at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$. Red arrows illustrate the distortion of the primary jet fluid with a change in velocity gradient due to the higher velocity ratio.
Figure C. 5: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=0.1$, at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78$. Red arrows illustrate the distortion of the primary jet fluid with a change in velocity gradient due to the higher velocity ratio.
Figure C. 6: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=1$, at 0.05 second intervals and $\lambda=0, \gamma=0, \kappa=0$. Red arrows indicate oscillation of the lobes of the primary structure.
Figure C. 7: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=1$, at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. Red arrows indicate out of phase shortening of the primary structure in the y-direction....... 312

Figure C. 8: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=1$, at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18$. Red arrows indicate out of phase shortening of the primary structure in the y-direction 312

Figure C. 9: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=1$, at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$. Red arrows indicate the out of phase shortening of the primary structure in the y-direction, and the white arrows illustrate primary jet distortion proximity to the corners due to the change in velocity gradient at higher velocity ratios

Figure C. 10: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=1$, at 0.05 second intervals and $\lambda=3.6 \gamma=12.96, \kappa=7.78$. Red arrows indicate the out of phase shortening of the primary structure in the y-direction, and the white arrows illustrate primary jet distortion proximity to the corners due to the change in velocity gradient at higher velocity ratios 313
Figure C. 11: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=2$, at 0.05 second intervals and $\lambda=0, \gamma=0, \kappa=0$. 314

Figure C. 12: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=2$, at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. 314

Figure C. 13: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=2$, at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18$. The red arrows highlight the out of phase distortion of the primary jet whilst the white arrows indicate the original rectangular shape.
Figure C. 14: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=2$, at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$. The red arrows highlight the out of phase shortening in the y-direction of the jet. 315
Figure C. 15: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=2$, at 0.05 second intervals and $\lambda=3.6 \gamma=12.96, \kappa=7.78$. The red arrows highlight the out of phase shortening in the y-direction of the jet........... 316
Figure C. 16: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=4$, at 0.05 second intervals and $\lambda=0, \gamma=0, \kappa=0$.
Figure C. 17: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=4$, at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. The red arrows indicate the out of phase distortion of the primary jet. 317
Figure C. 18: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=4$, at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18$. The red arrows indicate the out of phase shortening of the jet in the y-direction.

Figure C. 19: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=4$, at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$. The red arrows indicate the out of phase shortening of the jet in the y-direction. 318

Figure C. 20: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=4$, at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78$. The red arrows indicate the out of phase shortening of the jet in the z-direction............. 318
Figure C. 21: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=6$, at 0.1 second intervals and $\lambda=0 \gamma=0, \kappa=0$.
Figure C. 22: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=6$, at 0.1 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. The red arrows highlight the out of phase shortening of the jet in the y-direction. 319
Figure C. 23: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=6$, at 0.1 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18$. The red arrows highlight out of phase shortening of the jet in the z-direction. 320

Figure C. 24: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=6$, at 0.1 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$. The red arrows highlight out of phase shortening of the jet in the z -direction.
Figure C. 25: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=6$, at 0.1 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78$. 321
Figure C. 26: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=8$, at 0.1 second intervals and $\lambda=0, \gamma=0, \kappa=0$. 321
Figure C. 27: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=8$, at 0.1 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. 322
Figure C. 28: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=8$, at 0.1 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18$. 322
Figure C. 29: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=8$, at 0.1 second intervals and $\lambda=2.8 \gamma=7.84, \kappa=4.7$. 323
Figure C. 30: Instantaneous flow visualisation of the normalised concentration for the primary jet at $x / D=8$, at 0.1 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78$.
Figure C. 31: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=0.5$, at 0.05 second intervals, $\lambda=0.55, \gamma=0.3, \kappa=0.18$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients 324
Figure C. 32: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=0.5$, at 0.05 second intervals, $\lambda=1.4, \gamma=1.96, \kappa=1.18$.

Figure C. 33: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=0.5$, at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$
Figure C. 34: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=0.5$, at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78$
Figure C. 35: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=0.5$, at 0.05 second intervals, $\lambda=\infty, x / D=0.5$ 325

Figure C. 36: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=1$, at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients

Figure C. 37: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=1$, at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=4.7$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients. 326

Figure C. 38: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=1$, at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients 326
Figure C. 39: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=1$, at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients 327

Figure C. 40: Instantaneous flow visualisation of the normalised concentration of the secondary jet at $x / D=1$, at 0.05 second intervals and $\lambda=\infty$. 327

Figure C. 41: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18, x / D=2$ 328

Figure C. 42: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18, x / D=2$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients 328

Figure C. 43: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7, x / D=2$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients

Figure C. 44: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78, x / D=2$. The white arrows highlight the distortion of the secondary jets with an alteration in the local velocity gradients
Figure C. 45: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=\infty, x / D=2$330

Figure C. 46: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18 x / D=4$ 330

Figure C. 47: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18, x / D=4$.

Figure C. 48: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=7.78, x / D=4$

Figure C. 49: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78, x / D=4$332

Figure C. 50: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=\infty, x / D=4$ 332

Figure C. 51: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18, x / D=6$. 333

Figure C. 52: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18, x / D=6$.333

Figure C. 53: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7, x / D=6$. 334

Figure C. 54: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78, x / D=6$.

Figure C. 55: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=\infty, x / D=6$

Figure C. 56: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=0.55, \gamma=0.3, \kappa=0.18, x / D=8$. 335

Figure C. 57: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=1.4, \gamma=1.96, \kappa=1.18, x / D=8$.336

Figure C. 58: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=2.8, \gamma=7.84, \kappa=4.7, x / D=8$
Figure C. 59: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=3.6, \gamma=12.96, \kappa=7.78, x / D=8$

Figure C. 60: Instantaneous flow visualisation of the normalised concentration of the secondary jet at 0.05 second intervals and $\lambda=\infty, x / D=8$.

Figure D. 1: Normalised intensity for the primary jet with the laser orientated through Plane A with $\lambda=0$ a), $\lambda=0.55 \mathrm{~b}$), $\lambda=1.4 \mathrm{c}$)... 341
Figure D. 2: Normalised intensity for the primary jet with the laser orientated through Plane C with $\lambda=0$ a), $\lambda=0.55 \mathrm{~b}$), $\lambda=1.4 \mathrm{c}$)... 342
Figure D. 3: Normalised intensity for the secondary jet with the laser orientated through Plane A with $\lambda=0.55 \mathrm{a}$), $\lambda=1.4 \mathrm{~b}$). 342

Figure D. 4: Normalised intensity for the secondary jet with the laser orientated through Plane B with $\lambda=0.55 \mathrm{a}$), $\lambda=1.4 \mathrm{~b}$) 343

Figure D. 5: Normalised half widths of the primary jet in Plane A, with (WP) and without the base plate at 90 degrees to the flow. 345

Figure D. 6: Normalised half widths of the primary jet in Plane C, with (WP) and without the base plate at 90 degrees to the flow. 345

Figure D. 7: Normalised half widths of the Secondary jet in Plane A, with (WP) and without the base plate at 90 degrees to the flow. 346

Figure D. 8: Summary and comparison of the normalised half width versus axial distance of the secondary jet on plane B under free conditions and with a base plate at 90 degrees to the flow (π). .. 346

Figure D. 9: Time-averaged entrainment pattern of the surrounding fluid into the primary jet through plane C .

Figure D. 10: Comparison of the secondary decay constant K_{2} versus velocity ratio for the Primary jet under free conditions and with a base plate at 90 degrees to the flow (WP) through planes A and C

Figure D. 11: Comparison of the secondary virtual origin $x_{o, 2} / D$ versus velocity ratio for the Primary jet under free conditions and with a base plate at 90 degrees to the flow (WP) through planes A and C 348

Figure D. 12: Comparison of the secondary decay constant K_{2} versus the inverse velocity ratio for the secondary jet under free conditions and with a base plate at 90 degrees to the flow (WP) through planes A and B

Figure D. 13: Comparison of the secondary virtual origin $\quad x_{o, 2} / D$ versus the inverse velocity ratio for the secondary jet under free conditions with a base plate at 90 degrees to the flow (WP) through planes A and B.

Figure D. 14: Normalised intensity for the primary jet with the laser orientated through Plane A with $\lambda=0 \mathrm{a}$), $\lambda=0.55 \mathrm{~b}$), $\lambda=1.4 \mathrm{c}$)

Figure D. 15: Normalised intensity for the primary jet with the laser orientated through Plane C with $\lambda=0 \mathrm{a}$), $\lambda=0.55 \mathrm{~b}$)

Figure D. 16: Normalised intensity for the secondary jet with the laser orientated through Plane A with $\lambda=0.55 \mathrm{a}$), $\lambda=1.4 \mathrm{~b}$) 351

Figure D. 17: Normalised intensity for the secondary jet with the laser orientated through Plane B with $\lambda=0.55 \mathrm{a}$), $\lambda=1.4 \mathrm{~b}$) 351

Figure D. 18: Summary and comparison of the normalised half width versus axial distance of the primary jet on plane A, under free conditions and with a base plate orientated at 60 degrees to the flow (π). 353

Figure D. 19: Summary and comparison of the normalised half width versus axial distance of the primary jet on plane C under free conditions and with a base plate orientated at 60 degrees to the flow (π). 354

Figure D. 20: Summary and comparison of the normalised half width versus axial distance of the secondary jet on plane A under free conditions and with a base plate orientated at 60 degrees to the flow (π). 354

Figure D. 21: Summary and comparison of the normalised half width versus axial distance of the secondary jet on plane B under free conditions and with a base plate orientated at 60 degrees to the flow (π)355

Figure D. 22: Schematic diagram of the entrainment of free stream fluid into the primary jet through plane C355

Figure D. 23: Comparison of the secondary decay constant K_{2} versus velocity ratio for the Primary jet under free conditions and with a base plate orientated at 60 degrees to the flow through planes A and C 356

Figure D. 24: Comparison of the secondary virtual origin $x_{o, 2} / D$ versus velocity ratio for the Primary jet under free conditions and with a base plate orientated at 60 degrees to the flow through planes A and C 356

Figure D. 25: Comparison of the secondary decay constant K_{2} versus the inverse velocity ratio for the secondary jet under free conditions and with a base plate orientated at 60 degrees to the flow (WP) through planes A and B.

Figure D. 26: Comparison of the secondary virtual origin versus the inverse velocity ratio for the secondary jet under free conditions with a base plate orientated at 60 degrees to the flow through planes A and B.

Nomenclature

Abbreviations and Constants

AR
Aspect ratio
MSE
MSR
SNR
Mean square error

SSE
SSR
Regression sum of squares
SST
Total sum of squares

Roman Symbols

a	Regression coefficient
b	Regression coefficient
c	Regression coefficient
d	Regression coefficient
e	Regression coefficient
A	Jet Area
$A_{i j}$	Laser fluorescent response minus background
$B_{i j}$	Background image matrix
b_{v}	Velocity half-width
C	Concentration
$C_{r e f}$	Reference concentration
$C_{1}, C_{2} \ldots C_{n}$	Proportionality constants
C_{E}	Entrainment Coefficient
D	Equivalent Diameter
D_{e}	Equivalent momentum diameter
D_{f}	Molecular diffusivity
d_{i}	Studentized residuals
d_{p}	Particle diameter
F_{o}	F-Test value
H	Nozzle Height
$I_{i j}$	Laser distribution matrix
J	Momentum Flux
k	Turbulent kinetic energy
K	Number of images
K_{l}	Centreline decay constant
K_{2}	Jet spread proportionality constant
L	Characteristic flow length
l_{o}	Integral scale
m	Mass flow rate
$M_{i j}$	Correction matrix

n	Empirical constants
P	Pressure
$P_{i j}$	Raw measured fluorescent signal
Q	Volumetric flow rate
r	Radial coordinate
R	Accumulated background signal
$r_{l / 2}$	Concentration half width
R^{2}	Coefficient of determination
R_{i}	Model response
S	Spacing between Jets
S_{i}	Sensitivity of Model response
T	Temperature
t	Time
u	Velocity
u_{s}	Slip velocity between fluid and Particle
W	Nozzle Width
x	Averaged column of the laser fluorescent response minus background matrix
X	Axis switching cross over point
X_{c}	First order virtual origin
$x_{o, l}$	Second order virtual origin
$x_{o, 2}$	Jet radial direction (major axis)
y	Regression coefficient
z	Regression coefficient
y_{o}	
z_{0}	

Greek Symbols

Quantum yield
Secondary to primary jet momentum flux ratio
Secondary to primary jet mass flow ratio
Secondary to primary jet momentum ratio Modified secondary to primary jet momentum ratio

Secondary to primary jet velocity ratio
Modified secondary to primary jet velocity ratio
Batchelor Scale
Taylor microscale
Dynamic Viscosity
Dimensionless radial coordinate
Fluid density
Particle density
Source density
σ
τ_{B}
τ_{f}
τ_{p}
v
Ω
ξ

Non Dimensional Parameters

$R e, R e_{f}$
$R e_{b v}$
$R e_{p}$

Sc

St

Stl

Subscripts/Superscripts

1
2
3
\prime
-

α
B
c
i
j
k
m
n
o
$o f f$
$o n$
$P B$
$r m s$

Denotes quantity from primary jet Denotes quantity from secondary jet Denotes quantity from surrounding fluid

Denotes fluctuating quantity
Denotes time-averaged quantity
Denotes range of confidence for F-test
Bulk mixture quantity
Denotes centreline quantity
Matrix column
Matrix row
Matrix number in a 3-D matrix
Degrees of freedom
Degrees of freedom
Denotes quantity at jet source
Denotes measured quantity with laser off
Denotes measured quantity with laser on
Primary bulk mixture quantity
Random mean square quantity

SB

Secondary bulk mixture quantity Denotes total combined bulk mixture quantity

