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Chapter 4

Results

4.1 Introduction

In chapter 2 we introduced the FLSDFE algorithm of Perreau et al. [52] and illustrated

how the algorithm could be extended for use on channels whose baseband envelope

input–output relationship took the form of a finite Volterra series. Chapter 3 subse-

quently extended the static analysis of chapter 2 to cover the dynamics of error prop-

agation, using state space models. In the current chapter, we continue the analysis of

the FLSDFE algorithm, using the single–distinct–errors state space model of Choy and

Beaulieu [24], as introduced in section 3.4.6. A ‘resonance’ phenomenon was observed

for various simulated communication channels, using the Choy and Beaulieu model.

This phenomenon appears not to have been discussed in the previous literature on

DFE error propagation.

Section 4.2 first discusses a methodology for the physics–based simulation of an un-

derwater acoustic communication channel, comparing transmission loss calculations

done with a rigorous wave–theoretic approach against a geometrical–acoustics (ray–

tracing) approach. It is shown that, at the frequencies typically used in underwa-

ter acoustic communications, a ray method is a satisfactory and convenient approx-

imate method for the physical part of the overall communications system simula-

tion. Using the ray approach, physics–based simulations of the FLSDFE algorithm are

conducted for several underwater acoustic channel models, and a kind of resonance

phenomenon is observed with the Choy and Beaulieu single–distinct–errors model.

This phenomenon is subsequently investigated further, in section 4.3, using simplified

channel models. Four channel models are used, both linear and nonlinear, minimum–

phase and nonminimum–phase, to quantify the effects of these aspects on the FLSDFE

algorithm’s performance.

As discussed in chapter 2 and illustrated in figure 2.3, the FLSDFE algorithm does not

feed back smoothed estimates x̂t−n|t at nonzero smoothing lags n. Filtered outputs
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4.2 Underwater acoustic channel models

x̂t|t, however, are fed back. Moreover, the smoothed output x̂t−n|t is functionally de-

pendent upon these filtered outputs x̂t|t, as demonstrated via example in (2.26) and

(2.53). To understand the complicated stochastic dynamics of the FLSDFE output pro-

cess {x̂t−n|t}, we therefore first need to understand the dynamics of the filtered process

{x̂t|t}, whose behaviour is complex enough.

4.2 Underwater acoustic channel models

To investigate the potential benefits of the FLSDFE algorithm in practical channels,

we constructed simple approximations of underwater acoustic communication chan-

nels. There is a well–developed literature on ocean–acoustic modelling, and we draw

in particular on the theory of propagation of sound within a homogeneous fluid layer

bounded above by a pressure release surface and below by a higher velocity, homoge-

neous solid half–space [15, 32].

4.2.1 Computing pressure fields rigorously

The model HANKEL was written by the author to rigorously compute the complex

acoustic pressure field in a homogeneous fluid layer bounded above by a pressure re-

lease surface and below by a higher velocity, homogeneous solid half–space. Appendix

J discusses the HANKEL model in more detail. Figure 4.1 gives a plot of the transmis-

sion loss from a monochromatic point source of frequency 30 Hz. The computed result

reproduces that of Schmidt and Jensen [56]. This problem consists of a shallow ocean,

of depth 100 m, with uniform speed of sound 1500 m s−1 and density 1000 kg m−3. The

bottom is a solid halfspace, with density 2000 kg m−3, compressional speed 1800 m s−1,

shear speed 600 m s−1, compressional attenuation 0.1 dB/λ and shear attenuation 0.2

dB/λ. At a depth of 95 m is a monopole point source emitting a tone of frequency 30

Hz. The problem of Schmidt and Jensen is that of computing the transmission loss at

the ocean floor, out to 5 km.

The blue curve gives the loss as computed from classical ray tracing, which is an ap-

proximate method based on geometrical acoustics. The red curve was produced from

an exact form of the solution for the complex pressure field (see appendix J). This solu-

tion expresses the field as an infinite series of oscillatory integrals. HANKEL estimates

the field by numerical quadrature over a finite set of the most significant integrals.
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Chapter 4 Results

Figure 4.1. Transmission loss curves at 30 Hz. The HANKEL result is in excellent agreement with

Schmidt and Jensen’s figure 5 [56].

Although the ray method is orders of magnitude faster than HANKEL, it is clearly in-

accurate for this problem. This is due to the fact that the ray method is exact only in

the asymptotic limit of infinitely high source frequency, but the frequency in figure 4.1

is very low, 30 Hz. At practical underwater communication frequencies we show that

ray theory is adequate [30, 32, 36].

Figures 4.2 and 4.3 extend the benchmark problem of Schmidt and Jensen to the whole

water column. We clearly see that the simple ray solution does not match the exact

solution with sufficient accuracy in this case. HANKEL was about 10,000 times slower

than ray tracing, taking about one week to compute the field out to 3 km. The rig-

orous solution displays fine ripples that are an interference pattern arising from the

superposition of the single waterborne mode and an interface wave known as a Scholte

wave [56]. Many other models do not take such interface waves into account, as these

waves generally do not contribute significantly to the acoustic pressure field.
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4.2 Underwater acoustic channel models

Figure 4.2. Transmission loss surface at 30 Hz computed by simple ray tracing.

Figure 4.3. Transmission loss surface at 30 Hz computed by wavenumber integration.
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4.2.2 Computing pressure fields with rays

Although HANKEL produces exact pressure fields, it is not suitable for general use

within a simulation of underwater acoustic communication. At higher frequencies, the

underlying integrals rapidly become ever more highly oscillatory, and it becomes nec-

essary to compute ever more of these integrals to obtain a pressure value of sufficient

accuracy. Since HANKEL takes no shortcuts beyond those of numerical quadrature,

the run times become very long for many problems of interest. This is true of other

modelling approaches, as well, though to a lesser extent. Hence we turn to a much

faster, simpler and more versatile technique, that of classical ray tracing. This is am-

ply discussed in the ocean–acoustics literature, and will not be described here, other

than to note that it derives from an asymptotic approximation of the integrals that are

treated exactly by HANKEL [15, 30, 32, 36].

Practical underwater acoustic communication systems typically have frequencies of

several kHz or more [31]. To show the relative accuracy of ray tracing at higher fre-

quencies, we computed the transmission losses from a monochromatic point source of

frequency 1 kHz for two different ocean–acoustic environments. Figures 4.4 and 4.5

show transmission losses for two bottom types. In each figure, we compare transmis-

sion loss calculations obtained from HANKEL with those produced by classical ray

tracing, and with two state–of–the–art models, ORCA, a normal modes model [63], and

RAMS, a parabolic equation model [25].

Together, these four models cover the gamut of common approaches to solving the

Helmholtz equation [32]. (The Helmholtz equation is a linear second–order partial dif-

ferential equation that plays a central rôle in computational ocean acoustics, akin to

the rôle that the Schrödinger equation plays in quantum chemistry.) By using separate

computer codes, based on widely differing mathematical approaches, a consensus of

solutions can be taken to mean that all solutions are close to the true solution. We use

this philosophy to provide a benchmark to the accuracy of the method of classical ray

tracing, which is of interest in practical simulations of underwater acoustic communi-

cation systems, due to the versatility and speed of ray tracing.

Table 4.1 gives the ocean–acoustic material properties of eight canonical seabed types,

as suggested by Jensen and Kuperman [35]. Jensen and Kuperman considered this set

of seabed types as being representative of the spectrum of types likely to be encoun-

tered in the world’s oceans. The data are arranged in order of increasing density ρb
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4.2 Underwater acoustic channel models

of the bottom, in kg m−3. The columns c2p and c2s are the speed of sound of P (com-

pressional) and S (shear) waves, respectively, in m s−1. Decibel attenuation rates α2p

and α2s are in the units dB/λ2p and dB/λ2s, respectively, where λ2p and λ2s are the

wavelengths of P and S waves, respectively:

λ2p =
ω

c2p
, and (4.1)

λ2s =
ω

c2s
, (4.2)

where ω = 2π f , with f being the source frequency, in Hertz (Hz).

Table 4.1. Jensen and Kuperman’s representative spectrum of seabed types [35]. Shown highlighted

in grey are the two seabed types used in the FLSDFE simulations.

A shallow uniform ocean of depth 50 m, density ρ1 = 1000 kg m−3 and speed of sound

c1 = 1500 m s−1 was used with each of the bottom types highlighted in the table above.

A point monochromatic source of frequency 1 kHz was placed at depth 25 m below the

surface of the sea. The transmission loss from this source was computed at depth 5 m,

out to a range of 500 m, and the results are presented as figures 4.4 and 4.5 below. Note

that the HANKEL data were computed at a coarse range interval, owing to the much

slower run times of this model.

As the figures show, there is excellent overall agreement of each model with the other

models for each of the environments. This shows that classical ray tracing is adequate

for the given problem set. By extension, ray tracing should be adequate for frequencies

above 1 kHz, as the ray method is asymptotically exact in the limit of infinite frequency

[32]. Classical ray tracing is by far the quickest of the four methods for synthesizing

the complex acoustic pressure field at a receiver.
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Figure 4.4. Transmission loss curves for Silt bottom.
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Figure 4.5. Transmission loss curves for Coarse Sand bottom.
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4.2 Underwater acoustic channel models

4.2.3 Ray–based channel models

In this section, we focus on the ray solutions at a range of 500 m for the silt and coarse

sand bottom types. We model the channels as having a linear finite–impulse response

(FIR). The linearity is appropriate given that the acoustic wave equation is linear at typ-

ical underwater communication sound pressure levels [15, 30–32, 36, 56, 63]. Moreover,

a finite–impulse response is what is observed in real underwater acoustic communica-

tion channels [32, §7.6.3].

The real part of the impulse response in each case was quantized to the nearest 0.001

second, producing the simplified channel models in figures 4.6 and 4.7. The period

between samples was chosen as the reciprocal of the source frequency, 1 kHz. The

impulse response data is normalized so that the sum of the squares of the response

values is unity. Note that a bulk delay has been removed, corresponding to the time

of first arrival of the earliest ray to reach the receiver. Positive and negative signs

account for an even and odd number of surface reflections, respectively, with each

surface reflection being equivalent to multiplication of the complex pressure by −1

(the surface is a pressure–release interface). The relative magnitudes of the impulse

response data arise from the magnitude response of the bottom reflection coefficient,

and the number of bottom interactions encountered by each ray between source and

receiver.

The data in figures 4.6 and 4.7 thus provide an approximate normalized FIR represen-

tation of the ocean–acoustic channel’s impulse response. It is these abstracted chan-

nel models that will be used in the subsequent FLSDFE simulations. With BPSK sig-

nalling, the quantities h(k) in figures 4.6 and 4.7 are the (sparse) kernel coefficients

h1(k1), k1 ∈ {0, . . . , N}, of the linear part of the SISO channel model (2.50). The symbol

lag (k) in the figures is interpreted as discrete time k1 in the channel model.

From the normalized FIR models in 4.6 and 4.7, we can formulate corresponding z

transform models for the channels [43]. Figures 4.8 and 4.9 show the locations of the

poles and zeros for each channel, as computed with MATLABTM. The poles are all at the

origin, and the number next to the cross indicates their multiplicity. Zeros are indicated

by open circles, and the dashed curve is the unit circle.

We note immediately that neither channel is strictly minimum phase, since each has

at least one zero outside the unit circle. The coarse sand model, however, seems to be

worse, in the sense that there are more zeros outside the unit circle, and many of the
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Figure 4.6. Channel model for Silt bottom.
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Figure 4.7. Channel model for Coarse Sand bottom.
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Figure 4.8. Pole–zero plot for silt bottom.

zeros are closer to the unit circle. We may expect worse equalisation performance for

the coarse sand bottom model than for the silt bottom model.

Based upon the normalized FIR channel models in figures 4.6 and 4.7, BPSK transmis-

sion was simulated and BER versus input SNR curves for the FLSDFE algorithm were

constructed. Figures 4.10 and 4.11 provide the empirical BER curves for the silt and

coarse sand bottom models, respectively. At each SNR value the FLSDFE algorithm

was run at zero, minimum and maximum smoothing lags. For each combination of

SNR and lag, the same number of bits were transmitted.

The BER curves show that in each case smoothing improves performance, even though

the channels were not strictly of minimum phase. The greatest BER reduction came

about from smoothing at maximum lag.

To investigate the performance of the FLSDFE algorithm further, use was made of the

single–distinct–errors state space model of Choy and Beaulieu, introduced in section

3.4.6. The steady–state state transition probabilities αk and βk from (3.270) and (3.271),

respectively, were estimated via simulation, and these are plotted in figures 4.12 and

4.13 for the silt and coarse sand bottom models.
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Figure 4.9. Pole–zero plot for coarse sand bottom.
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Figure 4.11. FLSDFE performance for coarse sand bottom.

The upper two curves in each figure consist of a set of overlaid plots of transition

probabilities βk (upper left curves) and αk (upper right curves), where k runs over the

set of states from the Choy and Beaulieu models (see figure 3.11). It is not possible

to distinguish individual αk and βk data sets in the upper curves of figures 4.12 and

4.13, so they are presented in three–dimensional form in the matching lower plots. The

colour–coding of the lower figures is the z direction, replacing the y direction of the

upper plots.

Of immediate note is the presence of humps in some of the βk curves for both channel

models. That is, for some of the βk, there is not a monotonic rise in transition proba-

bility with increasing SNR. Rather, the probability rises, reaches a peak, and then falls

again at still higher input SNR. Referring to figure 3.11, it appears there are barriers to

error recovery at both low and high SNR, with a partial window at intermediate SNR

values. It is as though there were two modes for some of the βk transitions, with peaks

at different SNR values for different βk. These barriers can be seen in the lower left

plots of figures 4.12 and 4.13 as horizontal stripes of low state transition probability at

high SNR.
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Figure 4.12. State transition probabilities for silt bottom.

Figure 4.13. State transition probabilities for coarse sand bottom.
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We note that the stripes occur at lower values of k, implying that there is more chance

of getting stopped by a barrier while further from error recovery than there is while

closer to error recovery. In the next section, we explore these ‘resonance’ phenomena

further, with simple generic channel models.

4.3 Generic BPSK channel models

Section 4.2 highlighted some potential performance issues with the application of the

FLSDFE algorithm to the equalisation of underwater acoustic communication chan-

nels. To better understand the complex error propagation dynamics, channel models

with shorter memory N were constructed and analyzed. Specifically, we look at two

purely linear channels, and two purely cubic channels, both of memory N = 6. Cubic

channels arise in satellite communication, for example, where amplifiers are driven to

saturation to maximize output power [11–14].

Section 4.3.1 introduces the baseband SISO channel models that will be used; bit error

rate (BER) curves are presented in section 4.3.2; section 4.3.4 discusses error recov-

ery times; section 4.3.3 provides curves of state transition probabilities for the single–

distinct–errors model of Choy and Beaulieu [24]; and the mean and standard devia-

tions of the lengths of error bursts are estimated in section 4.3.5.

4.3.1 Model description

We use a linear family of models,

y
(1,m)
t =

N

∑
k1=0

h
(m)
1 (k1)xt−k1

+ vt, (4.3)

and a cubic family,

y
(3,m)
t =

N

∑
k1=0

N

∑
k2=k1

N

∑
k3=k2

h
(m)
3 (k1, k2, k3)xt−k1

xt−k2
xt−k3

+ vt, (4.4)

with model index m ∈ {0, . . . , N} and Volterra kernels

h
(m)
1 (k1) = am (|k1 − m|+ 1)−2 , and (4.5)

h
(m)
3 (k1, k2, k3) = bm





[

3

∑
l=1

(kl − m)2

] 1
2

+ 1





−2

. (4.6)
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Coefficients am > 0 and bm > 0 were chosen such that

N

∑
k1=0

(

h
(m)
1 (k1)

)2
= 1, and (4.7)

N

∑
k1=0

N

∑
k2=k1

N

∑
k3=k2

(

h
(m)
3 (k1, k2, k3)

)2
= 1. (4.8)

The additive noise sequence {vt} in each model is independent and identically dis-

tributed, zero-mean and Gaussian, with variance σ2
v . For a random BPSK symbol se-

quence {xt} drawn from A2 = {−1, 1}, the signal–to–noise ratio for each model is

given simply by

SNRdB = −10 log10σ2
v . (4.9)

The linear models in (4.3) were chosen to give a quadratic decay in kernel coefficient

h
(m)
1 (k1) on either side of the peak at k1 = m. Model 0 of family (4.3) is a minimum

phase, linear FIR channel [43]. For such channels, it is possible to implement a stable

and causal inverse filter to compensate for channel distortion. This is not the case for

the other models in the linear family (4.3), indexed by m ∈ {1, . . . , N}, since those

channels are nonminimum phase. For the family (4.3), therefore, we expect worse

equalisation performance for the models indexed by m ∈ {1, . . . , N} than for the model

indexed by m = 0. The cubic family (4.4) provides a 3–dimensional analogue of (4.3),

and was included as a simple example of a nonlinear channel.

We restrict our attention in the remainder of this chapter to the specific models with

indexes m ∈ {0, 3}. When m = 0, we get the minimum phase, linear FIR channel and

its cubic cousin; and with m = 3, for the linear model we get a nonminimum phase

channel with a peak kernel value at h1(3) instead of at h1(0), which means there is a

delay of 3 samples before the maximum signal energy. This makes for an interesting

contrast to the underwater acoustic channels of section 4.2.3, which had peak impulse

response at zero lag.

4.3.2 BER versus SNR

Figures 4.14–4.17 give curves of bit–error–rate (BER) versus input signal–to–noise ratio

(SNR), obtained by simulation. Figure 4.14 is for the linear, minimum phase channels

(m = 0, p = 1); figure 4.15 is for the linear, nonminimum phase channels (m = 3, p =
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1); figure 4.16 is for the cubic, minimum phase channels (m = 0, p = 3); and figure 4.17

is for the cubic, nonminimum phase channels (m = 3, p = 3). Note that there are seven

curves in each figure, one for each lag n ∈ {0, . . . , N}. The colour–coding follows that

of the plot command of MATLABTM, namely blue, green, red, cyan, magenta, yellow

and black, for lags n = 0, . . . , 6, respectively.

Figures 4.14 and 4.15 show the data for the linear pair of models, those with Volterra

series order p = 1. We note that, for both channels, the FLSDFE does no better at low

SNR values than flipping a coin, with BER values of 0.5. At higher SNRs, however,

two different pictures emerge.

In figure 4.14, at lag n = 0 (the blue curve) we get the rapid falloff of BER with SNR

that is typical of a DFE [57]. We note from (4.5) with m = 0 that the kernels h
(0)
1 (k1) fall

off rapidly from their peak value h
(0)
1 (0), and so the DFE, operating at smoothing lag

n = 0, is optimum here. For this channel model, no smoothing at all is better than any

smoothing.

In figure 4.15, however, we observe that at high SNR some smoothing is better than no

smoothing at all. The best result comes from matching the smoothing lag n to the peak

delay m = 3, since from (4.5) the largest channel coefficient is h
(3)
1 (3). At high SNR

the BER values of the linear, nonminimum–phase channel in figure 4.15 are orders

of magnitude higher than those of the linear, minimum–phase channel in figure 4.14.

Nevertheless, on the difficult linear, nonminimum–phase channel we see that at lags

n > 0, the FLSDFE performs better than the DFE.

The cubic (p = 3) models in figures 4.16 and 4.17 have essentially the same pattern as

their linear counterparts, with the exception that at high SNR the BER values in figure

4.16 are much larger than the comparable values in figure 4.14.

4.3.3 State transition probabilities

In figures 4.18–4.25 we present the average state transition probabilities αk and βk be-

tween the Ψk and Φk states in Choy and Beaulieu’s single–errors state space model

(section 3.4.6). These quantities were estimated via simulation from (3.270) and (3.271).

Figures 4.18, 4.19, 4.22 and 4.23 give the data for the minimum phase channels; while

figures 4.20, 4.21, 4.24 and 4.25 give the corresponding data for the nonminimum phase

channels. Conversely, figures 4.18–4.21 give the data for the linear (p = 0) models;

while figures 4.22–4.25 give the data for the cubic (p = 3) channels.
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Figure 4.14. Bit error rate curves for p = 1 and m = 0.
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Figure 4.15. Bit error rate curves for p = 1 and m = 3.
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Figure 4.16. Bit error rate curves for p = 3 and m = 0.
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Figure 4.17. Bit error rate curves for p = 3 and m = 3.
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Figure 4.18. State transition probabilities αk for p = 1 and m = 0.
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Figure 4.19. State transition probabilities βk for p = 1 and m = 0.
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Figure 4.20. State transition probabilities αk for p = 1 and m = 3.
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Figure 4.21. State transition probabilities βk for p = 1 and m = 3.
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Figure 4.22. State transition probabilities αk for p = 3 and m = 0.
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Figure 4.23. State transition probabilities βk for p = 3 and m = 0.
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Figure 4.24. State transition probabilities αk for p = 3 and m = 3.
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Figure 4.25. State transition probabilities βk for p = 3 and m = 3.
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As we flow along a branch, we progress towards the error–free state Γ. We conceptually

think of flow along either the upper (β) branch or the lower (α) branch, although it is

possible to cross from the upper to the lower branch. For convenience, in the following

discussion we shall ignore the possibility of crossing between branches.

In figures 4.18, 4.19, 4.22 and 4.23, there is a steady rise in each transition probability,

from a minimum of 1/2, at the noise–only limit (SNR → −∞), to a maximum value at

the signal–only limit (SNR → ∞). Thus, for the minimum phase channels, the upper

(β) and lower (α) branches of the single–errors model state diagram 3.11 show a mono-

tonic decrease in restriction of flow, with increasing SNR, towards the error–free state

Γ.

For the cubic minimum phase channel (p = 1, m = 3), in figures 4.22 and 4.23, note

that not all transition probabilities reach the value 1 at infinite SNR. Compare this with

the corresponding figures 4.18 and 4.19 for the linear minimum phase channel (p = 1,

m = 0), which show all transition probabilities reaching 1 at infinite SNR. For the

cubic minimum phase channel there appear to be, in effect, barriers that constrict flow

towards the error–free state along each branch. One such barrier is between states

Φ0 and Φ1, for example. We see that the value of transition probability α0 levels off at

about 0.85 at high SNR. In order to flow along the α branch at high SNR, and eventually

reach the error–free state Γ, this barrier must be overcome, with only an 85–percent

chance of success, on average. Note, however, that the lower signal–only values of α0,

α1 and β0 for the cubic minimum phase channel do not significantly affect the signal–

only recovery time. Figure 4.26 shows a value for R0 that is indistinguishable from the

theoretical value R0 = N = 6 attained by the linear minimum phase channel.

Figures 4.20, 4.21, 4.24 and 4.25 show a very different behaviour for the nonminimum

phase channels. For these channels, the transition probability curves show a kind of

‘resonance’ in the transition probability versus input SNR, at which the probability

rises to a peak value, before dropping again. Of note is the fact that the peaks occur

at different SNR values along a given branch, but they are correlated across branches.

Thus, for example, the linear model has a strong resonance peak at about 19 dB for

both α5 and β5, meaning that the transitions from Φ5 to Γ, or Ψ5 to Γ, are most likely at

19 dB. The previous peaks, for α4 and β4, however, occur at the lower SNR of 15 dB.

In contrast to the transition probability curves for the minimum phase channels, note

that the asymptotic transition probabilities for the nonminimum phase channels, at in-

finite SNR, are close to 0.5 for the α branch, and they attain 0.5 for the β branch. That
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is, apart from the resonance region, most of the behaviour of the FLSDFE is noiselike.

At high SNR, it appears that the decision–feedback part of the FLSDFE algorithm is

not effective on the nonminimum phase channels in this subsection. Since FLSDFE

smoothing outputs x̂t−n|t, n ∈ {1, . . . , N}, are dependent on the FLSDFE filtering out-

puts, x̂t|t, the FLSDFE is not expected to perform as well as it did on the minimum

phase channels at any smoothing lag. This is confirmed by figures 4.15 and 4.17, which

show high bit–error rates for the nonminimum phase channels across a wide range of

input SNR values and smoothing lags.

4.3.4 Error recovery time

The state–transition diagram for the single–distinct–errors model of Choy and Beaulieu

was given earlier as figure 3.11. For N = 6, this model has the 13 mutually exclusive

states shown in table 4.2 below.

Table 4.2. Choy and Beaulieu’s single–distinct–errors model for a channel of memory N = 6 (linear

or nonlinear), BPSK signalling, and filtering only (n = 0).

st et−1 et−2 et−3 et−4 et−5 et−6 et−7 et−8 et−9 et−10 et−11 et−12

Ψ0 E O O O O O X X X X X X

Ψ1 O E O O O O O X X X X X

Ψ2 O O E O O O O O X X X X

Ψ3 O O O E O O O O O X X X

Ψ4 O O O O E O O O O O X X

Ψ5 O O O O O E O O O O O X

Φ0 E X X X X X X X X X X X

Φ1 O E X X X X X X X X X X

Φ2 O O E X X X X X X X X X

Φ3 O O O E X X X X X X X X

Continued on next page
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Table 4.2 – concluded from previous page

st et−1 et−2 et−3 et−4 et−5 et−6 et−7 et−8 et−9 et−10 et−11 et−12

Φ4 O O O O E X X X X X X X

Φ5 O O O O O E X X X X X X

Γ O O O O O O X X X X X X

In this table, st refers to a particular error state, chosen from the set of states

S = {Ψ0, . . . , ΨN−1, Φ0, . . . , ΦN−1, Γ}; (4.10)

et−k is an error symbol at time t − k; E indicates a filtering error (x̂t−k|t−k 6= xt−k); O

means no error (x̂t−k|t−k = xt−k); and X means we do not care whether or not there

was a filtering error. E is colour–coded yellow; an error–free run of length N − 1 is

colour–coded blue; and the complement of this, a run of length N − 1 with at least one

error, is colour–coded grey. Errors et−k are all X for k ≥ 2N.

As discussed in section 3.4.6 and as defined by Choy and Beaulieu [24], the recovery

time R0 is the mean number of steps taken to first reach Γ, commencing in Ψ0. Figure

4.26 below gives the error recovery time, as computed from the formula [24, eq. 21]

R0 =
1

α5

[

1 +
4

∑
i=0

i

∏
j=0

β j +

(

1 −
4

∏
j=0

β j

)(

1 +
4

∑
i=0

4

∏
j=i

1

αj

)]

. (4.11)

αj and β j are the steady–state state transition probabilities shown in figure 3.11.

Γ is the error–free state, with N correct decisions. Error recovery begins in Φ0, with

the corruption of an error–free channel by a recent filtering error. Progress towards Γ

involves transition over the states Φ0 → Φ1 → · · · → Φ5 → Γ, which is the upper (β)

branch of figure 3.11; or the states Ψ0 → Ψ1 → · · · → Ψ5 → Γ, which is the lower (α)

branch of figure 3.11. Further filtering errors along the way, however, can force a jump

back to either Φ0 or Ψ0, the start of the β and α branches, respectively, thereby delaying

error recovery.

Note from figure 4.26 that we reproduce the noise–only limit (SNR → −∞) for all

models, as per Choy and Beaulieu’s analytical result 2(2N − 1) = 126. As for the

signal–only limit (SNR → ∞), however, we observe Choy and Beaulieu’s theoretical

result of N = 6 just for the minimum phase channels.

The nonminimum phase channels have a long mean recovery time at infinite SNR,

and an optimum SNR at which recovery time is least. At either side of this optimum,
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Figure 4.26. Mean time to recover from an error, R0, from Choy and Beaulieu’s single–distinct–

errors state space model.

however, the FLSDFE is prone to longer error bursts. There is a tantalising connection

with the notion of stochastic resonance, in which the addition of noise may lower the

recovery time, by driving the SNR downwards towards the optimum value.

Choy and Beaulieu considered filtering only, but their models are applicable to an anal-

ysis of the FLSDFE in Volterra channels. We note from chapter 2 that the output x̂t−n|t
of the FLSDFE, at smoothing lags n > 0, is functionally dependent on the filtered val-

ues x̂t|t. A proper study of FLSDFE smoothing errors xt−n − x̂t−n|t must therefore begin

with a study of DFE filtering errors xt − x̂t|t [61].

4.3.5 Error bursts

Further elucidation of the different performance of the FLSDFE algorithm on the linear

and cubic, minimum– and nonminimum–phase channels is obtained from a study of

the phenomenon of error bursts. Via simulation we produced figures 4.27–4.30 below,

which show the mean and standard deviations of the lengths of error bursts. An error

burst of length m is such that x̂t|t = xt, x̂t−k|t−k 6= xt−k and x̂t−m−1|t−m−1 = xt−m−1, for

k ∈ {1, . . . , m}.
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Figure 4.27. Error burst statistics for p = 1 and m = 0.
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Figure 4.28. Error burst statistics for p = 1 and m = 3.
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Figure 4.29. Error burst statistics for p = 3 and m = 0.
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Figure 4.30. Error burst statistics for p = 3 and m = 3.
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In the noise–only limit, the mean error burst length across all four models, and at all

smoothing lags, is two samples. The corresponding standard deviation is
√

2, or about

1.4. This is shown as follows. The symbol values xt−n and FLSDFE outputs x̂t−n|t are,

in this case, uncorrelated and independent Bernoulli random variables, with probabil-

ity 1
2 of assuming either of their values from alphabet A2 = {−1, 1}. We thus have the

expected value of the error burst length L given by

E(L) =
∞

∑
l=1

l

(

1

2

)l

= 2, (4.12)

and the standard deviation given by

√

E((L −E(L))2) =
∞

∑
l=1

(l − 2)2
(

1

2

)l

=
√

2. (4.13)

At the signal–only limit for the linear, minimum phase channel (p = 1, m = 0 in figure

4.27), we find that the mean error burst length is about one sample at smoothing lags

0, 1 and 2, but jumps to about 1.1 samples at smoothing lags 3, 4 and 5. There is a

corresponding jump in the standard deviation, being close to zero at lags 0, 1 and 2.

For this channel, there seem to be two ‘modes’ at the two sets of lags, with slightly

worse equalisation performance at the higher lags.

The signal–only limit for the cubic, minimum phase channel (p = 3, m = 0 in figure

4.29) shows a more dispersed range of mean error burst lengths, from a minimum of

about 1.15, at lag 0, to a maximum of about 1.35, at lag 6. There is a gradual increase

of mean burst length with increasing lags, reflecting the fact that we are moving away

from the optimum smoothing lag at n = m = 0. Note that the standard deviation

mirrors this pattern as well.

For the linear, nonminimum phase channel (p = 1, m = 3 in figure 4.28) we see a

more complicated pattern of error burst statistics. At the signal–only limit, there is an

increase of mean burst length as the lag increases to 2, followed by a sudden drop at

the optimum lag n = m = 3. At still higher smoothing lags, the mean burst length

increases slightly, though still significantly below that of smaller, sub–optimal lags n <

m. At intermediate SNR values, we note a dip in mean burst length at lags 0, 1 and

2 and a reversal of the high–SNR pattern. Thus, at 0 dB, for instance, we see that the

mean run length decreases from lags 0 to 2. The standard deviations mirror the means.

For the cubic, nonminimum phase channel (p = 3, m = 3 in figure 4.30), we note

that the high–SNR means and standard deviations decrease monotonically towards
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the optimum smoothing lag n = m = 3, then (slightly) increase past that. There is

a slight dip at intermediate SNR values. This appears to be related to the resonances

observed in section 4.3.3.

4.4 Conclusion

The behaviour of the FLSDFE algorithm on nonminimum phase, nonlinear channels is

complicated. There is potential benefit in applying fixed–lag smoothing to a variety of

channels, and smoothing seems to improve the results. One caveat, however, is that it

is important to choose an optimum smoothing lag, one that keeps error bursts to a min-

imum and for which the bit error rate is as low as can be expected. Some of the channels

treated in this chapter are difficult to equalise by decision–feedback equalisation, even

with the application of fixed–lag smoothing, but the FLSDFE definitely shows promise.

There may be other equalisation techniques that are more suited to channels such as

the cubic, nonminimum phase channel discussed above, but the FLSDFE algorithm is

a simple extension to the DFE that, when used wisely, leads to improved equalisation

over that of the DFE alone. The resonance phenomena observed in section 4.3.3 are

new to the DFE literature.
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Chapter 5

Conclusions and Future
Work

This thesis covered some of the theory and application of the FLSDFE algorithm, first

introduced by Perreau et al. [52]. The FLSDFE incorporates a fixed–lag smoother into

a decision–feedback equaliser. According to Anderson [4], ‘... at high signal to noise

ratios, smoothing gives greater improvement over filtering than at low signal to noise

ratios.’ The rationale behind the FLSDFE is thus that by delaying symbol estimation

until more channel measurements are available, the FLSDFE may produce less symbol

errors than the DFE alone would. In this thesis, we investigate the relative performance

of fixed–lag smoothing in some detail, with mixed results.

In chapter 2 we provided an alternative derivation of the FLSDFE algorithm, show-

ing the specific forms for BPSK, MPSK and MQAM signalling on SISO channels with

input–output relationships in the form of a Volterra series. In particular, the combi-

nation of the FLSDFE algorithm and the use of Volterra channel models is new. This

work extended the linear FIR channel models of Perreau et al., and provides a guide to

the application of the FLSDFE on other nonlinear channels. In addition, the probability

distribution functions of the FLSDFE estimator X̂t−n|t were discussed in sections 2.3.3

and 2.4.3, and the explicit form of the distribution was given for the simpler BPSK case.

The distribution of X̂t−n|t has not appeared in the FLSDFE literature before.

Chapter 3 introduced state space models that proved useful in modelling the transient

and limiting temporal dynamics of error propagation. We discussed atomic state space

models in sections 3.1–3.3, with different models required for the filtering–only and

smoothing–only cases. These models were based on a similar model of Kennedy and

Anderson [39], with the difference being that the models in this thesis incorporate all

data up to the current time t, rather than the previous time t − 1. The smoothing–only

model in section 3.3 is new.
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For the filtering–only model in section 3.2 we provided a novel formulation for the

state transition probability matrix, illustrated for the case of BPSK signalling. This

matrix is hierarchically structured and sparse. No general results were found for

the stationary distribution vector for either the filtering–only or the smoothing–only

atomic state space models. Within the context of the error recovery time of Choy and

Beaulieu [24], some novel connections with Fibonacci and related series were made for

the filtering–only atomic state space model. Some conjectures were raised concerning

these observations. In addition, connections were drawn between the filtering–only

model and the theory of integer partitions.

In section 3.4 we discussed aggregated state space models, where the atomic states

were formed into mutually disjoint subsets. We illustrated the existence of a unique

optimum aggregation for the case of BPSK signalling on a channel of memory N = 1,

with filtering only, in section 3.4.4. This aggregation was found by brute force, using

set partitions and restricted growth strings. The method used appears to be a novel

approach to the problem of finding an aggregation of an atomic state space that satis-

fies the finite–state Markov process (FSMP) property. The unique optimal aggregation

exactly models the transient dynamics of the underlying atomic state space model, but

does so with fewer aggregated states. It is not known in general whether unique op-

timal aggregations exist for the filtering–only and smoothing–only atomic state space

models. The brute force method used in the example of this thesis is too prohibitive

for general use, related to the exponential growth of the size of Bell numbers (which

give the number of set partitions of a given set of atomic states).

A suboptimal aggregation was illustrated in section 3.4.5, again for the simple case of

BPSK signalling, the filtering–only atomic state space model, and a channel memory

of N = 1. This aggregation also satisfied the FSMP property, and thus could exactly

model the transient dynamic behaviour of the atomic state space model, but it did so

with six states instead of 16 (the optimum used four states). Moreover, this aggregation

was related to the optimum in that four of the states were formed by splitting two of

the optimal states. In addition, the suboptimum aggregation had the neat property that

each of the states was a subset of one of the states of a model of Choy and Beaulieu [24],

introduced in their work on DFE error recovery time. Thus we demonstrated a bridge

between the transient models of this thesis and the asymptotic steady–state models of

Choy and Beaulieu.
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While Choy and Beaulieu’s aggregated states did not satisfy the FSMP property, the

suboptimal aggregation in this thesis did. Although we only demonstrated the sub-

optimal model for the N = 1 case, it would be interesting to see whether suboptimal

models can be found for more general filtering–only and smoothing–only atomic state

space models that are closely related to the models of Choy and Beaulieu, and yet

satisfy the FSMP property. This is a subject for future work.

In chapter 4 we applied the FLSDFE algorithm to some channels and showed that the

FLSDFE had both benefits and disadvantages. In particular, we saw that the behaviour

of the FLSDFE was closely coupled to that of the ordinary DFE, so that some channels

were still difficult to equalise. Nonetheless, for those difficult (nonlinear, nonminimum

phase) channels, we observed that the FLSDFE provided a performance advantage

over the DFE alone. That is, the application of fixed–lag smoothing to the outputs of the

DFE was of benefit on those channels. Finally, we observed that it was possible to glean

some insight into the complex transient behaviour of the FLSDFE algorithm by using

the single–errors state space model of Choy and Beaulieu. In particular, we observed

‘resonance’ behaviour and barriers to error recovery. These phenomena result from the

fact that the FLSDFE is a nonlinear process with DFE feedback.

The behaviour of the FLSDFE algorithm on general Volterra channels is that of a com-

plex nonlinear stochastic dynamical process. This complexity makes it difficult to

analyze, in general, although we can make headway in specific cases. What is lack-

ing, however, is an over–arching and powerful theory to describe the dynamics of the

FLSDFE algorithm on arbitrary channels. This is an area of future research that may

prove useful. Of note is the observation that during the analysis of the performance of

the FLSDFE algorithm in section 2.3, for example, we saw the presence of generalized

feedback errors such as

xt−k−k1
xt−k−k2

x∗t−k−k3
− x̂t−k−k1

x̂t−k−k2
x̂∗t−k−k3

, (5.1)

involving three separate times. Characterisation of feedback errors such as these would

imply the use of a three–dimensional lattice. Most published efforts to model and deal

with the phenomenon of error–feedback in decision–feedback equalisation (with and

without fixed–lag smoothing) have been concerned merely with linear (first–order)

forms such as

xt−k−k1
− x̂t−k−k1

. (5.2)
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Insufficient effort seems to have been placed on the more difficult and higher–dimensional

problem of dealing with generalized decision–feedback errors, which add complexity

to the stochastic dynamics of decision–feedback equalisation algorithms.

The FLSDFE algorithm discussed in this thesis did not feed back smoothed outputs

x̂t−n|t for lags n > 0. It is unknown whether feeding these quantities back into the

FLSDFE might improve the performance. The results, in any case, might vary from

channel to channel. Nevertheless, it would be an interesting area of future research to

quantify the performance of these variant FLSDFE algorithms.

In tables 5.1–5.12 on the following pages is an illustration of the operation of a modified

form of the FLSDFE algorithm presented in this thesis. The description of the proposed

algorithm is contained in the table captions. The SISO channel has memory N = 2 and

the smoothing lag n takes on each of the values in the set {0, . . . , N}. The input–output

relationship is unspecified, although we assume an additive noise form,

Yt = Ft(Xt, Xt−1, Xt−2) + Vt, (5.3)

so that the estimator X̂t−n|t is obtained from the least–squares criterion used to develop

the specific MPSK, MQAM and BPSK estimators shown in chapter 2.
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Table 5.1. The first step in a modified FLSDFE algorithm, wherein smoothing outputs x̂t−n|t are

fed back. No estimates of xt−5 and xt−6 are available, so set x̂t−5|t−5 and x̂t−6|t−6 to

zero. Symbol xt−4 is estimated with x̂t−4|t−4, which is a function of yt−4.

output symbol estimates

yt−4 x̂t−4|t−4 0 0

Table 5.2. When yt−3 becomes available, estimate xt−3 with x̂t−3|t−3, which is a function of x̂t−4|t−4

and yt−3.

output symbol estimates

yt−4 x̂t−4|t−4 0 0

yt−3 x̂t−3|t−3 x̂t−4|t−4 0

Table 5.3. Revise estimate of xt−4, using FLSDFE with smoothing lag n = 1. x̂t−4|t−3 replaces

x̂t−4|t−4, and is a function of x̂t−3|t−3, yt−3 and yt−4.

output symbol estimates

yt−4 x̂t−4|t−3 0 0

yt−3 x̂t−3|t−3 x̂t−4|t−3 0

Table 5.4. When yt−2 becomes available, estimate xt−2 with x̂t−2|t−2, which is a function of x̂t−3|t−3,

x̂t−4|t−3 and yt−2.

output symbol estimates

yt−4 x̂t−4|t−3 0 0

yt−3 x̂t−3|t−3 x̂t−4|t−3 0

yt−2 x̂t−2|t−2 x̂t−3|t−3 x̂t−4|t−3
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Table 5.5. Revise estimate of xt−3, using FLSDFE with smoothing lag n = 1. x̂t−3|t−2 replaces

x̂t−3|t−3, and is a function of x̂t−2|t−2, x̂t−4|t−3, yt−2 and yt−3.

output symbol estimates

yt−4 x̂t−4|t−3 0 0

yt−3 x̂t−3|t−2 x̂t−4|t−3 0

yt−2 x̂t−2|t−2 x̂t−3|t−2 x̂t−4|t−3

Table 5.6. Revise estimate of xt−4, using FLSDFE with smoothing lag n = 2. x̂t−4|t−2 replaces

x̂t−4|t−3, and is a function of x̂t−2|t−2, x̂t−3|t−2, yt−2, yt−3 and yt−4.

output symbol estimates

yt−4 x̂t−4|t−2 0 0

yt−3 x̂t−3|t−2 x̂t−4|t−2 0

yt−2 x̂t−2|t−2 x̂t−3|t−2 x̂t−4|t−2

Table 5.7. When yt−1 becomes available, estimate xt−1 with x̂t−1|t−1, which is a function of x̂t−2|t−2,

x̂t−3|t−2 and yt−1.

output symbol estimates

yt−3 x̂t−3|t−2 x̂t−4|t−2 0

yt−2 x̂t−2|t−2 x̂t−3|t−2 x̂t−4|t−2

yt−1 x̂t−1|t−1 x̂t−2|t−2 x̂t−3|t−2

Table 5.8. Revise estimate of xt−2, using FLSDFE with smoothing lag n = 1. x̂t−2|t−1 replaces

x̂t−2|t−2, and is a function of x̂t−1|t−1, x̂t−3|t−2, x̂t−4|t−2, yt−1 and yt−2.

output symbol estimates

yt−3 x̂t−3|t−2 x̂t−4|t−2 0

yt−2 x̂t−2|t−1 x̂t−3|t−2 x̂t−4|t−2

yt−1 x̂t−1|t−1 x̂t−2|t−1 x̂t−3|t−2
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Table 5.9. Revise estimate of xt−3, using FLSDFE with smoothing lag n = 2. x̂t−3|t−1 replaces

x̂t−3|t−2, and is a function of x̂t−1|t−1, x̂t−2|t−1, x̂t−4|t−2, yt−1, yt−2 and yt−3.

output symbol estimates

yt−3 x̂t−3|t−1 x̂t−4|t−2 0

yt−2 x̂t−2|t−1 x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂t−1|t−1 x̂t−2|t−1 x̂t−3|t−1

Table 5.10. When yt becomes available, estimate xt with x̂t|t, which is a function of x̂t−1|t−1,

x̂t−2|t−1 and yt.

output symbol estimates

yt−2 x̂t−2|t−1 x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂t−1|t−1 x̂t−2|t−1 x̂t−3|t−1

yt x̂t|t x̂t−1|t−1 x̂t−2|t−1

Table 5.11. Revise estimate of xt−1, using FLSDFE with smoothing lag n = 1. x̂t−1|t replaces

x̂t−1|t−1, and is a function of x̂t|t, x̂t−2|t−1, x̂t−3|t−1, yt and yt−1.

output symbol estimates

yt−2 x̂t−2|t−1 x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂t−1|t x̂t−2|t−1 x̂t−3|t−1

yt x̂t|t x̂t−1|t x̂t−2|t−1

Table 5.12. Revise estimate of xt−2, using FLSDFE with smoothing lag n = 2. x̂t−2|t replaces

x̂t−2|t−1, and is a function of x̂t|t, x̂t−1|t, x̂t−3|t−1, x̂t−4|t−2, yt, yt−1 and yt−2.

output symbol estimates

yt−2 x̂t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂t−1|t x̂t−2|t x̂t−3|t−1

yt x̂t|t x̂t−1|t x̂t−2|t

The steps illustrated in tables 5.10–5.12 are then repeated for each subsequent time step

t.
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Note that the variant FLSDFE algorithm illustrated in tables 5.1–5.12 above is one pos-

sibility, but there are others. For instance, a different variant may be obtained by iterat-

ing through the steps in tables 5.10–5.12. The first two reestimation passes are shown

in tables 5.13–5.18.

Table 5.13. Revise estimate of xt using updated estimates x̂t−1|t and x̂t−2|t of xt−1 and xt−2,

respectively. x̂
(1)
t|t is a function of x̂t−1|t, x̂t−2|t and yt.

output symbol estimates

yt−2 x̂t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂t−1|t x̂t−2|t x̂t−3|t−1

yt x̂
(1)
t|t x̂t−1|t x̂t−2|t

Table 5.14. Revise estimate of xt−1 using updated estimates x̂
(1)
t|t and x̂t−2|t of xt and xt−2, respec-

tively. x̂
(1)
t−1|t is a function of x̂

(1)
t|t , x̂t−2|t, x̂t−3|t−1, yt and yt−1.

output symbol estimates

yt−2 x̂t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂
(1)
t−1|t x̂t−2|t x̂t−3|t−1

yt x̂
(1)
t|t x̂

(1)
t−1|t x̂t−2|t

Table 5.15. Revise estimate of xt−2 using updated estimates x̂
(1)
t|t and x̂

(1)
t−1|t of xt and xt−1, respec-

tively. x̂
(1)
t−2|t is a function of x̂

(1)
t|t , x̂

(1)
t−1|t, x̂t−3|t−1, x̂t−4|t−2, yt, yt−1 and yt−2.

output symbol estimates

yt−2 x̂
(1)
t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂
(1)
t−1|t x̂

(1)
t−2|t x̂t−3|t−1

yt x̂
(1)
t|t x̂

(1)
t−1|t x̂

(1)
t−2|t
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Table 5.16. Revise estimate of xt using updated estimates x̂
(1)
t−1|t and x̂

(1)
t−2|t of xt−1 and xt−2,

respectively. x̂
(2)
t|t is a function of x̂

(1)
t−1|t, x̂

(1)
t−2|t and yt.

output symbol estimates

yt−2 x̂
(1)
t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂
(1)
t−1|t x̂

(1)
t−2|t x̂t−3|t−1

yt x̂
(2)
t|t x̂

(1)
t−1|t x̂

(1)
t−2|t

Table 5.17. Revise estimate of xt−1 using updated estimates x̂
(2)
t|t and x̂

(1)
t−2|t of xt and xt−2, respec-

tively. x̂
(2)
t−1|t is a function of x̂

(2)
t|t , x̂

(1)
t−2|t, x̂t−3|t−1, yt and yt−1.

output symbol estimates

yt−2 x̂
(1)
t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂
(2)
t−1|t x̂

(1)
t−2|t x̂t−3|t−1

yt x̂
(2)
t|t x̂

(2)
t−1|t x̂

(1)
t−2|t

Table 5.18. Revise estimate of xt−2 using updated estimates x̂
(2)
t|t and x̂

(2)
t−1|t of xt and xt−1, respec-

tively. x̂
(2)
t−2|t is a function of x̂

(2)
t|t , x̂

(2)
t−1|t, x̂t−3|t−1, x̂t−4|t−2, yt, yt−1 and yt−2.

output symbol estimates

yt−2 x̂
(2)
t−2|t x̂t−3|t−1 x̂t−4|t−2

yt−1 x̂
(2)
t−1|t x̂

(2)
t−2|t x̂t−3|t−1

yt x̂
(2)
t|t x̂

(2)
t−1|t x̂

(2)
t−2|t

This iteration could be continued indefinitely, raising questions about the convergence

of the sequence of estimates {x̂
(k)
t|t , x̂

(k)
t−1|t, x̂

(k)
t−2|t} as k → ∞. For some channel models,

the sequence may converge after a small number of iterations; for other channel mod-

els, the sequence may perhaps exhibit chaotic behaviour. It is unknown, in general,

how the FLSDFE algorithm will behave if smoothed outputs are fed back.

Note that by allowing smoothed FLSDFE outputs to be fed back, error recovery may

potentially be accelerated. Consider table 5.10, which contains estimates x̂t|t, x̂t−1|t−1,

x̂t−2|t−1, x̂t−3|t−1 and x̂t−4|t−2 of symbols xt, . . . , xt−4, respectively. Suppose that there

is no current filtering error, so that x̂t|t = xt; but that there were previous smooth-

ing errors in that x̂t−1|t−1 6= xt−1 and x̂t−2|t−1 6= xt−2. (For N = 2 we don’t care
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about whether x̂t−3|t−1 and x̂t−4|t−2 are accurate estimates of xt−3 and xt−4.) We could

describe this error state as the shorthand OEE, going backwards in time from left to

right, where O means no error and E denotes an error.

Suppose that at the next step, illustrated in table 5.11, the new estimate x̂t−1|t matches

the symbol xt−1, thus correcting for the error made with the previous flawed estimate

x̂t−1|t−1 of table 5.10. Then we would be in the error state OOE, having advanced a

stage in error recovery while still remaining at the current time t.

Finally, suppose that at the subsequent step, illustrated in table 5.12, the new estimate

x̂t−2|t now matches xt−2, thereby correcting for the previous flawed estimate x̂t−2|t−1.

Then we would be in the error state OOO, which is the error–free state with a channel

memory N = 2. We would therefore have jumped from an error–just–occurred state

OEE to the error–free state in a single time step with this variant FLSDFE, which allows

smoothing errors to be fed back.

As a final note, the FLSDFE may potentially be used with a wider range of channel

models than those discussed so far, such as the rational Volterra model (2.60).
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