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Chapter 1

Introduction

This thesis is concerned with the problem of effective information recovery in digital

communication and storage systems. In a modern magnetic hard drive, for exam-

ple, information is encoded as a stream of binary digits (bits) and written to magnetic

platters with read–write heads. In digital communication systems, the information–

bearing bit stream is used to modify the parameters of an electrical, electromagnetic

or acoustic wave that propagates to a receiver. In all such digital systems, one is con-

cerned with being able to accurately recover the information stream. Bits that are in

error at a receiver can lead to disastrous consequences, such as mistaking the message

‘attack at dawn’ for ‘attack at dusk,’ or flipping a sign bit in some computer code within

an aircraft’s navigation system, leading to a fatal crash.

When echoes occur within a digital information channel, as in shallow underwater–

acoustic communication, delayed and distorted copies of a signal are combined at a

receiver. These multipath copies may cause intersymbol interference (ISI), whereby

one copy of a signal overlaps one or more other copies in time. To combat this inter-

ference engineers commonly implement a decision–feedback equaliser (DFE), which

attempts to estimate and remove echoes from the primary signal. One of the undesir-

able shortcomings of DFEs, however, is the presence of feedback errors, which can lead

to lengthy error bursts at the output of the receiver logic. It is consequently desirable

to seek to improve the performance of DFE algorithms.

In a recent paper, Perreau et al. introduced a DFE algorithm that incorporated fixed–lag

smoothing [52]. According to Anderson, ‘... at high signal to noise ratios, smoothing

gives greater improvement over filtering than at low signal to noise ratios’ [4]. Since the

ordinary DFE algorithm (without fixed–lag smoothing) uses filtering only, the fixed–

lag variant DFE of Perreau et al. thus offered promise. Drawing on an earlier study

[5], Anderson notes that with PS and PF being the mean square error in estimating

a signal with a smoother and a filter, respectively, a minimum bound exists for the

ratio PS/PF as a function of signal to noise ratio. It is important to observe that this
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bound indicates the potential improvement of smoothing over filtering, and not the

improvement guaranteed to hold for any particular system being modelled.

In this thesis, we provide a clear derivation of the fixed–lag smoothing variant of the

DFE, termed the FLSDFE, and show via simulations that it has the potential to im-

prove the equalisation performance over that of the standard DFE. We show that this

improvement is robust across benign and difficult channels, but that there are caveats

on its use owing to the complicated nonlinear nature of the FLSDFE algorithm on linear

and nonlinear channels.

Some motivation for studying the performance of the combination of fixed–lag smooth-

ing, decision–feedback equalisation and nonlinear channels may be had from the words

of Stuart Anderson, a radar physicist at Australia’s Defence Science and Technology

Organisation. Writing in the August 2005 edition of the internal DSTO newsletter Con-

nections, Anderson was quoted as saying that exploring the underlying radar physics

‘in more depth than seems necessary at the time’ was a key factor in the development

of enhanced long–range radar surveillance capabilities. We thus approach the current

study in the same light, with a view to moving beyond the assumptions inherent in

linear channel models of an essentially nonlinear world.

The remainder of this thesis is organized as follows. In section 2 we derive the FLSDFE

algorithm within the context of two classes of nonlinear digital communication chan-

nel. The first class covers M–ary PSK and QAM signalling, M ≥ 4, and uses a complex–

valued Volterra series with terms of odd order only, owing to a ‘bandpass’ restriction.

The second class covers BPSK signalling, which is a special case of MPSK signalling

where we set M = 2. For BPSK channels, the input–output model is a real–valued

Volterra series, and for contrast we relax the bandpass restriction to allow terms of

both odd and even order. For each class of channel, we derive the algebraic form of the

FLSDFE estimator, as well as the discrete probability distribution function.

In chapter 3 we discuss state space models, where the states are vectors containing

current and past symbols, together with their filtered estimates. These models play

an important role in describing the transient and limiting behaviour of the FLSDFE

output sequence. The largest state space model is termed the atomic model, and this

contains the current and previous symbols, up to the channel memory, together with

the filtered estimates of all of these quantities. Although this model captures the tran-

sient dynamics of the FLSDFE exactly, it is too unwieldy to use for channels of long

memory.
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Chapter 1 Introduction

To obviate this exponential complexity, aggregated state space models were found,

based upon a computer–algebraic proof that used the theory of set partitions and Bell

numbers. We showed that there exists a unique optimal aggregation of the atomic state

space model that has fewer states than the atomic model, yet is capable of modelling

the transient dynamics of the atomic model exactly. A slightly larger aggregate model

was subsequently found that lent itself naturally to the study of the dynamics of error

recovery. This suboptimal model, too, was a Finite–State Markov Process, and thus

represented the transient dynamics of the atomic model exactly.

We consider the problem of deriving the discrete probability distribution of the error

recovery time for general channels, based upon the atomic, optimal and suboptimal

state space models. No closed form solutions are found, in general, even for the sim-

plest case of linear BPSK channels of arbitrary memory length. One of the complicating

factors is that the number of terms in the formulae for the recovery time seemed to be

described by linear recurrence relations related to the Fibonacci recurrence. No gen-

eral closed form solutions to these recurrence relations seem to be known, at least to

the author’s knowledge. Nonetheless, we show interesting connections with the the-

ory of higher-order linear recurrence relations, and with the theory of constrained and

unconstrained integer partitions.

In chapter 4 we study the performance of the FLSDFE algorithm on a set of six chan-

nels. The first two are derived from physics–based modelling of underwater acoustic

propagation in a shallow ocean. To demonstrate the reliability of acoustic ray tracing in

underwater communications simulation modelling, a comparison of predicted trans-

mission loss was made using three alternative propagation models, one written by the

author (HANKEL). We show that the ray tracing technique agrees very well with the

other three solutions at a typical communications frequency of 1 kHz.

Based on the ray tracing technique we derived two approximate underwater acoustic

channel models in the form of normalized finite–impulse response channels. These

were based upon the computed set of rays between a fixed source and receiver, and

taking into account the time delays, ray amplitudes and phases. The underwater chan-

nel models were subsequently used to simulate BPSK transmission and the FLSDFE

algorithm was exercised. Some interesting results were produced from the underwa-

ter channels.

To explore these results further, four generic channels were constructed to expose some

of the pathological behaviours of the FLSDFE algorithm. Specifically, two linear and
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1.1 Literature Review

two cubic channels were devised, and each had a ‘minimum phase’ and a ‘nonmin-

imum phase’ variant. We showed via simulation the existence of pseudo–resonance

peaks in the curves of state transition versus input signal–to–noise ratio, using a pub-

lished state–space model [24].

Finally, in chapter 5 we illustrate some variants of the FLSDFE algorithm that have the

potential to accelerate error recovery, by feeding back smoothed outputs. The form of

the FLSDFE discussed in this thesis did not feed back smoothed outputs.

1.1 Literature Review

A great deal of research has been published in recent decades on decision–feedback

equalisation, owing to the importance of reducing error rates and of understanding

and controlling the phenomenon of error bursts [1–3,7–11,13,14,16,19–24,28,29,34,37,

39–42, 45, 46, 51, 52, 60, 61]. O’Reilly and de Oliveira Duarte, for example, investigated

bounds on error propagation statistics using a state–space model [51]. Shortly after-

wards, Kennedy and Anderson deduced some results for error recovery times of DFEs

on noiseless linear FIR channels [39], and derived tight bounds for the probability of

an error on a noisy linear FIR channel [40].

Beaulieu, Choy and Altekar continued to produce refined estimates of error bounds

for the probability of a decision error, and bounds on the mean and variance of error

recovery times, throughout the 1990s [2, 3, 8, 20–24]. All of these results were still lim-

ited to linear FIR channels. Interestingly, very little work seems to have been done on

the autocorrelation properties of sequences of errors, with the recent paper of Beaulieu

and Choy being about the only contribution [10]. Even this study was of limited scope,

being restricted to the case of a one–tap linear FIR equaliser. Choy and Beaulieu intro-

duced a state–space model that provided improved bounds for error recovery times,

although the formulae that were presented applied strictly to the case of stationary

state–transition probabilities [24]. By contrast, this thesis provides partial results for

error recovery times using the instantaneous state–transition probabilities and ‘exact’

state–space models.

Some recent effort has been invested in analysing the statistics of error propagation

in decision–feedback equalisers on nonlinear channels. In particular, Tsimbinos and

White investigated a second–order Volterra channel, and showed that the error prob-

ability and recovery times could be computed based upon the previous results of
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Chapter 1 Introduction

Beaulieu and co–workers for the linear FIR channels [61]. Although this work ad-

dressed nonlinear channels, the effect of fixed–lag smoothing on decision–feedback

equalisation was not addressed.

Perreau et al. introduced a fixed–lag smoothing scheme to a decision–feedback equal-

iser, which the FLSDFE algorithm of this thesis generalizes [52]. In this introductory

work, the FLSDFE was studied only for linear FIR channels. This thesis extends that

study to the case of nonlinear channels described by Volterra series.

1.2 Original Contributions

The major contributions of this thesis are summarized below.

• Applied the FLSDFE to communications systems with baseband input–output

relationship in the form of a Volterra series. This combination, of the equalisation

of a nonlinear channel with the FLSDFE algorithm, is novel and is discussed in

detail in chapter 2.

• Provided novel connections in chapter 3 between state space models involved in

error recovery time studies and some topics from ‘pure’ mathematics, such as the

Fibonacci sequence (and some of its generalizations), integer and set partitions,

Bell numbers and restricted growth strings.

• Demonstrated in chapter 4 the existence of ‘resonance’ phenomena (the existence

of an optimum signal–to–noise ratio) within the context of the single–distinct–

errors state space model of Choy and Beaulieu [24], which imply that under some

situations the addition of extra noise may actually lead to shorter mean error burst

lengths during channel equalisation.

• Proposed two alternative FLSDFE algorithms in chapter 5 that incorporate the

feedback of smoothed outputs, which may accelerate error recovery.

In greater detail, more specific contributions of this thesis are as follows.

• Derived the explicit equations of the FLSDFE algorithm for either MPSK or MQAM

signalling on a channel described by a third–order Volterra series, in section 2.3

and appendices A–D.
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1.2 Original Contributions

• In section 2.3.3 showed that the probability distribution of the FLSDFE output

cannot be explicitly derived for the case of MPSK and MQAM signalling on a

Volterra channel, due to its complexity.

• Derived the explicit equations of the FLSDFE algorithm for BPSK signalling on a

channel described by a third–order Volterra series, in section 2.4 and appendices

E–G.

• Derived in section 2.4.3 the probability distribution of the FLSDFE estimator for

the case of BPSK signalling on a Volterra channel.

• Proposed an atomic state space model in section 3.2.1 for the case of FLSDFE oper-

ation in filtering–only mode (a smoothing lag of zero), based on a similar model

of Kennedy and Anderson [39].

• Provided a novel formulation of the state transition probability matrix for the

filtering–only atomic state space model, in section 3.2.3.

• Derived novel results (3.117)–(3.119) for the probability distribution of the error

recovery time for the case of BPSK signalling on a memoryless linear FIR channel.

• Raised proposition 3.2.1, concerning a postulated connection between the Ho-

radam (0, 1, 4, 2) sequence (a generalization of the Fibonacci sequence) and the

number of distinct paths to error recovery for the case of BPSK signalling on a

channel of memory N = 1.

• Raised proposition 3.2.2 which postulates a connection between the Fibonacci

sequence and the number of distinct classes of error recovery path for the case of

BPSK signalling on a channel of memory N = 1.

• Raised propositions 3.2.3 and 3.2.4, which generalize propositions 3.2.1 and 3.2.2

to the case of channels with memory N ≥ 0, and which concern specific general-

izations of the Fibonacci sequence.

• Demonstrated a connection between the atomic state space models of section

3.2.1 and the theory of constrained and unconstrained integer partitions, in sec-

tion 3.2.10.

• Devised an atomic state space model for the case of FLSDFE operation in smoothing–

only mode (a nonzero smoothing lag) in section 3.3.1.
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• Introduced a formulation of the state transition probability matrix for the smooth-

ing–only atomic state space model in section 3.3.3. This is applicable for the case

of BPSK signalling on a general Volterra channel.

• Provided a novel demonstration in section 3.4 of the applicability of the theory of

Bell numbers, restricted growth strings and set partitions to the discovery of ag-

gregated state space models—those which satisfy the finite–state Markov process

property.

• Demonstrated a previously unreported connection between the single–distinct–

errors state space model of Choy and Beaulieu [24], which is a steady–state model,

and the transient atomic state space models of section 3.2.1. Specifically, proposi-

tion 3.4.1 postulates the existence of a transient aggregated state space model that

can be derived from the Choy and Beaulieu model by a judicious set partition of

the Choy and Beaulieu states.

• Produced an exact wavenumber–integral model, HANKEL, for the rigorous compu-

tation of the complex acoustic pressure field in a horizontally–stratified ocean–

acoustic environment. Showed via examples in section 4.2.1 that HANKEL is of

benchmark quality.

• Demonstrated by example in section 4.2.2 that the simpler approach of ray–tracing

is adequate for the physics component of an underwater acoustic communica-

tions system simulation, at typical frequencies of 1 kHz or more.

• Showed the existence of ‘resonance’ phenomena (that is, the existence of an opti-

mum SNR) with the use of the FLSDFE in two simulations of underwater acous-

tic communication, using realistic ocean–acoustic parameters. These phenomena

appear not to have been reported previously, and occur in the context of the Choy

and Beaulieu single–distinct–errors state space model.

• Illustrated the effect that the resonance phenomena have on error recovery in

section 4.3.4, particularly demonstrating that the addition of noise may actually

improve the time to recovery.
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Chapter 2

The FLSDFE Algorithm

2.1 Introduction

This chapter provides an alternative and extended derivation of a signal processing

algorithm introduced in 2000 by Perreau et al. [52]. That algorithm was not named in

the original paper, so for convenience throughout this thesis we shall refer to it as the

FLSDFE (Fixed–Lag–Smoothing Decision–Feedback–Equaliser). The FLSDFE is a non-

linear channel equaliser, ‘blind’ in the sense of not requiring training symbols. It was

introduced as having a computational complexity linear in the channel memory; and

as having a potential advantage over the class of ordinary decision–feedback equalis-

ers (DFEs) in its use of fixed–lag smoothing [4], which delays the estimation of a given

message symbol until more information about that symbol is available.

Perreau et al. developed the FLSDFE algorithm with reference to linear FIR (finite–

impulse response) channels only [59]. In this chapter we show how to apply the

FLSDFE to the wider class of Volterra channels, whose input–output relationship is

described by a Volterra series [13, 19, 54, 55, 60, 61]. In the process of this extension, we

provide an alternative algorithm development to that used by Perreau et al. [52].

We illustrate the development of the FLSDFE algorithm using two specific models of a

nonlinear SISO (Single–Input, Single–Output) digital communication system. Section

2.3 treats the general MPSK and MQAM models, and section 2.4 treats the simpler

BPSK model. For each system model, we give the explicit form of the estimator X̂t−n|t
of random baseband message symbol Xt−n at lag n ∈ {0, . . . , N}, where t is the current

time index and N is the channel memory.

Sections 2.3.3 and 2.4.3 give new results on the probability distribution function of

X̂t−n|t, which was not discussed in Perreau et al. [52]. For the BPSK channel model, the

explicit distribution of X̂t−n|t is provided in section 2.4.3. As for the general MPSK and
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2.2 Narrowband signal models

MQAM channel models of section 2.3.3, we show the difficulties involved in deriving

the distribution of X̂t−n|t, and leave the problem open.

2.2 Narrowband signal models

We briefly review some aspects of the statistical theory of communication that provide

context for the development of the FLSDFE algorithm. This material is covered amply

by an extensive literature, and good starting points are [6, 12, 44, 47, 53, 57].

Suppose we transmit a narrowband signal such as a fixed–amplitude underwater com-

munications tone A cos ω0t, of angular frequency ω0 = 2π f0 radians per second. We

wish to use this carrier wave for transmitting digital information, and let us do this,

say, using binary–phase–shift keying (BPSK) [57]. To effect BPSK modulation, we simply

multiply the narrowband carrier signal A cos ω0t by +1 to transmit a logical 0; and

−1 to transmit a logical 1 (or vice versa). We do this multiplication during a bit period

t ∈ [tk, tk+1), say, for k ∈ {1, . . . , K}, where K is the number of bits in the message. The

transmit waveform is then modelled as s(t), where

s(t) =
⋃

k∈{1,...,K}
sk(t), (2.1)

with

sk(t) =







xkA cos ω0t, if t ∈ [tk, tk+1)

0, if t /∈ [tk, tk+1),
(2.2)

and xk ∈ {−1, 1}, k ∈ {1, . . . , K}. Note that the signal model (2.1)–(2.2) is merely a

convenient theoretical device, and the transmitted pressure waveform may be a dis-

torted version of this, owing to limitations and practical constraints imposed by the

sonar hardware.

Note that the time index t in the above discussion is continuous time, whereas the time

index k in xk is discrete time. We use discrete time throughout sections 2.3 and 2.4,

since therein we deal exclusively with baseband sequences.

The underwater communications scenario described above typically involves com-

plexities that require complicated signal processing to accurately and effectively extract

xk. Echoes, for example, caused by the superposition of delayed and distorted copies

of s(t) at the receiver hydrophone, may result in intersymbol interference [12, 44, 53, 57],
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Chapter 2 The FLSDFE Algorithm

the mitigation of which is the subject of this thesis. We shall ignore these difficulties for

now, and concentrate on a simpler reference model through which we can more easily

introduce the notion of the envelope process.

Following the treatment in Andrews [6], we suppose that at the output of a receiver

we have the continuous–time waveform V(t), a random process, which is given by

V(t) = A cos ω0t + Z(t), (2.3)

where A cos ω0t is a sinusoidal signal and Z(t) is narrowband noise, defined as

Z(t) = P(t) cos ω0t −Q(t) sin ω0t. (2.4)

We suppose that the receiver implements a narrowband filter, centred at f0 = ω0/(2π),

with a bandwidth B ≪ f0, and that the receiver is effectively a linear, memoryless

device. (Note that this contrasts with the assumptions made in sections 2.3 and 2.4,

where we effectively assume that the receiver is a nonlinear device with memory.)

In (2.4), P(t) and Q(t) are assumed to be independent Gaussian random processes,

both with zero mean and a variance of σ2. Use (2.4) to rewrite (2.3):

V(t) = [A + P(t)] cos ω0t −Q(t) sin ω0t

= R(t) cos [ω0t + Θ(t)] , (2.5)

where

R(t) =

√

[A + P(t)]2 + Q2(t), and (2.6)

Θ(t) = tan−1

( Q(t)

A + P(t)

)

. (2.7)

We term R(t) the envelope process and Θ(t) the phase process [6]. It is the envelope that

we refer to in sections 2.3 and 2.4.

From Andrews [6], we have the following results for the simple receiver model of (2.3)

and (2.4). The random processes R(t) and Θ(t) have the joint distribution

fR,Θ(r, θ) =
r

2πσ2
exp

[

−
(

r2 + A2 − 2Ar cos θ
)

2σ2

]

; (2.8)

R(t) has the marginal Rice–Nakagami distribution

fR(r) =
r

σ2
exp

[

−
(

r2 + A2
)

2σ2

]

I0

(

Ar

σ2

)

, r > 0; (2.9)
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2.3 MPSK and MQAM signalling, M ≥ 4

and Θ(t) has the marginal distribution

fΘ(θ) =
1

2π
e−s
{

1 +
√

πs es cos2 θ cos θ
[

1 + erf
(√

s cos θ
)]

}

, −π < θ < π,

(2.10)

where I0 is a modified Bessel function of the first kind, defined for x ∈ R by

I0(x) =
1

2π

∫ π

−π
ex cos θdθ, (2.11)

(see also (2.37) from [62], which gives a somewhat different definition for I0(z)) and

where erf is the error function, which for x ∈ R is given by

erf(x) =
2√
π

∫ x

0
e−t2

dt. (2.12)

The quantity s = A2/2σ2 in (2.10) is defined as the signal–to–noise ratio (SNR) of the

power of the sinusoidal signal to that of the noise.

In sections 2.3 and 2.4, we assume a more general class of channel models than the

linear, memoryless model just used for the illustration of the envelope process. Al-

though the formulae (2.8)–(2.10) do not carry over to the more general class of model,

the envelope process idea does, and we use that in the rest of this chapter.

2.3 MPSK and MQAM signalling, M ≥ 4

In this section we derive the FLSDFE estimator, X̂t−n|t, in the context of the nonlinear

narrowband communication system model of Cheng and Powers [19]. Explicit formu-

lae are given in appendixes A–D for a third–order Volterra channel model, assuming

either M–ary phase–shift keying (MPSK) or M–ary quadrature amplitude modulation

(MQAM) channel inputs [57], with M ≥ 4.

Following the problem definition and solution in sections 2.3.1 and 2.3.2, respectively,

we discuss the probability distribution function of X̂t−n|t in section 2.3.3. The distri-

bution of X̂t−n|t was not discussed in the original work [52], and the material in 2.3.3

is new. Using QPSK for illustration, we show the considerable difficulties involved in

deriving the distribution of X̂t−n|t for general MPSK and MQAM channels, for M ≥ 4,

and we leave this as an open problem. (Section 2.4.3 shows that if we restrict ourselves

to the special case of BPSK signalling, which is MPSK with M = 2, we can derive the

explicit formula for the distribution in terms of the error function.)
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Chapter 2 The FLSDFE Algorithm

2.3.1 Problem definition

Following Cheng and Powers [19], assume that stochastic processes {Xt} and {Yt} rep-

resent the complex–valued envelopes (input and output, respectively) of a narrowband

SISO (Single–Input, Single–Output) communication system, where t ∈ Z is discrete–

time. Specifically, we suppose that random variable Xt models a random state in some

state–space AM [50], the alphabet of M–ary signalling [57]. We will regard AM as the

signal constellation of either MPSK or MQAM inputs.

For MPSK inputs, we have

AM =

{

exp

(

2πmi

M

)

: m ∈ {0, . . . , M − 1}
}

, (2.13)

with i2 = −1 and M ∈ {2k : k ∈ Z+}. Setting M = 4, for instance, we have the

quaternary–phase–shift–keying (QPSK) alphabet A4 = {1, i,−1,−i}. (With M = 2,

we have the real–valued binary–phase–shift–keying (BPSK) alphabet A2 = {−1, 1},

discussed in section 2.4.) For MQAM inputs, various signal constellations are possible,

such as rectangular 16–QAM. See section 9.9 of Sklar [57] for some examples.

Suppose Xt and Yt are related by the Volterra series model [19]

Yt =
N1

∑
k1=0

h̃1(k1)Xt−k1
+

N3

∑
k1=0

N3

∑
k2=0

N3

∑
k3=0

h̃3(k1, k2, k3)Xt−k1
Xt−k2

X∗
t−k3

+
N5

∑
k1=0

· · ·
N5

∑
k5=0

h̃5(k1, . . . , k5)Xt−k1
Xt−k2

Xt−k3
X∗

t−k4
X∗

t−k5

+ · · ·+
N2p+1

∑
k1=0

· · ·
N2p+1

∑
k2p+1=0

h̃2p+1(k1, . . . , k2p+1)

× Xt−k1
. . . Xt−kp+1

X∗
t−kp+2

. . . X∗
t−k2p+1

+ Vt, (2.14)

of (total) order 2p + 1, where p ∈ Z∗. In (2.14), N1, N3, . . . , N2p+1 ∈ Z∗ are called the

memories of the Volterra terms (single– or multiple–sums) of orders 1, 3, . . . , 2p + 1, re-

spectively. The coefficients h̃1, h̃3, . . . , h̃2p+1 are called Volterra kernels [11, 13, 14, 19, 54,

55]; and {Vt} is an iid (independent and identically distributed), zero–mean, complex–

valued, additive Gaussian noise process representing measurement noise.

We will assume, without loss of generality, a single memory N ∈ Z∗ for all Volterra

terms in (2.14). This can easily be accommodated in the model (2.14) by setting N =

max{N1, N3, . . . , N2p+1} and enforcing h̃2j+1(k1, . . . , k2j+1) = 0 whenever any index

k1, . . . , k2j+1 ∈ {0, . . . , N} exceeds memory N2j+1, for j ∈ {0, . . . , p}.
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2.3 MPSK and MQAM signalling, M ≥ 4

As observed by Cheng and Powers [19], we can use symmetry in the product terms

Xt−k1
Xt−k2

X∗
t−k3

, Xt−k1
Xt−k2

Xt−k3
X∗

t−k4
X∗

t−k5
, and so on, to produce a model with fewer

kernel coefficients. In doing so, we merely re–define the coefficients. With the single

memory term N, and making use of this symmetry and kernel re–definition, we thus

reduce (2.14) to the more economical form

Yt =
N

∑
i1=0

h1(i1)Xt−i1 +
N

∑
i1=0

N

∑
i2=i1

N

∑
j1=0

h3(i1, i2, j1)Xt−i1 Xt−i2 X∗
t−j1

+
N

∑
i1=0

N

∑
i2=i1

N

∑
i3=i2

N

∑
j1=0

N

∑
j2=j1

h5(i1, i2, i3, j1, j2)Xt−i1 Xt−i2 Xt−i3 X∗
t−j1

X∗
t−j2

+ · · · +
N

∑
i1=0

N

∑
i2=i1

· · ·
N

∑
ip+1=ip

N

∑
j1=0

N

∑
j2=j1

· · ·
N

∑
jp=jp−1

h2p+1(i1, . . . , ip+1, j1, . . . , jp)

× Xt−i1 . . . Xt−ip+1
X∗

t−j1
. . . X∗

t−jp
+ Vt. (2.15)

We note from (2.15) that Yt is a function of the variates Xt, . . . , Xt−N and Vt. For a given

channel memory N and with fixed Volterra kernels h1, h3, . . . , h2p+1, the probability

density function fYt
(yt) of Yt is thus a mapping from AN+1

M × C to C.

The problem we will be concerned with is then as follows. Given samples yt, yt−1, . . . ,

yt−N of measurement process {Yt}, as defined in the Volterra channel model (2.15),

what was the message symbol xt−n transmitted at the lagged time t − n, where t is

the current time index and n ∈ {0, . . . , N} is a discrete time lag? Specifically, we will

restrict our attention to the case where the model (2.15) is assumed to be exact and

where we know all of the model parameters (the model order p, the channel memory

N, the Volterra kernels h1, h3, . . . , h2p+1, the signalling alphabet AM, the a priori symbol

probability distribution P(Xt = xt), and the variance σ2
v of noise process {Vt}). Further,

we will assume these model parameters to be time–invariant.

In practice, we would need to estimate some or all of these parameters, some of which

might be time–varying. In the original work on the FLSDFE, for example, Perreau et

al. [52] used the Expectation–Maximization (EM) algorithm to estimate the time–varying

kernel coefficients for a linear FIR channel of known memory N.

2.3.2 Derivation of FLSDFE formulae

Referring to (2.15), we noted above that Yt is a function of Xt, . . . , Xt−N. Thus Yt is a

function of symbol Xt−n at lag n ∈ {0, . . . , N}. Moreover, keeping n fixed, we observe
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Chapter 2 The FLSDFE Algorithm

from the model (2.15) that each output variate Yt, . . . , Yt−n is a function of Xt−n. We

illustrate this in table 2.1 below for N = 6 and maximum lag n = 6. The leftmost

column gives the output variate Yt−k, followed by the variates upon which each Yt−k

depends, where k ∈ {0, . . . , n} is an auxiliary lag index.

Table 2.1. Channel outputs {Yt} and dependent variables {Xt} and {Vt} for a SISO channel of

memory N = 6 and an FLSDFE smoothing lag of n = 6.

output input symbols noise

Yt−6 Xt−6 Xt−7 Xt−8 Xt−9 Xt−10 Xt−11 Xt−12 Vt−6

Yt−5 Xt−5 Xt−6 Xt−7 Xt−8 Xt−9 Xt−10 Xt−11 Vt−5

Yt−4 Xt−4 Xt−5 Xt−6 Xt−7 Xt−8 Xt−9 Xt−10 Vt−4

Yt−3 Xt−3 Xt−4 Xt−5 Xt−6 Xt−7 Xt−8 Xt−9 Vt−3

Yt−2 Xt−2 Xt−3 Xt−4 Xt−5 Xt−6 Xt−7 Xt−8 Vt−2

Yt−1 Xt−1 Xt−2 Xt−3 Xt−4 Xt−5 Xt−6 Xt−7 Vt−1

Yt Xt Xt−1 Xt−2 Xt−3 Xt−4 Xt−5 Xt−6 Vt

Table 2.1 highlights the variable Xt−n for n = 6 and shows the manner in which symbol

Xt−n is ‘seen by the channel’ [52] at not only the current time t but at the previous times

t − 1, . . . , t − n as well. We also note the presence of the independent, uncorrelated,

zero–mean Gaussian variates Vt−k, k ∈ {0, . . . , n}. Since these variates are additive in

the model (2.15), this suggests the use of a least squares [38] method for the development

of an estimator of the unknown lagged symbol Xt−n. This is the method followed

by Perreau et al. in the original development of the FLSDFE algorithm [52], and the

method we will follow in this thesis.

From (2.15) we have for Yt−k the expression

Yt−k =
N

∑
i1=0

h1(i1)Xt−k−i1 +
N

∑
i1=0

N

∑
i2=i1

N

∑
j1=0

h3(i1, i2, j1)Xt−k−i1 Xt−k−i2 X∗
t−k−j1

+
N

∑
i1=0

N

∑
i2=i1

N

∑
i3=i2

N

∑
j1=0

N

∑
j2=j1

h5(i1, i2, i3, j1, j2)

× Xt−k−i1 Xt−k−i2 Xt−k−i3 X∗
t−k−j1

X∗
t−k−j2

+ . . .

+
N

∑
i1=0

N

∑
i2=i1

· · ·
N

∑
ip+1=ip

N

∑
j1=0

N

∑
j2=j1

· · ·
N

∑
jp=jp−1

h2p+1(i1, . . . , ip+1, j1, . . . , jp)

× Xt−k−i1 . . . Xt−k−ip+1
X∗

t−k−j1
. . . X∗

t−k−jp
+ Vt−k. (2.16)

Page 15



2.3 MPSK and MQAM signalling, M ≥ 4

The FLSDFE algorithm aims to provide an estimate of the symbol Xt−n, at smoothing

lag n ∈ {0, . . . , N}, given the measurements Yt, . . . , Yt−n. With this in mind, we isolate

those terms in (2.16) at time index t − n. The first–order sum in (2.16) decomposes in

the following way:

N

∑
i1=0

h1(i1)Xt−k−i1 =
n−k−1

∑
i1=0

h1(i1)Xt−k−i1 + h1(n − k)Xt−n +
N

∑
i1=n−k+1

h1(i1)Xt−k−i1 .

(2.17)

Denote the three terms on the right–hand–side of (2.17) as Y
(<)
t−k , Y

(=)
t−k and Y

(>)
t−k , respec-

tively. We use superscripts (<), (=) and (>), respectively, to indicate the conditions

i1 < n − k, i1 = n − k and i1 > n − k that are satisfied by the terms. To be specific, we

have

N

∑
i1=0

h1(i1)Xt−k−i1 = Y
(<)
t−k + Y

(=)
t−k + Y

(>)
t−k , (2.18)

where

Y
(<)
t−k =

n−k−1

∑
i1=0

h1(i1)Xt−k−i1 , (2.19)

Y
(=)
t−k = h1(n − k)Xt−n, (2.20)

and

Y
(>)
t−k =

N

∑
i1=n−k+1

h1(i1)Xt−k−i1 . (2.21)

The third– and higher–order sums in (2.16) may be partitioned similarly, working

along each dimension independently. Appendix A lists the terms in the decomposi-

tion of (2.16) up to third–order, that is, for p = 1.

Observe that the model (2.16) is of the form

Yt−k =
p+1

∑
l=0

p

∑
m=0

A
(l,m)
t−k Xl

t−n (X∗
t−n)

m + Vt−k, (2.22)

where A
(l,m)
t−k are coefficient functions that do not depend on the symbol Xt−n. Ap-

pendix B gives the explicit expressions for A
(l,m)
t−k for a third–order Volterra series model.

For the first–order (p = 0) model, (2.22) reads

Yt−k = A
(0,0)
t−k + A

(1,0)
t−k Xt−n + Vt−k, (2.23)
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Chapter 2 The FLSDFE Algorithm

with coefficient functions given in appendix B and equations (2.19)–(2.21) as

A
(0,0)
t−k =

n−k−1

∑
i1=0

h1(i1)Xt−k−i1 +
N

∑
i1=n−k+1

h1(i1)Xt−k−i1 , (2.24)

and

A
(1,0)
t−k = h1(n − k). (2.25)

Suppose we have available the (filtered) estimators X̂t−k−ki|t−k−ki
for all symbols Xt−k−ki

,

where ki ∈ {0, . . . , N} \ {n − k} and i ∈ {1, . . . , 2p + 1}. Substitute X̂t−k−ki|t−k−ki
for

Xt−k−ki
in the coefficient functions A

(l,m)
t−k of (2.22) for all k ∈ {0, . . . , n}, l ∈ {0, . . . , p +

1} and m ∈ {0, . . . , p}. This yields estimators Â
(l,m)
t−k|t−k

for A
(l,m)
t−k . We thus have the

fixed–lag smoothing least–squares estimator X̂t−n|t of lagged message symbol Xt−n

given by

X̂t−n|t = arg min
Xt−n∈AM

n

∑
k=0

∣

∣

∣
V̂t−k|t−k

∣

∣

∣

2
, (2.26)

where V̂t−k|t−k is an estimator of Vt−k, obtained by rearrangement of (2.22) as

V̂t−k|t−k = Yt−k −
p+1

∑
l=0

p

∑
m=0

Â
(l,m)
t−k|t−k

Xl
t−n (X∗

t−n)
m . (2.27)

For the first–order (p = 0) model, (2.27) reads, from (2.23),

V̂t−k|t−k = Yt−k − Â
(0,0)
t−k|t−k

− Â
(1,0)
t−k|t−k

Xt−n. (2.28)

Appendix C gives the explicit forms of estimators Â
(l,m)
t−k|t−k

up to third–order, based

upon the formulae in appendix B, with the substitution of filtered estimators X̂t|t for

Xt. For p = 0, for instance, (2.28) reads

V̂t−k|t−k = Yt−k −
n−k−1

∑
i1=0

h1(i1)X̂t−k−i1|t−k−i1

−
N

∑
i1=n−k+1

h1(i1)X̂t−k−i1|t−k−i1
− h1(n − k)Xt−n. (2.29)

As can be observed from the form of (2.26), one source of estimators X̂t|t of symbols

Xt is obtained merely by setting n = 0, corresponding to filtering (a smoothing lag of

zero). The FLSDFE algorithm assumes that the filtered estimators discussed above are
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2.3 MPSK and MQAM signalling, M ≥ 4

DFE

yt

x̂t|t

Figure 2.1. Basic block diagram of a decision–feedback equaliser (DFE) [57].

obtained as past and present zero–lag outputs of the FLSDFE algorithm itself. This is

the DF (decision–feedback) part of the FLSDFE. Smoothed outputs, at lags n > 0, are

not fed back.

In figure 2.1 below we give the basic structure of a DFE [57], and in figure 2.2 we

expand this in more detail. Of note in figure 2.2 is the feedback nonlinearity (labelled

‘quantizer’), which classes the DFE as a nonlinear filter, even on linear channels. Figure

2.3 shows the basic block diagram view of the FLSDFE, where we note the additional

output (labelled x̂t−n|t) over that of the DFE in figure 2.1. Perreau et al. [52] provide a

more detailed block diagram of the FLSDFE in their figure 1, with reference to a linear

FIR channel model.

2.3.3 Probability distribution function of FLSDFE estimator

We wish to determine the probability distribution function of the FLSDFE output vari-

able X̂t−n|t defined by (2.26), where the domain of X̂t−n|t is the discrete signalling al-

phabet AM. To this end, use (2.22) to substitute for Yt−k in (2.27) and rewrite (2.26)

as

X̂t−n|t = arg min
Xt−n∈AM

n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

(

A
(l,m)
t−k − Â

(l,m)
t−k|t−k

)

Xl
t−n (X∗

t−n)m + Vt−k

∣

∣

∣

∣

∣

2

= arg min
Xt−n∈AM

n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

Ã
(l,m)
t−k|t−k

Xl
t−n (X∗

t−n)m + Vt−k

∣

∣

∣

∣

∣

2

, (2.30)
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H(z) Σ

F (z)

xt

data

x̂t|t

vt

feedback
filter

channel quantizer

noise

data
estimate

Figure 2.2. The DFE in more detail.

FLSDFE

yt
x̂t−n|t

x̂t|t

Figure 2.3. Basic block diagram of the FLSDFE.

where, for k ∈ {0, . . . , n}, l ∈ {0, . . . , p + 1} and m ∈ {0, . . . , p}, we have

Ã
(l,m)
t−k|t−k

= A
(l,m)
t−k − Â

(l,m)
t−k|t−k

. (2.31)

Appendix D gives explicit formulae for the terms Ã
(l,m)
t−k|t−k

for a third–order channel,

wherein we note the presence of generalized decision–feedback errors [1–3,7–10,24,39–

41, 52], terms such as

Xt−k−i1 Xt−k−i2 X∗
t−k−j1

− X̂t−k−i1|t−k−i1
X̂t−k−i2|t−k−i2

X̂∗
t−k−j1|t−k−j1

. (2.32)
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2.3 MPSK and MQAM signalling, M ≥ 4

From (2.30) and the illustrative formulae in appendix D we see that X̂t−n|t is a func-

tion of the discrete variates Xt, . . . , Xt−N−n, X̂t|t, . . . , X̂t−n+1|t−n+1, X̂t−n−1|t−n−1, . . . ,

X̂t−N−n|t−N−n and the continuous variates Vt, . . . , Vt−n. With fixed sample values xt,

. . . , xt−N−n, x̂t|t, . . . , x̂t−n+1|t−n+1, x̂t−n−1|t−n−1, . . . , x̂t−N−n|t−N−n of the correspond-

ing discrete variates we have the conditional distribution of X̂t−n|t:

P(X̂t−n|t = x̂t−n|t|Xt = xt ∩ · · · ∩ Xt−N−n = xt−N−n ∩ X̂t|t = x̂t|t

∩ · · · ∩ X̂t−n+1|t−n+1 = x̂t−n+1|t−n+1 ∩ X̂t−n−1|t−n−1 = x̂t−n−1|t−n−1

∩ · · · ∩ X̂t−N−n|t−N−n = x̂t−N−n|t−N−n), (2.33)

which is a mapping from the domain Cn+1 of Vt, . . . , Vt−n to the domain AM of X̂t−n|t.

We seek the form of (2.33) for the MPSK and MQAM signalling model (2.15).

With reference to (2.30), define the random variable Q as

Q =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

xl
t−n (x∗t−n)

m + Vt−k

∣

∣

∣

∣

∣

2

, (2.34)

where ã
(l,m)
t−k|t−k

is a sample value of Ã
(l,m)
t−k|t−k

, for k ∈ {0, . . . , n}, l ∈ {0, . . . , p + 1} and

m ∈ {0, . . . , p}. We note in (2.34) the explicit functional dependence of Q on the sample

value xt−n ∈ AM, and we write Q = Q(xt−n) to emphasize this. There are M different

variates Q(xt−n) specified by (2.34), one for each different sample xt−n ∈ AM.

Let us assign a unique integer j ∈ {1, . . . , M} to each xt−n ∈ AM, in no particular order,

producing from (2.34) the set of random variates Qj, j ∈ {1, . . . , M}. We see that Qj is

a noncentral gamma variate [64], with the probability density function

fQj
(q) =

1

2σ2
v

(

q

λj

)n/2

exp

(

−
(

λj + q
)

2σ2
v

)

In

(

√

qλj

σ2
v

)

, q ≥ 0, (2.35)

with noncentrality parameter λj given by

λj =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

xl
t−n (x∗t−n)

m

∣

∣

∣

∣

∣

2

. (2.36)

The function In(.) in (2.35) is the modified Bessel function of the first kind [62], given

for integer n and complex z by

In(z) =
∞

∑
k=0

( z
2)n+2k

k!(n + k)!
=

1

π

∫ π

0
ez cos θ cos(nθ)dθ. (2.37)
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Arrange Q1, . . . , QM in order of magnitude and write as Q(1) ≤ · · · ≤ Q(M), where

Q(i) denotes the ith order statistic, i ∈ {1, . . . , M} [27]. From the form of (2.34) we ob-

serve that Q1, . . . , QM are neither identically distributed nor independent, although

Vt, . . . , Vt−n are independent and identically distributed (iid) complex Gaussian vari-

ates, with a common mean of 0 and a common variance of σ2
v . The cumulative density

function (cdf) F1:M(q) of the minimum order statistic Q(1) of the dependent variates

Q1, . . . , QM is given by [27]

F1:M(q) =
M

∑
j=1

(−1)j−1 ∑
1≤ij+1<···<iM≤M

F
(ij+1,...,iM)

j:j (q), q ≥ 0, (2.38)

where the subscript notation i : n in (2.38) means that the associated cdf is that of the

ith order statistic T(i) out of n samples T1, . . . , Tn, say. Thus, by F1:M(q) we mean the cdf

of the minimum order statistic Q(1) of the set of variates Q1, . . . , QM. In the right–hand

side of (2.38), the superscript notation (ij+1, . . . , iM) indicates that the cdf F
(ij+1,...,iM)

j:j (q)

is that of the maximum order statistic Q(ij)
of the set of variates Qi1 , . . . , Qij

, which

is a sample of size j drawn without replacement from Q1, . . . , QM. By (ij+1, . . . , iM)

we mean that the M − j variates Qij+1
, . . . , QiM

have been dropped from the full set

{Qi1 , . . . , Qij
, Qij+1

, . . . , QiM
}, leaving only Qi1 , . . . , Qij

for consideration. We note that

i1, . . . , ij, ij+1, . . . , iM is a permutation of 1, . . . , M.

To illustrate the application of (2.38) consider the case of QPSK signalling, with base-

band alphabet A4 = {1, i,−1,−i} as obtained from (2.13) with M = 4. Map the inte-

gers j ∈ {1, . . . , 4} to the symbols in the set A4 in the order listed, so that the assign-

ment j = 1 maps to symbol xt−n = 1; j = 2 maps to symbol xt−n = i; j = 3 maps to

symbol xt−n = −1; and j = 4 maps to symbol xt−n = −i.

We thus have the dependent noncentral gamma variates Q1, . . . , Q4, defined from (2.34)

as

Q1 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

+ Vt−k

∣

∣

∣

∣

∣

2

, (2.39)

Q2 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

(−1)mil+m + Vt−k

∣

∣

∣

∣

∣

2

, (2.40)

Q3 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

(−1)l+m + Vt−k

∣

∣

∣

∣

∣

2

, (2.41)
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and

Q4 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

(−1)lil+m + Vt−k

∣

∣

∣

∣

∣

2

, (2.42)

with pdf fQj
(q) in (2.35) for j ∈ {1, . . . , 4} and with noncentrality parameters λ1, . . . , λ4

given from (2.36) as

λ1 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

∣

∣

∣

∣

∣

2

, (2.43)

λ2 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

(−1)mil+m

∣

∣

∣

∣

∣

2

, (2.44)

λ3 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

(−1)l+m

∣

∣

∣

∣

∣

2

, (2.45)

and

λ4 =
n

∑
k=0

∣

∣

∣

∣

∣

p+1

∑
l=0

p

∑
m=0

ã
(l,m)
t−k|t−k

(−1)lil+m

∣

∣

∣

∣

∣

2

. (2.46)

From (2.38) the cumulative density function F1:4(q) of the minimum order statistic Q(1)

of the variates Q1, . . . , Q4 is thus given by

F1:4(q) =
4

∑
j=1

(−1)j−1 ∑
1≤ij+1<···<i4≤4

F
(ij+1,...,i4)

j:j (q)

= ∑
1≤i2<i3<i4≤4

F
(i2,i3,i4)
1:1 (q) − ∑

1≤i3<i4≤4

F
(i3 ,i4)
2:2 (q) + ∑

1≤i4≤4

F
(i4)
3:3 (q) − F4:4(q)

= F
(1,2,3)
1:1 (q) + F

(1,2,4)
1:1 (q) + F

(1,3,4)
1:1 (q) + F

(2,3,4)
1:1 (q) − F

(1,2)
2:2 (q) − F

(1,3)
2:2 (q)

− F
(1,4)
2:2 (q) − F

(2,3)
2:2 (q) − F

(2,4)
2:2 (q) − F

(3,4)
2:2 (q) + F

(1)
3:3 (q) + F

(2)
3:3 (q)

+ F
(3)
3:3 (q) + F

(4)
3:3 (q) − F4:4(q). (2.47)

The parenthetical superscripts in (2.47) indicate variates that have been dropped. Thus

F
(1,2,3)
1:1 (q) refers to the maximum order statistic of the set of variates {Q1, . . . , Q4} after

Q1, Q2 and Q3 have been dropped. In other words, F
(1,2,3)
1:1 (q) reduces to the cdf of Q4

itself, namely the function

FQ4
(q) =

∫ q

0
fQ4

(q′)dq′ , (2.48)

where fQ4
(q) is from (2.35) with j = 4. To take another example from (2.47), by F

(1,3)
2:2 (q)

we mean the cdf of the maximum order statistic of the variates Q2 and Q4, which are

the remaining variates after removal of Q1 and Q3 from the set {Q1, . . . , Q4}.
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Chapter 2 The FLSDFE Algorithm

There are considerable complications arising from the dependence of the variables

Q1, . . . , QM, as the QPSK example above attests. For QPSK signalling, (2.47) has 15

distinct cdf terms, of which 11 involve integrals of multivariate density functions. In

general, for MPSK or MQAM signalling, the expansion of (2.38) produces 2M − 1 dis-

tinct cdf terms, which is one less than the number of subsets of {Q1, . . . , QM}. We

subtract one, as we do not consider the empty subset ∅ of {Q1, . . . , QM} in (2.38).

We now return to the problem of deriving the probability distribution function (2.33)

of the FLSDFE estimator X̂t−n|t of (2.30). Comparing (2.30) and (2.34), we see that we

can write (2.30) in the form

X̂t−n|t = arg
xt−n∈AM

(

Q(1)

)

, (2.49)

where Q(1) is the minimum order statistic of Q1, . . . , QM, with the cumulative density

function F1:M(q) given by (2.38).

The arg mapping in (2.49) is from the continuous interval [ 0, ∞) to the discrete complex

alphabet AM. Aside from the complications illustrated in (2.47), the nonlinearity of

the mapping (2.49) makes it difficult to derive the form of the probability distribution

function, and we leave this as an unsolved problem. (The next section deals with the

special case of BPSK signalling, though, for which we can derive the explicit form of the

probability distribution function of the FLSDFE estimator in terms of error functions.)

2.4 BPSK signalling

Binary Phase–Shift Keying (BPSK) is a special case of M–ary Phase–Shift Keying (MPSK),

which was the subject of section 2.3. Setting M = 2 in (2.13), we see that the alphabet of

BPSK signalling is A2 = {−1, 1}. In this section we derive the FLSDFE estimator X̂t−n|t
for the case of BPSK inputs to a channel described by a Volterra series with real–valued

kernel coefficients.

For our channel model, we draw upon a recent paper involving the use of decision–

feedback equalisation in nonlinear channels [61]. The extension we add to that work is

the use of the FLSDFE algorithm, instead of the ordinary DFE. In addition, in section

2.4.3, we derive the probability distribution function of the FLSDFE estimator X̂t−n|t of

baseband message symbol Xt−n at fixed lag n ∈ {0, . . . , N}. The results in section 2.4.3

are new.
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2.4 BPSK signalling

2.4.1 Problem definition

We assume the following SISO baseband channel model [61]:

Yt =
N

∑
k1=0

h1(k1)Xt−k1
+

N

∑
k1=0

N

∑
k2=k1

h2(k1, k2)Xt−k1
Xt−k2

+ . . .

+
N

∑
k1=0

N

∑
k2=k1

· · ·
N

∑
kp=kp−1

hp(k1, . . . , kp)Xt−k1
. . . Xt−kp

+ Vt, (2.50)

where all quantities are real–valued, and the domain of Xt is the BPSK signalling al-

phabet A2 = {−1, 1}, as obtained from (2.13) with M = 2. The additive noise process

{Vt} is assumed to be iid, zero–mean and Gaussian, with variance σ2
v . We assume the

model (2.50) to be time–invariant, with all of its parameters known. Given a set of

contiguous channel outputs {Yt, . . . , Yt−n}, we wish to estimate the unknown message

symbol Xt−n at the fixed discrete–time lag n ∈ {0, . . . , N}.

2.4.2 Derivation of FLSDFE formulae

Consider the output Yt−k from the model (2.50), where k ∈ {0, ..., n} is an auxiliary lag

index and n ∈ {0, ..., N} is the fixed lag of the unknown symbol Xt−n:

Yt−k =
N

∑
k1=0

h1(k1)Xt−k−k1
+

N

∑
k1=0

N

∑
k2=k1

h2(k1, k2)Xt−k−k1
Xt−k−k2

+ . . .

+
N

∑
k1=0

N

∑
k2=k1

· · ·
N

∑
kp=kp−1

hp(k1, . . . , kp)Xt−k−k1
. . . Xt−k−kp

+ Vt−k. (2.51)

Following section 2.3.2, as the first step in deriving the FLSDFE estimator X̂t−n|t of

Xt−n, we isolate terms in (2.51) that contain Xt−n or its powers. Appendix E gives the

expansion of (2.51) to third order (p = 3).

Since Xt ∈ {−1, 1}, observe that for m ∈ Z+, X2m
t = 1 and X2m+1

t = Xt. Thus we may

write (2.51) in the simpler form

Yt−k = At−k + Bt−kXt−n + Vt−k, (2.52)

where Bt−k is obtained by collecting together all the reduced terms in (2.51) containing

Xt−n, and At−k is the remainder, being the sum of those reduced terms in (2.51) that do

not contain Xt−n. Appendix F gives the terms At−k and Bt−k to third order.
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Chapter 2 The FLSDFE Algorithm

Analogously to the development in section 2.3.2, we now use a least–squares criterion

[38] to obtain the FLSDFE estimator X̂t−n|t of lagged symbol Xt−n. Following Perreau

et al. [52] we have

X̂t−n|t = arg min
Xt−n∈A2

n

∑
k=0

(

Yt−k − Ât−k|t−k − B̂t−k|t−kXt−n

)2

= arg min
Xt−n∈{−1,1}

n

∑
k=0

[(

Yt−k − Ât−k|t−k

)2
+
(

B̂t−k|t−kXt−n

)2

− 2
(

Yt−k − Ât−k|t−k

)

B̂t−k|t−kXt−n

]

= sign

{

n

∑
k=0

[(

Yt−k − Ât−k|t−k

)

B̂t−k|t−k

]

}

, (2.53)

where sign(x) is the signum function, defined for x ∈ R by

sign(x) =







−1 if x < 0,

1 otherwise.
(2.54)

In (2.53) the random variables Ât−k|t−k and B̂t−k|t−k are (filtered) estimators of At−k|t−k

and Bt−k|t−k, respectively. We merely take the corresponding formulae for At−k and

Bt−k, and substitute filtered estimates X̂t−k−δ|t−k−δ for Xt−k−δ, where k ∈ {0, . . . , n}
and δ ∈ {0, . . . , N} \ {n − k}, with n ∈ {0, . . . , N}. Appendix G gives the explicit

formulae for Ât−k|t−k and B̂t−k|t−k to third order, following the analogous formulae in

appendix F for At−k and Bt−k.

2.4.3 Probability distribution function of FLSDFE estimator

Use (2.52) to replace Yt−k in (2.53), and rearrange (2.53) as

X̂t−n|t = sign

{

n

∑
k=0

[

B̂t−k|t−k

(

At−k − Ât−k|t−k + Bt−kXt−n

)

+ B̂t−k|t−kVt−k

]

}

.

(2.55)

We note from (2.55) that X̂t−n|t is a function of the random variables At−k, Bt−k, Ât−k|t−k,

B̂t−k|t−k, Xt−n and Vt−k, where k ∈ {0, . . . , n} and n ∈ {0, . . . , N}. Further, as shown

in appendixes F and G for a third–order channel model, we know that At−k and Bt−k

are functions of Xt, . . . , Xt−n+1, Xt−n−1, . . . , Xt−N−n; while Ât−k|t−k and B̂t−k|t−k are

functions of X̂t|t, . . . , X̂t−n+1|t−n+1, X̂t−n−1|t−n−1, . . . , X̂t−N−n|t−N−n.
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2.4 BPSK signalling

As in section 2.3.3, substitute sample values xt, . . . , xt−N−n, x̂t|t, . . . , x̂t−n+1|t−n+1,

x̂t−n−1|t−n−1, . . . , x̂t−N−n|t−N−n for the discrete variables Xt, . . . , Xt−N−n, X̂t|t, . . . ,

X̂t−n+1|t−n+1, X̂t−n−1|t−n−1, . . . , X̂t−N−n|t−N−n, respectively, in the expressions for At−k

and Bt−k, Ât−k|t−k, B̂t−k|t−k. We thus obtain corresponding sample values at−k, bt−k,

ât−k|t−k, b̂t−k|t−k and xt−n of variables At−k, Bt−k, Ât−k|t−k, B̂t−k|t−k and Xt−n, respec-

tively, where k ∈ {0, . . . , n} and n ∈ {0, . . . , N}.

We noted in section 2.4.1 that the additive noise process {Vt} in the channel model

(2.50) is iid, zero–mean and Gaussian, with variance σ2
v . With the sample values dis-

cussed above, then, it follows that the argument of the signum function in (2.55) is also

Gaussian, T say, with mean µT and variance σ2
T, where

T =
n

∑
k=0

[

b̂t−k|t−k

(

at−k − ât−k|t−k + bt−kxt−n

)

+ b̂t−k|t−kVt−k

]

, (2.56)

µT =
n

∑
k=0

[

b̂t−k|t−k

(

at−k − ât−k|t−k + bt−kxt−n

)]

, (2.57)

and

σ2
T = σ2

v

n

∑
k=0

b̂2
t−k|t−k. (2.58)

It is easy to show now that the (conditional) probability distribution function of the

FLSDFE estimator X̂t−n|t for the symbol Xt−n in the case of BPSK signalling is

P(X̂t−n|t = x̂t−n|t|Xt = xt ∩ · · · ∩ Xt−N−n = xt−N−n ∩ X̂t|t = x̂t|t

∩ · · · ∩ X̂t−n+1|t−n+1 = x̂t−n+1|t−n+1 ∩ X̂t−n−1|t−n−1 = x̂t−n−1|t−n−1

∩ · · · ∩ X̂t−N−n|t−N−n = x̂t−N−n|t−N−n)

=
1

2

(

1 + x̂t−n|t sign(µT) erf

( |µT|√
2σT

))

, (2.59)

with the domain of X̂t−n|t being A2 = {−1, 1}, and where µT and σT are given in (2.57)

and (2.58), respectively. The function erf(.) is the error function of (2.12).

Through the difference term At−k − Ât−k|t−k in (2.55), we observe the presence of sim-

ple errors of the form Xt−k−k1
− X̂t−k−k1|t−k−k1

, and generalized errors of the form

Xt−k−k1
Xt−k−k2

− X̂t−k−k1|t−k−k1
X̂t−k−k2|t−k−k2

. This is apparent from a comparison of

matching portions of the equations in appendixes F and G. Note, however, that there is

no corresponding difference term Bt−k − B̂t−k|t−k in (2.55). This is one way in which the

results for a general Volterra channel differ from the linear FIR channel models treated

in [2, 3, 7–10, 24, 39–41, 52].
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Chapter 2 The FLSDFE Algorithm

The result (2.59) is new, and was not discussed by Perreau et al. [52] during their in-

troduction of the FLSDFE algorithm; nor later by Tsimbinos and White [61], when

studying DFE error propagation on Volterra channels with the model (2.50). In this

section we have extended the earlier results [2, 3, 7–10, 24, 39–41, 52, 61] to cover the in-

corporation of fixed–lag smoothing into a DFE on channels described by the Volterra

input–output model (2.50), a generalization of the class of linear FIR models.

2.5 Conclusion

In this chapter we have provided an alternative and extended derivation of the signal

processing algorithm introduced by Perreau et al. [52], which is called the FLSDFE al-

gorithm in this thesis. In sections 2.3 and 2.4 we derived the specific FLSDFE formulae

for two classes of nonlinear digital communication system model. In section 2.3 we

derived the FLSDFE formulae that are applicable for MPSK and MQAM signalling on

the Volterra channel model of Cheng and Powers [19]; and in section 2.4 we derived

the specific FLSDFE formulae that are applicable for BPSK signalling on the Volterra

channel model of Tsimbinos and White [61].

When introducing the FLSDFE algorithm, Perreau et al. [52] did not discuss the prob-

ability distribution of X̂t−n|t. In section 2.3.3 we showed that the derivation of the dis-

tribution function for the MPSK and MQAM signalling model is a difficult problem.

There are three obstacles to this derivation. Firstly, from (2.30) and appendix D, we see

the complicated nonlinear form of the dependence of the random variable X̂t−n|t upon

the symbols Xt−n and Xt−k−δ, the estimators X̂t−k−δ|t−k−δ, and the additive noise vari-

ates Vt−k, where k ∈ {0, . . . , n}, n ∈ {0, . . . , N} and δ ∈ {0, . . . , N} \ {n − k}. Secondly,

there is the inherent complication of dealing with order statistics of dependent random

variables that do not have a common probability density function. A third obstacle is

the nonlinear mapping associated with the arg function in (2.30), which is a transfor-

mation from A2(N+n)+1
M × Cn+1 to AM, as X̂t−n|t depends on Xt, . . . , Xt−N−n, X̂t|t, . . . ,

X̂t−n+1|t−n+1, X̂t−n−1|t−n−1, . . . , X̂t−N−n|t−N−n and Vt, . . . , Vt−n. Accordingly, we leave

the derivation of the conditional distribution function (2.33) as unsolved for the MPSK

and MQAM model of section 2.3.

Conversely, in section 2.4.3, we provided in (2.59) the explicit distribution function of

X̂t−n|t in the simpler case of BPSK signalling.

Page 27



2.5 Conclusion

The results of sections 2.3.3 and 2.4.3 on the distribution of X̂t−n|t are new, extending

earlier results [2,3,7–10,24,39–41,52,61] to cover the incorporation of fixed–lag smooth-

ing into a DFE on channels described by the Volterra input–output models (2.15) and

(2.50), generalizations of the class of linear FIR models.

Sections 2.3 and 2.4 may also be used as a guide for developing specific FLSDFE formu-

lae for use with other nonlinear channel models, such as the following general rational

model [18]:

Yt =
Ft (Xt, . . . , Xt−N, Yt−1, . . . , Yt−N, Vt−1, . . . , Vt−N)

Gt (Xt, . . . , Xt−N, Yt−1, . . . , Yt−N, Vt−1, . . . , Vt−N)
+ Vt, (2.60)

where Ft and Gt are time–varying polynomial functions of the variates Xt, . . . , Xt−N,

Yt−1, . . . , Yt−N , Vt−1, . . . , Vt−N. This model can potentially represent a vast range of

nonlinear SISO systems encountered in practice.
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Chapter 3

State Space Models

Chapter 2 introduced the FLSDFE algorithm of Perreau et al. [52], and discussed the

(static) probability distribution of FLSDFE output variable X̂t−n|t, via examples, in

sections 2.3.3 and 2.4.3. In this chapter we turn now to an analysis of the dynamics

of FLSDFE error propagation, drawing upon recent work on the related dynamics of

DFE error propagation [1–3, 7–10, 16, 20–24, 28, 29, 37, 39–42, 45, 48, 51, 52, 61]. To this

end, we construct state space models based on the theory of finite state Markov processes

(FSMPs) [16, 28, 29, 39, 48, 50, 51].

Novel connections are drawn in this chapter between the state space models and vari-

ous topics from pure mathematics, such as the Fibonacci series and some of its general-

izations, Bell numbers, set partitions and the theory of integer partitions. Section 3.1 in-

troduces some atomic state space models, which are the most ‘fine–grained’, and which

describe the exact transient dynamics of error propagation. In section 3.2 the specific

state space model for the case of FLSDFE operation in filtering–only mode (N ≥ 0 and

n = 0) is studied. Using these atomic models, interesting connections are made be-

tween error recovery times, Fibonacci series (and certain of their generalizations) and

integer partitions. The analogous atomic state space model for the smoothing–only

case (N ≥ 1 and n ∈ {1, . . . , N}) is studied in section 3.3.

Although the atomic models are exact, their size grows exponentially with channel

memory N, and there is a need for more compact models. Section 3.4 discusses aggre-

gated models, which have lower computational complexity. The search for an ‘optimal’

aggregation provides interesting and novel connections to the theory of set partitions,

Bell numbers and restricted growth strings, discussed in sections 3.4.2 and 3.4.3. By

optimal aggregation we mean one with the fewest states, but which exactly models the

transient dynamics of the underlying atomic state space model [39]. In section 3.4.4 we

give the unique optimal aggregate state space model for the atomic state space model

described in section 3.2.5, which was for BPSK signalling on a linear FIR channel of

memory N = 1.
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3.1 Atomic State Space Models—Introduction

From this unique optimum, a suboptimum aggregated model is derived (section 3.4.5),

one with a relatively small number of aggregated states that also preserves the ex-

act transient dynamics of the underlying atomic state space model. This suboptimal

model is related to that of Choy and Beaulieu [24], yet theirs is not strictly a finite–

state Markov process, and applies only to the steady–state limit. Finally, in section

3.4.6 we discuss Choy and Beaulieu’s single–distinct–errors model, which provides a

useful metric (a steady–state formula for error recovery time) for use in chapter 4, in

connection with the discovery of ‘resonances’.

3.1 Atomic State Space Models—Introduction

Sections 3.2 and 3.3 introduce some state space models that are useful in exactly mod-

elling the transient dynamics of the input and output variables of the FLSDFE algo-

rithm. The FLSDFE output x̂t|t depends upon the input symbols xt, . . . , xt−N, as well

as the previous filtered symbol estimates x̂t−1|t−1, . . . , x̂t−N|t−N and the random addi-

tive noise sample vt. Thinking naı̈vely, it makes sense to incorporate all of the variables

xt, . . . , xt−N, x̂t|t, . . . , x̂t−N|t−N into one large state space vector, and track the stochastic

dynamics of that vector over time. Likewise, a naı̈ve state space model for the FLSDFE

output x̂t−n|t, for n ∈ {1, . . . , N}, can be constructed from a state vector containing

all of the variates xt, . . . , xt−N−n, x̂t|t, . . . , x̂t−N−n|t−N−n and x̂t−n|t, and tracking that

vector over time, with stochastic variation driven by the additive noise process {vt}.

This is the essence of the atomic state space models discussed in this thesis, which were

based on similar models of Kennedy and Anderson [39].

Section 3.2.1 introduces an atomic state space model that is useful for all channel mem-

ories N ≥ 0 and for the case of filtering only (n = 0). We show that the model is a

first–order Markov process, discuss its connection with a similar model of Kennedy

and Anderson [39], and illustrate a lexicographical ordering system in section 3.2.2,

based on the use of BPSK signalling. Whereas Kennedy and Anderson restricted their

attention to FIR channels alone, we extend our focus to the Volterra models of section

2.4.

A novel formulation for the state transition probability matrix is subsequently devel-

oped in section 3.2.3, and illustrated with BPSK signalling on linear FIR channels of

memory N = 0 and N = 1, in sections 3.2.4 and 3.2.5, respectively. The general for-

mulation applies to the restricted case of BPSK signalling, but is applicable to Volterra
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channels in general. Adapting the formulation to other signalling schemes, such as

QPSK, would present no real difficulties.

No general form was derived for the stationary distribution vector, even for the simple

case of BPSK signalling, although we illustrate the specific results in section 3.2.6 for

the linear FIR examples of sections 3.2.4 and 3.2.5. We leave the development of the

general form of the stationary distribution vector, for filtering–only operation of the

FLSDFE, as an open problem.

Error recovery for the filtering–only state–space model is the subject of the remainder

of section 3.2.

Section 3.2.7 gives the probability distribution of the recovery time R0 for the case of

BPSK signalling on a linear FIR channel of memory N = 0. We also present expressions

for the mean and variance of R0. These results are new.

Section 3.2.8 investigates the recovery time for the BPSK communications system mod-

elled in section 3.2.5, which is for a linear FIR channel of memory N = 1. Using

the atomic state space model directly, rather than the aggregated states of Choy and

Beaulieu [24], we attempt to compute the explicit form of the probability distribution

of the recovery time. In the process, we demonstrate evidence for an interesting con-

nection with the Fibonacci sequence and a generalization of it, the Horadam (0,1,4,2)

sequence. This connection is not proved but forms the subject of propositions 3.2.1 and

3.2.2. An explicit closed form of the probability distribution of the error recovery time

random variable R0 was not derived for the linear FIR, BPSK, N = 1 case, and we leave

its derivation as an open problem.

Section 3.2.9 generalizes the example in section 3.2.8 to the case of BPSK signalling on

a linear FIR channel of memory N ≥ 0. We raise propositions as generalizations of

the above–mentioned propositions 3.2.1 and 3.2.2, respectively. These, if true, connect

the calculation of the probability distribution of R0 to generalizations of the Fibonacci

sequence. Note that Choy and Beaulieu give a formula for R0 (used in chapter 4) but

their result is based on their steady–state state space model, which is not an FSMP; the

calculations in sections 3.2.8 and 3.2.9 are based directly upon the transient dynamics of

the atomic state space models of this thesis. These transient results appear to be novel

in the DFE error recovery literature.

In section 3.2.10 some interesting connections are drawn between the theory of in-

teger partitions and the steady–state state space models of Choy and Beaulieu [24].
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We illustrate a calculation of the probability of the error recovery time R0 being ex-

actly 10 time steps, using a communications system model involving BPSK signalling

on a general Volterra channel of memory N = 4, and show how this calculation in-

volves the enumeration of the constrained partitions of the numeral 5. Since the con-

strained partition number P(n, k) has no general closed form for k > 4, it seems there

may be no closed form for the probability distribution of R0, in general, although

Choy and Beaulieu give a formula for the mean of R0. The connection with integer

partitions appears not to have appeared before in the DFE error recovery time litera-

ture [8, 9, 20–22, 24, 39, 41, 51, 52, 61].

Section 3.3 parallels section 3.2 in the development of an atomic state space model

suitable for use with a nonzero FLSDFE smoothing lag (the smoothing–only case), dis-

cussion of a lexicographical state–ordering system for BPSK signalling, and the devel-

opment of the general form of the state transition matrix, covered in sections 3.3.1, 3.3.2

and 3.3.3, respectively. These results are new, and were not presented in the introduc-

tory work on the FLSDFE algorithm [52]. No analysis is provided of the smoothing–

only state space model, as was done for the filtering–only model of section 3.2. We

leave this as future work, and anticipate interesting stochastic dynamics, especially if

smoothed FLSDFE outputs x̂t−n|t are fed back.

3.2 Atomic State Space Models (Filtering only)

3.2.1 Model definition

For N ≥ 0 and n = 0 the FLSDFE algorithm reduces to a DFE, and we have the

filtered output X̂t|t. Based on a similar model used by Kennedy and Anderson [39], we

introduce a filtering–only atomic state space model with state vector St|t, where

St|t =

























Xt

...

Xt−N

X̂t|t
...

X̂t−N|t−N

























. (3.1)
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The state vectors in Kennedy and Anderson’s model did not include the current sym-

bol Xt or the corresponding estimate X̂t|t. These are included in (3.1) to give the com-

plete set of variates upon which X̂t|t depends, together with X̂t|t itself.

Appendix H shows that for m ∈ Z+ we have the state transition probability

P(St|t = st|t|St−1|t−1 = st−1|t−1 ∩ · · · ∩ St−m|t−m = st−m|t−m)

= P(St|t = st|t|St−1|t−1 = st−1|t−1)

= P(Xt = xt)P(X̂t|t = x̂t|t|Xt = xt ∩ · · · ∩ Xt−N = xt−N

∩ X̂t−1|t−1 = x̂t−1|t−1 ∩ · · · ∩ X̂t−N|t−N = x̂t−N|t−N). (3.2)

The first two lines of (3.2) show that St|t is a first–order Markov process [50]. The

term P(Xt = xt) on the third line of (3.2) gives the a priori source probability of the

symbol Xt; and the following term is the conditional probability of X̂t|t, given fixed

values xt, . . . , xt−N and x̂t−1|t−1, . . . , x̂t−N|t−N for all of the variables Xt, . . . , Xt−N and

X̂t−1|t−1, . . . , X̂t−N|t−N upon which X̂t|t depends (apart from the additive noise Vt).

3.2.2 Lexicographical ordering of states (BPSK, N ≥ 0)

In order to write down the state transition probability matrix for the state space model

(3.1)–(3.2), we first need to order the states st|t. To illustrate, consider a lexicographical

ordering that is suitable for BPSK signalling [39]. Using i for previous state st−1|t−1

and j for current state st|t, we have the explicit mapping rules

i =
(xt−1 + 1)

2
22N+1 + · · ·+ (xt−N + 1)

2
2N+2 +

(xt−N−1 + 1)

2
2N+1

+
(x̂t−1|t−1 + 1)

2
2N + · · · +

(x̂t−N|t−N + 1)

2
21 +

(x̂t−N−1|t−N−1 + 1)

2
20, (3.3)

and

j =
(xt + 1)

2
22N+1 +

(xt−1 + 1)

2
22N + · · ·+ (xt−N + 1)

2
2N+1

(x̂t|t + 1)

2
2N +

(x̂t−1|t−1 + 1)

2
2N−1 + · · ·+

(x̂t−N|t−N + 1)

2
20. (3.4)

Note that (u + 1)/2 ∈ {0, 1} for u ∈ {−1, 1}, so that (3.3) and (3.4) are simply binary–

to–decimal conversions.
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To illustrate, consider a channel of memory N = 3. We say that the state vector

st−1|t−1 =



































xt−1

xt−2

xt−3

xt−4

x̂t−1|t−1

x̂t−2|t−2

x̂t−3|t−3

x̂t−4|t−4



































=



































−1

1

1

−1

1

1

1

−1



































(3.5)

is ‘stored’ in the 8–bit word i as shown in table 3.1, with bit 0 of i being the least signifi-

cant bit (LSB) and bit 7 being the most significant bit (MSB).

Table 3.1. Illustration of storage of state vector st−1|t−1 of (3.5) in the word i.

element of st−1|t−1 BPSK message symbol bit position in word i bit value

xt−1 −1 7 0

xt−2 1 6 1

xt−3 1 5 1

xt−4 −1 4 0

x̂t−1|t−1 1 3 1

x̂t−2|t−2 1 2 1

x̂t−3|t−3 1 1 1

x̂t−4|t−4 −1 0 0

Likewise, we say that the state vector

st|t =



































xt

xt−1

xt−2

xt−3

x̂t|t
x̂t−1|t−1

x̂t−2|t−2

x̂t−3|t−3



































=



































−1

−1

1

1

−1

1

1

1



































(3.6)

is stored in word j, as shown in table 3.2.
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Table 3.2. Illustration of storage of state vector st|t of (3.6) in the word j.

element of st|t BPSK message symbol bit position in word j bit value

xt −1 7 0

xt−1 −1 6 0

xt−2 1 5 1

xt−3 1 4 1

x̂t|t −1 3 0

x̂t−1|t−1 1 2 1

x̂t−2|t−2 1 1 1

x̂t−3|t−3 1 0 1

The leftmost column in tables 3.1 and 3.2 gives the symbols ‘stored’ at the indicated

bit positions of words i and j, respectively. The second column of each table shows

the particular value taken by each element of st−1|t−1 or st|t, chosen from the BPSK

alphabet A2 = {−1, 1}. The fourth column of each table shows how the symbol or

estimate values map to the set of base–2 (binary) digits {0, 1} through (3.3) and (3.4).

For the example given above, we note that the decimal values of the binary words i

and j evaluate to

i = 0 × 27 + 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20

= 64 + 32 + 8 + 4 + 2

= 110, and (3.7)

j = 0 × 27 + 0 × 26 + 1 × 25 + 1 × 24 + 0 × 23 + 1 × 22 + 1 × 21 + 1 × 20

= 32 + 16 + 4 + 2 + 1

= 55. (3.8)

Observe that st−1|t−1 and st|t in the above example have common elements xt−1, xt−2,

xt−3, x̂t−1|t−1, x̂t−2|t−2 and x̂t−3|t−3. The only valid state transitions st−1|t−1 to st|t,

therefore, are those that preserve the values of these shared quantities. Transitions that

do not satisfy this condition are impossible, and they result in structural zeros in the

state transition probability matrix.

For general N ≥ 0, the BPSK lexicographical ordering system in (3.3) and (3.4) is illus-

trated in table 3.3 below.
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Table 3.3. Storage of consecutive state vectors st−1|t−1 and st|t in words i and j, for the case of

BPSK signalling, arbitrary channel memory N ≥ 0, and filtering only (n = 0).

bit position in i element in st−1|t−1 bit position in j element in st|t
2N + 1 xt−1 2N + 1 xt

...
... 2N xt−1

N + 2 xt−N
...

...

N + 1 xt−N−1 N + 1 xt−N

N x̂t−1|t−1 N x̂t|t
...

... N − 1 x̂t−1|t−1

1 x̂t−N|t−N
...

...

0 x̂t−N−1|t−N−1 0 x̂t−N|t−N

The oldest elements in st−1|t−1, namely xt−N−1 and x̂t−N−1|t−N−1, are contained within

a cell that has a blue background in table 3.3, and occupy bit positions N + 1 and 0 in

word i, respectively. (For brevity throughout this thesis, we will shorten phrases such

as ‘contained within a cell that has a blue background’ to something simpler, such as

‘coloured blue’.) The elements in common between st−1|t−1 and st|t, namely xt−1, . . . ,

xt−N, x̂t−1|t−1, . . . , x̂t−N|t−N, are coloured grey in both words i and j. In word i, these

common elements occupy bit positions 2N + 1, . . . , N + 2, N, . . . , 1 respectively. In

word j the elements have been shifted to the new positions 2N, . . . , N + 1, N − 1, . . . ,

0 respectively, overwriting the old elements xt−N−1 and x̂t−N−1|t−N−1. Finally, new

elements xt and x̂t|t are placed into positions 2N + 1 and N of st|t, respectively, shown

coloured yellow in table 3.3.

3.2.3 State transition probability matrix (BPSK, N ≥ 0)

In this section we give the state transition probability matrix P for the simple case of

filtering only and BPSK signalling. We will use the lexicographical ordering scheme

of (3.3) and (3.4), for which P has the sparse, hierarchical structure given below. The

general form of P that follows does not appear to have been reported previously in the

literature on the statics and dynamics of (FLS)DFE error propagation [1–3,7–10,16,20–

24, 28, 29, 34, 37, 39–42, 45, 51, 52, 61].

From (3.1) we see that for BPSK signalling there are 4N+1 atomic states st|t, so that P

will be of size 4N+1 × 4N+1. Label the rows and columns of P with the indices i and j
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of (3.3) and (3.4). Let the top left element of P have row and column indices i = 0 and

j = 0, respectively; and let the bottom right element of P have row and column indices

i = 4N+1 − 1 and j = 4N+1 − 1, respectively. In general, the element in row i + 1 and

column j + 1 has row and column indices i and j, respectively. Thus P is of the form

P = (pi,j), with elements pi,j, where i, j ∈ {0, . . . , 4N+1 − 1}:

P =















p0,0 p0,1 . . . p0,ζ

p1,0 p1,1 . . . p1,ζ
...

...
. . .

...

pζ,0 pζ,1 . . . pζ,ζ















, ζ = 4N+1 − 1. (3.9)

From table 3.3, observe that xt is stored in the most significant bit (MSB) of j, where

j is the column index of P. With j ∈ {0, . . . , 4N+1 − 1}, the MSB of j will be 0 for

j ∈ {0, . . . , 22N+1 − 1}, and 1 for j ∈ {22N+1, . . . , 4N+1 − 1}. That is, xt = −1 in the left

half of P, and xt = 1 in the right half of P, and so we have a natural division of P into

two equal–sized halves:

P =
[

PA PB

]

, (3.10)

where PA and PB contain the transition probabilities in which xt = −1 and xt = 1,

respectively. Note that PA and PB are both of size 4N+1 × 22N+1.

Further, we can partition PA and PB by observing that st−1|t−1 and st|t have the com-

mon elements xt−1, . . . , xt−N. This is shown clearly in table 3.3. Observe that the

common elements xt−1, . . . , xt−N are stored in the N most significant bits of row index

i, whereas they are stored in the N most significant bits following the MSB of column

index j. Taking into account the 2N possible values of the N–tuple (xt−1, . . . , xt−N),

and observing the requirement to have matching N–tuples (xt−1, . . . , xt−N) between

st−1|t−1 and st|t, we find that PA and PB are sparse, with the block matrix forms

PA =



















P
(0)
A 0 · · · 0 0

0 P
(1)
A · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(ζ−1)
A 0

0 0 · · · 0 P
(ζ)
A



















, (3.11)
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and

PB =



















P
(0)
B 0 · · · 0 0

0 P
(1)
B · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(ζ−1)
B 0

0 0 · · · 0 P
(ζ)
B



















, (3.12)

with the abbreviation

ζ = 2N − 1, (3.13)

where 0 is a matrix of structural zeros, of size 2N+2 × 2N+1. Each block P
(k)
A and P

(k)
B in

(3.11) and (3.12) is also of size 2N+2 × 2N+1, where k ∈ {0, . . . , 2N − 1}.

A further decomposition of each P
(k)
A and P

(k)
B results from observing that the ‘old’ el-

ement xt−N−1 of st−1|t−1 is redundant, since the state transition probability (3.2) does

not depend on it. Note from table 3.3 that xt−N−1 is stored in bit position N + 1 of

st−1|t−1 and does not appear in st|t. Since there is the same transition probability ir-

respective of the value of xt−N−1, each 2N+2 × 2N+1 matrix P
(k)
A and P

(k)
B in (3.11) and

(3.12) splits horizontally into two identical matrices of size 2N+1 × 2N+1, so that for

k ∈ {0, . . . , 2N − 1} we have

P
(k)
A =

[

P
(k)
C

P
(k)
C

]

, and (3.14)

P
(k)
B =

[

P
(k)
D

P
(k)
D

]

. (3.15)

For a fixed k ∈ {0, . . . , 2N − 1} we have the same fixed N–tuple (xt−1, . . . , xt−N) in

both (3.14) and (3.15), as discussed earlier. Moreover, the upper matrix of each pair

in the right–hand side of both (3.14) and (3.15) corresponds to the additional choice

xt−N−1 = −1, while the lower pair is for xt−N−1 = 1. This is in accordance with the bit

position of xt−N−1 in row index word i.

Proceeding with the decomposition of P, note from table 3.3 that for each fixed value

of symbol xt, N–tuple (xt−1, . . . , xt−N) and symbol xt−N−1, we have a choice of two

values of estimate x̂t|t. Observe that x̂t|t is stored in bit position N of j.

For k ∈ {0, . . . , 2N − 1} we can therefore vertically divide P
(k)
C and P

(k)
D of (3.14) and

(3.15), analogously to the partitioning of P in (3.10):

P
(k)
C =

[

P
(k)
E P

(k)
F

]

and (3.16)
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P
(k)
D =

[

P
(k)
G P

(k)
H

]

, (3.17)

where the left and right matrices in each pair correspond to the choices x̂t|t = −1 and

x̂t|t = 1, respectively, and where P
(k)
E , P

(k)
F , P

(k)
G and P

(k)
H are each of size 2N+1 × 2N.

From (3.16) and (3.17), we now expand (3.14) and (3.15) to give

P
(k)
A =

[

P
(k)
E P

(k)
F

P
(k)
E P

(k)
F

]

and (3.18)

P
(k)
B =

[

P
(k)
G P

(k)
H

P
(k)
G P

(k)
H

]

, (3.19)

where k ∈ {0, . . . , 2N − 1}.

Continuing, note from table 3.3 the occurrence of common elements x̂t−1|t−1, . . . , x̂t−N|t−N

in st−1|t−1 and st|t. Taking into account the 2N possible values of the N–tuple
(

x̂t−1|t−1, . . . , x̂t−N|t−N

)

,

and observing the requirement to have matching N–tuples
(

x̂t−1|t−1, . . . , x̂t−N|t−N

)

between st−1|t−1 and st|t, we find that for each k ∈ {0, . . . , 2N − 1}, the blocks P
(k)
E ,

P
(k)
F , P

(k)
G and P

(k)
H in (3.18) and (3.19) are themselves sparse, and of the form

P
(k)
E =



















P
(k,0)
E 0 · · · 0 0

0 P
(k,1)
E · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
E 0

0 0 · · · 0 P
(k,ζ)
E



















, (3.20)

P
(k)
F =



















P
(k,0)
F 0 · · · 0 0

0 P
(k,1)
F · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
F 0

0 0 · · · 0 P
(k,ζ)
F



















, (3.21)

P
(k)
G =



















P
(k,0)
G 0 · · · 0 0

0 P
(k,1)
G · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
G 0

0 0 · · · 0 P
(k,ζ)
G



















, and (3.22)
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P
(k)
H =



















P
(k,0)
H 0 · · · 0 0

0 P
(k,1)
H · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
H 0

0 0 · · · 0 P
(k,ζ)
H



















, (3.23)

with ζ = 2N − 1, where each block matrix in (3.20)–(3.23) is now of size 2 × 1.

The final step in the decomposition of P results from observing that the ‘old’ element

x̂t−N−1|t−N−1 of st−1|t−1 is redundant, since the state transition probability (3.2) does

not depend on it. Note from table 3.3 that x̂t−N−1|t−N−1 is stored in the least signif-

icant bit position 0 of st−1|t−1 and does not appear in st|t. Since there is the same

transition probability no matter the value of x̂t−N−1|t−N−1, each 2 × 1 matrix P
(k,l)
E ,

P
(k,l)
F , P

(k,l)
G and P

(k,l)
H in (3.20)–(3.23) splits horizontally into two identical scalars, where

k ∈ {0, . . . , 2N − 1} and l ∈ {0, . . . , 2N − 1}. With this in mind, for k ∈ {0, . . . , 2N − 1}
rewrite (3.20)–(3.23) as follows:

P
(k)
E =









































p
(k,0)
E 0 · · · 0 0

p
(k,0)
E 0 · · · 0 0

0 p
(k,1)
E · · · 0 0

0 p
(k,1)
E · · · 0 0

...
...

. . .
...

...

0 0 · · · p
(k,ζ−1)
E 0

0 0 · · · p
(k,ζ−1)
E 0

0 0 · · · 0 p
(k,ζ)
E

0 0 · · · 0 p
(k,ζ)
E









































, (3.24)

P
(k)
F =









































p
(k,0)
F 0 · · · 0 0

p
(k,0)
F 0 · · · 0 0

0 p
(k,1)
F · · · 0 0

0 p
(k,1)
F · · · 0 0

...
...

. . .
...

...

0 0 · · · p
(k,ζ−1)
F 0

0 0 · · · p
(k,ζ−1)
F 0

0 0 · · · 0 p
(k,ζ)
F

0 0 · · · 0 p
(k,ζ)
F









































, (3.25)
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P
(k)
G =









































p
(k,0)
G 0 · · · 0 0

p
(k,0)
G 0 · · · 0 0

0 p
(k,1)
G · · · 0 0

0 p
(k,1)
G · · · 0 0

...
...

. . .
...

...

0 0 · · · p
(k,ζ−1)
G 0

0 0 · · · p
(k,ζ−1)
G 0

0 0 · · · 0 p
(k,ζ)
G

0 0 · · · 0 p
(k,ζ)
G









































, and (3.26)

P
(k)
H =









































p
(k,0)
H 0 · · · 0 0

p
(k,0)
H 0 · · · 0 0

0 p
(k,1)
H · · · 0 0

0 p
(k,1)
H · · · 0 0

...
...

. . .
...

...

0 0 · · · p
(k,ζ−1)
H 0

0 0 · · · p
(k,ζ−1)
H 0

0 0 · · · 0 p
(k,ζ)
H

0 0 · · · 0 p
(k,ζ)
H









































, (3.27)

with ζ = 2N − 1, where each element is now a scalar transition probability.

Since P is a stochastic matrix, we have the requirements

0 ≤ p
(k,l)
E ≤ 1, (3.28)

0 ≤ p
(k,l)
F ≤ 1, (3.29)

0 ≤ p
(k,l)
G ≤ 1, (3.30)

0 ≤ p
(k,l)
H ≤ 1, and (3.31)

p
(k,l)
E + p

(k,l)
F + p

(k,l)
G + p

(k,l)
H = 1, (3.32)

where k, l ∈ {0, . . . , 2N − 1}.

To recap, the state transition probability matrix P for the filtering–only atomic state

space model in (3.1) and (3.2) is given by (3.10), where PA and PB are given by (3.11)

and (3.12), with the further decompositions in (3.18), (3.19) and (3.24)–(3.27). This de-

composition appears to be novel in the (FLS)DFE literature.

Two simple examples of these results will now be given, to illustrate the explicit form of

P. These examples will be referred to later in this chapter. Both involve BPSK signalling
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over a linear FIR channel. The first example problem involves a memoryless channel,

with N = 0; the second involves a channel of minimum memory N = 1. Other cases

could have been considered as examples, such as channels of longer memory, or QPSK

signalling over a nonlinear Volterra channel, but the algebraic manipulations would be

more involved and not necessarily more informative.

3.2.4 State transition probability matrix (BPSK, N = 0)

For the first example, with zero memory, we have from (2.50) the channel model

Yt = h1(0)Xt + Vt; (3.33)

from (2.53) we get the DFE estimator

X̂t|t = sign {h1(0)Yt} ; (3.34)

and from (3.2) and (2.59) we get the state transition probability

P(St|t = st|t|St−1|t−1 = st−1|t−1) =
1

4

(

1 + x̂t|t sign(µT) erf

( |µT|√
2σT

))

, (3.35)

assuming equiprobable source symbols Xt, that is, P(Xt = xt) = 1
2 for xt ∈ {−1, 1}.

In (3.35), µT and σT are given from (2.57) and (2.58) by

µT = h2
1(0)xt, and (3.36)

σ2
T = h2

1(0)σ2
v , (3.37)

where σ2
v is the variance of Vt in the channel model (3.33).

The atomic state vector St|t is given from (3.1) as the 2–vector

St|t =

[

Xt

X̂t|t

]

. (3.38)

With this model, the mapping rules (3.3) and (3.4) for N = 0 are

i =
(xt−1 + 1)

2
21 +

(x̂t−1|t−1 + 1)

2
20, (3.39)

and

j =
(xt + 1)

2
21 +

(x̂t|t + 1)

2
20, (3.40)

as illustrated in table 3.4 below, which is a specialization of table 3.3.
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Table 3.4. Storage of consecutive state vectors st−1|t−1 and st|t in words i and j, for the case of

BPSK signalling, channel memory N = 0 (memoryless), and FLSDFE smoothing lag

n = 0 (filtering only).

bit position in i element in st−1|t−1 bit position in j element in st|t
1 xt−1 1 xt

0 x̂t−1|t−1 0 x̂t|t

At time t− 1 there are 22 = 4 state vectors st−1|t−1, indexed by i ∈ {0, 1, 2, 3}. Similarly,

at time t, there are 4 state vectors st|t, indexed by j ∈ {0, 1, 2, 3}. We note that there are

no common elements between st−1|t−1 and st|t, and so P will contain no structural

zeros, unlike the general case discussed above.

Rows of P are referenced sequentially by i ∈ {0, 1, 2, 3}, with the top row having index

i = 0, while the bottom row has index i = 3. Likewise, columns of P are referenced

sequentially by j ∈ {0, 1, 2, 3}, with the leftmost column having index j = 0, while the

rightmost column has index j = 3.

From (3.10) we have P = [PA PB], where the 4 × 2 matrices PA and PB are decomposed

in (3.11) and (3.12) as

PA =
[

P
(0)
A

]

, (3.41)

and

PB =
[

P
(0)
B

]

. (3.42)

Further, P
(0)
A and P

(0)
B are given from (3.18) and (3.19) by

PA =

[

P
(0)
E P

(0)
F

P
(0)
E P

(0)
F

]

and (3.43)

PB =

[

P
(0)
G P

(0)
H

P
(0)
G P

(0)
H

]

, (3.44)

where each submatrix P
(0)
E , . . . , P

(0)
H is of size 2 × 1. From (3.24)–(3.27) and the model

(3.33)–(3.40) we have P
(0)
E , . . . , P

(0)
H given explicitly by

P
(0)
E =

1

4

[

1 + a

1 + a

]

, (3.45)
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P
(0)
F =

1

4

[

1 − a

1 − a

]

, (3.46)

P
(0)
G =

1

4

[

1 − a

1 − a

]

, and (3.47)

P
(0)
H =

1

4

[

1 + a

1 + a

]

, (3.48)

with

a = erf

( |h1(0)|√
2σv

)

. (3.49)

For the simple case of N = 0, we observe from the above formulae that P is composed

of identical rows, since the transition probability (3.35) is independent of the previous

state st−1|t−1. Indeed, putting the pieces together, we have

P =
1

4















1 + a 1 − a 1 − a 1 + a

1 + a 1 − a 1 − a 1 + a

1 + a 1 − a 1 − a 1 + a

1 + a 1 − a 1 − a 1 + a















. (3.50)

3.2.5 State transition probability matrix (BPSK, N = 1)

The second example problem is for a channel memory N = 1. From (2.50) we have the

channel model [52]

Yt = h1(0)Xt + h1(1)Xt−1 + Vt; (3.51)

from (2.53) we get the DFE estimator

X̂t|t = sign
{(

Yt − h1(1)X̂t−1|t−1

)

h1(0)
}

; (3.52)

and from (3.2) and (2.59) we get the state transition probability

P(St|t = st|t|St−1|t−1 = st−1|t−1) =
1

4

(

1 + x̂t|t sign(µT) erf

( |µT|√
2σT

))

, (3.53)

assuming equiprobable source symbols Xt, that is, P(Xt = xt) = 1
2 for xt ∈ {−1, 1}.
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In (3.53), µT and σT are given from (2.57) and (2.58) by

µT = h2
1(0)xt + h1(0)h1(1)

(

xt−1 − x̂t−1|t−1

)

, and (3.54)

σ2
T = h2

1(0)σ2
v , (3.55)

where σ2
v is the variance of Vt in the channel model (3.51).

The atomic state vector St|t is given from (3.1) as the 4–vector

St|t =















Xt

Xt−1

X̂t|t
X̂t−1|t−1















. (3.56)

With this model, the mapping rules (3.3) and (3.4) for N = 1 are

i =
(xt−1 + 1)

2
23 +

(xt−2 + 1)

2
22 +

(x̂t−1|t−1 + 1)

2
21 +

(x̂t−2|t−2 + 1)

2
20, (3.57)

and

j =
(xt + 1)

2
23 +

(xt−1 + 1)

2
22 +

(x̂t|t + 1)

2
21 +

(x̂t−1|t−1 + 1)

2
20, (3.58)

as illustrated in table 3.5 below, a specialization of table 3.3.

Table 3.5. Storage of consecutive state vectors st−1|t−1 and st|t in words i and j, for the case of

BPSK signalling, channel memory N = 1, and FLSDFE smoothing lag n = 0.

bit position in i element in st−1|t−1 bit position in j element in st|t
3 xt−1 3 xt

2 xt−2 2 xt−1

1 x̂t−1|t−1 1 x̂t|t
0 x̂t−2|t−2 0 x̂t−1|t−1

At time t − 1 there are 24 = 16 state vectors st−1|t−1, indexed by i ∈ {0, . . . , 15}. Simi-

larly, at time t, there are 16 state vectors st|t, indexed by j ∈ {0, . . . , 15}. We note from

table 3.5 that there are two shared values between st−1|t−1 and st|t, namely, xt−1 and

x̂t−1|t−1, and this commonality means P will be sparse, with structural zeros.

Rows of P are referenced sequentially by i ∈ {0, . . . , 15}, with the top row having index

i = 0, while the bottom row has index i = 15. Likewise, columns of P are referenced
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sequentially by j ∈ {0, . . . , 15}, with the leftmost column having index j = 0, while the

rightmost column has index j = 15.

From (3.10) we have P = [PA PB], where PA and PB are given below:

PA =















P
(0)
E P

(0)
F 0 0

P
(0)
E P

(0)
F 0 0

0 0 P
(1)
E P

(1)
F

0 0 P
(1)
E P

(1)
F















and (3.59)

PB =















P
(0)
G P

(0)
H 0 0

P
(0)
G P

(0)
H 0 0

0 0 P
(1)
G P

(1)
H

0 0 P
(1)
G P

(1)
H















. (3.60)

Each submatrix P
(0)
E , . . . , P

(1)
H and 0 is of size 4 × 2, with 0 being a matrix of struc-

tural zeros. From (3.24)–(3.27) and the model (3.51)–(3.58) we have P
(0)
E , . . . , P

(1)
H given

explicitly by

P
(0)
E =

1

4















1 + a 0

1 + a 0

0 1 + b

0 1 + b















, (3.61)

P
(0)
F =

1

4















1 − a 0

1 − a 0

0 1 − b

0 1 − b















, (3.62)

P
(1)
E =

1

4















1 + c 0

1 + c 0

0 1 + a

0 1 + a















, (3.63)

P
(1)
F =

1

4















1 − c 0

1 − c 0

0 1 − a

0 1 − a















, (3.64)
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P
(0)
G =

1

4















1 − a 0

1 − a 0

0 1 − c

0 1 − c















, (3.65)

P
(0)
H =

1

4















1 + a 0

1 + a 0

0 1 + c

0 1 + c















, (3.66)

P
(1)
G =

1

4















1 − b 0

1 − b 0

0 1 − a

0 1 − a















, and (3.67)

P
(1)
H =

1

4















1 + b 0

1 + b 0

0 1 + a

0 1 + a















, (3.68)

where a was given earlier in (3.49), and where b and c are the constants

b = sign {h1(0) (h1(0) + 2h1(1))} erf

( |h1(0) + 2h1(1)|√
2σv

)

, and (3.69)

c = sign {h1(0) (h1(0)− 2h1(1))} erf

( |h1(0) − 2h1(1)|√
2σv

)

. (3.70)

Introduce the abbreviations

a+ =
1

4
(1 + a) , (3.71)

a− =
1

4
(1 − a) , (3.72)

b+ =
1

4
(1 + b) , (3.73)

b− =
1

4
(1 − b) , (3.74)

c+ =
1

4
(1 + c) , and (3.75)

c− =
1

4
(1 − c) . (3.76)
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Then for the case N = 1 we have P given explicitly as follows, putting together the

pieces in (3.10), (3.49) and (3.59)–(3.76):

P =















































































a+ 0 a− 0 0 0 0 0 a− 0 a+ 0 0 0 0 0

a+ 0 a− 0 0 0 0 0 a− 0 a+ 0 0 0 0 0

0 b+ 0 b− 0 0 0 0 0 c− 0 c+ 0 0 0 0

0 b+ 0 b− 0 0 0 0 0 c− 0 c+ 0 0 0 0

a+ 0 a− 0 0 0 0 0 a− 0 a+ 0 0 0 0 0

a+ 0 a− 0 0 0 0 0 a− 0 a+ 0 0 0 0 0

0 b+ 0 b− 0 0 0 0 0 c− 0 c+ 0 0 0 0

0 b+ 0 b− 0 0 0 0 0 c− 0 c+ 0 0 0 0

0 0 0 0 c+ 0 c− 0 0 0 0 0 b− 0 b+ 0

0 0 0 0 c+ 0 c− 0 0 0 0 0 b− 0 b+ 0

0 0 0 0 0 a+ 0 a− 0 0 0 0 0 a− 0 a+

0 0 0 0 0 a+ 0 a− 0 0 0 0 0 a− 0 a+

0 0 0 0 c+ 0 c− 0 0 0 0 0 b− 0 b+ 0

0 0 0 0 c+ 0 c− 0 0 0 0 0 b− 0 b+ 0

0 0 0 0 0 a+ 0 a− 0 0 0 0 0 a− 0 a+

0 0 0 0 0 a+ 0 a− 0 0 0 0 0 a− 0 a+















































































.

(3.77)

3.2.6 Stationary distribution vector

A problem of interest in state space modelling is the determination of the vector ß∞ of

limiting state probabilities, which is the solution to the matrix–vector equation [26, 50]

PTπ∞ = π∞, (3.78)

where P is the state transition probability matrix. No general solution to (3.78) was

found for the filtering–only atomic state space model, due to the intricate structure of

P. We illustrate explicit solutions to the simple cases discussed above, though.

For the memoryless example, with N = 0, we have from (3.50) and (3.78) the matrix–

vector equation

1

4















1 + a 1 + a 1 + a 1 + a

1 − a 1 − a 1 − a 1 − a

1 − a 1 − a 1 − a 1 − a

1 + a 1 + a 1 + a 1 + a





























π0

π1

π2

π3















=















π0

π1

π2

π3















, (3.79)
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with the solution

π∞ =















π0

π1

π2

π3















=
1

4















1 + a

1 − a

1 − a

1 + a















, (3.80)

where a is given in (3.49). For j ∈ {0, 1, 2, 3}, πj in (3.80) is the asymptotic probability

of being in state j, where the state–to–integer mapping (3.40) is detailed in table 3.6

below.

Table 3.6. Mapping of state vector st|t to state index j, for N = 0 and n = 0.

elements of st|t state index

xt x̂t|t j

−1 −1 0

−1 1 1

1 −1 2

1 1 3

From this we obtain, for example, the asymptotic probability of an error as

Pe = π1 + π2 =
1

2
(1 − a) =

1

2

(

1 − erf

( |h1(0)|√
2σv

))

. (3.81)

For the second example problem, with N = 1, from (3.71)–(3.78) we have the following

set of linear equations in the unknowns π0, . . . , π15, the components of π∞:

a+ (π0 + π1 + π4 + π5) = π0, (3.82)

b+ (π2 + π3 + π6 + π7) = π1, (3.83)

a− (π0 + π1 + π4 + π5) = π2, (3.84)

b− (π2 + π3 + π6 + π7) = π3, (3.85)

c+ (π8 + π9 + π12 + π13) = π4, (3.86)

a+ (π10 + π11 + π14 + π15) = π5, (3.87)

c− (π8 + π9 + π12 + π13) = π6, (3.88)

a− (π10 + π11 + π14 + π15) = π7, (3.89)

a− (π0 + π1 + π4 + π5) = π8, (3.90)
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c− (π2 + π3 + π6 + π7) = π9, (3.91)

a+ (π0 + π1 + π4 + π5) = π10, (3.92)

c+ (π2 + π3 + π6 + π7) = π11, (3.93)

b− (π8 + π9 + π12 + π13) = π12, (3.94)

a− (π10 + π11 + π14 + π15) = π13, (3.95)

b+ (π8 + π9 + π12 + π13) = π14, and (3.96)

a+ (π10 + π11 + π14 + π15) = π15. (3.97)

Solving (3.82)–(3.97) for π0, . . . , π15 we obtain

π0 = κ (1 + a) (2 + b + c) , (3.98)

π1 = 2κ (1 − a) (1 + b) , (3.99)

π2 = κ (1 − a) (2 + b + c) , (3.100)

π3 = 2κ (1 − a) (1 − b) , (3.101)

π4 = 2κ (1 − a) (1 + c) , (3.102)

π5 = π0, (3.103)

π6 = 2κ (1 − a) (1 − c) , (3.104)

π7 = π2, and (3.105)

πk = π15−k, k ∈ {8, . . . , 15}, (3.106)

with

κ =
1

2 (4 + b + c − 2a)
, (3.107)

and where a, b and c are given in (3.49), (3.69) and (3.70), respectively.

For j ∈ {0, . . . , 15}, πj in (3.98)–(3.106) is the asymptotic probability of being in state j,

where the states st|t are given in table 3.7 below.
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Table 3.7. Elements of state vector st|t and associated state indices for N = 1.

elements of st|t state index

xt xt−1 x̂t|t x̂t−1|t−1 j

−1 −1 −1 −1 0

−1 −1 −1 1 1

−1 −1 1 −1 2

−1 −1 1 1 3

−1 1 −1 −1 4

−1 1 −1 1 5

−1 1 1 −1 6

−1 1 1 1 7

1 −1 −1 −1 8

1 −1 −1 1 9

1 −1 1 −1 10

1 −1 1 1 11

1 1 −1 −1 12

1 1 −1 1 13

1 1 1 −1 14

1 1 1 1 15

From this we obtain the limiting probability that the state vector st|t will contain two

consecutive errors (x̂t|t 6= xt and x̂t−1|t−1 6= xt−1):

π3 + π6 + π9 + π12 =
(1 − a) (2 − b − c)

2 (4 + b + c − 2a)
. (3.108)

Similarly, the asymptotic probability of no errors is given by

π0 + π5 + π10 + π15 =
(1 + a) (2 + b + c)

2 (4 + b + c − 2a)
; (3.109)

the probability of a previous error and no current error is

π1 + π4 + π11 + π14 =
(1 − a) (2 + b + c)

2 (4 + b + c − 2a)
; (3.110)

and the probability of a current error and no previous error is

π2 + π7 + π8 + π13 =
(1 − a) (2 + b + c)

2 (4 + b + c − 2a)
. (3.111)
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The problem of obtaining a general analytic solution to (3.78) for the filtering–only

atomic state space models must be left open, but we note that for any given channel

model the solution can be worked ‘by hand’, since (3.78) is a set of linear equations,

amenable to solution by standard techniques of linear algebra [49].

3.2.7 Error recovery time (BPSK, N = 0)

A further problem of interest is the determination of the time to recover from an error

[8, 9, 20–22, 24, 39–41, 50, 52, 61]. We will apply Choy and Beaulieu’s definition of error

recovery time R0, which is the first passage time to an ‘error–free’ state from an ‘error–

just–occurred’ state [24]. In the process, some new results are derived, such as the

mean and variance formulae (3.117) and (3.119); connections between the atomic state

space models and some generalizations of the Fibonacci series; and the application of

the theory of integer partitions to recovery time calculations within the context of the

steady–state aggregated model of Choy and Beaulieu [24].

To illustrate, consider the first example problem given in section 3.2.4, this being the

case of BPSK signalling on a linear FIR channel, for filtering only and N = 0. Recall

the previous results in (3.33)–(3.40), and the state transition probability matrix (3.50),

with reference to the definition of parameter a in (3.49). Consecutive states st−1|t−1

and st|t are stored in the words i and j, respectively, where i, j ∈ {0, 1, 2, 3}. Recall the

state–to–integer mapping in table 3.4.

Figure 3.1 is a state transition diagram for the simple case N = 0, with circles denoting

states and arrows showing possible transitions. Error–free states are coloured blue, and

error–just–occurred states are yellow. By an error–free state st|t, we mean one in which

x̂t|t = xt; an error–just–occurred state has x̂t|t 6= xt.

From Choy and Beaulieu’s definition, the error recovery time R0 for this example

would be the first passage time from any error–just–occurred state (yellow) to any

error–free state (blue). Figure 3.1 shows that it is possible to make one or more consecu-

tive filtering errors, where x̂t|t 6= xt, such as the sequence of transitions 1 → 1 → 2 → 2.

The minimum value of R0 is 1, but all values r0 ∈ {1, 2, . . . } are possible. We will com-

pute the probability distribution, mean and variance of R0.

The adjacency matrix A associated with the directed graph in figure 3.1 is
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0

12

3

Figure 3.1. Valid atomic state transitions for BPSK channels with memory N = 0. Yellow states

are ‘error–just–occurred’ states, for which x̂t|t 6= xt; blue states are ‘error–free’ states,

for which x̂t|t = xt.

A =















a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33















=















1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1















, (3.112)

where entry aij shows the number of paths leading from state i to state j [62]. For

the purpose of error recovery time calculation, we make the blue states in figure 3.1

absorbing or terminal states, by disallowing transitions from those states once reached

[50]. With this modification, we have the revised graph given in figure 3.2.

With this change, we have the modified adjacency matrix A∗, where

A∗ =















0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0















. (3.113)
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0

12

3

Figure 3.2. Valid atomic state transitions for BPSK channels with memory N = 0. This figure is

similar to 3.1, except that we have made the error–free (blue) states terminal states, by

preventing transitions from them.

The k–th power of A∗ gives the number of paths, of exactly k steps, from state i to state

j [17]. With A∗ in (3.113), for k ∈ {1, 2, . . . } we have

(A∗)k = 2k−1















0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0















. (3.114)

We can now derive the probability distribution of R0. From (3.49) and (3.50) we find

that the probability of going from any of the yellow states to any of the blue states

in figure 3.2 in a single step is the same value 1
4(1 + a) for each pair of starting states

i ∈ {1, 2} and finishing states j ∈ {0, 3}. Similarly, the probability of going from

any yellow state i ∈ {1, 2} to any yellow state j ∈ {1, 2} in a single step is 1
4(1 − a).

Assume equal a priori probabilities 1
2 of being in states 1 and 2. With pi,j being the

entries of the state transition probability matrix P in (3.50), where i, j ∈ {0, 1, 2, 3}, by
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direct calculation we have

P(R0 = 1) =
1

2
× p1,0 +

1

2
× p1,3 +

1

2
× p2,0 +

1

2
× p2,3

=
1

2
× 1

4
(1 + a) +

1

2
× 1

4
(1 + a) +

1

2
× 1

4
(1 + a) +

1

2
× 1

4
(1 + a)

=
1

2
(1 + a), (3.115)

and

P(R0 = 2) =
1

2
× p1,1 × p1,0 +

1

2
× p1,2 × p2,0 +

1

2
× p1,1 × p1,3 +

1

2
× p1,2 × p2,3

+
1

2
× p2,1 × p1,0 +

1

2
× p2,2 × p2,0 +

1

2
× p2,1 × p1,3 +

1

2
× p2,2 × p2,3

=
1

2
× 1

4
(1 − a) × 1

4
(1 + a) +

1

2
× 1

4
(1 − a) × 1

4
(1 + a)

+
1

2
× 1

4
(1 − a) × 1

4
(1 + a) +

1

2
× 1

4
(1 − a) × 1

4
(1 + a)

+
1

2
× 1

4
(1 − a) × 1

4
(1 + a) +

1

2
× 1

4
(1 − a) × 1

4
(1 + a)

+
1

2
× 1

4
(1 − a) × 1

4
(1 + a) +

1

2
× 1

4
(1 − a) × 1

4
(1 + a)

=
1

4
(1 − a)(1 + a). (3.116)

In general, for r0 ∈ {1, 2, . . . }, we have the probability distribution

P(R0 = r0) =
1

2r0
(1 − a)r0−1(1 + a), (3.117)

where a is given in (3.49). Using MapleTM we obtain for the mean and variance of the

recovery time statistic R0 the following results:

E(R0) =
∞

∑
r0=1

r0P (R0 = r0)

=
∞

∑
r0=1

r0
1

2r0
(1 − a)r0−1 (1 + a)

=
2

1 + a
, (3.118)
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and

E

(

(R0 −E (R0))
2
)

=
∞

∑
r0=1

(

r0 −
2

1 + a

)2

P (R0 = r0)

=
∞

∑
r0=1

(

r0 −
2

1 + a

)2

r0
1

2r0
(1 − a)r0−1(1 + a)

=
1

2

(

1 − 2

1 + a

)2

(1 + a)

× 3F2

(

1,
2a

1 + a
,

2a

1 + a
;
−1 + a

1 + a
,
−1 + a

1 + a
;

1

2
(1 − a)

)

, (3.119)

where 3F2(.) is a generalized hypergeometric function [62].

The results in (3.117)–(3.119) are new, not appearing in the main literature on error

recovery times of DFEs [8–10, 20–22, 24, 28, 29, 39–41, 51, 52, 61].

3.2.8 Error recovery time (BPSK, N = 1)

For the second example, given in section 3.2.5, this being the case of BPSK signalling

on a linear FIR channel of memory N = 1, and filtering only (n = 0), recall the channel

model (3.51); the DFE estimator (3.52); the state transition probability (3.53), together

with the definitions (3.54) and (3.55); the mapping rules (3.57) and (3.58) and table 3.5;

and the state transition probability matrix (3.77), with reference to (3.71)–(3.76), and

the quantities a, b and c of (3.49), (3.69) and (3.70), respectively.

We have 24 = 16 state vectors, indexed by i, j ∈ {0, . . . , 15}, where i is the index of

a ‘from’ state st−1|t−1 and j is the index of a ‘to’ state st|t. Of note are the two shared

values between st−1|t−1 and st|t, namely, xt−1 and x̂t−1|t−1.

Following Choy and Beaulieu [24], partition the set of states st|t ∈ A4
2 into mutually

disjoint subsets Φ0, Φ1 and Γ. Γ is the set of ‘error–free’ states st|t, those in which there

are no filtering errors, so that x̂t|t = xt and x̂t−1|t−1 = xt−1. Φ0 is the set of ‘error–just–

occurred’ states, for which x̂t|t 6= xt and x̂t−1|t−1 ∈ A2 (we don’t care about the values

of x̂t−1|t−1 and xt−1). Lastly, Φ1 is the set of ‘partial–recovery’ states, for which x̂t|t = xt

and x̂t−1|t−1 6= xt−1.

Table 3.8 below enumerates the state vector st|t, showing the elements xt, xt−1, x̂t|t and

x̂t−1|t−1, the state indices j ∈ {0, . . . , 15} from the state–to–integer mapping rule (3.58),

and the subset Φ0, Φ1 or Γ to which the state belongs. The quantities et|t and et−1|t−1
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are current and previous filtering errors, defined by

et|t = xt − x̂t|t. (3.120)

Table 3.8. Allocation of atomic states st|t to subsets Φ0, Φ1 and Γ for N = 1 and n = 0. St

denotes an element of {Φ0, Φ1, Γ}, following Choy and Beaulieu [24].

From this table a directed graph of one–step transitions is provided in figure 3.3 below,

which uses state indices to label the states. For convenience and brevity we shall use

state indices in place of the states themselves, and write

Γ = {0, 5, 10, 15}, (3.121)

Φ0 = {2, 3, 6, 7, 8, 9, 12, 13}, and (3.122)

Φ1 = {1, 4, 11, 14}, (3.123)

with Γ ∪ Φ0 ∪ Φ1 = {0, . . . , 15}.

Following the definition of Choy and Beaulieu [24], error recovery begins at any state in

Φ0 and ends at any state in Γ. We are interested in the recovery time statistic R0, defined
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3.2 Atomic State Space Models (Filtering only)

as the number of discrete–time steps required to first reach a state in Γ, commencing

from a state in Φ0.

The adjacency matrix associated with the directed graph of figure 3.3 is given by

A =















































































1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1















































































. (3.124)

The mirror symmetry of figure 3.3 about the dashed line is manifested in A through

ai,j = a15−i,15−j, (3.125)

where ai,j is the element of A in row i and column j, with i, j ∈ {0, . . . , 15}. This relation

follows from figure 3.3 by exchanging states k and 15 − k, where k ∈ {0, . . . , 15}.

Since we are interested in the recovery time, we modify figure 3.3 so that all states in Γ

are terminal. The modified directed graph is given in figure 3.4.
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Figure 3.3. Atomic state transitions for BPSK channels with memory N = 1. Blue states st|t are

‘error–free’ states, with x̂t|t = xt and x̂t−1|t−1 = xt−1; yellow states are ‘error–just–

occurred’ states, with x̂t|t 6= xt; and grey states are intermediate states, with x̂t|t = xt

and x̂t−1|t=1 6= xt−1. Ignoring the state indexes 0, . . . , 15, note that the directed graph

has topological mirror symmetry about the vertical dashed line.
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Figure 3.4. Atomic state transitions for BPSK channels with memory N = 1. This is a modification

of figure 3.3, where states in Γ are now terminal states.
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The adjacency matrix associated with the modified directed graph in figure 3.4 is now

A∗, derived from (3.124) by zeroing out rows of A with row index i ∈ Γ, viz.:

A∗ =















































































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0















































































. (3.126)

The underlined entries 0 in (3.126) mark the start and end states i ∈ Φ0 and j ∈ Γ that

are of interest in calculation of the recovery time R0. We note that each marked entry is

0, meaning that there are no 1–step paths from any (yellow) state i ∈ Φ0 to any (blue)

state j ∈ Γ, as figure 3.4 clearly shows. Thus we have the first term in the probability

distribution of R0 for N = 1 given by

P(R0 = 1) = 0. (3.127)
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Taking the square of A∗ gives a matrix of the number of 2–paths that begin in state i

and end in state j [17]. Carrying out the calculation gives

(

A∗)2
=


























































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
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





0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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
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








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








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

. (3.128)

Each underlined entry 1 in (3.128) shows that there is a single path of 2 steps connecting

the corresponding states i ∈ Φ0 and j ∈ Γ, such as 2 → 11 → 15. Assuming the a priori

probability of being in each of the eight starting states i ∈ Φ0 is 1
8 , and referring to

the state transition probabilities in (3.77), with (3.49), (3.69), (3.70) and (3.71)–(3.76), we

compute the second term P(R0 = 2) in the probability distribution of R0 for N = 1 as

follows:

P(R0 = 2) =
1

8
(1 + a)(2 + b + c). (3.129)

Taking higher powers of A∗ in (3.126), we find that the underlined entries all have the

same value, as was the case in (3.128), meaning that there is the same number of k–

paths between any pair of starting and ending states i ∈ Φ0 and j ∈ Γ, respectively,

where k ∈ {1, 2, . . . }. Indeed, carrying out the operations, we note that the sequence

of identical entries for matrix powers k ∈ {1, 2, . . . } is

0, 1, 2, 8, 24, 80, 256, 832, 2688, 8704, 28160, 91136, 294912, 954368, 3088384, (3.130)

and so on.
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By entering the partial sequence (3.130) into Superseeker [58], a computer search of

published integer sequences revealed a match with the Horadam (0, 1, 4, 2) sequence

[33], given by the recursion

ak+2 = 2ak+1 + 4ak, (3.131)

where k ≥ 1, with the initial conditions a1 = 0 and a2 = 1. Horadam’s sequence is a

generalization of the Fibonacci sequence, which satisfies the recurrence relation

bk+2 = bk+1 + bk, (3.132)

with the same initial conditions b1 = 0 and b2 = 1.

Generalizing the observation made above, we have:

Proposition 3.2.1. For any pair of starting and finishing states i ∈ Φ0 and j ∈ Γ, respectively,

ak in (3.131) gives the number of k–paths to error recovery for the atomic state space model in

figure 3.4.

By direct calculation, the next few terms in the distribution of R0 for N = 1 are

P(R0 = 3) =
1

32
(1 + a)(2 + b + c)(2 − b − c), (3.133)

P(R0 = 4) =
1

128
(1 + a)(2 + b + c)

× (b2 − 2ba + 2bc − 2b − 2ac − 4a + 8 + c2 − 2c), (3.134)

and

P(R0 = 5) =
1

512
(1 + a)(2 + b + c)(2 − b − c)

× (b2 − 4ba + 2bc − 4ac − 8a + 12 + c2). (3.135)

No closed–form expression was obtained for general r0 ∈ {2, 3, . . . } with N = 1.

Rather, we have the following series expressions for the terms in the probability distri-

bution of R0, with πk1
being the a priori probability of initial state k1 ∈ Φ0, and where

pki,kj
is the probability of making a 1–step transition from state ki to state kj:

P(R0 = 2) = ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Γ

πk1
pk1 ,k2

pk2,k3
, (3.136)
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P(R0 = 3) = ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ1

∑
k4∈Γ

πk1
pk1,k2

pk2,k3
pk3 ,k4

, (3.137)

P(R0 = 4) = ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ0

∑
k4∈Φ1

∑
k5∈Γ

πk1
pk1,k2

pk2,k3
pk3,k4

pk4,k5

+ ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Φ0

∑
k4∈Φ1

∑
k5∈Γ

πk1
pk1,k2

pk2,k3
pk3,k4

pk4,k5
, (3.138)

P(R0 = 5) = ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ0

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Γ

πk1
pk1,k2

pk2,k3
pk3 ,k4

pk4,k5
pk5,k6

+ ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ1

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Γ

πk1
pk1 ,k2

pk2,k3
pk3,k4

pk4 ,k5
pk5,k6

+ ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Φ0

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Γ

πk1
pk1 ,k2

pk2,k3
pk3,k4

pk4 ,k5
pk5,k6

,

(3.139)

and so on, with the number of terms in (3.136)–(3.139) being the first few terms 1, 1, 2,

3 of the Fibonacci series [62]. This pattern was observed to follow for more terms than

those listed above, and we formalize this observation as follows:

Proposition 3.2.2. The number of multi–sum terms in the series beginning (3.136)–(3.139) is

given by the Fibonacci sequence 1, 1, 2, 3, 5, 8, . . . .

Redraw figure 3.4 by grouping atomic states according to (3.121)–(3.123). This gives

figure 3.5, shown below.

Figure 3.5 ignores the individual states {0, . . . , 15} and focuses instead on the classes to

which those states belong. We see from the figure that there is a single path of length

2 connecting a state in class Φ0 (the error–just–occurred states) and a state in class Γ

(the error–free states). This gives the single triple sum in (3.136), which is a sum over

the individual states in classes Φ0, Φ1 and Γ, conditioned by the a priori probability of

being in each starting state k1 in Φ0. We can collectively label all the individual state

2–paths, such as 2 → 1 → 0 and 6 → 11 → 15, as Φ0 → Φ1 → Γ.

Similarly, from figure 3.5 we observe that there is a single 3–step path from Φ0 to Γ,

which we denote by the shorthand Φ0 → Φ0 → Φ1 → Γ. This stands for the collection

of all atomic 3–paths that start in a state k1 ∈ Φ0, transition to a second (possibly

the same) state k2 ∈ Φ0, then transition to a state k3 ∈ Φ1, and finally end in a state

k4 ∈ Γ; an example of this class of error–recovery sequence is 12 → 6 → 11 → 15.
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Φ0 Φ1 Γ

Figure 3.5. Figure 3.4 with the grouping of atomic states given by (3.121)–(3.123).

The single quadruple sum in (3.137) covers the totality of all 3–step paths described by

Φ0 → Φ0 → Φ1 → Γ.

Considering 4–paths now, we note from figure 3.5 that there are two possible classes of

error–recovery sequences, viz. Φ0 → Φ0 → Φ0 → Φ1 → Γ and Φ0 → Φ1 → Φ0 →
Φ1 → Γ. Hence equation (3.138) has two distinct five–sum terms, one covering each

class of atomic state path sequence. Continuing the analysis, we observe the Fibonacci

sequence as given in proposition (3.2.2).

3.2.9 Error recovery time (BPSK, N ≥ 0)

The results of section 3.2.8 generalize for BPSK signalling on channels of memory

N ≥ 0. Following Choy and Beaulieu [24], group atomic states st|t of (3.1) into mutu-

ally disjoint subsets Φ0, . . . , ΦN , Γ, whose union is {0, . . . , 22N+2 − 1}. Note that these

states are aggregations of atomic states, but they do not form a finite–state Markov pro-

cess. This point will be discussed further in section 3.4. The convention we followed

above, and that we shall maintain below, is that of speaking synonymously about a set,

Φ0 say, as being either a subset of states st|t ∈ A2N+2
2 or a matching subset of state in-

dices, recalling the state–to–integer mapping in (3.3) and (3.4). We have the following
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Φ0 Φ1 • • • ΦN−1 ΦN Γ

Figure 3.6. Error recovery for general BPSK channels of memory N ≥ 0.

sets of states:

Φ0 = {st|t : x̂t|t 6= xt}, (3.140)

...

Φk = {st|t : x̂t|t = xt, . . . , x̂t−k+1|t−k+1 = xt−k+1, x̂t−k|t−k 6= xt−k}, (3.141)

...

ΦN = {st|t : x̂t|t = xt, . . . , x̂t−N+1|t−N+1 = xt−N+1, x̂t−N|t−N 6= xt−N}, (3.142)

and

Γ = {st|t : x̂t|t = xt, . . . , x̂t−N|t−N = xt−N}. (3.143)

Φk is the set of atomic states with k ∈ {0, . . . , N} consecutive error–free estimates,

counting backwards from time t, and Γ is the set of ‘error–free’ atomic states. Φ0 is the

‘error–just–occurred’ state, and Φ1, . . . , ΦN are sets of ‘partial–recovery’ states.

According to the definition used by Choy and Beaulieu [24], error recovery starts at an

atomic state i ∈ Φ0 and ends at an atomic state j ∈ Γ, after a minimum of N + 1 steps.

This is shown in figure 3.6, which generalizes figure 3.5.

Using a computer for rapid enumeration, it was observed that the number of distinct

k–step paths from a given atomic state i ∈ Φ0 to a given atomic state j ∈ Γ followed a

recurrence relation that generalizes Horadam’s (0,1,4,2) sequence (3.131). This result,

obtained by entering partial sequences into Superseeker [58], appears to be new in the

literature on DFE error propagation.

Proposition 3.2.3. For N ≥ 0, BPSK signalling, and filtering only (n = 0), the number of

k–step paths from a given atomic state i ∈ Φ0 to a given atomic state j ∈ Γ follows a recurrence
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Φ0 Φ1 Φ2 Φ3 Φ4 Γ

Figure 3.7. Error recovery for general BPSK channels of memory N = 4.

relation that generalizes Horadam’s (0,1,4,2) sequence (3.131), viz.

ak+N+1 =
N+1

∑
l=1

2lak+N+1−l, (3.144)

with initialization conditions a1 = · · · = aN = 0 and aN+1 = 1.

Moreover, it was observed that there was a generalization of the Fibonacci series for

N ≥ 0, analogous to the Fibonacci series resulting from (3.136)–(3.139) for N = 1:

Proposition 3.2.4. The number of distinct multi–sum terms in the series of probabilities

P(R0 = r0) follows a generalized Fibonacci series, defined by the (N + 1)–term linear re-

currence relation [62]

bk+N+1 =
N+1

∑
l=1

bk+N+1−l, (3.145)

with initialization conditions b1 = · · · = bN = 0 and bN+1 = 1, which is simply (3.144) with

constants 1 instead of 2l.

For example, with N = 4, proposition 3.2.3 is that the number of k–step paths to error

recovery between pairs i ∈ Φ0 and j ∈ Γ of atomic states is given by

ak+5 = 2ak+4 + 4ak+3 + 8ak+2 + 16ak+1 + 32ak, (3.146)

with initialization conditions a1 = a2 = a3 = a4 = 0 and a5 = 1, where k ≥ 1. This

sequence begins 0, 0, 0, 0, 1, 2, 8, 32, 128, 512, 1984, 7808, 30720, 120832, 475136, ... and

we observe from figure 3.7 that the minimum recovery time is 5 time steps.

Continuing with this example we see that proposition 3.2.4 states that the number of

distinct terms in the sums for P(R0 = r0) will be given by the generalized Fibonacci

series

bk+5 = bk+4 + bk+3 + bk+2 + bk+1 + bk, (3.147)
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with initialization conditions b1 = b2 = b3 = b4 = 0 and b5 = 1, where k ≥ 1. This

sequence begins 0, 0, 0, 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, ... so that the distribution

of R0 begins as P(R0 = 1) = · · · = P(R0 = 4) = 0, and continues with

P(R0 = 5) = ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Φ2

∑
k4∈Φ3

∑
k5∈Φ4

∑
k6∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
, (3.148)

P(R0 = 6) = ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ1

∑
k4∈Φ2

∑
k5∈Φ3

∑
k6∈Φ4

∑
k7∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

, (3.149)

P(R0 = 7) = ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ0

∑
k4∈Φ1

∑
k5∈Φ2

∑
k6∈Φ3

∑
k7∈Φ4

∑
k8∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

pk7,k8

+ ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Φ0

∑
k4∈Φ1

∑
k5∈Φ2

∑
k6∈Φ3

∑
k7∈Φ4

∑
k8∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

pk7,k8
, (3.150)

P(R0 = 8) = ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ0

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Φ2

∑
k7∈Φ3

∑
k8∈Φ4

∑
k9∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

pk7,k8
pk8,k9

+ ∑
k1∈Φ0

∑
k2∈Φ0

∑
k3∈Φ1

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Φ2

∑
k7∈Φ3

∑
k8∈Φ4

∑
k9∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

pk7,k8
pk8,k9

+ ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Φ0

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Φ2

∑
k7∈Φ3

∑
k8∈Φ4

∑
k9∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

pk7,k8
pk8,k9

+ ∑
k1∈Φ0

∑
k2∈Φ1

∑
k3∈Φ2

∑
k4∈Φ0

∑
k5∈Φ1

∑
k6∈Φ2

∑
k7∈Φ3

∑
k8∈Φ4

∑
k9∈Γ

πk1

× pk1,k2
pk2,k3

pk3,k4
pk4,k5

pk5,k6
pk6,k7

pk7,k8
pk8,k9

, (3.151)

and so on.

For general channel memory N ≥ 1, BPSK signalling and filtering only, no expressions

in closed form were found for the probability distribution of the error recovery time

Page 68



Chapter 3 State Space Models

R0. It is not expected that any exist, relating to the fact that there are no explicit solu-

tions to both of the linear recurrence relations (3.144) and (3.145) for N > 4. Closed

form solutions are known for the Fibonacci numbers (bk+2 = bk+1 + bk), the tribonacci

numbers (generalized Fibonacci bk+3 = bk+2 + bk+1 + bk) and the tetranacci numbers

(generalized Fibonacci bk+4 = bk+3 + bk+2 + bk+1 + bk), from the roots of the polyno-

mials P2(x) = 1 − x − x2, P3(x) = 1 − x − x2 − x3 and P4(x) = 1 − x − x2 − x3 − x4,

respectively [62]. For instance, an explicit formula for the elements of the tribonacci

sequence {bk} is given for k ∈ {1, 2, . . . } by











3

{

1
3

(

19 + 3
√

33
)1/3

+ 1
3

(

19 − 3
√

33
)1/3

+ 1
3

}k
(

586 + 102
√

33
)1/3

(

586 + 102
√

33
)2/3

+ 4 − 2
(

586 + 102
√

33
)1/3











, (3.152)

where [x] denotes the nearest integer function [62].

3.2.10 Error recovery time and the theory of integer partitions

There is an interesting connection, however, between the atomic state space models

of this section and the theory of integer partitions [62]. These connections appear not

to have been made elsewhere in the literature on DFE error propagation. An integer

partition is a way of writing an integer as a sum of positive integers, without respect to

order, and is usually written in descending order. For example, the partitions of 5 are

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1. (3.153)

Partitions are obtained as solutions to the Diophantine equation [62]

1j1 + 2j2 + 3j3 + · · ·+ njn = n, (3.154)

as illustrated in table 3.9 for n = 5.
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Table 3.9. The partitions of 5 as solutions to (3.154).

j1 j2 j3 j4 j5

0 0 0 0 1

1 0 0 1 0

0 1 1 0 0

2 0 1 0 0

1 2 0 0 0

3 1 0 0 0

5 0 0 0 0

The partition function P(n) is the number of unrestricted partitions of n, so that P(5) = 7

in the example above. Related to P(n) is the function P(n, k), which gives the number

of integer partitions of n for which the largest is exactly k. There is a beautiful exact

formula for P(n), given by Rademacher in 1937 [62], viz.

P(n) =
1

π
√

2

∞

∑
k=1

Ak(n)
√

k
d

dn



















sinh

(

π
k

√

2
3

(

n − 1
24

)

)

√

n − 1
24



















, (3.155)

where

Ak(n) =
k

∑
h=1

δGCD(h,k),1exp

{

πi
k−1

∑
j=1

j

k

(

hj

k
−
⌊

hj

k

⌋

− 1

2

)

− 2πihn

k

}

, (3.156)

δm,n is the Kronecker delta, GCD(m, n) is the greatest common divisor function, and

⌊x⌋ is the floor function. Exact formulae for the related partition function P(n, k) do

not appear to exist, however. Rather, there is a recurrence relation

P(n, k) = P(n − 1, k − 1) + P(n − k, k), (3.157)

with P(n, k) = 0 for k > n, P(n, n) = 1, and P(n, 0) = 0. The recurrence relation (3.157)

can be solved for small k to give

P(n, 1) = 1, (3.158)

P(n, 2) =

[

1

2
t2(n)

]

=

⌊

1

2
n

⌋

, (3.159)

P(n, 3) =

[

1

12
t2
3(n)

]

=

[

1

12
n2

]

, and (3.160)

P(n, 4) =











[

1
144 t3

4(n) − 1
48 t4(n)

]

for n even
[

1
144 t3

4(n) − 1
12 t4(n)

]

for n odd,
(3.161)
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where

tk(n) = n +
1

4
k(k − 3), (3.162)

and [x] is the nearest integer function [62]. For the example partition above, we note

that P(5, 2) = 2, for instance, as there are two integer partitions of 5 with a maximum

addend of exactly 2, viz. 5 = 2 + 2 + 1 and 5 = 2 + 1 + 1 + 1.

Exploring the connection with integer partitions, consider the set of states

S = {Φ0, . . . , ΦN, Γ}, (3.163)

where Φ0, . . . , ΦN, Γ were given earlier by (3.140)–(3.143). Each state Φ0, . . . , ΦN , Γ in

the set S is an aggregation of one or more atomic states st|t, and we note that

Φ0 ∪ · · · ∪ ΦN ∪ Γ = S. (3.164)

Note once again that these states are those of Choy and Beaulieu [24], and that they

do not form a finite–state Markov process (see section 3.4 for further discussion of

aggregated state space models).

We can describe the dynamics of the atomic state space model by a sequence {St} of

states from S, although we lose some information this way, through discarding the

individual atomic states that we pass through. {St} is not a Markov chain, whereas

{st|t} is, as we show in section 3.4. Suppose that there exist the steady–state transition

probabilities [24]

αi = lim
t→∞

P(St = Φi+1|St−1 = Φi), i ∈ {0, . . . , N − 1}, and (3.165)

αN = lim
t→∞

P(St = Γ|St−1 = ΦN). (3.166)

Figure 3.8 gives the steady–state transition diagram for a general channel of memory

N = 4. We do not show transitions from state Γ, to emphasize its role as an absorbing

state for the purpose of error recovery time calculations.

From (3.140)–(3.143) we have the state definitions for N = 4 given by

Φ0 = {st|t : x̂t|t 6= xt}, (3.167)

Φ1 = {st|t : x̂t|t = xt, x̂t−1|t−1 6= xt−1}, (3.168)

Φ2 = {st|t : x̂t|t = xt, x̂t−1|t−1 = xt−1, x̂t−2|t−2 6= xt−2}, (3.169)

Φ3 = {st|t : x̂t|t = xt, x̂t−1|t−1 = xt−1, x̂t−2|t−2 = xt−2, x̂t−3|t−3 6= xt−3}, (3.170)

Φ4 = {st|t : x̂t|t = xt, . . . , x̂t−3|t−3 = xt−3, x̂t−4|t−4 6= xt−4}, and (3.171)

Γ = {st|t : x̂t|t = xt, . . . , x̂t−4|t−4 = xt−4}. (3.172)
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Φ0 Φ1 Φ2 Φ3 Φ4 Γ

1 − α0 α0

1 − α1

α1

1 − α2

α2

1 − α3

α3

1 − α4

α4

Figure 3.8. Steady–state transition diagram for Volterra communication channels using BPSK sig-

nalling and with memory N = 4. The aggregate states Φ0, . . . , Φ4, Γ are given by

(3.167)–(3.172). This diagram is similar to figure 3.7 except that the probabilities αi

are steady–state probabilities, given by (3.165) and (3.166).

To illustrate the connection between integer partitions and the atomic state space mod-

els of this section, consider the above example with N = 4 and focus on error recovery

sequences with a recovery time of r0 = 10. Note from (3.147) with k = 10 that there are

16 distinct state–path sequences, as table 3.10 shows. For convenience in the discussion

to follow, the sequences in table 3.10 are indexed by l ∈ {1, . . . , 16}.

Table 3.10. State–path sequences from figure 3.8 that have a recovery time of r0 = 10.

l St St+1 St+2 St+3 St+4 St+5 St+6 St+7 St+8 St+9 St+10

1 Φ0 Φ0 Φ0 Φ0 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

2 Φ0 Φ0 Φ0 Φ0 Φ1 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

3 Φ0 Φ0 Φ0 Φ1 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

4 Φ0 Φ0 Φ0 Φ1 Φ2 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

5 Φ0 Φ0 Φ1 Φ0 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

6 Φ0 Φ0 Φ1 Φ0 Φ1 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

7 Φ0 Φ0 Φ1 Φ2 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

8 Φ0 Φ0 Φ1 Φ2 Φ3 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

Continued on next page
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Table 3.10 – concluded from previous page

l St St+1 St+2 St+3 St+4 St+5 St+6 St+7 St+8 St+9 St+10

9 Φ0 Φ1 Φ0 Φ0 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

10 Φ0 Φ1 Φ0 Φ0 Φ1 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

11 Φ0 Φ1 Φ0 Φ1 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

12 Φ0 Φ1 Φ0 Φ1 Φ2 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

13 Φ0 Φ1 Φ2 Φ0 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

14 Φ0 Φ1 Φ2 Φ0 Φ1 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

15 Φ0 Φ1 Φ2 Φ3 Φ0 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

16 Φ0 Φ1 Φ2 Φ3 Φ4 Φ0 Φ1 Φ2 Φ3 Φ4 Γ

Each sequence in table 3.10 begins with an atomic state st|t in the class of error–just–

occurred states Φ0, and ends at an atomic state st+10|t+10 in the class of error–free states

Γ. Moreover, note that each sequence ends with the maximal–length subsequence of

error–free transitions, Φ0 → Φ1 → Φ2 → Φ3 → Φ4 → Γ. Prior to commencing

this final error–recovery run, however, we note the occurrence of one or more filtering

errors. Each error marks the end of a ‘false start’ with a return to Φ0.

Use the term cycle to refer to a sequence of transitions that begin at Φ0, end at Φ0, and

have an error–free run in between. Let the cycle Φ0 → Φ1 → · · · → Φm−1 → Φm → Φ0

be denoted by cm, where m ∈ {0, . . . , N} is the length of the cycle. In sequence 1, for

example, we see that cycle c0 occurs 5 times in a row. Table 3.11 below gives the cycle,

or sequence of cycles, for each of the 16 state–path sequences listed in table 3.10. Each

cycle sequence is read with time increasing left–to–right.

Table 3.11. Cycle(s) of the state–path sequences in table 3.10.

l cycle(s)

1 c0 c0 c0 c0 c0

2 c0 c0 c0 c1

Continued on next page
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Table 3.11 – concluded from previous page

l cycle(s)

3 c0 c0 c1 c0

4 c0 c0 c2

5 c0 c1 c0 c0

6 c0 c1 c1

7 c0 c2 c0

8 c0 c3

9 c1 c0 c0 c0

10 c1 c0 c1

11 c1 c1 c0

12 c1 c2

13 c2 c0 c0

14 c2 c1

15 c3 c0

16 c4

Observe that for N = 4 the minimum error–recovery time is 5 time steps, and so for

r0 = 10 there are 5 time steps in excess of this. Table 3.11 illustrates that these steps

are taken up by permutations of one or more cycles chosen with replacement from

{c0, . . . , cN}. Each cycle cm adds m + 1 time steps to the recovery time, and the selection

of cycles is constrained to have a sum of exactly 5 time steps. We can thus obtain the

number of combinations of cycles in table 3.11 from the constrained partition numbers

P(5, 1), . . . , P(5, 4) of (3.158)–(3.162):

P(5, 1) = 1, (3.173)

P(5, 2) =

⌊

1

2
× 5

⌋

= 2, (3.174)

P(5, 3) =

[

1

12
× 52

]

= 2, and (3.175)

P(5, 4) =

[

1

144
(5 + 1)3 − 1

12
(5 + 1)

]

= 1. (3.176)

There is a single partition of 5 with a maximum addend of 1, as (3.173) shows, and that

is 5 = 1 + 1 + 1 + 1 + 1. This gives the cycle sequence c0c0c0c0c0 at row l = 1 of table

3.11. From (3.174) we have two distinct partitions of 5 with maximum addend exactly

2, these being 5 = 2 + 2 + 1 and 5 = 2 + 1 + 1 + 1. The first partition, 5 = 2 + 2 + 1,
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gives the cycle sequences c0c1c1, c1c0c1 and c1c1c0 at rows 6, 10 and 11, respectively.

Observe that there are 3!/(1! 2!) = 3 of these cycle sequences, this being the number

of visually distinct permutations of the string c0c1c1. Similarly, there are 4 distinct

permutations of c0c0c0c1, given in rows 2, 3, 5 and 9 of table 3.11.

Taking into account the state–path sequences in table 3.11, and the steady–state tran-

sition probabilities in figure 3.8, we have the following result for the probability of the

(steady–state) recovery time R0 being exactly 10 time steps:

P (R0 = 10) = {α0α1α2α3 (1 − α4) + 2 (1 − α0) α0α1α2 (1 − α3)

+ 2α2
0 (1 − α1) α1 (1 − α2) + 3 (1 − α0)

2 α0α1 (1 − α2)

+ 3 (1 − α0) α2
0 (1 − α1)

2 + 4 (1 − α0)
3 α0 (1 − α1)

+ (1 − α0)
5}

4

∏
i=0

αi. (3.177)

No general closed form was found for the probability distribution of R0 using the

approach outlined above, however, partly because the constrained partition function

P(n, k) has no closed form. Using a different approach, however, Choy and Beaulieu

derived a closed form solution for R0 for a related state space model [24].

3.3 Atomic State Space Models (Smoothing only)

Sections 3.3.1–3.3.3 parallel the treatment in sections 3.2.1–3.2.3, except that here we

consider the smoothing–only case of FLSDFE operation, for channel memory N ∈
{1, 2, . . . } and FLSDFE smoothing lag n ∈ {1, . . . , N}. Interesting further work would

be to explore analogous results to those in sections 3.2.4–3.2.10. Difficulties were en-

countered in this attempted generalization due to the fact that the FLSDFE algorithm

presented in this thesis does not feed back smoothed errors x̂t−n|t, at lags n > 0.

Although more algebraically involved, a smoothing–fed–back variant of the FLSDFE

might provide a more consistent algorithm to analyze, and we leave that work for the

future. More will be said on variant FLSDFE algorithms in section 5.

3.3.1 Model definition

For N ≥ 1 and n ∈ {1, . . . , N} we have the smoothed FLSDFE output X̂t−n|t. Extending

the model (3.1), which was in turn based on a similar model used by Kennedy and
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Anderson [39], we introduce a smoothing–only atomic state space model with state

vector St−n|t, where

St−n|t =































Xt

...

Xt−N−n

X̂t|t
...

X̂t−N−n|t−N−n

X̂t−n|t































. (3.178)

X̂t−n|t depends upon the symbols Xt, . . . , Xt−N−n, and these occupy the top N + n + 1

elements of St−n|t. The next N + n + 1 elements are filled with the corresponding fil-

tered outputs X̂t|t, . . . , X̂t−N−n|t−N−n. Note that X̂t−n|t depends on all of these filtered

outputs with the exception of X̂t−n|t−n. We include X̂t−n|t−n in St−n|t for continuity,

as X̂t−2n|t−n, . . . , X̂t−n−1|t−1, X̂t−n+1|t+1, . . . , X̂t−n+N|t+N all depend upon X̂t−n|t−n.

Lastly, in element 2N + 2n + 3 is the FLSDFE smoothed output X̂t−n|t itself.

Appendix I shows that for m ∈ Z+ the state transition probability is given by

P(St−n|t = st−n|t|St−n−1|t−1 = st−n−1|t−1 ∩ · · · ∩ St−n−m|t−m = st−n−m|t−m)

= P(St−n|t = st−n|t|St−n−1|t−1 = st−n−1|t−1)

= P(Xt = xt)P(X̂t|t = x̂t|t|Xt = xt ∩ · · · ∩ Xt−N = xt−N

∩ X̂t−1|t−1 = x̂t−1|t−1 ∩ · · · ∩ X̂t−N|t−N = x̂t−N|t−N)

× P(X̂t−n|t = x̂t−n|t|Xt = xt ∩ · · · ∩ Xt−N−n = xt−N−n ∩ X̂t|t = x̂t|t

∩ · · · ∩ X̂t−n+1|t−n+1 = x̂t−n+1|t−n+1 ∩ X̂t−n−1|t−n−1 = x̂t−n−1|t−n−1

∩ · · · ∩ X̂t−N−n|t−N−n = x̂t−N−n|t−N−n). (3.179)

The first two lines of (3.179) show that St−n|t is a first–order Markov process. The first

probability term on the third line of (3.179), P(Xt = xt), is the a priori probability of

source symbols Xt; the second and third terms give the conditional probabilities of

filtered output X̂t|t and smoothed output X̂t−n|t, respectively.

The state space model described by the state vector definition (3.178), the state transi-

tion probability (3.179), and the FLSDFE algorithm is new. Much previous work has

dealt largely with state space models based on the use of conventional DFE algorithms

only (no fixed–lag smoothing); and on linear FIR channels only (unlike the Volterra

channels that are treated in this thesis) [8–10, 20–24, 39–41, 51, 52, 61].
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3.3.2 Lexicographical ordering of states (BPSK, N ≥ 1)

We illustrate a lexicographical ordering of states that is suitable for use with BPSK

signalling. This is an extension of the example given in 3.2 for the filtering–only case,

and is based on the scheme of Kennedy and Anderson [39]. Using i for previous state

st−n−1|t−1 and j for current state st−n|t, we have the explicit mapping rules

i =
(xt−1 + 1)

2
22N+2n+2 + · · · + (xt−N−n + 1)

2
2N+n+3 +

(xt−N−n−1 + 1)

2
2N+n+2

+
(x̂t−1|t−1 + 1)

2
2N+n+1 + · · ·+

(x̂t−N−n|t−N−n + 1)

2
22

+
(x̂t−N−n−1|t−N−n−1 + 1)

2
21 +

(x̂t−n−1|t−1 + 1)

2
20, (3.180)

and

j =
(xt + 1)

2
22N+2n+2 +

(xt−1 + 1)

2
22N+2n+1 + · · ·+ (xt−N−n + 1)

2
2N+n+2

+
(x̂t|t + 1)

2
2N+n+1 +

(x̂t−1|t−1 + 1)

2
2N+n + . . .

+
(x̂t−N−n|t−N−n + 1)

2
21 +

(x̂t−n|t + 1)

2
20. (3.181)

For general N ≥ 1 and n ∈ {1, . . . , N}, the scheme (3.180) and (3.181) is illustrated in

table 3.12 below.
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Table 3.12. Storage of consecutive state vectors st−n−1|t−1 and st−n|t in words i and j, for the

case of BPSK signalling, arbitrary channel memory N ≥ 1, and smoothing only (n ∈
{1, . . . , N}).

bit position in i element in st−n−1|t−1 bit position in j element in st−n|t
2N + 2n + 2 xt−1 2N + 2n + 2 xt

...
... 2N + 2n + 1 xt−1

N + n + 3 xt−N−n
...

...

N + n + 2 xt−N−n−1 N + n + 2 xt−N−n

N + n + 1 x̂t−1|t−1 N + n + 1 x̂t|t
...

... N + n x̂t−1|t−1

2 x̂t−N−n|t−N−n
...

...

1 x̂t−N−n−1|t−N−n−1 1 x̂t−N−n|t−N−n

0 x̂t−n−1|t−1 0 x̂t−n|t

The oldest elements in st−n−1|t−1, these being xt−N−n−1, x̂t−N−n−1|t−N−n−1 and x̂t−n−1|t−1,

are coloured blue, and occupy bit positions N + n + 2, 1 and 0 in word i, respectively.

The elements in common between st−n−1|t−1 and st−n|t, namely xt−1, . . . , xt−N−n,

x̂t−1|t−1, . . . , x̂t−N−n|t−N−n, are coloured grey in both words i and j. In word i, these

common elements occupy bit positions 2N + 2n + 2, . . . , N + n + 3, N + n + 1, . . . , 2 re-

spectively. In word j the elements have been shifted to the new positions 2N + 2n + 1,

. . . , N + n + 2, N + n, . . . , 1 respectively, overwriting the old elements xt−N−n−1 and

x̂t−N−n−1|t−N−n−1. Finally, new elements xt, x̂t|t and x̂t−n|t are placed into positions

2N + 2n + 2, N + n + 1 and 0 of st−n|t, respectively, shown coloured yellow in the

table.

3.3.3 State transition probability matrix (BPSK, N ≥ 1)

In this section we give the state transition probability matrix P for the case of smooth-

ing only and BPSK signalling. We will use the lexicographical ordering scheme of

(3.180) and (3.181), for which P has the sparse, hierarchical structure given below. The

general form of P given here is novel, and was not reported in the original work on the

FLSDFE algorithm [52].

From (3.178) we see that for BPSK signalling there are 22N+2n+3 atomic states st−n|t, so

that P will be of size 22N+2n+3 × 22N+2n+3. Label the rows and columns of P with the
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indices i and j of (3.180) and (3.181). Let the top left element of P have row and column

indices i = 0 and j = 0, respectively; and let the bottom right element of P have row

and column indices i = 22N+2n+3 − 1 and j = 22N+2n+3 − 1, respectively. Thus P is of

the form P = (pi,j), with elements pi,j, where i, j ∈ {0, . . . , 22N+2n+3 − 1}:

P =















p0,0 p0,1 . . . p0,ζ

p1,0 p1,1 . . . p1,ζ
...

...
. . .

...

pζ,0 pζ,1 . . . pζ,ζ















, ζ = 22N+2n+3 − 1. (3.182)

Observe from table 3.12 that xt occurs only in st−n|t, and that xt is stored in the most

significant bit of j, where j is the column index of P. With j ∈ {0, . . . , 22N+2n+3 − 1}, the

MSB of j will be 0 for j ∈ {0, . . . , 22N+2n+2− 1}, and 1 for j ∈ {22N+2n+2, . . . , 22N+2n+3−
1}. That is, xt = −1 in the left half of P, and xt = 1 in the right half of P, and so we

have a natural division of P into two equal–sized halves:

P =
[

PA PB

]

, (3.183)

where PA and PB contain the transition probabilities in which xt = −1 and xt = 1,

respectively. Note that PA and PB are both of size 22N+2n+3 × 22N+2n+2.

Further, we can partition PA and PB by observing that st−n−1|t−1 and st−n|t have the

common elements xt−1, . . . , xt−N−n. Observe from table 3.12 that the common ele-

ments xt−1, . . . , xt−N−n are stored in the N + n most significant bits of row index i,

whereas they are stored in the N + n most significant bits following the MSB of column

index j.

Taking into account the 2N+n values of the (N + n)–tuple (xt−1, . . . , xt−N−n), and ob-

serving the requirement to have matching (N + n)–tuples (xt−1, . . . , xt−N−n) between

st−n−1|t−1 and st−n|t, we find that PA and PB are sparse, with the block matrix forms

PA =



















P
(0)
A 0 · · · 0 0

0 P
(1)
A · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(ζ−1)
A 0

0 0 · · · 0 P
(ζ)
A



















, (3.184)
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and

PB =



















P
(0)
B 0 · · · 0 0

0 P
(1)
B · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(ζ−1)
B 0

0 0 · · · 0 P
(ζ)
B



















, (3.185)

with ζ = 2N+n − 1, where 0 is a matrix of structural zeros, of size 2N+n+3 × 2N+n+2.

Each block P
(k)
A and P

(k)
B in (3.184) and (3.185), k ∈ {0, . . . , ζ}, is also of size 2N+n+3 ×

2N+n+2.

A further decomposition of each P
(k)
A and P

(k)
B results from observing that the ‘old’ ele-

ment xt−N−n−1 of st−n−1|t−1 is redundant, since the state transition probability (3.179)

does not depend on it. Note from table 3.12 that xt−N−n−1 is stored in bit position

N + n + 2 of st−n−1|t−1 and does not appear in st−n|t.

Since the transition probability is independent of xt−N−n−1, each 2N+n+3 × 2N+n+2

matrix P
(k)
A and P

(k)
B in (3.184) and (3.185) splits horizontally into two identical matrices

of size 2N+n+2 × 2N+n+2, so that for k ∈ {0, . . . , 2N+n − 1} we have

P
(k)
A =

[

P
(k)
C

P
(k)
C

]

, and (3.186)

P
(k)
B =

[

P
(k)
D

P
(k)
D

]

, (3.187)

with upper and lower matrices corresponding to the choices xt−N−n−1 = −1 and

xt−N−n−1 = 1, respectively.

Proceeding with the decomposition of P, note that for each fixed value of symbol xt,

(N + n)–tuple (xt−1, . . . , xt−N−n) and symbol xt−N−n−1, we have a choice of two val-

ues of estimate x̂t|t. Observe from table 3.12 that x̂t|t is stored in bit position N + n + 1

of j.

For k ∈ {0, . . . , 2N+n − 1} we can therefore vertically divide P
(k)
C and P

(k)
D of (3.186) and

(3.187), analogously to the partitioning of P in (3.183):

P
(k)
C =

[

P
(k)
E P

(k)
F

]

and (3.188)

P
(k)
D =

[

P
(k)
G P

(k)
H

]

, (3.189)
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where the left and right matrices in each pair correspond to the choices x̂t|t = −1 and

x̂t|t = 1, respectively, and where P
(k)
E , P

(k)
F , P

(k)
G and P

(k)
H are each of size 2N+n+2 ×

2N+n+1. From (3.188) and (3.189), we now expand (3.186) and (3.187) to give

P
(k)
A =

[

P
(k)
E P

(k)
F

P
(k)
E P

(k)
F

]

and (3.190)

P
(k)
B =

[

P
(k)
G P

(k)
H

P
(k)
G P

(k)
H

]

, (3.191)

where k ∈ {0, . . . , 2N+n − 1}.

From table 3.12 note the occurrence of common elements x̂t−1|t−1, . . . , x̂t−N−n|t−N−n in

st−1|t−1 and st|t. Taking into account the 2N+n possible values of the (N + n)–tuple

(

x̂t−1|t−1, . . . , x̂t−N−n|t−N−n

)

, (3.192)

and observing the requirement to have matching (N + n)–tuples (3.192) between st−n−1|t−1

and st−n|t, we find that for each k ∈ {0, . . . , 2N+n − 1}, the matrices P
(k)
E , P

(k)
F , P

(k)
G and

P
(k)
H in (3.190) and (3.191) are themselves sparse, and of the form

P
(k)
E =



















P
(k,0)
E 0 · · · 0 0

0 P
(k,1)
E · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
E 0

0 0 · · · 0 P
(k,ζ)
E



















, (3.193)

P
(k)
F =



















P
(k,0)
F 0 · · · 0 0

0 P
(k,1)
F · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
F 0

0 0 · · · 0 P
(k,ζ)
F



















, (3.194)

P
(k)
G =



















P
(k,0)
G 0 · · · 0 0

0 P
(k,1)
G · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
G 0

0 0 · · · 0 P
(k,ζ)
G



















, and (3.195)
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P
(k)
H =



















P
(k,0)
H 0 · · · 0 0

0 P
(k,1)
H · · · 0 0

...
...

. . .
...

...

0 0 · · · P
(k,ζ−1)
H 0

0 0 · · · 0 P
(k,ζ)
H



















, (3.196)

with ζ = 2N+n − 1, where each block matrix in (3.193)–(3.196) is now of size 4 × 2.

Consider now the LSB of j, holding the FLSDFE smoothed output x̂t−n|t. For k, l ∈
{0, . . . , 2N+n − 1}, we split the matrices P

(k,l)
E , P

(k,l)
F , P

(k,l)
G and P

(k,l)
H of (3.193)–(3.196)

vertically, with the left half of each reflecting the choice x̂t−n|t = −1 and the right the

choice x̂t−n|t = 1:

P
(k,l)
E =

[

P
(k,l)
Eα

P
(k,l)
Eβ

]

, (3.197)

P
(k,l)
F =

[

P
(k,l)
Fα

P
(k,l)
Fβ

]

, (3.198)

P
(k,l)
G =

[

P
(k,l)
Gα

P
(k,l)
Gβ

]

, and (3.199)

P
(k,l)
H =

[

P
(k,l)
Hα

P
(k,l)
Hβ

]

, (3.200)

where each matrix is now of size 4 × 1.

Substituting (3.197)–(3.200) into (3.193)–(3.196) produces the following further decom-

positions of P
(k)
E , P

(k)
F , P

(k)
G and P

(k)
H , for k ∈ {0, . . . , 2N+n − 1}:

P
(k)
E =























P
(k,0)
Eα

P
(k,0)
Eβ

0 0 · · · 0 0 0 0

0 0 P
(k,1)
Eα

P
(k,1)
Eβ

· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · P
(k,ζ−1)
Eα

P
(k,ζ−1)
Eβ

0 0

0 0 0 0 · · · 0 0 P
(k,ζ)
Eα

P
(k,ζ)
Eβ























,

(3.201)

P
(k)
F =























P
(k,0)
Fα

P
(k,0)
Fβ

0 0 · · · 0 0 0 0

0 0 P
(k,1)
Fα

P
(k,1)
Fβ

· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · P
(k,ζ−1)
Fα

P
(k,ζ−1)
Fβ

0 0

0 0 0 0 · · · 0 0 P
(k,ζ)
Fα

P
(k,ζ)
Fβ























,

(3.202)
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P
(k)
G =























P
(k,0)
Gα

P
(k,0)
Gβ

0 0 · · · 0 0 0 0

0 0 P
(k,1)
Gα

P
(k,1)
Gβ

· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · P
(k,ζ−1)
Gα

P
(k,ζ−1)
Gβ

0 0

0 0 0 0 · · · 0 0 P
(k,ζ)
Gα

P
(k,ζ)
Gβ























,

(3.203)

and

P
(k)
H =























P
(k,0)
Hα

P
(k,0)
Hβ

0 0 · · · 0 0 0 0

0 0 P
(k,1)
Hα

P
(k,1)
Hβ

· · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · P
(k,ζ−1)
Hα

P
(k,ζ−1)
Hβ

0 0

0 0 0 0 · · · 0 0 P
(k,ζ)
Hα

P
(k,ζ)
Hβ























,

(3.204)

with ζ = 2N+n − 1, where each block matrix in (3.201)–(3.204) is now of size 4 × 1.

The final step in the decomposition of P results from observing that the ‘old’ ele-

ments x̂t−N−n−1|t−N−n−1 and x̂t−n−1|t−1 of st−n−1|t−1 are redundant, since the state

transition probability (3.179) does not depend on them. Note from table 3.12 that

x̂t−N−n−1|t−N−n−1 and x̂t−n−1|t−1 are stored in the least significant bit positions 1 and

0, respectively, of st−n−1|t−1, and they do not appear in st−n|t.

As there is the same transition probability for each four values of the pair

(

x̂t−N−n−1|t−N−n−1, x̂t−n−1|t−1

)

, (3.205)

for k, l ∈ {0, . . . , 2N+n − 1} each of the 4 × 1 matrices P
(k,l)
Eα

, P
(k,l)
Eβ

, P
(k,l)
Fα

, P
(k,l)
Fβ

, P
(k,l)
Gα

,

P
(k,l)
Gβ

, P
(k,l)
Hα

and P
(k,l)
Hβ

in (3.201)–(3.204) splits horizontally into four identical scalars.

With this in mind, for k, l ∈ {0, . . . , 2N+n − 1} rewrite (3.197)–(3.200) as

P
(k,l)
E =

















p
(k,l)
Eα

p
(k,l)
Eβ

p
(k,l)
Eα

p
(k,l)
Eβ

p
(k,l)
Eα

p
(k,l)
Eβ

p
(k,l)
Eα

p
(k,l)
Eβ

















, (3.206)
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P
(k,l)
F =

















p
(k,l)
Fα

p
(k,l)
Fβ

p
(k,l)
Fα

p
(k,l)
Fβ

p
(k,l)
Fα

p
(k,l)
Fβ

p
(k,l)
Fα

p
(k,l)
Fβ

















, (3.207)

P
(k,l)
G =

















p
(k,l)
Gα

p
(k,l)
Gβ

p
(k,l)
Gα

p
(k,l)
Gβ

p
(k,l)
Gα

p
(k,l)
Gβ

p
(k,l)
Gα

p
(k,l)
Gβ

















, and (3.208)

P
(k,l)
H =

















p
(k,l)
Hα

p
(k,l)
Hβ

p
(k,l)
Hα

p
(k,l)
Hβ

p
(k,l)
Hα

p
(k,l)
Hβ

p
(k,l)
Hα

p
(k,l)
Hβ

















, (3.209)

where each element is now a scalar transition probability.

Since P is a stochastic matrix, we have the requirements

0 ≤ p
(k,l)
Eα

≤ 1, (3.210)

0 ≤ p
(k,l)
Eβ

≤ 1, (3.211)

0 ≤ p
(k,l)
Fα

≤ 1, (3.212)

0 ≤ p
(k,l)
Fβ

≤ 1, (3.213)

0 ≤ p
(k,l)
Gα

≤ 1, (3.214)

0 ≤ p
(k,l)
Gβ

≤ 1, (3.215)

0 ≤ p
(k,l)
Hα

≤ 1, (3.216)

0 ≤ p
(k,l)
Hβ

≤ 1, and (3.217)

p
(k,l)
Eα

+ p
(k,l)
Eβ

+ p
(k,l)
Fα

+ p
(k,l)
Fβ

+ p
(k,l)
Gα

+ p
(k,l)
Gβ

+ p
(k,l)
Hα

+ p
(k,l)
Hβ

= 1, (3.218)

where k, l ∈ {0, . . . , 2N+n − 1}.

To recap, the state transition probability matrix P for the smoothing–only atomic state

space model in (3.178) and (3.179) is given by (3.183), where PA and PB are given by

(3.184) and (3.185), with the further decompositions in (3.190), (3.191), (3.201)–(3.204)

and (3.206)–(3.209). This decomposition appears to be novel in the FLSDFE literature,

and was not discussed in the original work of Perreau et al. [52].
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3.4 Aggregated state space models

3.4.1 Introduction

The state space models in sections 3.2.1 and 3.3.1 are atomic, in that their state vectors

consist of fundamental elements: the message symbols {xt}, together with their filtered

and smoothed estimates, {x̂t|t} and {x̂t−n|t}, respectively. As such, these models are

the most fine–grained, but that detail comes at the cost of high computational com-

plexity. The filtering–only BPSK example in section 3.2, for instance, has 22N+2 unique

states, so is unwieldy for channels having a long memory N. We therefore seek mod-

els with fewer states that are still able to exactly model the transient properties of the

underlying atomic finite–state Markov process (FSMP) [39]. For clarity, we shall refer

to aggregations that satisfy the FSMP property as ‘exact’ aggregations. The Choy and

Beaulieu aggregation, for instance, is not exact [24].

We first seek optimal exact aggregations, those with the smallest number of aggregated

states. For the N = 1 example of section 3.2 we show, in section 3.4.4, that there exists

a unique optimal exact aggregation of the atomic states {0, . . . , 15}, this being (3.222).

The proof of this involved an exhaustive computer search, making use of the theory

of set partitions and Bell numbers, introduced in section 3.4.2, and of restricted growth

strings, introduced in section 3.4.3. The application of these topics to error propagation

dynamics appears to be novel in the (FLS)DFE literature.

A suboptimal exact aggregation (3.223) is subsequently introduced in section 3.4.5 for

the BPSK, filtering–only, linear FIR, N = 1 example of section 3.2.5. This particular

aggregation is related in a neat way to the single–distinct–errors model of Choy and

Beaulieu [24], which is a (non–exact) steady–state model.

Section 3.4.6 discusses the single–distinct–errors model of Choy and Beaulieu [24] more

fully. This model is not strictly an FSMP, and transitions between states are marked

with their steady–state probabilities only. Nevertheless, the single–distinct–errors model

provides a convenient formula for the (asymptotic) error recovery time, R0, which is

put to use in chapter 4, where the concept of ‘resonances’ is introduced into the state

space models of DFE error propagation.
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3.4.2 Set partitions and Bell numbers

By set partition we mean the partition of a set into nonempty subsets [62]. For ex-

ample, the set partitions of {a, b, c} are {{a}, {b}, {c}}, {{a, b}, {c}}, {{a, c}, {b}},

{{a}, {b, c}}, and {{a, b, c}}. The number of set partitions of a set with n elements

is called a Bell number, denoted Bn, with B0 = 1 by definition [62]. Bell numbers grow

rapidly, as can be observed from the recurrence relation

Bn+1 =
n

∑
k=0

Bk

(

n

k

)

, n ≥ 0. (3.219)

The set {0, . . . , 15}, for instance, has B16 = 10, 480, 142, 147 set partitions, such as

{{0}, . . . , {15}}, (3.220)

{{0, 5, 10, 15}, {1, 4, 11, 14}, {2, 3, 6, 7, 8, 9, 12, 13}}, (3.221)

{{0, 1, 4, 5}, {2, 3, 6, 7}, {8, 9, 12, 13}, {10, 11, 14, 15}}, and (3.222)

{{0, 5}, {1, 4}, {2, 3, 6, 7}, {8, 9, 12, 13}, {10, 15}, {11, 14}}. (3.223)

We will refer to examples (3.220)–(3.223) later in this section. Example (3.220) is the

partition associated with the second of the two filtering–only examples of section 3.2,

involving BPSK signalling on a linear FIR channel of memory N = 1. Partition (3.221)

was introduced in equations (3.121)–(3.123) in the context of error recovery, which is

the subject of the work of Choy and Beaulieu [24]. We will show that partition (3.222) is

the unique optimal exact aggregation of {0, . . . , 15}, in the sense that it is the partition

with fewest elements that exactly models the transient properties of the atomic FSMP.

Partition (3.223) also gives an exact aggregation of the atomic state space model, but it

has application to the study of error recovery dynamics, and is closely related to the

work of Choy and Beaulieu [24].

Of the four partitions given above, only (3.221) does not produce an exact aggregated

model. Although we introduced the partition (3.221) in (3.121)–(3.123), all error recov-

ery time calculations were done using the atomic state space model directly. Thus the

sums in (3.136)–(3.139), for instance, are over atomic states, not aggregated states. In

section 3.4.4, we discuss a property that must be observed for a partition to be an exact

aggregation (the FSMP property [39]), and show that (3.221) is not an exact aggregation

of the atomic state space model for the N = 1 example of section 3.2.5.
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3.4.3 Restricted growth strings

A restricted growth string (RGS) is an integer string a1a2 . . . an associated with a given set

partition, and provides a convenient notation system for the partition [62]. This is best

illustrated with an example, for instance partition (3.222) of {0, . . . , 15}, containing the

subsets S0, . . . ,S3 of {0, . . . , 15}, where

S0 = {0, 1, 4, 5}, (3.224)

S1 = {2, 3, 6, 7}, (3.225)

S2 = {8, 9, 12, 13}, and (3.226)

S3 = {10, 11, 14, 15}. (3.227)

The first element of the set {0, . . . , 15}, namely 0, is in subset S0. We indicate this fact

by setting the first element in the RGS, namely a1, to 0, where 0 is the subscript of the

subset S0. Since a1 = 0, we say that the subsets have been ordered. Each remaining

element a2, . . . , an of the RGS has restricted growth because of the inequality

ai+1 ≤ max{a1, a2, . . . , ai} + 1, i ∈ {1, 2, . . . , n − 1}. (3.228)

The complete RGS for set partition (3.222) is 0011001122332233, as can be seen by work-

ing through the elements of {0, . . . , 15}, in left–to–right order, and noting down the

subscript of the subset in which each element occurs.

Restricted growth strings were used to efficiently enumerate all 10,480,142,147 set par-

titions of {0, . . . , 15}. Each partition was tested to see whether it was the basis of an

FSMP of aggregated states [39]. Section 3.4.4 gives the unique optimal FSMP aggre-

gation, and section 3.4.5 gives a suboptimal FSMP aggregation that is related to the

non–FSMP state space models of Choy and Beaulieu [24].

3.4.4 Optimal state aggregation

As discussed above, the atomic state space model in section 3.2.1 is fine–grained but

has a high computational complexity in the channel memory N. The number of states

may be reduced by aggregation of these atomic states. In particular, we seek exact

aggregations, those that are FSMPs. An FSMP has exactly the same transient behaviour

as the atomic state space model, but with lower computational complexity [39].

To determine whether an aggregation is an FSMP, we must check whether the fol-

lowing property holds, which we shall call the ‘FSMP property’ [39]. Consider a set
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partition {S0, . . . ,Sk} of the set of states {0, . . . , m} of a particular state space model.

Then for each x ∈ Si, we must have the same probability of making a transition from

x to Sj. This property must be satisfied for all i, j ∈ {0, . . . , k}, in order for {S0, . . . ,Sk}
to describe an FSMP [39].

We illustrate using the partition (3.224)–(3.227) of the set of states {0, . . . , 15} associated

with the linear BPSK channel example of memory N = 1. Consider aggregated sets

S0 and S1 given by (3.224) and (3.225), respectively. For each element x ∈ S0, we will

compute the probability of making a transition to the set S1.

From (3.49) and (3.69)–(3.77), the probability of going from element 0 ∈ S0 to set S1 is

p0,2 + p0,3 + p0,6 + p0,7 =
1

4
(1 − a) + 0 + 0 + 0 =

1

4
(1 − a). (3.229)

Likewise, the probability of going from element 1 ∈ S0 to set S1 is

p1,2 + p1,3 + p1,6 + p1,7 =
1

4
(1 − a) + 0 + 0 + 0 =

1

4
(1 − a); (3.230)

the probability of going from element 4 ∈ S0 to set S1 is

p4,2 + p4,3 + p4,6 + p4,7 =
1

4
(1 − a) + 0 + 0 + 0 =

1

4
(1 − a); (3.231)

and the probability of going from element 5 ∈ S0 to set S1 is

p5,2 + p5,3 + p5,6 + p5,7 =
1

4
(1 − a) + 0 + 0 + 0 =

1

4
(1 − a). (3.232)

Since all probability sums are equal, we have the same probability of going from each

element x ∈ {0, 1, 4, 5} to the set of elements {2, 3, 6, 7}. Repeating this test for each

pair i, j ∈ {S0, . . . ,S3} shows that the partition (3.222) describes an FSMP.

Figure 3.9 gives the state transition diagram for this partition. It is the unique optimal

FSMP aggregation of the atomic state space model for the linear BPSK channel example

of memory N = 1. This is the only FSMP that has 4 subsets, and all other FSMPs have

5 or more subsets.

The optimal partition follows logically from the fact that state st−1|t−1 has two elements

that are discarded in the transition to st|t, namely, xt−2 and x̂t−2|t−2, which occupy bit

positions 2 and 0 in i, respectively, as shown earlier in table 3.5. The (atomic) state

transition probability P(St|t = st|t|St−1|t−1 = st−1|t−1) of (3.53) does not depend on

‘old’ elements xt−2 and x̂t−2|t−2, and these are shown in blue in table 3.5. The new
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{0, 1, 4, 5}

{2, 3, 6, 7}

{8, 9, 12, 13}

{10, 11, 14, 15}

Figure 3.9. State transition diagram for the optimal FSMP for the linear BPSK channel of memory

N = 1. The aggregated states are subsets S0, . . . ,S3 of the optimal partition of

{0, . . . , 15}, as given in (3.224)–(3.225).

elements xt are x̂t|t in table 3.5 are coloured yellow, and the elements in common are in

grey.

We note that the groupings of atomic states in figure 3.9 are over all possible values

of xt−2 and x̂t−2|t−2 for fixed values of xt−1 and x̂t−1|t−1. Thus the set {0, 1, 4, 5} has

xt−1 = −1 and x̂t−1|t−1 = −1; the set {2, 3, 6, 7} has xt−1 = −1 and x̂t−1|t−1 = 1; the set

{8, 9, 12, 13} has xt−1 = 1 and x̂t−1|t−1 = −1; and the set {10, 11, 14, 15} has xt−1 = 1

and x̂t−1|t−1 = 1.

Page 89



3.4 Aggregated state space models

The state transition probability matrix for the aggregated states is given by

P =















p0,0 p0,1 p0,2 p0,3

p1,0 p1,1 p1,2 p1,3

p2,0 p2,1 p2,2 p2,3

p3,0 p3,1 p3,2 p3,3















=
1

4















1 + a 1 − a 1 − a 1 + a

1 + b 1 − b 1 − c 1 + c

1 + c 1 − c 1 − b 1 + b

1 + a 1 − a 1 − a 1 + a















, (3.233)

where pi,j is the probability of making a transition from aggregate state Si to aggregate

state Sj, where i, j ∈ {0, 1, 2, 3}. The stationary distribution vector π∞ for the optimal

FSMP is found from solving PTπ∞ = π∞, viz.

1

4















1 + a 1 + b 1 + c 1 + a

1 − a 1 − b 1 − c 1 − a

1 − a 1 − c 1 − b 1 − a

1 + a 1 + c 1 + b 1 + a





























π0

π1

π2

π3















=















π0

π1

π2

π3















. (3.234)

Solving (3.234), we find

π∞ =















π0

π1

π2

π3















=
1

2(4 + b + c − 2a)















2 + b + c

2(1 − a)

2(1 − a)

2 + b + c















. (3.235)

The example illustrated above was for a linear FIR channel of memory N = 1, de-

scribed by the channel model (3.51); for BPSK signalling, with alphabet {−1, 1}; and

for filtering only (n = 0), with FLSDFE output X̂t|t given by (3.52). A question of

interest is whether there exists a unique optimum aggregated state space model for

arbitrary channel memories N ∈ {0, 1, . . . }; general Volterra channel models; arbitrary

smoothing lags n ∈ {0, . . . , N}; and a variety of other signalling schemes, such as

QPSK or 16–QAM. In particular, we seek to know whether these aggregated models

have fewer states than the set of atomic states from which they are composed.

Direct checking by the brute force method illustrated above is infeasible for most other

models. Extending the example to channels of memory N = 2, for example, we find

that there are 22N+2 = 64 states in {−1, 1}6, and so there are B64 set partitions of

{0, . . . , 63} to check. From (3.219), the Bell number B64 is very large, given approxi-

mately by the asymptotic formula [62]

ln B64

64
= ln 64 − ln ln 64 − 1 +

ln ln 64

ln 64
+

1

ln 64
+

1

2

(

ln ln 64

ln 64

)2

+ O

(

ln ln 64

(ln 64)2

)

,

(3.236)
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with approximate solution (ignoring the remainder) of B64 ≈ 1.4 × 1069.

White et al. [65] discuss the notion of lumpability, and we repeat their definition here,

using the notation of their paper:

Definition 3.4.1. Let Xt be a n–state Markov chain taking values in the state set S . Then Xt

is said to be m–lumpable if and only if there exist nonempty disjoint subsets Si, i = 1, . . . , m

such that S =
⋃m

i=1 Si and for every i = 1, . . . , m, Pr{Xt ∈ Si|Xt−1 = q} is independent of

q, ∀q ∈ Sj, ∀j 6= i.

In their paper, White et al. present a finite algorithm for testing m–lumpability. We shall

not discuss that work further here, but we note that it may prove useful in deriving

exact and approximate FSMP aggregations of some of the more general atomic state

space models that this thesis addresses.

The optimal aggregate FSMP is not convenient for obtaining the probability distribu-

tion or moments of the error recovery time R0. Nor can we use it to compute the

asymptotic probability of a bit error. This is because the aggregate states contain mix-

tures of the sets Φ0, Φ1 and Γ of (3.121)–(3.123). (Recall that Γ is the set of ‘error–free’

states, Φ0 is the set of ‘error–just–occurred’ states, and Φ1 is the set of ‘intermediate’

states.) Indeed, for the aggregate set {0, 1, 4, 5} we note that 0, 5 ∈ Γ, whereas 1, 4 ∈ Φ1;

and for the aggregate set {10, 11, 14, 15} we note that 10, 15 ∈ Γ, whereas 11, 14 ∈ Φ1.

Although the sets Φ0, Φ1 and Γ do not constitute an FSMP aggregation of the atomic

states {0, . . . , 15} for the linear BPSK channel of memory N = 1, we saw in section 3.2.8

that this was a convenient partition for the purpose of error recovery time calculation.

Motivated by this fact, we seek an aggregation of the set {0, . . . , 15} that is an FSMP and

is of convenient form to compute the probability distribution of R0. Such a suboptimal

aggregation exists, and is the subject of the next section.

3.4.5 A suboptimal aggregation

Using the same search program that was used in discovering the optimal exact ag-

gregation (3.222) of the previous section, a slightly larger partition of {0, . . . , 15} was

found that was well suited for error recovery time calculations. This suboptimal par-

tition was given earlier as (3.223), and has the state transition diagram in figure 3.10.

Note that the aggregated states are subsets (set partitions, moreover) of Φ0, Φ1 and Γ

of (3.121)–(3.123). Thus {0, 5} and {10, 15} are subsets of the set of error–free states Γ;
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{0, 5}

{1, 4}

{2, 3, 6, 7}

{8, 9, 12, 13}

{10, 15}

{11, 14}

Figure 3.10. State transition diagram for a suboptimal FSMP for the linear BPSK channel of mem-

ory N = 1.

{2, 3, 6, 7} and {8, 9, 12, 13} are subsets of the set of error–just–occurred states Φ0; and

{1, 4} and {11, 14} are subsets of the intermediate partial–recovery states Φ1.

Note that the diagram in figure 3.10 would apply to the wider case of a communica-

tions system model that employed BPSK signalling, with a channel memory of N = 1,

but with a channel model of, say, a Volterra series (instead of the linear FIR channel

model assumed so far). This is the case because the computer program that derived ex-

act aggregations of the atomic states {0, . . . , 15} did not make any assumptions on the

form of the channel model, representing state transition probabilities between atomic

states as unique bits in a multibit word.

The asymptotic formula (3.236) for the Bell number Bn shows that it is impossible at

present to derive by brute force the exact aggregations of atomic states {0, . . . , 63},

since B64 is about 1.4 × 1069. For communications system models with memory N = 2
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(the next extension to the N = 1 case discussed in the preceding paragraph), similar

diagrams to figures 3.9 and 3.10 were obtained by analogy to the N = 1 case. These

diagrams are more complicated and are not presented here. A check was performed

on paper to demonstrate that the suboptimal aggregation thus constructed of atomic

states {0, . . . , 63} was exact (an FSMP). The suboptimal aggregation for N = 2 is given

below as (3.243)–(3.262).

Of interest, it was observed that each of the aggregated states in the suboptimal exact

aggregation for N = 2 was a subset of one of the corresponding Choy and Beaulieu

states Φ0, Φ1, Φ2 and Γ, which are specified in (3.140)–(3.143) by setting N = 2. We note

once more that the Choy and Beaulieu states apply only to their steady–state state space

model (which is not an FSMP), whereas the states in the suboptimal exact aggregation

discussed here apply to the transient state space model, derived from the transient

atomic state space model of section 3.2.1. We are thus led by the observations of the

N = 1 and N = 2 cases to the following proposition.

Proposition 3.4.1. Consider the filtering–only atomic state space model of section 3.2.1 within

the context of a communications system model employing BPSK signalling and a Volterra

channel of memory N ≥ 0. An exact aggregation of the atomic state space model exists that

is related to the steady–state state space model of Choy and Beaulieu, specifically their single–

distinct–errors model [24]. Moreover, the states of the exact aggregation of the atomic state

space model are formed by taking certain set partitions of the states Φ0, . . . , ΦN , Γ of the Choy

and Beaulieu model.

Thus, for example, from (3.223) the aggregated states in figure 3.10 are the subsets

S0, . . . ,S5 of {0, . . . , 15}, where

S0 = {0, 5}, (3.237)

S1 = {1, 4}, (3.238)

S2 = {2, 3, 6, 7}, (3.239)

S3 = {8, 9, 12, 13}, (3.240)

S4 = {10, 15}, and (3.241)

S5 = {11, 14}. (3.242)

Thus, as noted earlier, we observe that {S0,S4} forms a set partition of the error–free

states Γ = {0, 5, 10, 15} of (3.121); that {S2,S3} forms a set partition of the error–just–

occurred states Φ0 = {2, 3, 6, 7, 8, 9, 12, 13} of (3.122); and that {S0,S4} forms a set

partition of the partial–error–recovery states Φ1 = {1, 4, 11, 14} of (3.123).
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As a second example, for the case N = 2 it was observed by analogy with the N = 1

case that the set of atomic states {0, . . . , 63} could be partitioned into the exact subop-

timal aggregation S0, . . . , S19, where

S0 = {0, 9}, (3.243)

S1 = {1, 8}, (3.244)

S2 = {2, 3, 10, 11}, (3.245)

S3 = {4, 5, 12, 13}, (3.246)

S4 = {6, 7, 14, 15}, (3.247)

S5 = {16, 17, 24, 25}, (3.248)

S6 = {18, 27}, (3.249)

S7 = {19, 26}, (3.250)

S8 = {20, 21, 28, 29}, (3.251)

S9 = {22, 23, 30, 31}, (3.252)

S10 = {32, 33, 40, 41}, (3.253)

S11 = {34, 35, 42, 43}, (3.254)

S12 = {36, 45}, (3.255)

S13 = {37, 44}, (3.256)

S14 = {38, 39, 46, 47}, (3.257)

S15 = {48, 49, 56, 57}, (3.258)

S16 = {50, 51, 58, 59}, (3.259)

S17 = {52, 53, 60, 61}, (3.260)

S18 = {54, 63}, and (3.261)

S19 = {55, 62}. (3.262)

In terms of the Choy and Beaulieu states Φ0, Φ1, Φ2 and Γ, we observe that proposi-

tion 3.4.1 applies in that {S3,S4,S8,S9,S10,S11,S15,S16} is a set partition of the error–

just–occurred states Φ0; {S2,S5,S14,S17} is a set partition of the partial–error–recovery

states Φ1; {S1,S7,S13,S19} is a set partition of the partial–error–recovery states Φ2; and

{S0,S6,S12,S18} is a set partition of the error–free states Γ.

For the case N = 1 with pi,j being the transition probability from aggregate state Si

to aggregate state Sj of (3.237)–(3.242), where i, j ∈ {0, . . . , 5}, we have the (aggregate)
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state transition probability matrix given by

P =

























p0,0 p0,1 p0,2 p0,3 p0,4 p0,5

p1,0 p1,1 p1,2 p1,3 p1,4 p1,5

p2,0 p2,1 p2,2 p2,3 p2,4 p2,5

p3,0 p3,1 p3,2 p3,3 p3,4 p3,5

p4,0 p4,1 p4,2 p4,3 p4,4 p4,5

p5,0 p5,1 p5,2 p5,3 p5,4 p5,5

























=
1

4

























1 + a 0 1 − a 1 − a 1 + a 0

1 + a 0 1 − a 1 − a 1 + a 0

0 1 + b 1 − b 1 − c 0 1 + c

0 1 + c 1 − c 1 − b 0 1 + b

1 + a 0 1 − a 1 − a 1 + a 0

1 + a 0 1 − a 1 − a 1 + a 0

























. (3.263)

The stationary distribution vector π∞ is therefore the solution to

1

4

























1 + a 1 + a 0 0 1 + a 1 + a

0 0 1 + b 1 + c 0 0

1 − a 1 − a 1 − b 1 − c 1 − a 1 − a

1 − a 1 − a 1 − c 1 − b 1 − a 1 − a

1 + a 1 + a 0 0 1 + a 1 + a

0 0 1 + c 1 + b 0 0

















































π0

π1

π2

π3

π4

π5

























=

























π0

π1

π2

π3

π4

π5

























, (3.264)

which is

π∞ =

























π0

π1

π2

π3

π4

π5

























=
1

4(4 + b + c − 2a)

























(1 + a)(2 + b + c)

(1 − a)(2 + b + c)

4(1 − a)

4(1 − a)

(1 + a)(2 + b + c)

(1 − a)(2 + b + c)

























. (3.265)

We can now compute the asymptotic probability of various quantities of interest, anal-

ogous to the calculations in (3.108)–(3.111). For instance, the probability of no current

or past filtering errors (x̂t|t = xt and x̂t−1|t−1 = xt−1) is

π0 + π4 =
(1 + a)(2 + b + c)

2(4 + b + c − 2a)
, (3.266)
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which matches (3.109), obtained from the atomic state space model.

The adjacency matrix for the suboptimal model is

A =

























1 0 1 1 1 0

1 0 1 1 1 0

0 1 1 1 0 1

0 1 1 1 0 1

1 0 1 1 1 0

1 0 1 1 1 0

























. (3.267)

As before, by zeroing out rows 0 and 4 of A, corresponding to error–free states, we

have the modified matrix

A∗ =

























0 0 0 0 0 0

1 0 1 1 1 0

0 1 1 1 0 1

0 1 1 1 0 1

0 0 0 0 0 0

1 0 1 1 1 0

























, (3.268)

whose k–th powers give the number of paths to error recovery. Indeed, the highlighted

entries in A∗ correspond to a starting state i in either of the error–just–occurred aggre-

gate states S2 = {2, 3, 6, 7} or S3 = {8, 9, 12, 13}, and a finishing state j in either of

the error–free aggregate states S0 = {0, 5} or S4 = {10, 15}. We observe from figure

3.10 that the marked entries of 0 in (3.268) indicate that there are no 1–paths to error

recovery, as we have to pass through an intermediate state first.

As before, taking successive powers of A∗, we find that the marked entries all follow

the sequence 0, 2, 4, 16, 48, 160, 512, 1664, and so on, which matches the Horadam

(0, 2, 4, 2) sequence [33], given by the recursion

ak+2 = 2ak+1 + 4ak, (3.269)

where k ≥ 1, with the initial conditions a1 = 0 and a2 = 2. Note that this sequence

is slightly different from that found to hold for the atomic state space model, namely

(3.131).

3.4.6 Choy and Beaulieu’s state space models

Choy and Beaulieu were concerned with error recovery in DFEs, and they used a state

space model with states defined in terms of error patterns [24]. We shall illustrate this
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model using an example problem involving a (linear or nonlinear) channel of mem-

ory N = 4, BPSK signalling, and filtering only (n = 0). This is the same problem

that was used to generate the (transient) state space model depicted in figure 3.7, and

connected with equations (3.146)–(3.151); and it was the same problem used to gen-

erate the (steady–state) state space model depicted in figure 3.8, and connected with

equations (3.167)–(3.172).

For N = 4, Choy and Beaulieu’s single–distinct–errors model involves the states Ψ0,

. . . , ΨN−1, Φ0, . . . , ΦN−1 and Γ, as illustrated in table 3.13 below. Note that the states

in this table are different from the states Φ0, . . . , ΦN−1 and Γ defined in (3.167)–(3.172)

and portrayed in figures 3.7 and 3.8. An E in the column headed et−k denotes a filtering

error (x̂t−k|t−k 6= xt−k) at time t − k, where k ∈ {1, 2, . . . }; an O in column et−k indicates

no filtering error (x̂t−k|t−k = xt−k); and an X means that we are not concerned whether

there was a filtering error. Moreover, an error–free run of length N − 1 is denoted by

a string of N − 1 consecutive O symbols, colour–coded blue. The complement of this

is a run of length N − 1 in which at least one error occurred, and this is denoted in the

table by a string of N − 1 consecutive X symbols, colour–coded grey.

Table 3.13. Choy and Beaulieu’s single–distinct–errors model for a channel of memory N = 4

(linear or nonlinear), BPSK signalling, and filtering only (n = 0). State labels are in

the leftmost column, and the remaining columns indicate error patterns. et is defined

as the filtering error xt − x̂t|t; the value itself is symbolized in the table by the coloured

and uncoloured labels E, O and X.

state et−1 et−2 et−3 et−4 et−5 et−6 et−7 et−8 · · · et−k · · ·
Ψ0 E O O O X X X X · · · X · · ·
Ψ1 O E O O O X X X · · · X · · ·
Ψ2 O O E O O O X X · · · X · · ·
Ψ3 O O O E O O O X · · · X · · ·

Continued on next page
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Table 3.13 – concluded from previous page

state et−1 et−2 et−3 et−4 et−5 et−6 et−7 et−8 · · · et−k · · ·
Φ0 E X X X X X X X · · · X · · ·
Φ1 O E X X X X X X · · · X · · ·
Φ2 O O E X X X X X · · · X · · ·
Φ3 O O O E X X X X · · · X · · ·
Γ O O O O X X X X · · · X · · ·

Figure 3.11 shows the state transition diagram for the single–distinct–errors state space

model. The steady–state transition probabilities α0, . . . , αN−1, β0, . . . , βN−1 and ε are

defined as follows [24, eqs. 12a, 12b]:

αi = lim
t→∞

P(et = 0|st = Φi), i ∈ {0, . . . , N − 1}, (3.270)

βi = lim
t→∞

P(et = 0|st = Ψi), i ∈ {0, . . . , N − 1}, (3.271)

ε = lim
t→∞

P(et 6= 0|st = Γ), (3.272)

where st in this context refers to a particular error state, chosen from the set of states

S = {Ψ0, . . . , ΨN−1, Φ0, . . . , ΦN−1, Γ}. (3.273)

Choy and Beaulieu note that the sequence {st} is not a Markov chain. They define

the time to error recovery R0 as the number of time steps required to first reach state

Γ, commencing in state Ψ0, which is the set of atomic states with x̂t−1|t−1 6= xt−1 and

x̂t−k|t−k = xt−k for all k ∈ {2, . . . , N}. Note the two branches, which we will call the β

(upper) branch and the α (lower) branch. Ignoring cross–overs, we may think of error

recovery as travel along either branch towards Γ. In the next chapter, we will provide

experimental results that show how these branches may be used to quantify the error

recovery behaviour of a given model. In particular, there exist interesting ‘resonance’

phenomena that are associated with barriers to error recovery.
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E Ψ0 Ψ1 • • • ΨN−2 ΨN−1 E

E Γ

Φ0 Φ1 • • • ΦN−2 ΦN−1

β0 β1 βN−3 βN−2
βN−1

1 − βN−1 ε

1 − ε

1 − α0

α0 α1 αN−3 αN−2

1 − αN−1

αN−1

1 − α1

1 − αN−2

1 − β0

1 − β1

1 − βN−2

Figure 3.11. Choy and Beaulieu’s single–errors state space model. The grey ovals labelled

Ψ0, . . . , ΨN−1, Φ0, . . . , ΦN−1 and Γ are sets of atomic states, these being 2N–tuples

(xt−1, . . . , xt−N , x̂t−1|t−1, . . . , x̂t−N|t−N) ∈ A2N
2 of previous symbols xt and their

FLSDFE estimates x̂t|t, up to the channel memory N.
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