The roles of the chemokines CXCL12 and CXCL16 in breast cancer

Sharon Hampton-Smith, B.Sc. (Hons.)

Discipline of Microbiology & Immunology School of Molecular & Biomedical Science University of Adelaide

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2007

Declaration

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge, contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to this copy of my thesis, once deposited in the University Library, being made available for loan and photocopying.

Sharon Hampton-Smith, B.Sc. (Hons.) September 2007

Acknowledgments

I could write a volume equivalent to this thesis expressing my gratitude to everyone who has helped me to navigate my way to the end of my PhD studies, but for the sake of a forest somewhere, I'll keep it to a couple of pages.

First, a big thank you to my supervisor, Shaun McColl. You conceived my project to begin with and provided me with the guidance I needed to get it up and running. But you were also brave enough to step back and let me try new things and develop new skills. You let me find the independence and confidence to conduct scientific research that can only come from getting in there and doing it. And of course, of late I have deeply appreciated your proofreading of innumerable drafts in amongst all the other responsibilities you have to take care of! Thank you also to my co-supervisor, Robin Anderson. You have provided invaluable cancer and metastasis expertise, as well as more specific advice regarding the 4T1.2 model that was central to this project. I appreciate all the practical tips and the conceptual assistance you have provided along the way and the time you took to meet with me when you made the trip from Melbourne to Adelaide.

Another big thank you to my colleagues; you are such a wonderful bunch of people! Your friendship and understanding have been invaluable as I have gone through the PhD process, as has your practical assistance in so many things. Adriana, Scott, and Brock, the stalwarts of the lab, thank you for always being so cheerful and fun, as well as for keeping the lab running. Marina and Manu, many thanks for all your good advice and laughs as well, and special thanks to Iain for your help with the ICCS, for bouncing ideas around with me and for much needed encouragement. Sarah, Julie, Meizhi and Wendel, my fellow PhD students, thanks for all the fun, laughter and sympathy – all crucial ingredients for surviving in science! Koi, thank you for constant encouragement, helpful tips and understanding as I have been writing, and Yuka, the ball is now in your very capable hands – good luck as you embark on your PhD studies, I know you'll do well. Matt, Mark and Leila, each of you has added your own special quality to the lab – it has been great getting to know you, and I wish you all the best for honours and beyond. Former members of the lab also have been great friends as well: Oli, thanks for your help with cytotox assays and for making me laugh, even when I thought I couldn't; Jane, beautiful lady, thank you for

bringing life to the lab; and KK, thank you so much for all the girly days, chick flicks and culinary adventures – your friendship has been such a blessing!

I wouldn't be where I am today if I did not have the love and support of my family to keep me going outside of the lab. Thanks, Mum, for making sure that I was properly fuelled and rested, and for girly chats in those few times when I had a break from uni. Dad, thank you for the rides home when I got held up at uni later than expected, and for sacrificing time on the computer while I have been writing up! And Rachel, thank you for understanding and sympathy, as well as good scientific advice. It has been great to be able to talk to someone who understands the whole science thing.

A collective thank you to all my friends 'on the outside': you must be sick of hearing about my study and my thesis, but you've kept encouraging me and commiserating with me throughout. Thank you to my extended family at TTGUC, and particularly to the Tuesday Night Girls – our girly get-togethers often turned a bad day into a good one. Thanks also to the Gang – there's nothing like chocolate fondue, a crazy board game and good friends to help a stressed PhD student to unwind!

My darling D! You have been there for me first as friend, and now as lover too. No human being has ever heard such griping and yet remained so steadfast in love and patience. On a purely practical level, I am so grateful for your help in setting up the formatting of the BBT – it has made the writing of it a whole lot easier. But way beyond that, you have provided the perspective I had such trouble maintaining and helped me to see that my glass was half full. Thank you for being there at all times, for silent sympathy, for gentle encouragement, for silliness and for big hugs! T...M...D...always.

Of course, to my Beautiful One: You alone have seen every high and low and cared more deeply than I can imagine about each. Yet long after the pages of this thesis have crumbled to dust, You will go on. Thank You that such love will never fade.

Table of Contents

Declarati	on	iii
Acknowl	edgments	iv
Table of	Contents	vi
Table of 1	Figures	X
List of ta	bles	xii
Abbrevia	itions	xiii
Publicati	ons arising from this work	xvi
Abstract		xvii
CHAPTE	R 1: Introduction	3
1.1 O [•]	verview	3
1.2 Bi	reast cancer	4
1.2.1	Breast cancer progression	4
1.2.2	The immune response to breast cancer	8
1.2.2	2.1 Immunosurveillance	8
1.2.2	2.2 Immune evasion	9
1.2.2	2.3 Active Immunosuppression	10
1.2.2	2.4 Overcoming tumour-induced immunosuppression	12
1.3 TI	he chemokine family	13
1.3.1	General properties of chemokines	13
1.3.2	Chemokine receptor signalling	14
1.3.3	Biological functions of chemokines	15
1.4 C	XCL12/Stromal cell-derived factor (SDF)-1, CXCR4 and CXCR7	17
1.4.1	General properties of CXCL12 and its receptors	17
1.4.2	Physiological functions of CXCL12	19
1.4.2	E.1 Functions of CXCL12 in the haematopoietic system	19
1.4.2	P.2 Functions of CXCL12 in non-haematopoietic tissues	21
1.4.3	CXCL12 and CXCR4 in cancer	22
1.5 C	XCL16 and CXCR6	25
1.5.1	General properties of CXCL16 and CXCR6	25
1.5.2	Physiological functions of CXCL16	26
1.5.3	CXCL16 and CXCR6 in cancer	

1.6	Th	e Research Project	
<u>CHAP</u>	TE	R 2: Materials & Methods	45
2.1	Su	bcloning of chemokine constructs	
2.1	.1	Chemokine DNA constructs	
2.1	.2	Cloning vector	
2.1	.3	Polymerase Chain Reaction	
2.1	.4	Subcloning	
2.1	.5	Identification of positive clones	
2.2	Ge	neration of transfected cell lines	
2.2	2.1	Cells	
2.2	2.2	Transfection	
2.3	Mo	ouse model	49
2.3	5.1	Animals	
2.3	5.2	Tumour model	
2.4	An	alytical and functional assays	50
2.4	.1	Flow cytometric staining	
-	2.4.1.	1 Cell preparation:	
4	2.4.1.	2 Staining procedure	
2.4	.2	Reverse-transcriptase PCR	
2.4	.3	Sandwich ELISA for detection of chemokines	
2.4	4.4	Calcium mobilisation	
2.4	.5	In vitro proliferation assay	
2.4	.6	Soft agar assay	
2.4	1.7	Haemoglobin assay	
2.4	.8	Immunohistochemical staining	
2.4	.9	In vitro cytotoxicity assay	
2.4	.10	IL-17 ELISPOT	
2.4	.11	Intracellular cytokine staining	
2.4	.12	Cytokine bead array	
2.5	Sta	atistical analysis	
2.6	So	lutions and buffers	
2.6	5.1	Media	
-	2.6.1.	1 Alpha Medium (serum-free)	

,	2.6.1.2	Alpha Medium (complete)	58
,	2.6.1.3	2x Iscove's Modified Dulbecco's Medium (complete)	59
,	2.6.1.4	RPMI (incomplete)	59
,	2.6.1.5	RPMI (minimal complete)	59
,	2.6.1.6	RPMI (complete)	59
2.6	5.2 C	ther solutions and buffers	59
,	2.6.2.1	Buffer P1	59
,	2.6.2.2	Buffer P2	60
,	2.6.2.3	Buffer P3	60
,	2.6.2.4	Calcium Buffer	60
,	2.6.2.5	Collagenase Solution	60
,	2.6.2.6	Gill's Haematoxylin	60
,	2.6.2.7	10x Hank's Balanced Salt Solution	60
,	2.6.2.8	Mouse Red Cell Removal Buffer (MRCRB)	61
,	2.6.2.9	PBS/azide (PA)	61
,	2.6.2.10	PBS/BSA/azide (PBA)	61
<u>CHAP</u>	TER 3	: Generation of Chemokine Constructs & Cell Lines	69
3.1	Overv	iew	69
3.2	Gener	ation of chemokine constructs	69
3.2	2.1 C	hemokine constructs used in this study	69
3.2	2.2 C	loning of chemokine constructs	70
3.3	The 4	Γ1.2 model system	72
3.4	In vitr	<i>o</i> generation and characterisation of chemokine construct-expres	sing
	cell l	ines	74
3.4	.1 G	eneration of chemokine construct-expressing cell lines	74
3.4	.2 Iı	vitro characterisation of chemokine construct-expressing cell lines.	75
3.5	Summ	ary of findings and preliminary discussion	76
СНАР	TER 4	• The Effect of Chemokine expression on breast cancer	in
	1 1/11 7	, the little of Chemokine capiession on breast cancer	105
<u>vivo</u>			105
4.1	Overv	iew	105

4.2	Effects of exogenous chemokine expression on primary tumour growth 105
4.3	Effects of CXCL12 construct expression on metastasis106

4.4	Effects of CXCL16 construct expression on metastasis
4.5	Summary and preliminary discussion108
<u>CHAP</u>	TER 5: The Effect of CXCL12 expression on the anti-tumour
<u>immur</u>	ne response 125
5.1	Overview125
5.2	Identification of leukocyte subsets important for the anti-tumour effect of
	CXCL12
5.2	.1 The role of T cells
5.2	.2 The role of dendritic cells
5.2	.3 The role of NKT cells
5.3	The role of cell-mediated immunity128
5.4	The role of cytokines
5.5	Summary of findings and preliminary discussion
CHAP	TER 6: Discussion163
6.1	Introduction
6.2	The effects of CXCL12 overexpression on breast tumour progression 164
6.2	.1 The effects of CXCL12 on tumour cells and the tumour vasculature 164
6.2	.2 The importance of T cells and dendritic cells
6.2	.3 The role of cell-mediated cytotoxicity
6.2	.4 The role of cytokines
6.2	.5 The potential effects of CXCL12 on suppressor cells
6.2	.6 Other potential mediators of the effects of CXCL12
6.2	.7 Summary and future directions
6.3	The effects of CXCL12 _(P2G) overexpression on breast tumour progression177
6.4	The effects of CXCL16 construct overexpression on breast tumour
	progression
6.5	Perspectives and concluding remarks183
<u>CHAP</u>	TER 7: References193

Amendments

- p. xv "phospholipases C" should read "phospholipase C"
- p. 35 In Table 1.4, the heading of the second column, "Role of CXCL16CXCR6" should read, "Role of CXCL16/CXCR6"
- p. 53 In Section 2.4.4, the concentration of CXCL12 and CXCL16 used for stimulation of the cells should read "300ng/ml" and not "300µg/ml"
- p. 107 In the first line, "angiogenesis with the tumour" should read "angiogenesis within the tumour"
- p. 129 In the second line of the second paragraph, "4TX12 1 tumour-bearing were" should read "4TX12 1 tumour-bearing mice were"
- p. 131 In the third-to-last line, "Type I IFN-γ-producing also" should read "Type I IFN-γproducing T cells also"

Table of Figures

Figure 1.1 The hallmarks of breast cancer.	37
Figure 1.2 The steps of breast cancer metastasis.	38
Figure 1.3 Immunosuppressive networks induced by breast tumours	40
Figure 1.4 Chemokine signalling.	41
Figure 2.1 The pEF-IRES-puro6 (pEF) mammalian expression vector	65
Figure 3.1 Amino acid sequences of chemokine constructs	80
Figure 3.2 Cloning of chemokine constructs	82
Figure 3.3 Generation of the CXCL16 ₍₉₋₂₂₀₎ -His construct by overlap extension PCR	84
Figure 3.4 Vector maps of chemokine constructs	86
Figure 3.5 Expression of CXCL12 by 4T1.2 cells	87
Figure 3.6 Expression of CXCL16 by 4T1.2 cells	89
Figure 3.7 Expression of CXCR4 and CXCR7 by 4T1.2 cells	90
Figure 3.8 Expression of CXCR6 by 4T1.2 cells.	92
Figure 3.9 Expression of chemokine constructs by transfected 4T1.2 cell populations	94
Figure 3.10 Level of CXCL12 construct production by individual clones from transfe	cted
4T1.2 populations	95
Figure 3.11 Level of CXCL16 construct production by individual clones from transfe	cted
4T1.2 populations	96
Figure 3.12 CXCL12 construct expression by cell lines derived from pooled clones	97
Figure 3.13 CXCL16 construct expression by cell lines derived from pooled clones	98
Figure 3.14 In vitro proliferation rates of CXCL12-expressing 4T1.2 cell lines.	.100
Figure 3.15 In vitro proliferation rates of CXCL16-expressing 4T1.2 cell lines	.101
Figure 3.16 In vitro tumorigenicity of chemokine construct-expressing cell lines	.102
Figure 4.1 Comparison of the growth of CXCL12 construct-expressing 4T1.2 mamm	nary
tumours and parental 4T1.2 tumours in vivo.	.110
Figure 4.2 Comparison of the growth of CXCL12 construct-expressing 4T1.2 mamm	nary
tumours and control 4T12Ala tumours in vivo	.111
Figure 4.3 Growth of CXCL12-expressing 4T1.2 mammary tumours in vivo.	.112
Figure 4.4 Growth of CXCL12 _(P2G) -expressing 4T1.2 mammary tumours in vivo	.113
Figure 4.5 Growth of CXCL16-expressing 4T1.2 mammary tumours in vivo	.114

Figure 4.6 Spontaneous metastasis to the lungs of 4TX12 1 and 4T12P2G tumour-bearing
mice
Figure 4.7 Haemoglobin content of CXCL12-construct expressing tumours
Figure 4.8 Vascularisation of CXCL12 construct-expressing tumours
Figure 4.9 Lymphangiogenesis within CXCL12 construct-expressing tumours
Figure 4.10 Experimental metastasis of CXCL12-expressing tumour cell lines to the lungs
of Balb/c mice
Figure 4.11 Metastases in the lungs of $4T16$ and $4T\Delta 16$ tumour-bearing mice 122
Figure 5.1 Growth of CXCL12-expressing tumours in SCID mice
Figure 5.2 Growth of CXCL12-expressing tumours cells in nude mice
Figure 5.3 Correlation of the number and proportion of splenic T cells subsets with tumour
weight
Figure 5.4 Characterisation of T cell subsets from early stage tumours and tumour draining
lymph nodes
Figure 5.5 T cell infiltration of CXCL12-expressing 4T1.2 tumours at early time points.
Figure 5.6 CD4 ⁺ T cell infiltration of late stage CXCL12-expressing 4T1.2 tumours 145
Figure 5.7 CD8 ⁺ T cell infiltration of late stage CXCL12-expressing 4T1.2 tumours 147
Figure 5.8 Accumulation of CD11c ⁺ cells in the tumour-draining lymph nodes
Figure 5.9 CD11c ⁺ cells within CXCL12-expressing tumours
Figure 5.10 Growth of CXCL12-expressing tumours in invariant NKT cell-deficient mice.
Figure 5.11 Cytotoxic activity of lymphocytes against 4T1.2 tumour cells in vitro 154
Figure 5.12 Growth of CXCL12-expressing tumours in perforin- and TRAIL-deficient
mice
Figure 5.13 Growth of CXCL12-expressing tumours in IFN-γ knockout mice
Figure 5.14 Quantitation of IL-17-producing cells in tumour-draining lymph nodes by
ELISPOT assay
Figure 5.15 Intracellular cytokine staining of lymphocytes isolated from tumour-draining
lymph nodes
Figure 5.16 Cytokine production by cells isolated from tumour-draining lymph nodes. 159
Figure 6.1 Working model of CXCL12 action in primary mammary tumours
Figure 6.2 Working model of CXCL12 _(P2G) action in mammary tumour metastasis 188

List of tables

Table 1.1 Chemokine nomenclature	31
Table 1.2 The chemokine receptors and their biological functions.	33
Table 1.3 The biological functions of CXCL12 and CXCR4	34
Table 1.4 The biological functions of CXCL16 and CXCR6	35
Table 2.1 Primers used in this study	62
Table 2.2 Antibodies used in this study.	63
Table 2.3 Other reagents used in this study.	64
Table 3.1 Chemokine constructs and their functions.	79
Table 5.1 Comparison of tumour growth inhibition by CXCL12 in wild-type an	d nude
mice.	137
Table 5.2 Correlation of splenic T cell populations with final tumour weight	137

Abbreviations

300.19	a pre-B lymphocyte cell line
4T12Ala	4T1.2 cells transfected with the CXCL12(Ala)::pEF DNA construct
4T12P2G	4T1.2 cells transfected with the CXCL12(P2G)::pEF DNA construct
4TX12	4T1.2 cells transfected with the CXCL12::pEF DNA construct
4T16	4T1.2 cells transfected with the CXCL16::pEF DNA construct
4TΔ16	4T1.2 cells transfected with the CXCL16 ₍₉₋₂₂₀₎ ::pEF DNA construct
ADAM10	a disintegrin and metalloproteinase 10
ADCC	antibody-dependent cell-mediated cytotoxicity
APC	antigen presenting cell
APC-Cy7	allophycocyanin-cytochrome 7
ASMC	aortic smooth muscle cell
bFGF	basic fibroblast growth factor
BCIP/NBT	5-bromo-4-chloro-3' indolylphosphate p-toluidine salt/Nitro Blue tetrazolium
BCX6	300.19 cells transfected with a CXCR6::pEF DNA construct
BSA	bovine serum albumin
CAM	cell adhesion molecule
CCL	CC chemokine
CCR	CC chemokine receptor
CTL	cytotoxic T lymphocyte
CXCL	CXC chemokine
CXCR	CXC chemokine receptor
DAB	3,3'-diaminobenzidine
DC	dendritic cell
DLN	draining lymph node
EC	endothelial cell
ECM	extracellular matrix
EF-1α	elongation factor-1a
EGF	epidermal growth factor
ELISA	enzyme-linked immunosorbent assay
ELISPOT	enzyme-linked immunosorbent spot assay
EMMPRIN	extracellular matrix protease inducer
EPC	endothelial progenitor cell
ER	oestrogen receptor
ERK	extracellular signal-regulated kinase

FCS	foetal calf serum
FITC	fluorescein isothiocyanate
GAPDH	glutaraldehyde 3-phosphate dehydrogenase
GM-CSF	granulocyte-macrophage colony stimulating factor
GRK	G protein-coupled receptor kinase
HBSS	Hank's balanced salt solution
HD	Hodgkin's disease
HER2	human epidermal growth factor receptor 2
HIF-1a	hypoxia-inducible factor-1a
HIV	human immunodeficiency virus
HRP	horseradish peroxidase
HSC	haematopoietic stem cell
HUVEC	human umbilical vascular endothelial cell
IEL	intraepithelial lymphocyte
IFN-γ	interferon-γ
IKDC	interferon-producing killer dendritic cell
IL	interleukin
iNOS	inducible nitric oxide synthase
IRES	internal ribosome entry site
JAK	janus kinase
LDL	low density lipoprotein
LN	lymph node
MAPK	mitogen activated protein kinase
MHC	major histocompatibility complex
MMP	matrix metalloproteinase
MQ H ₂ O	MilliQ H ₂ O
MRCRB	mouse red cell removal buffer
MSC	myeloid suppressor cell
NK cell	natural killer cell
NO	nitric oxide
NPC	nasopharyngeal carcinoma
oxLDL	oxidised low density lipoprotein
PA	PBS/Azide
PBA	PBS/BSA/azide
PBL	peripheral blood leukocyte
PBS	phosphate buffered saline

PCR	polymerase chain reaction
pDC	plasmacytoid dendritic cell
PDGF	platelet-derived growth factor
PE	phycoerythrin
PE-Cy7	phycoerythrin-cytochrome 7
pEF	pEF-IRES-puro6
pfp	perforin
PGC	primordial germ cell
PI3K	phosphoinositol 3-kinase
PIP3	phosphatidylinositol 3,4,5-phospate
РКС	protein kinase C
PLC	phospholipase C
PMA	phorbol 12-myristate 13-acetate
PMS	N-methyl dibenzopyrazine methyl sulfate
PTEN	phosphatase and tensin homologue deleted on chromosome 10
RNAi	ribonucleic acid interference
RT-PCR	reverse transcription polymerase chain reaction
SCID	severe combined immunodeficient
SDF-1	stromal cell-derived factor-1
siRNA	small interfering ribonucleic acid
STAT	signal transducer and activator of transcription
TAA	tumour-associated antigen
TAM	tumour-associated macrophage
TCR	T cell receptor
TGF-β	transforming growth factor-β
Th	T helper
TLR	Toll-like receptor
TNF-α	tumour necrosis factor-α
Tr, T _{reg}	T regulatory
TRAIL	tumour necrosis factor-related apoptosis-inducing ligand
uPA	urokinase-type plasminogen activator
VCAM-1	vascular cell adhesion molecule-1
VEGF	vascular endothelial growth factor
VLA-4	very late antigen-4
XTT	sodium 3'-[1-(phenylaminocarbonyl)-3.4-tetrazolium]-bis (4-methoxy-6-nitro)
	benzene sulfonic acid hydrate

Publications arising from this work

Manuscripts

Sharon A. Hampton-Smith & Shaun R. McColl. 'Overexpression of CXCL12 in an orthotopic model of breast cancer improves the efficacy of the anti-tumour immune response.' *Manuscript in preparation*.

Conference Proceedings

Adelaide Breast Development and Cancer Meeting, 2006 (Adelaide, Australia).

Title: Chemokines in breast cancer: whose side are they on anyway?

Oral Presentation

Adelaide Immunology Retreat II, 2006 (Adelaide, Australia).

Title: The role of the chemokine CXCL12 in breast cancer.

Oral presentation

<u>Abstract</u>

A growing body of work implicates chemokines and their receptors in the progression of various types of cancer, including breast cancer. However, as potent chemotactic factors for leukocytes, chemokines also have the potential to enhance anti-cancer immunity. Evidence suggests that the chemokine CXCL12 and its receptors may be important in a number of aspects of breast cancer progression and site-specific metastasis. Another chemokine, CXCL16, has been identified as a specific chemotactic factor for Type Ipolarised T lymphocytes, which are major effectors of cell-mediated immunity and hence efficacious anti-tumour immune responses. The aim of this study, therefore, was to further elucidate the roles of CXCL12 and CXCL16 in breast cancer development and metastasis. To achieve this, wild-type CXCL12 and CXCL16 and antagonists of CXCL12 and CXCL16 activity, CXCL12_(P2G) and CXCL16₍₉₋₂₂₀₎ respectively, were overexpressed in the 4T1.2 mouse model of breast carcinoma. Overexpression of wild-type CXCL12 potently inhibited both primary tumour growth and metastasis in this model. This was attributed to the induction of an anti-tumour response dependent, in part, on T cells, interferon-y and the cytotoxic mediators perforin and TRAIL. This response was characterised by increased numbers of CD11c⁺ cells in the tumour-draining lymph nodes and enhanced cytolytic activity of lymph node-derived effector cells against tumour cells. Unexpectedly, CXCL12_(P2G) inhibited metastasis of tumour cells to the lungs of tumour-bearing mice, without affecting primary tumour growth. Intravenous injection of tumour cells revealed that CXCL12(P2G) expression could block metastatic steps occurring post tumour cell escape from the primary tumour, though a role for CXCL12_(P2G) at earlier metastatic steps could not be ruled out. Further work is needed to clarify the precise stages of metastasis at which CXCL12_(P2G) exerts its effects. No obvious effects on primary breast tumour growth were observed when CXCL16 or CXCL16₍₉₋₂₂₀₎ were overexpressed in tumour cells. Interestingly, CXCL16₍₉₋₂₂₀₎ expression inhibited experimental metastasis but not spontaneous metastasis. The findings of this study begin to shed light on the roles of CXCL12 and CXCL16 in breast cancer progression and also highlight the potential therapeutic applications of CXCL12, CXCL16 and/or their antagonists in the treatment of breast cancer and breast cancer metastasis.