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Appendix A

Customizing a spline with a specific
continuity

A great benefit of splines in general is that they can be designed to fit a given set of sample
points, but also meet specific continuity requirements. The latter is achieved by incorporat-
ing higher order polynomials which provide the desired continuity. However, higher order
polynomials exhibit a tendency to oscillate, a behaviour which is not desired for the weight
function. An essential specification on a weight function is namely, besides the higher order
continuity, its compact support. That is, it has to have a clear maximum in the center from
which it rapidly and monotonically converges to zero. The latter means without oscillations.
In order to prevent the oscillations caused by the use of the involved higher order polynomi-
als, the definition space of the weight function, which is its compact support w, is separated
into several subspaces w®). Within each subspace the spline is defined by a different set
of polynomial coefficients a®. These subspaces are linked with each other via boundary
conditions as in the continuity of the spline and its higher order derivatives throughout w.

In this thesis a C*-continuous spline based on a fourth order Pascal-type polynomial P
(Eq. 3.37) is developed by a scheme as outlined in the following. Assume that the definition
space of the spline or support w is parameterized by the coordinate r which takes values out
of the interval [—1, 1]. The spline’s definition space is subsequently split into six subspaces
w®) :=[gy, gs41], s = 1,6. The limits of these subspaces g; are given by the following seven
sample points: ¢g; = (—1.0; 0), g2 = (—2.0/3.0; 0.05), g3 = (—1.0/3.0; 0.5), g4+ = (0; 1.0),
g5 = (1.0/3.0;0.5), g¢ = (2.0/3.0; 0.05) and g7 = (1.0;0). The spline has to interpolate these
sample points exactly and they are therefore at the same time boundary conditions on the
subspace w(®). Furthermore, we consider the following boundary conditions on the subspaces
which ensure the spline’s continuity which is wanted to be C3:

e C° continuity between w® and w®: P(gy(1)) - a¥) —P(go(1))-a® =0

e C' continuity between w® and w®: P (gy(1)) -a¥ — P, (go(1)) -a® =0

e C? continuity between w® and w®: P ,,(g2(1)) -a® — P . (g2(1)) -a®@ =0



147

0.8

0.6

S
0005
‘.’ %
0.2 0.4 S \ \ “‘“",%}’IZ
ST

‘/’//I‘”" AX 1‘3\\\
g
A

1] \

e

-0.2
-1

11

Figure A.1: C? quartic spline ® = ww Figure A.2: first order derivative of the C3
quartic spline ® , = %ww,y
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Figure A.3: second order deriwative of the Figure A.4: second order deriwvative of the
C? quartic spline ® 4y = 5wz wy C® quartic spline @y, = 5 wwy,

e C® continuity between w® and w®: P, (g2(1)) - at) — P .. (g2(1)) -a® =0
e C° continuity between w® and w®: P(g3(1)) -a® — P(g3(1))-a® =0

e C! continuity between w® and w®: P (g3(1)) -a® — P ,(g3(1))-a® =0

e C? continuity between w® and w®: P, (g5(1)) -a® — P ,.(g3(1)) -a® =0
e (3 continuity between w® and w®: P ,.(g3(1)) -a® — P . (g3(1)) -a® =0
e C° continuity between w® and w®: P(g4(1)) -a® —P(g4(1))-a® =0

e C! continuity between w® and w®: P ,(g4(1)) -a® — P ,(g4(1)) -a® =0

e C? continuity between w® and w®: P ,,(g4(1)) -a® — P, (g2(1)) -a® =0
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e C® continuity between w® and w®: P ,,(g4(1)) - a® — P ,..(g4(1)) -a® =0
e C° continuity between w® and w®: P(gs5(1)) -a® —P(g5(1))-a® =0

e C! continuity between w®) and w®: P ,(g5(1)) -a® — P, (g5(1)) -a® =0

e C? continuity between w® and w®: P, (gs5(1)) -a® — P, (g5(1)) -a® =0
e (3 continuity between w® and w®: P ,.(g5(1)) -a® — P ,(g5(1)) -a®) =0
e C° continuity between w® and w(®: P(gs(1)) -a® —P(gs(1)) -a® =0

e C! continuity between w® and w®: P ,(gs(1)) - a® — P ,(gs(1)) -a® =0

e C? continuity between w® and w®: P, (gs(1)) - a® — P, (gs(1)) -a® =0

e (3 continuity between w® and w®: P . (g6(1)) - a® — P .,(gs(1)) -a® =0
Furthermore, the spline has to converge to zero on its left and right outskirts:

e boundary condition on w™: P(g,(1)) -a®) = ¢,(2)

e boundary condition on w(®: P(g;(1)) -a® = g;(2)
and has to have an absolute minimum there:

e boundary condition on w®: P,(g:(1)) - al =0

e boundary condition on w™®: P, (g1(1)) -a =0
e boundary condition on wV: P ,,(g1(1)) -a®) =0
e boundary condition on w®: P, (g;(1))-a® =0

e boundary condition on w(®: P, (g7(1)) -al® =0
e boundary condition on w®: P,,,(g7(1)) -a® =0

Finally, the spline has to exactly interpolate a certain given value in the domain center and
has to have a maximum there:

e boundary condition on w®: P(g4(1)) -a® = g4(2)

e boundary condition on w®: P, (g4(1)) -a® =0
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These boundary conditions provide 30 equations which are assembled in an algebraic equa-
tion system:

Ax=b, (A1)

where vector x contains the unknown polynomial coefficients a(®). After solving this equation
system a C3-continuous quartic spline is obtained which consists of six definition spaces w(®.
For the two dimensional space we define r, = =% and r, = y_gyo, where (z¢; yo) denotes
the center point of the spline. Then the spline, its first and second order derivatives are
illustrated for two dimensions in Fig. A.1, Fig. A.2, Fig. A.3 and Fig. A.4, respectively.




Appendix B

Parallelization

Generally, the use of a MLS-based meshfree code is much more costly than FEM-based one.
That is, the MLS shape functions and their derivatives have to be computed individually for
every integration point and every particle. Furthermore, each integration point is supported
by a larger number of particles than in FEM which increases the computing time during
numerical integration over the problem domain, but also when solving the resulting discrete
equation system. The latter is due to the larger bandwidth of the coefficient matrix of the
discrete equation system. The variational formulations presented in this thesis are partly
very involved so that the evaluation consumes a large amount of computation time in general,
and even more for meshfree methods due to the more extensive particle support. Therefore,
it is advisable to parallelize the implementation of the meshfree code so that the modelling
can be undertaken on a supercomputer with a distributed memory architecture.

A parallel supercomputer consists of a certain number of CPUs so-called nodes, where
each node has its own independent memory. The computation load and the needed memory
is more or less equally distributed over the used nodes. In that way a simulation task
is split into a pre-defined number of processes or so-called threads. Each node hosts one
or more threads depending on whether the node is a single- or a multi-processor CPU.
Usually, there is some interaction between the nodes resulting in exchange of data from
node to node over a high-speed network which connects the nodes. Between the threads on
a single multi-processor node no network communication is necessary, because they share
their memory with each other. The transfer of data between nodes is initiated by special
commands in the code that make use of the so-called message parsing interface (MPI) which
must be linked into the code as external library. The amount of communication between the
nodes however, has to be minimized, because it can otherwise significantly slow down the
calculation. Therefore, when implementing the code, it must be carefully considered which
algorithms are large enough so that the performance gain dealing with them in parallel, is not
taken up again by firstly distributing those tasks over the network to all nodes and secondly
merging the results after completion. The enforcement of the essential boundary conditions
outlined in Sec. 3.3.2 for an example, is basically a simple matrix multiplication which need
not be computed in parallel. However, as the coefficient matrix of the discrete equation is
distributed over the nodes this task has to be done in parallel. Furthermore, it is essential
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that all nodes have assigned an equal share of the computational load, because during the
modelling the processes have to be synchronized several times. This means that all processes
are stopped, until each of them has reached a certain point of the calculation process. An
unequal load results in some nodes running idle, while waiting for the others. An example
for this is the assembling of the discrete equation system which must have been completed
by all threads, before it can be solved. The maximum number of nodes is limited by the
fact that with an increasing number of nodes the total amount of communication between
the nodes is rising as well. Therefore, for a problem of a certain size, there is a maximum
number of nodes which provide a performance gain compared to a single workstation.

In this work a parallelized MLS-based meshfree modelling software is implemented using
the C'++ programming language. C++ is an object-oriented language which makes it easy
to structure and extend the code, e.g. each integration point and each particle represent a
separate object which can carry various properties such as coordinates, integration weights,
its identity number and history variables. Furthermore, it features a flexible, dynamical
memory allocation and various so-called standard libraries that facilitate the coding and
are already optimized with respect to numerical performance. Additionally, diverse software
libraries are available for C'++ such as equation solvers and graph partitioner, the use of
which is described in the later.

For quasi-static problems the basic structure of the code is now outlined in the following:

1) Reading in of all needed problem parameters and a FEM background mesh

At first all needed problem parameters and a FEM background mesh defining the problem
domain are read in. As already mentioned, a FEM mesh provides the particle distribution
and the background grid, where the numerical integration - the Gauss quadrature - takes
place. All particles are stored at all processes, because all threads need to access all
particles, e.g. determining the particle influence zones which is described in the latter.
For large scale problems however, it would be necessary to store the particles distributed
over the nodes, otherwise the memory limits of a single node would be exceeded. The
element-particle connectivity list is also temporarily stored as a whole at all processes.

2) Sorting the particles and assigning their identify numbers

The coefficient matrix of the discrete equation system is desired to be band-structured
so that the solving of the equation system can be performed most efficiently. Since the
line and column numbers of the coefficient matrix correspond to the particle parameters
or its degrees of freedom, respectively, it must be ensured that the identity number of
the particles are assigned subsequently and corresponding to the particles’ closest neigh-
bouring particles. This is as a particle interacts only with those particles in its vicinity.
Reciprocally, only these particle parameters are connected and result in entries in the
coefficient matrix. Therefore, the particles are sorted by their coordinates with respect
to all three coordinated directions. Then the identity numbers of all particles and their
parameters can be assigned correspondingly to this sorting order. Assuming particle Py
has got n parameters d} then the parameter identity numbers are determined as follows

di=I-n+J. (B.1)
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3)

4)

5)

6)

Distribution of the FEM elements over the allocated threads

The FEM elements which are the integration cells are evenly distributed over all allocated
threads so that accordingly, each process computes later for an equal portion of quadrature
cells 1) the integration points and weights, 2) the particle weights and 3) its share on the
evaluation of the continuous integral over the problem. The distribution is achieved by
sorting the elements correspondingly to their position with respect to one coordinate
direction and splitting them in equal portions for each process.

Computation of the Gauss quadrature coordinates and weights as well the
particle weights

Using FEM ansatz-functions for tetrahedral or hexahedral elements and triangle or quadri-
lateral elements, respectively, each process determines for its share of integration cells the
coordinates and the weights of the integration points as well as as the particle weights
according to (Eq. 3.20). Afterwards, the FEM element-particle connectivity list is not
needed anymore and can be deleted.

Determination of the particle influence zones

An essential precondition to calculate the MLS approximation functions (Eq. 3.5) is that
the moment matrix (Eq. 3.4) can be inverted. Accordingly, if a basis polynomial of m-th
order is used to approximate a function at a point z, then the influence zones of the
closest particles must be determined in such a way that the weighted least square fit (Eq.
3.2) is evaluated on at least m sample points which are the particles. That is, the weight-
functions associated with these neighbouring particles have to cover point x considering
that these weight-functions define each particles domain of influence.

Generally, point z is either an integration point or a particle, where the solution needs
to be approximated. In this work, first and second order basis polynomials of the Pascal
type are applied. In order to provide a stable solution approximation throughout the
domain it is found that each particle has to support at least two neighbouring particles
in each positive and negative coordinate direction. An irregular particle distribution can
require three or four neighbouring particles.

Since the influence zones are cuboids, the influence radii for all three coordinate directions
are separately determined by a special searching algorithm. Each process deals with an
equal portion of particles. After completion the results are exchanged among all threads.
Therefore, each process possesses a complete set of particles with their associated influence
radii.

Distribution of all Gauss quadrature points over the allocated threads

Using a distributed memory architecture supercomputer, larger arrays are usually stored
in distributed manner over the nodes. This is especially the case for the coefficient matrix
of the discrete equation system. In order to avoid large scale network communication be-
tween the threads, it is necessary to store the quadrature points accordingly they generate
entries for certain parts of the coefficient matrix.

For a simple problem domain geometry it is sufficient that the volume and boundary
integration points stay at those processes, where their coordinates and weights have been
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determined earlier on. This basically means that the sorting and distribution of the
quadrature cells is adopted.

In case of more complex geometrical configuration such as bodies containing voids or
cracks it is meaningful to make use of a special partitioning algorithm. By respecting the
connectivity of the integration points to each other, it can be ensured that the amount of
communication is minimized and the computational load is equally distributed.

In this work the external partitioning library ParMETIS (Karypis and Kumar 1997;
Karypis and Kumar 1998) is incorporated which features a so-called graph partitioner.
The implemented algorithms in this library are based on the multilevel recursive-bisection,
multilevel k-way, and multi-constraint partitioning schemes. This kind of partitioning
procedure utilizes a so-called graph which represents a list of so-called vertices connected
with so-called edges. All vertices and edges have associated weights, where the vertex
weights address the amount of connectivity to neighbouring vertices and the edge weights
the distance to each other. Generally, either the vertex weights or the edge weights can
be active.

In the meshfree code each integration point stands for a vertex and its neighbouring
integration points are the edges. The graph is set up by finding for each integration point
those particles which support it. As edges we have all the other integration points which
are also supported by the same particles. Using the vertex weights, the partitioning
algorithm is optimized with respect to the computational load each thread will have
assigned. Using the edge weights, the amount of communication will be minimized which
arises during the evaluation of the integration points. Since the computing time consumed
by the numerical integration over the elaborate formulations developed in this thesis
exceeds the amount of communication time by far, the use of vertex weights is advisable.
For bigger problems the graphs quickly reaches an immense size which directly affects the
overall execution time of the partition algorithm and the memory needed to store it. It
is therefore imperative to reduce the connectivity lists of each integration points to its
closest neighbours.

As a result, the graph partitioner provides for each process its share of the integration
points as well as the so-called edgecut which gives information of the amount of com-
munication arising by this partition scheme. The edgecut means in this context that
integration points lying close to a partition boundary but on different sides i.e. in differ-
ent partitions, are supported by a certain number of the same particles. Consequently,
the influence zones of those particles exhibit intersection and are therefore interacting
across the partition boundaries depicted in Fig. B.1. Out of experience it is found that
only 10 % of the original graph size is sufficient to achieve excellent results. That is, each
vertex is only connected with four of its closest edges. This is plausible as the edges in
the closest vicinity exhibit the greatest level of connectivity to the vertex.

Obviously, the generation of the initial graph is a very elaborate task and other partition
algorithms only need the coordinates of the vertices to operate, but not a connectivity list.
These kind of procedures however, exclusively account for the geometrical closeness. In
case of voids within the problem domain, vertices lying at opposite sides are not recognized
as not being linked with each other. Hence, these methods have only limited usage in
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7)

8)

9)

Partition 1
Pl . ° P2
\. o
P,
Partition 2

Figure B.1: particles support across the
partition boundary

such cases.

When the partitioning is finished and the quadrature points are re-distributed according
to the partition scheme, then for each integration point are those particles determined
which support it. Each integration point is a C'++ object and stores its own, individual
particle support list as an element of this C'++ object.

Computation of the shape functions and their derivatives at all integration
points and particles

The MLS-approximation of the solution function and its derivatives requires that at each
integration point and each particle the ordinates of the shape function and its derivatives
of the supporting particles are computed. Note that the MLS approximation scheme at
the particles only needs to be calculated, if the results of modelling is plotted at the
particles. Parallelizing this task, each process obtains for its share of the integration
points and particles the shape functions and their derivatives of the supporting particles
according to (Eq. 3.5). Each integration point and particle is a separate C'++ object and
stores the corresponding local MLS-approximation scheme as a C'++ object element.

Calculation of the modified shape functions and their derivatives

If the essential boundary conditions are enforced by the modified boundary collocation
method described in Sec. 3.3.2 the approximation functions of those particles have to be
modified which influence boundary particles having essential boundary conditions applied
and also those particles which influence the earlier. The method involves the inversion
of a matrix containing the unmodified shape functions ordinates (Eq. 3.66). Generally,
this part of the code could be parallelized, but as mentioned in Sec. 3.3.2 this boundary
enforcement procedure is as a whole not suitable for large scale problems anyway.

Determination of a local sparse storage scheme of the coefficient matrix

The coefficient matrix of the discrete equation system is generally only sparsely set.
Consequently, it is meaningful to store only those entries which are different from zero and
which are at a thread locally computed. The terminology local refers to the local part of
a global entity which is assigned to a certain process only. Merging the local parts results
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in the corresponding global entity. Note however, the distribution of the global entity
over the threads is achieved in such a way that we find a limited amount of redundancy
and intersection. Now, it is necessary to obtain for each local quadrature point x; a set
of particles A;, which support this point

Ay = {I ‘XG € wI} : (B.2)

where w; is the influence zone associated with the particle P;. All particles Py € A;, and
correspondingly their particle parameters are in interaction with each other. Accordingly,
the local coefficient matrix of the discrete equation system will have entries different from
zero which relate to these particle parameters. This is clear as for all particles Pr € A,
and Py € A, the following holds

wrNwy #0. (B.3)

In this way each node holds its local part or more precisely, a local portion of lines of the
global coefficient matrix, where we have

n

K9tobal — Z Klokabp with n = number of processes . (B.4)
p

Correspondingly, each node needs to allocate memory only for its local share of the
coefficient matrix. The redundancy of matrix entries on different processes leads to com-
munication between the processes, a fact is which will be addressed under Point 10. For
larger problems the memory requirement of the global coefficient matrix would quickly
exceed the memory capacity of a single node. The distribution of the global coefficient
matrix over the nodes is therefore absolutely imperative.

Note that the use of the modified boundary collocation method outlined in Sec. 3.3.2
significantly increases the size of the sparse coefficient matrix. As reason can be found
that using the modified boundary collocation method, the set A, does not only contain
the identity numbers of particles that directly influence each other, but also in case of
particles having essential boundary conditions applied, all their neighbouring particles as
well, even if the latter do not support xg.

In the code of this work a sparse matrix storage scheme is applied which is well-known in
the literature (Bathe 1982). Hereby, only the band-structure of the thread’s share on the
coefficient matrix is stored as a vector. It is therefore necessary to store for each line of
the local coefficient matrix the position of the first and last element within this vector.

The evaluation of the local share of integration points also results in a local internal and
external force vector which are similar to the local coefficient matrix only partly set. It
is therefore only as much memory for both allocated as necessary.
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10)

11)

Computation of the coefficient matrix, the internal and the external force vec-
tor

The problem is now evaluated at each local integration point which involves the ap-
proximation of the kinematical quantities, e.g. the displacement vector, the deformation
gradient and the strain tensor, and subsequently, the calculation of constitutive quantities
such as the tangent and the stress. As a result we achieve at each integration point a part
of the coefficient matrix K, the internal and external force vector f;,; and f,;, respectively,
which correspond to the degrees of freedom of its supporting particles. When the whole
local portion of the integration points have been computed, each process holds a local
share of the discrete equation system:

local glocal local local
K d _fezt fznt ) (B5)

where vector d°@ contains the local portion of the increments of particle parameters

Awujy. Now, it is important to realize that integration points near the partition boundaries

partly provides values for the same global coefficient matrix entries Kig?Obal, as well as
for fgigbz“l and fgrffﬁal Therefore, after the numerical integration of the problem has been

completed at each thread, those lines of the global discrete equation system which are
partly computed at several nodes have to be merged according to the following expression

lobal __ lokal ith — e B.6
Kzijo a E B oka ,p with n = number of processes , ( : )
global local,p it = b f esse (B ‘)
e b cati s with n = number o processes , :
global local,p : B.8
Z y E L with n = number of processes , ( : )

and excluswely assigned to one single process - a so-called root process. This task requires
communication between the nodes i.e. data exchange. Hence, before solving the discrete
equation each thread owns a certain part of the discrete equation system or more precisely,
a certain portion of lines without redundancy.

Hereby, it is noted that the amount of communication is usually less for FEM, because the
particle interactivity is less also. This holds especially for an irregular meshfree particle

distribution, where the particle connectivity can be partly more than twice as much as in
FEM.

Solving the discrete equation system

A consequent parallelization of the meshfree code should also include the use of a parallel
equation solver. That is, not only to solve the discrete equation system in parallel,
but also to take over its parallel storage scheme. Otherwise the local discrete equation
systems have to be assembled to a global one which also gives rise to the necessity to
allocate memory correspondingly at each node. This however, is not desirable as it would
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12)

limit the problem size which could be modelled. The meshfree code implemented for
this thesis utilizes the parallel equation solver package called Portable Extensible Toolkit
for Scientific Computations (PETSc) which has been developed at the Argonne National
Laboratory (USA) (Satish et al. 2003). It contains various pre-conditioning methods and
enables to solve iteratively using different Krylov subspace methods as well as directly
using the LU-factorization.

Visualization of the results

After the discrete equation system has been successfully solved, the locally held portion
of the particle parameters d'*® is distributed to the other threads so that the particle
parameter of all particles P; can be updated at each thread by

ut™t = Aug +ub. (B.9)

Subsequently, the solution e.g. displacement or stress can be approximated at the particles
or the local portion of integration points, depending whether the results are plotted at the
particles or the integration points. Finally, all data to be plotted have to be assembled
at one root process and are written into files, the format of which is according to the
requirements of the used visualization software. This thesis makes use of a software
called GID which has been developed at the International Center For Numerical Methods
In Engineering (CIMNE).



Appendix C

Iterative stabilization parameter
determination algorithm

The basic idea of the iterative stabilization parameter determination is that the parameters
B are individually assigned to each numerical integration point and the final configuration
ensures that at each integration point a minimum value of essential boundary condition
enforcement ¢ is given. The parameter § is a constant value applied to the entire problem
domain. As already mentioned § can be related to the displacement convergence norm
used for the Newton-Raphson method. Furthermore the initial setting of the stabilization
parameters 8 and its successive increase can be approximated by Eq. (4.13). The objective of
this algorithm is, however, also to minimize the number of iteration steps needed to compute
a suitable distribution for stabilization parameters. The coded algorithm used for this work
is found by intensive testing and looks like as follows:

e set the maximum error for all integration points to €4, = 0

e loop over all integration points P; and all their degrees of freedom k with essential
boundary conditions applied

1. compute the current boundary enforcement error ¢ = |ul — hl| and set the
stabilization parameter [ by the following procedure

(a) if the boundary condition enforcement is not accurate enough € > §, then g

must be initially set or increased and we first define a factor m = %

i. if m > B then f=m
ii. else if m < 2.0 then = 3 % 2.0
iii. else B=FB*m
(b) else if boundary condition enforcement is more accurate then required e <
d x 10 then gradually reduced the stabilization parameter by 5 = /2

2. adjust the maximum error for all integration points: if €,,4, < € then €,,,, = €

3. check, if the boundary enforcement error is for all integration points lower than
the given error tolerance €,,,, < 0 and distinguish two cases
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(a) if €naz > % or it is the first iteration step, then set the parameter of all
particles to zero values and proceed with the new stabilization parameter

distribution at 2.)
(b) otherwise terminate the iteration procedure



Appendix D

Some definitions and relations of
tensor calculus

Some definitions and relations of tensor calculus shall be summarized here. It is assumed
that the reader is familiar with basic tensor algebra and analysis. Lower-case greek letters a,
B, 7, ... denote scalars, lower-case bold-face roman letters a, b, c, ... vectors and upper-case
bold-face roman letter A, B, C, ... second-rank tensors.

The scalar and the cross products of two vector a and c are denoted by

a-b=uq« (D.1)
and
axb=c, (D.2)

respectively, and the following relations hold

w

a-b=b-a

N

e N N N N N N N~ N—

a-(b+c)=a-b+a-c
(—ra)xb=—-axb

(S

axb=-bxa

a(axb)=(ca) xb=ax (ab)

9% 9% o9
D

c-(axb)=b-(cxa)=a-(bxc) 8
ax(bxc)=(a-c)b—(a-b)c 9
ax(bxc)+bx(cxa)+cx(axb)=0 (Lagrange identity) (D.10
(axb)-(cxd)=(b-d)(c-a)—(a-d)(c-b). (D.11
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The tensor product of two vectors is written as
(a®b)=A, (D.12)

and the following rules are valid

AT =(a®b)" = (b®a) (D.13)
(a®b)u=(b-u)a (D.14)
a®(b+c)=a®b+a®c (D.15)
(ca) @b =a®ab=a(a®Db) (D.16)
T(u+v)=Tu+Tv (D.17)
T (cu) = @ (Tu) = (aT) u (D.18)
(T+S)u=Tu+ Su. (D.19)
The scalar product of two tensors is denoted by

A:B=C, (D.20)
and the following relations can be found

a(T:8)=(aT):S=T:(aS) (D.21)
T:S=(a®b):(c®d)=(a-c)(b-d) (D.22)
T:(a®@b)=a-Tb=T"a-b (D.23)
T:S=S:T (D.24)
T:S=T":8"=T8":1 (D.25)
T:(S+R)=T:S+T:R (D.26)
RS: T=R:TS"=T'R:S"=T":S"R" =T : RS. (D.27)
The tensor product of tensors is denoted by

AB=C (D.28)
and the following rules are valid

TS=(a®@b)(vu)=(b-c)(a®d) (D.29)
Tu®v)=Tu®v (D.30)

uev)T=ueT'v (D.31)
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(TS)R =T (SR)
T(R+S)=TR+TS
(R+S)T =RT + ST
a(TS) = (aT)S = T (aS) .

The tensor product of vector and tensor is written as
(uxT)=S8,
and the following relations hold

(uxT)v=ux(Tv)
(Txu)v=(Tv)xu
T:(Sxv)=-S:(Txv)
uxT=-Txu
ux(T+S)=uxT+uxS$
u+v)xT=uxT+vxT
a(uxT)=(au) x T=ux (aT)
(vxS):T=—-(vxT):S
(uxI)=—(uxI)’

ux (a®b)=(uxa)®b

(a®b)xu=(axu)®b

(D.36)

3
Finally, the double contraction of a third-rank K and second-rank tensor B is denoted by

3

K:B=u.

(D.48)



Bibliography

1]
2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Aboudi J. (1991) A unified micromechanical approach, Elsevier, Amsterdam

Aifantis E.C. (1984) 'On the microstructural origin of certain inelastic models’, Trans.
ASME Journal of Engineering and Materials and Technology, 106: 326-330

Aifantis E.C. (1996) 'Higher order gradients and size effects’, in Size-scale effects effects
in the failure mechanisms of materials and structures: 231-242 (edited by Hildebrandt
S. and Karcher H.), E & FN Spon, London

Aifantis E.C. (1999) ’Strain gradient interpretation of size effects’, International Jour-
nal of Fracture, 95: 299-314

Arroyo M. and Ortiz M. (2006) 'Local maximum-entropy approximation schemes: a
seamless bridge between finite elements and meshfree methods’, International Journal
for Numerical Methods in Engineering, 65: 2167-2202

Arruda E.M. and Boyce M.C. (1993) ’A three-dimensional constitutive model for the
large stretch behaviour of rubber elastic materials’, Journal of the Mechanics and
Physics of Solids, 41: 389-412

Askes H. and Aifantis E.C. (2002) 'Numerical modeling of size effects with gradient
elasticity’, International Journal of Fracture, 117: 347-358

Atluri S. N. and Zhu T. (1998) ’A new meshless local petrov-galerkin (mlpg) approach
to nonlinear problems in computer modeling and simulation’, Computer Modeling and
Sitmulation in Engineering, 3: 187-196

Atluri S. N. and Zhu T. (2000a) "The meshless local petrov-galerkin (mlpg) approach
for solving problems in elasto-statics’, Computational Mechanics, 25: 169-179

Atluri S.N. and Zhu T. (2000b) 'New concepts in meshless methods’ International
Journal for Numerical Methods in Engineering, 47: 537-556

Bathe K.J. (1982) 'Finite Element Procedures in Engineering Analysis’, Prentice Hall

Bathe K.J. (2001) "The inf-sup condition and its evaluation for mixed finite element
methods’, Computers and Structures, 49: 243-252



164 Bibliography

[13] Beissel S. and Belytschko T. (1996) 'Nodal integration of the element-free Galerkin
method’, Computer Methods in Applied Mechanics and Engineering, 179:49-74

[14] Belikov V.V, Ivanov V.V., Kontorovich V.K., Korytnik S.A and Semenov A.Y. (1997)
"The non-Sibsonian interpolation: a new method of interpolation of the values of a
function on an arbitrary set of points’, Computational Mathematics and Mathematical
Physics, 37(1): 9-15

[15] Belytschko T., Gu L. and Lu Y.Y. (1994a) ’Fracture and crack growth by element-free
Galerkin methods’, Modelling and Simulation in Materials Science and Engineering,
2: 519-534

[16] Belytschko T., Lu Y.Y., and Gu L. (1994b) ’Element free galerkin methods’, Interna-
tional Journal for Numerical Methods in Engineering, 37: 229-256

[17] Belytschko T. and Tabbara M. (1996a) 'Dynamic fracture using Element-Free Galerkin
methods’, International Journal For Numerical Methods In Engineering, 39: 923-938

[18] Belytschko T., Krongauz Y., Fleming M., Organ D. and Liu W.K. (1996) ’Smooth-
ing and accelerated computations in the element free galerkin method’;, Journal of
Computational and Applied Mathematics, 74:111-126

[19] Belytschko T., Organ D., and Gerlach C. (2000) 'Elementfree galerkin methods for dy-
namic fracture in concrete’, Computer Methods in Applied Mechanics and Engineering,
187: 385-399

[20] Besdo D. (1974) 'Ein Beitrag zur nichtlinearen Theorie des Cosserat-Kontinuums’,
Acta Mechanica, 20: 105-131

[21] de Boer R. (1982) Vektor und Tensorrechnung fir Ingenieure, Springer Verlag, Berlin

[22] de Borst R. and Miihlhaus H.-B. (1992) ’Gradient-dependent plasticity: formulation
and algorithm aspects’, International Journal for Numerical Methods in Engineering,
35: 521-539

[23] de Borst R. (1993) 'A generalization of Jo-flow theory for polar continua’, Computer
Methods in Applied Mechanics and Engineering, 103: 347-362

[24] Braun J. and Sambridge M. (1995) A numerical method for solving partial differential
equations on highly irregular evolving grids’, Nature, 376: 655-660

[25] Breitkopf P., Touzot G. and Villon P. (1998) ’Consistency approach and diffuse deriva-
tion in element free methods based on moving least squares approximation’, Com.
Assist. Mech. Eng. Sci., 5: 479-501

[26] Breitkopf P., Rassineux A., Touzot G. and Villon P. (2000) "Explicit form and efficient
computation of mls shape function and their derivatives’, International Journal for
Numerical Methods in Engineering, 48: 451-466



Bibliography 165

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

Breitkopf P., Rassineux A. and Villon P. (2002) ’An introduction to moving least
squares meshfree methods’, Revue Furopéenne des Eléments Finis, 11,(7-8): 825-868

Bufler H. (1985) "The Biot stresses in nonlinear elasticity and the associated generalized
variational principles’; Ingenieur-Archiv, 55: 450-462

Cauchy A.L. (1850) "Mémoire sur les systéms isotropes de points matériels’ Mémoire
de I’Acacémie les Sciences, Paris, 22

Chen J.-S., Pan C., Wu C.-T., and Liu W.K. (1996) ’'Reproducing kernel particle
methods for large deformation analysis of nonlinear structures’, Computer Methods in
Applied Mechanics and Engineering, 139: 195-227

Chen J.-S., Pan C. and Wu C.-T. (1997) ’A large deformation analysis of rubber based
on a reproducing kernel particle method’, Computational Mechanics, 19: 211-227

Chen J.-S. and Wang H.P. (2000) 'New boundary condition treatments in meshfree
computation of contact problems’, Computer Methods in Applied Mechanics and En-
gineering, 187: 441-468

Chen J.-S., Wu C.-T., Yoon S. and You Y. (2001) A stabilized conforming nodal inte-
gration for Galerkin mesh-free methods’; International Journal for Numerical Methods
i Engineering, 50: 435-466

Chen J.-S., Wu Y., Wang D. (2004) 'Nonconforming semi-Lagrangian meshfree formu-
lation for problems with excessive particle motion’, invited, Computers And Structures

Choquet-Bruhat Y., DeWitt-Morette C. and Dillard-Bleick M. (1982) Analysis, Man-
ifolds and Physics Part I, North-Holland, Amsterdam

Cosserat E. and F. (1909) Théorie des corps déformables, A. Hermann & Fils, Paris

De S. and Bathe K.J. (2000) "The method of finite spheres’, Computational Mechanics,
25: 329-345

De S. and Bathe K.J. (2001) 'Displacement /pressure mixed interpolation in the method
of finite spheres’, International Journal for Numerical Methods in Engineering, 51:
275-292

Delves L. and Mohamed J. (1985) Computational Methods for Integral Equations, Cam-
bridge Unwversity Press, New York

Dolbow J. and Belytschko T. (1998) ’An introduction to programming the meshless
element free Galerkin method’, Archives in Computational Mechanics, 5(3): 207-241

Dolbow J. and T. Belytschko (1999) 'Numerical integration of Galerkin weak form in
meshfree methods’. Computational Mechanics, 23(3): 219-230

Duarte C.A. and Oden J.T. (1996) 'Hp clouds - a hp meshless method’, Numerical
Methods for Partical Differential Equations, 12: 673-705



166

Bibliography

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Dubrovin B.A., Fomenko A.T. and Novikov S.P. (1984) Modern Geometry- Methods
and Applications I, Springer-Verlag, New York

Ericksen J.L. and Truesdell C. (1957) ’Exact theory of stress and strain in rods and
shells’, Archive for Rational Mechanics and Analysis, 1: 295-323

Eringen A.C. and Suhubi E.S. (1964) ’Nonlinear theory of simple micro-elastic solids’,
International Journal of Engineering Science, 2: 189-203

Eringen A.C. (1975) Continuum Physics, Academic Press, New York

Eringen A.C. and Kafadar C.B. (1976) 'Polar field theories’, in Continuum Physics IV
(Edited by Eringen A.C.), Academic Press, New York

Eringen A.C. (1999) Microcontinuum field theories I: Foundations and Solids, Springer,
New York

Fleck N.A., Miiller G.M., Ashby M.F., Hutchinson J.W. (1994) ’Strain gradient plas-
ticity: theory and experiment’, Acta Metallurgica et Materialia, 42: 475-487

Fleck N.A. and Hutchinson J.W. (2001) ’A reformulation of strain gradient plasticity’,
Journal of the Mechanics and Physics of Solids, 49: 2245-2271

Forest S. (1998) "Mechanics of generalized continua: construction by homogenization’,
Journal de Physique IV, 8: 39-48

Forest S., Barbe F. and Cailletaud G. (2000) 'Cosserat modelling of size effects in the
mechanical behaviour of polycrystals and multi-phase materials’, International Journal
of Solids and Structures, 37: 7105-7126

Forest S. and Sievert R. (2003) 'Elastoviscoplastic constitutive frameworks for gener-
alized continua’, Acta Mechanica, 160: 71-111

Garrison Jr. W.M. and Moody N.R. (1987) 'Ductile Fracture’ Journal of the Physics
and Chemistry of Solids, 48: 1035-1074

Gingold R.A. and Monaghan J.J. (1977) 'Smoothed particle hydrodynamics: theory
and applications to non-spherical stars’ Monthly Notices of the Royal Astronomical
Society, 181: 375-389

Gosz J., Liu W.K. (1996) ’Admissible approximation for essential boudary conditions
in the reproducing kernel particle method’, Computational Mechanics, 19: 120-135

Griebel M. and Schweitzer M.A. (2002) ’A Particle-Partition of Unity Method - Part
V’: Boundary conditions’, in Geometric Analysis and Nonlinear Partial Differential
Equations: 517-540 (edited by Hildebrandt S. and Karcher H.), Springer

Giinther W. (1958) "Zur Statik und Kinematik des Cosseratschen Kontinuums’, Ab-
handlungen der Braunschweigischen Wissenschaftlichen Gesellschaft, 1: 195-213



Bibliography 167

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Gurson A.L. (1977) ’Continuum theory of ductile rupture by void nucleation and
growth. Part I: Yield criteria and flow rules for porous ductile materials’, Journal
of Engineering Materials and Technology, 99: 2-15

Gutkin M.Y. and Aifantis E.C. (1999) 'Dislocations and disclinations in gradient elas-
ticity’, Physica Status Solidi (b), 214: 245-284

Hestens D. (1990) 'New Foundations for Classical Mechanics’, Kluwer Academic Pub-
lishers, Dordrecht

Hoek E. and Brown E. T. (1982) Underground ezcavations in rock, The Institution of
Mining and Metallurgy, London

Iske A. and Kaeser M. (2005) 'Two-phase flow simulation by AMMoC, an adaptive
meshfree method of characteristics’, Computer Modeling In Engineering And Science,
7(2): 133-148

Jelenic G. and Crisfield M.A. (1999) 'Geometrically exact 3D beam theory: implemen-
tation of a strain-invariant finite element for static and dynamics’, Computer Methods
in Applied Mechanics and Engineering, 171: 141-171

Jun S., Liu W.K. and Belytschko T. (1998) "Explicit reproducing kernel particle meth-
ods for large deformations problems’, Journal of Numerical Methods in Engineering,
41: 137-166

Karypis G. and Kumar V. (1997) ’A coarse-grain parallel multilevel k&way partition-
ing algorithm’ Proceedings of the Figth SIAM Conference on Parallel Processing For
Scientific Computing

Karypis G. and Kumar V. (1998) ’Multilevel k-way Partitioning Scheme for Irregular
Graphs’ Journal of Parallel and Distributed Computing, 48(1): 96-129

Koiter W.T. (1964) ’Couple stresses in the theory of elasticity’, Proceedings of the
Royal Netherlands Acadedmy of Arts and Sciences, 67: 17-44

Kroner E. (1958) "Kontinuumstheorie der Versetzungen und Eigenspannungen’; Ergeb-
nisse der Angewandten Mathematik, 3: 1-179

Krongauz Y. and Belytschko T. (1996) ’Enforcement of essential boundary conditions
in meshless approximations using finite elements’, Computer methods in applied me-
chanics and engineering, 131: 133-145

Lakes R.S. (1986) ’Experimental microelasticity of two porous solids’, International
Journal of Solids and Structures, 22(1): 55-63

Lam D.C.C., Yang F., Chong A.C.M., Wang J. and Tong P. (2003) ’Experiments and
theory in strain gradient elasticity’, Journal of the Mechanics and Physics of Solids,
51: 1477-1508



168 Bibliography

[73] Lancaster P. and Salkauskas K. (1981) ’Surface generated by moving least square
methods’, Mathematics of Computations, 37(155): 141-158

[74] Li S. and Liu W.K. (1998) 'Reproducing kernel hierarchical partition of unity part I’,
Journal of Numerical Methods in Engineering, 45: 251-288

[75] Li S. and Liu W.K. (2000) ’Numerical simulations of large deformations of thin shell
structures using meshfree methods’, Computational Mechanics, 25: 102-116

[76] Li S., Liu W.K., Quian D., Gudrun P. and Rosakis R. (2001) ’'Dynamic shear band
propagation and micro-structure of adiabatic shear band’, Computer Methods In Ap-
plied Mechanics And Engineering, 191: 73-92

[77] Lippmann H. (1969) 'Eine Cosserat-Theorie des plastischen Flieflens’, Acta Mechanica,
8: 255-284

[78] Lippmann H. (1995) ’Cosserat plasticity and plastic spin’, Applied mechanics reviews,
48: 753-762

[79] Liszka T., Duarte C.A.M., and Tworzydlo W.W. (1996) 'Hp-meshless cloud method’,
Computer Methods in Applied Mechanics and Engineering, 139: 263-288

[80] Liu G.R. and Chen X.L. (2001) ’A mesh-free method for static and free vibration
analysis of thin plates of complicated shape’, Journal of Sound and Vibration, 241(5):
839-855

[81] Liu W.K. and Chen Y. (1995) "Wavelet and multiple scale reproducing kernel methods’,
Journal of Numerical Methods in Fluids, 21: 901-931

[82] Liu W.K., Chen Y., Uras R.A. and Chang C.T. (1996) ’Generalized multiple scale
reproducing kernel particle methods’, Computer Methods in Applied Mechanics and
Engineering, 139: 733-752

[83] Liu W.K., Jun S. and Belytschko T. (1995) 'Reproducing kernel particle methods’,
International Journal for Numerical Methods in Fluids, 11: 83-95

[84] Liu W.K., Li S. and Belytschko T. (1997) 'Moving least square reproducing kernel
method part I: Methodology and convergence’, Computer Methods in Applied Me-
chanics and Engineering, 143: 422-433

[85] Lucy L.B. (1977) 'A numerical approach to the testing of the fission hypothesis’, As-
trophysical Journal, 82: 1013

[86] Lu Y.Y., Belytschko T. and Gu L. (1994) ’A new implementation of the element free
Galerkin method’, Computer Methods in Applied Mechanics and Engineering, 113:
397-414

[87] Marsden J. E. and Hughes T.J.R (1983) ’Mathematical foundations of elasticity’, Pren-
tice Hall



Bibliography 169

[88] Mase G.T. and Mase G.E. (1999) Continuum mechanics for engineers, CRC Press;
Boca Raton, London, New York, Washington D.C.

[89] Melenk J.M. and Babuska I. (1997) *The partition of unity method: Basic theory and
applications’ International Journal for Numerical Methods in Engineering, 40: 727-758

[90] Mindlin R.D. (1964) 'Micro-structure in linear elasticity’, Archive for Rational Me-
chanics and Analysis, 16: 51-78

[91] Monaghan J.J. (1985) 'Particle methods for hydrodynamics’ Computer Physics Report,
3: 71-124

[92] Miihlhaus H-B. and Vardoulakis I. (1987) "The thickness of shear bands in granular
materials’, Géotechnique, 37: 271-283

[93] Miihlhaus H.-B. (1989) ’Application of Cosserat theory in numerical solution of limit
load problems’, Ingenieur-Archiv, 59: 124-137

[94] Miihlhaus H.-B. and Aifantis E.C. (1991) ’A variational principle for gradient plastic-
ity’, International Journal of Solids and Structures, 28(7): 845-857

[95] Nayroles B., Touzot G. and Villon P. (1992) ’Generalizing the finite element method:
Diffuse approximation and diffuse elements’, Computational Mechanics, 10: 307-318

[96] Nitsche J. (1970-1971) 'Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen
bei Verwendung von Teilraumen, die keinen Randbedingungen unterworfen sind’, Ab-
handlungen aus den Mathematischen Seminaren der Universitat Hamburg, 36: 9-15

[97] Nye J.F. (1953) ’Some geometrical relations in dislocated crystals’, Acta Metallurgica
et Materialia, 1: 153-162

[98] Oden J.T., Duarte C.A.M., and Zienkiewicz O.C. (1998) 'A new cloud-based hp finite
element method’, Computer Methods in Applied Mechanics and Engineering, 153:
117-126

[99] Organ D., Fleming M., Terry T. and Belytschko T. (1996) 'Continuous meshless ap-
proximations for nonconvex bodies by diffraction and transparency’ Computational
Mechanics 18(3): 225 - 235

[100] Pamin J., Askes H. and de Borst R. (2003) "Two gradient plasticity theories discretized
with the element-free Galerkin method’;, Computer Methods in Applied Mechanics and
Engineering, 192: 2377-2403

[101] Powell J. D. (1969) 'A method for non-linear constraint in optimization problems’, in
Optimization, Fletcher R. (ed.), Academic Press, London, 283-298

[102] Randles P.W., Libersky L.D. and Petschek A.G. (1999) ’On neighbours, derivatives
and viscosity in particle codes’, Proceeding of ECCM Conference, Munich, Germany,
31 August September 1999



170

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

Rousselier G. (1987) "Ductile Fracture Models and Their Potential in Local Approach
of Fracture’, Nuclear Engineering and Design, 105: 97-111

Schéfer H. (1967) 'Das Cosserat-Kontinuum’, Zeitschrift fir angewandte Mathematik
und Mechanik, 47: 485-498

Sansour C. and Bufler H. (1992) ’An exact finite rotation shell theory, its mixed vari-
ational formulation, and its finite element implementation’, International Journal for
Numerical Methods in Engineering, 34: 73-115

Sansour C. and Bednarczyk H. (1995) "The Cosserat surface as shell model, theory and
finite-element formulation’, Computer Methods in Applied Mechanics and Engineering,
120: 1-32

Sansour C. (1998a) 'A theory of the elastic-viscoplastic Cosserat continuum’, Archive
of Mechanics, 50: 577-597

Sansour C. (1998b) ’A unified concept of elastic-viscoplastic Cosserat and micromor-
phic continua’, Journal de Physique IV Proceedings, 8: 341-348

Sansour C., Feih S. and Wagner W. (2003a) 'On the performance of enhanced strain
finite elements in large strain deformations of elastic shells’, International Journal for
Computer-Aided Engineering and Software, 20(7): 875-895

Sansour C. and Wagner W. (2003b) ’Multiplicative Updating of the Rotation Tensor
in the Finite Element Analysis of Rods and Shells - A Path Independent Approach’,
Computational Mechanics, 31: 153-162

Satish B., Gropp W.D., McInnes L.C. and Smith B.F. (2003) PETSc user manual -
revision 2.1.5, Argonne National Laboratory, USA

Shepard D. (1968) ’A two-dimensional interpolation function for irregular spaced
points’, Proceedings of A.C.M. National Conference, 517-524

Sibson R.A. (1980) "A vector identity for Dirichlet tesselation’, Mathematical Proceed-
ings of the Cambridge Philosophical Society, 87: 151-155

Sidoroff F. (1975) * Microstructure and plasticity’, Mechanics Research Communica-
tions, 2(2): 73-77

Simo J.C. and Vu-Quoc L. (1986) ’A three-dimensional finite-strain rod model. Part
II: Geometric and computational aspects.”, Computer Methods in Applied Mechanics
and Engineering, 58: 79-116

Simo J.C., Tarnow N. and Doblare M. (1995) 'Nonlinear dynamics of three-dimensional
rods: exact energy and momentum conservation algorithms’, International Journal for
Numerical Methods in Engineering, 58: 79-116

Sievert R. (1992) ’Eine Systematik fiir elastisch-plastische Stoffgleichungen’, Disser-
atation, Technische Universitat Berlin



Bibliography 171

18]

[119]

[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]

18]

[129]

[130]

[131]

[132]

Skatulla S. and Sansour C. (2005) ’On meshfree computations of shells’, Proceedings,
Third MIT Conference, Boston, USA

Sladek J. and Sladek V. (2003) ’Application of local boundary integral equation method
into micropolar elasticity’, Engineering Analysis with Boundary Elements, 27: 81-90

Spencer A.J.M (1980) ’Continuum mechanics’, Longman Group, London

Steinmann P. (1994) ’A micropolar theory of finite deformation and finite rotation

multiplicative elastoplasticity’, International Journal for Solids and Structures, 31(8):
1063-1084

Stenberg R. (1995) ’On some techniques for approximating boundary conditions in the
Finite Element Method’, Journal of Computational and Applied Mathematics, 63:139-
148

Stenberg R. (1998) 'Mortaring by a method by J.A. Nitsche’, in Computational
Mechanics, New Trends and Applications (edited by S. Idelsohn, E. Onate and E.
Dvorkin), CIMNE, Barcelona, Spain

Sukumar N., Moran B. and Belytschko T. (1998) 'The natural element method in
solid mechanics’, International Journal for Numerical Methods in Engineering, 43(5):
839-887

Sukumar N.; Moran B., Semenov Y. and Belytschko T. (2001) ’Natural neighbour
Galerkin methods’, International Journal for Numerical Methods in Engineering, 50:
1-27

Sun D.-Z., Sester M. and Schmitt W., (1997) 'Development and application of mi-
cromechanical material models for ductile fracture and creep damage’, International
Journal for Fracture, 86: 75-90

Tang Z., Shen S. and Atluri S.N. (2003) ’Analysis of materials with strain gradient ef-
fects: A Meshless Local Petrov-Galerkin (MLPG) approach, with nodal displacements
only’, Computer Modeling in Engineering and Science, 4(1): 177-196

Toupin R.A. (1962) "Elastic materials with couple stresses’, Archive for Rational Me-
chanics and Analysis, 11: 385-414

Traversoni L. (1994) ’Natural neighbour finite elements’, In International Conference
on Hydraulic Engineering Software, Hydrosoft Proceedings, 2: 291-297

Triantafyllidis N. and Aifantis E.C. (1986) 'A gradient approach to localization of
deformation. I. Hyperelastic materials’, Journal of Elasticity, 16: 225-237

Truesdell C. and Noll W. (1965) 'The nonlinear field theories of mechanics’, in Hand-
buch der Physik, Vol. 111/3 (Edited by Fliigge S.), Springer, Berlin

Tvergaard V. and Needleman A. (1995) ’Effects of nonlocal damage in porous plastic
solids’, International Journal of Solids and Structures, 32: 1063-1077



172

Bibliography

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Vardoulakis I., Exakaktylos G. and Kourkoulis S.K. (1998) ’'Bending of marble with
intrinsic length scales: A gradient theory with surface energy and size effects’, Journal
de Physique IV France, 8: 399-406

Ventura G. (2002) ’An augmented Lagrangian approach to essential boundary condi-
tions in meshless methods’ International Journal for Numerical methods in Engineer-
ing, 53: 825-842

Voigt W. (1887) 'Theoretische Studien iiber die Elastizitdtverhéltnisse der Kristalle’,
Abhandlungen der Gesellschaft der Wissenschaften zu Gottingen, mathematisch-
physikalische Klasse, 34: AT et seqq.

Wagner G.J. and Liu W.K. (2000) ’Application of essential boundary conditions in
mesh-free methods: a corrected collocation method’, International Journal for Nu-
merical Methods in Engineering, 47(2): 1367-1379

Walsh S.D.C. and Tordesillas A. (2004) 'A thermomechanical approach to the devel-
opment, of micropolar constitutive models of granular media’, Acta Mechanica, 167:
145-169

Washizu K. (1975) Variational methods in elasticity and plasticity, Pergamon Press,
second edition, Bath, Great Britain

Wei Y., Hutchinson J.W. (1997) ’Steady-state crack growth and work of fracture for
solids characterized by strain gradient plasticity’, Journal of the Mechanics and Physics
of Solids, 45: 1253-1273

Williams T.O. (2005) ’A three-dimensional, higher-order, elasticity-based microme-
chanics model’, International Journal of Solids and Structures, 42: 907-1007

Wu C.-T., Chen J.-S., Chi L., Huck F. (2001) ’A meshfree method for geotechnical
materials’, Journal Of Engineering Mechanics, 127: 440-449

Xia Z.C. and Hutchinson J.W. (1996) ’Crack tip fields in strain gradient plasticity’,
Journal of the Mechanics and Physics of Solids, 44(10): 1621-1648

Xiong S., Liu W. K., Cao J., Li C.S., Rodrigues J.M.C. and Martins P.A.F. (2005) ’Sim-
ulation of bulk metal forming processes using the reproducing kernel particle Method’,
Computers And Structures, 83: 574-587

Yang J.F.C and Lakes R.S (1981) ’Transient study of couple stress effects in compact
bone: Torsion’, Journal of Biomechanical Engineering, 103: 275-279

Zervos A., Papanastasiou P. and Vardoulakis I. (2001) 'Modelling of localization and
scale effect in thick-walled cylinders with gradient elastoplasticity’, International Jour-
nal of Solids and Structures, 38: 5081-5095

Zhou W., Zhao J., Liu Y. and Yang Q. (2002) ’Simulation of localization failure with
strain-gradient-enhanced damage mechanics’, International Journal for Numerical and
Analytical Methods in Geomechanics, 26: 793-813



Bibliography 173

[147] Zhu H.T., Zbib H.M. and Aifantis E.C. (1997) ’'Strain gradients and continuum mod-
elling of size effect in metal matrix composites’, Acta Mechanica, 121: 165-176

[148] Zhu T. (1999) ’A new meshless regular local boundary integral equation (mrlbie) ap-
proach’, International Journal for Numerical Methods in Engineering, 46: 1237-1252

[149] Zhu Y. and Fox P.J. (2001) 'Smooth particle hydrodynamics model for diffusion
through porous media’, Transport In Porous Media, 43: 441-471

[150] Zhu T., Zhang J. and Atluri S.N. (1999) ’A meshless numerical method based on the
local boundary integral equation (lbie) to solve linear and non-linear boundary value
problems’, Engineering Analysis with Boundary Elements, 23: 375-389



	TITLE: Computational aspects of generalized continua based on moving least square approximations
	Appendix A Customizing a spline with a specific continuity
	Appendix B Parallelization
	Appendix C Iterative stabilization parameter determination algorithm
	Appendix D Some definitions and relations of tensor calculus
	Bibliography



