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Chapter 4

Classical Green strain tensor-based
formulation

A classical Green strain tensor-based model is taken to be the reference model for the formu-
lations developed in the latter. In order to improve the performance of this formulation with
respect to the essential boundary condition enforcement of an elliptic PDE within MLS-based
meshfree methods, a modified variational principle is proposed in the following.

4.1 A modified variational principle

Let us consider a non-linear boundary value problem on domain B with boundary 0B. Dirich-
let boundary conditions are prescribed on 0Bp C 0B and Neumann boundary conditions
are prescribed on 0By = 0B\ 0Bp.

We assume a hyperelastic material behaviour and let pyt (E) define the stored energy
function per unit volume, where E the Green strain tensor (Eq. 2.23). Further, let Wy
define the external potential as follows

Wezt(u):—/pob-udV—/ t™.udA, (4.1)
B 90BN

where b is the body force, (™ is the external traction vector prescribed on By and n defines
the normal vector at the boundary 0B. We start from the following variational statement

5\Il(u):/S:(5EdV—/b-5udV—/ t™W.sudA=0, (4.2)
B B OBpn

where S is the second Piola-Kirchhoff stress tensor given by

o (E) (4.3)

S (u) = po IE
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The above functional corresponds to the following Euler-Lagrange field equations

1

i — ; _ ) _
\/a(\/(_}FSG)yi—kpob 0, inB, FSn—i®=0 ondBy, (4.4)

where G is the determinate of the Riemannian metric coefficients (Eq. 2.13) and F is the
deformation gradient tensor (Eq. 2.5). Note that here and throughout this section the basis
vectors G, are assumed to be independent of §*.

These field equations are supplemented by essential boundary conditions, the so-called
Dirichlet boundary conditions

u=h ondBp. (4.5)

To incorporate the essential boundary conditions in the functional itself, that is to enforce
these conditions as Euler-Lagrange equation, the functional (Eq. 4.2) is modified in the
following way

6\If(u):/S:5EdV+ 5(A- (u—h)) dA—/pOb-(Su qv—
B B

oBp

— / t™ . fudAd=0. (4.6)
OBn

Making use of Gauss’s divergence theorem this formulation is transferred back to its strong
form which is the integral form of the Euler-Lagrange equations

5\If(u)=—/8%(\/@FSG“)i-(SudV—i-/aBFSn-(SudA—F/ A-du dA+

9Bp

+/ SA-(u—h) dA—/pob-(SudV—/ t™ . judd=0. (4.7)
dBp B IByN

Since this integral equation must be valid for any arbitrary du, we can extract the Euler-
Lagrange equations (Eq. 4.4) and identify the Lagrange multipliers as A = —FSn on 0Bp.
Note that the second term in Eq. (4.7) is an integral expression over the entire boundary
0B. The final problem statement takes the following form

5\If(u)=/S:(5EdV—/ FSn-(SudA—/ d(FSn)-(u—h) dA-
B 8BD 8BD

—/pob-éudV—/ t™.sudd=0. (4.8)
B OBN
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4.2 A stabilized modified variational principle

The modified variational principle outlined in the previous section heavily relies on the accu-
rate evaluation of the boundary integral expression. This is due to the fact that the definition
of the Lagrange multipliers A = —FSn relates to Gauss’s divergence theorem which states
the equivalence of a volume and a surface integral expression. This equivalence however,
is not given anymore, if the numerical accuracy is substantially lacking. Consequently, the
essential boundary condition fulfillment can not be ensured anymore which also affects the
solution for the entire problem domain. In this context we recall that Breitkopf et al. (2002)
as well as De and Bathe (2000) noted that MLS-based formulations can not be as accurately
integrated due to the non-polynomial character of the meshfree approximation function.
Dolbow and Belytschko (1999) also made the misalignment between particle support zones
and integration cells responsible for the reduced numerical integration accuracy. Especially
the spherical particle influence zone was said to be disadvantageous. Therefore, they pro-
posed a so-called bounding box technique to match particle support and background mesh
and so to improve the performance of the integration. However, it can also be found that the
meshfree approximation quality close to the boundary is significantly worse than within the
domain. This is clear, as the particle support of the boundary area is less than that of the
domain interior and consequently, the influence zones of those particles close the boundary
must be chosen larger than within the domain in order to compensate this lack of support.
Larger particle influence zone though, result in a solution approximation which is less local
and therefore less accurate. For more details the reader is referred to Sec. 3.2. Consequently,
the mathematical equivalence of volume and surface integral expressions is disturbed and
so, the solution behaviour can become instable.

An approach to stabilize the modified variational principle introduced in Sec. 4.1, is to
incorporate an additional stabilization or penalty term, the purpose of which is to balance
out the lacking boundary approximation and boundary condition enforcement accuracy. The
problem formulation introduced in the previous section is then extended as follows

5H(u)=/S:5EdV—/ FSn - du dA — d(FSn) - (u—h) dA+
B 8BD 8BD
+5 (u—h)-éudA—/b-(SudV—/ t™ . fudAa=0, (4.9)
0Bp B 0Bn

where the fourth term in Eq. (4.9) is a stabilization term together with the stabilization
parameter 3 which is constant on 0Bp. The idea is, however, to keep the magnitude of
the stabilization parameter 5 as low as possible to avoid an ill-conditioned discrete equation
system.

For a similar but linear problem Nitsche showed the existence of a certain minimum
positive constant which ensures that the coefficient matrix of the discrete equation system
is positive definite and the solution is approximated within optimal error bounds (Nitsche
1970-1971). This constant could be related to § and was said to be dependent on the used
basis polynomial and the chosen discretization of the solution space. The latter relates in
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meshfree methods to the covering of the problem domain B by the particle support zones

which basically puts on geometric constraints on their intersections (Griebel and Schweitzer
2002).

Applying this idea to solid mechanics we find, similar to the augmented Lagrangian
method (Ventura 2002), that the material parameters strongly influence the determination
of the stabilization parameter. Now, it is desirable if a suitable value for the stabilization
parameter [ is computed automatically. To achieve this, Griebel and Schweitzer (2002)
proposed to solve a general eigenvalue problem of the following form

Ax = A\Bx (4.10)

with the surface part of the stiffness matrix denoted by matrix A and the volume part by
B. The maximum eigenvalue was suggested to be taken as stabilization parameter 3. Pre-
liminary tests showed however, that this procedure leads to a magnitude of the stabilization
parameter which is already at penalty levels. Thus, the stabilization term is dominating the
problem formulation. Furthermore, in meshfree methods the boundary enforcement error
is varying depending on the particle support. Therefore, it makes sense to consider the
stabilization parameter as function of the coordinates charts ¢! and ¢? which describe the
boundary 0Bp. We rewrite the modified variational principle Eq. (4.9) as follows

5H(u):/S:6EdV—/ FSn-éudA—/ 5 (FSn) - (u—h) dA+
B 6BD BBD

+/ B (¢ ¢ hi) (u—h)-(SudA—/b-(SudV—/ t®.dudA=0. (4.11)
9Bp B 0Bn

In the discretized domain this means that the stabilization parameter is computed for
each integration point individually and is not constant on 0B. Inspired by an iteration
procedure applied to the augmented Lagrangian method (Ventura, 2002) we are utilizing an
iteration procedure to determine the minimum necessary penalty value at each integration
point in order to ensure solution stability and a high convergence rate. Hereby, the idea is
to run the problem first as geometrically linear one and to compare at each integration point
the error in the essential boundary condition enforcement e with a given error tolerance ¢

€ (ClaCZa hz) = |uZ (ClaCZ) - h’l (ClaCQ) | <94. (412)

The value of this parameter ¢ is usually taken similarly to the limit of the convergence norm
of the displacement field used for the Newton-Raphson method. The magnitude of the error
in the boundary condition enforcement provides an indication of how much the constraint
reaction resultant is too low. Depending on whether the error is higher or lower than the
given error tolerance the stabilization parameter is increased or decreased correspondingly.
Using these new adapted stabilization parameters and assigning to all particle parameter
zero values, the problem is then solved again and the stabilization parameters are further
modified if necessary. This process is repeated until the error tolerance is achieved at all
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integration points. It usually takes about five to ten iteration steps to determine a suitable
stabilization parameter distribution. At the start of this procedure 3((', (2, h;) is estimated
for all integration points individually by the following expression

5(cttm) = e ) (4.13)

where €(Ct, 2, h;) is the boundary condition enforcement error evaluated after the first iter-
ation step. During the iteration procedure 8(¢t, (2, h;) is successively increased or decreased
depending on the error of the boundary enforcement.

Note that in case of the augmented Lagrangian method the iteration procedure is under-
taken with respect to the stabilization parameters as well as the Lagrange multipliers, but
the modified variational principle Eq. (4.11) only requires the stabilization parameters to be
obtained. That is the error in the essential boundary condition fulfillment is compensated
by the stabilization term. For more details on the iteration algorithm the reader is referred
to App. C.

4.3 Numerical examples

4.3.1 Study on essential boundary condition enforcement

In the following our aim is to study the applicability of the proposed stabilized modified vari-
ational principle on two different examples. Three different cases are distinguished: Firstly,
using the modified variational principle together with the iterative stabilization parameter
determination algorithm Eq. (4.11), secondly, using this modified variational principle with
a constant and uniform stabilization parameter § € 0Bp which is Eq. (4.9), and finally,
applying instead of the modified variational principle the conventional penalty method to
enforce the essential boundary conditions. That is, only the penalty term with a constant
penalty parameter § is incorporated in the original variational formulation Eq. (4.8), but
not the other boundary terms which led to the modified variational principle Eq. (4.9).

Furthermore, two different material laws shall be utilized. These are the linear Saint-
Venant-Kirchhoff model with the material parameters Young’s modulus E and Poisson’s
ratio v and a non-linear statistically based model of hyperelasticity (Arruda and Boyce 1993;
Sansour et al. 2003a) which involves as constitutive parameters the shear modulus Cp, the
bulk modulus « and parameter N. The constant N addresses the limited extensibility of the
macromolecular network structure of the rubber material.

Cantilever beam under pressure loading

The first study is a cantilever beam which is subjected to a constant pressure load on its
top surface. It makes use of the Saint- Venant-Kirchhoff constitutive model and is illustrated
in Fig. 4.1. The beam is modelled using 26 particles in longitudinal and only 2 in thickness
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Figure 4.3: displacement diagram Figure 4.4: deformed configuration at

loading parameter p = 30

direction. The stabilization parameters in the modified variational principle are kept uni-
form on 0Bp and the results are compared with those achieved applying the penalty method
instead. The boundary enforcement for different magnitudes of stabilization and penalizing
is displayed in Fig. 4.2 and the corresponding tip deflection in Fig. 4.3. Note that the curves
illustrating the tip deflection fall into one single line except for the one which represents the
solution obtained using the penalty method with 8 = 1.0 x 10® denoted by the dotted blue
curve. We further find that the enforcement of the essential boundary conditions is best, if 3
is chosen to 1.0 x 10*2. The accuracy of our problem formulation is identical to the penalty
method based formulation for parameters 8 = 1.0 x 102 to f = 1.0 x 10°. The penalty
method fails to provide meaningful results for penalty parameter values 3 < 1.0 x 10°. Using
our proposed modified variational principle the stabilization parameter 3 can be chosen ab-
solutely freely in order to achieve an accurate result for the tip deflection. Nevertheless, the
accuracy of the boundary enforcement and the convergence rate become poorer for decreas-
ing stabilization parameter values. In case of the modified variational formulation the lack
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Figure 4.7: displacement diagram Figure 4.8: deformed configuration at

loading parameter 13.5 x 10*

of boundary approximation accuracy is for low values of the stabilization parameter quite
significant, nonetheless we find good solutions for the tip deflection. The reason might be
that the area having essential boundary conditions applied is minor compared to total sur-
face of the problem domain. Moreover, there is no variation in the boundary approximation
accuracy on all four affected particles and all integration points used for the surface integra-
tion of dBp. The deformed configuration depicted in Fig. 4.4 and Fig. 4.5 are modelled with
the modified variational principle setting 3(¢', ¢?, h;) = 0 on dBp. Since the pressure acts
during the entire simulation always perpendicular to the surface, the deformation process
results in a kind of an ellipsoid.

Next, the above cantilever beam is again modelled with the same particle discretiza-
tion, but using the non-linear hyperelastic material law instead of the linear Saint-Venant-
Kirchhoff and is depicted in Fig. 4.6. Similar to the first study, the stabilization term in the
modified variational principle is not needed. It is therefore simulated with 3(¢t, (2, h;) =0
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on 0Bp. The displacement diagram for the cantilever beam’s tip is shown in Fig. 4.7 and
the final deformed configuration in Fig. 4.9. The use of the penalty method is again criti-
cal, because only with the knowledge of the solution the correct penalty parameter can be
determined.

Square sheet under dead loading

The next study’s problem configuration is depicted in Fig. 4.10. It is a square sheet which
is clamped at all four edges and subjected to a dead loading. It can be frequently found in
literature. This problem is much more sensitive with respect to choice for the stabilization
or penalty parameter than the cantilever beam presented in the previous paragraph. This
is clear, as the analytical solution for cantilever beam’s deflection only contains third order
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exponents of the longitudinal coordinate, whereas for the clamped plate’s deflection fourth
order exponents of the in-plane coordinates. Considering that the approximation accuracy
plays a crucial role especially on the boundary, different discretization levels are tested
starting from the coarsest grid with 9 x 9, further 13 x 13, 17 x 17, 21 x 21 and the finest
with 31 x 31 particles along the in-plane directions. Each configuration has three particle
layers in thickness direction. A larger number of particles in thickness direction does not
significantly improve the accuracy of the results. This fact is conceivable, as the solution of
the displacement field primarily changes along the in-plane directions. As mentioned before,
we find on the boundary a particle support deficit which must be compensated by enlarging
the influence zones of particles located in the boundary area. An increased particle support
however means a decrease of approximation locality and thus accuracy which is crucial for the
modified variational principle. In order to circumvent this dilemma it is also meaningful not
only to analyze equally spaced particle distributions, but additionally grids that are denser
towards the boundary. This is achieved by shifting the particles from the center of the plate
gradually to its edges. Therefore we distinguish for each discretization level another four
different particle distribution densities ranging from equally spaced to strongly concentrated
on the boundaries. By concentrating the particles towards the plate’s edges the boundary
and the inner domain approximation accuracy is expected to be more in balance, what
should improve the overall applicability of the proposed modified variational principle. It is
important to stress that the particle density is continuously increased towards the boundary.
Otherwise, there would be jumps in the particle density and the particle distribution would
be too irregular resulting in a negative effect on the approximation accuracy.

At first, the Saint-Venant-Kirchhoff constitutive law is applied with the material pa-
rameters Young’s modulus E = 2.0 x 10* and Poisson’s ratio v = 0.3. The use of the
penalty method exhibits the general difficulty that various solutions can be obtained for
penalty parameters ranging from 8 = 1.0 - 1.0 x 10*2. This means, the problem behaves
too soft or far too stiff. The correct result for the midpoint deflection however, can be
found for B ~ 1.0 x 10%, whereas the boundary condition enforcement is always the best
for 8 =1.0 x 10'2. It is therefore impossible to find out a suitable penalty parameter with-
out the knowledge of the correct result. The modified variational principle provides with
B(¢, ¢3, h;) = 0 on OBp for geometrically linear modelling a solution for the midpoint de-
flection which is the best achievable for each discretization level. The essential boundary
condition enforcement however, is poor so that geometrically non-linear modelling fails for
whatever particle distributions without utilizing the stabilization term. Therefore, the it-
eration procedure introduced in Sec. 4.2 is now used to determine a suitable stabilization
parameter distribution 5(¢*, ¢?, h;). The load-deflection diagrams illustrated in Fig. 4.11 are
modelled for different discretization levels. Each discretization level is simulated with a reg-
ularly spaced particle distribution denoted by the continuous line and an increased particle
density on the boundary denoted by the dotted line. Note that the regular and the con-
centrated particle distribution have each the same total number of particles. The boundary
enforcement error tolerance is set § = 1.0 x 1078, We find for discretization levels 17 x 17 x 3
and above that the minimum stabilization parameter is determined to S, (¢!, ¢?) = 0 and
for the coarser grids it does not exceed B(C', €%, hi)min = 15. The maximum value ranges
from Bz (¢, €2, hi) = 5.0 x 107 — 1.0 x 10*° for different discretization levels and modes,
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whereas lowest maximum stabilization parameter is achieved for 31 x 31 x 3 particles reg-
ularly spaced. The particles distributions 9 x 9 x 3 and 13 x 13 x 3 fail to provide a good
solution for the midpoint deflection. The discretization levels 17 x 17 x 3 and 21 x 21 x 3
however, show good solution accuracy, especially with the concentrated particle distribution
near the boundary. The solution of the finest grid does not significantly change, if we apply
higher particle density on the plate’s edges. In all cases the highest values for 5(¢!, ¢?, h;)
are always found at the clamped edges of the plate, whereas the lowest within the domain
on the symmetry boundary. The minimum and maximum stabilization parameters can not
be said to be significantly influenced by varying particle distribution. It seems that the
constitutive law and the magnitude of its parameters have the main impact. This finding
partly coincides with results of the next study, where the stiffness matrix norm is lower and
correspondingly Bn.. (¢, €2, h;) has much lower values compared to this example.

In the next step the non-linear statistically based constitutive law is applied which
involves as material parameters the shear modulus Cr = 10 x 102, the bulk modulus
k = 10.0 x 10" and parameter N = 8. These parameter are chosen in such way to provide
a similar rigidity as we had for the Saint-Venant-Kirchhoff model. The boundary enforce-
ment error tolerance is set § = 1.0 x 10, Compared to the previous study with the linear
material law we find a substantially better boundary condition enforcement accuracy and
consequently, much lower values for the stabilization parameters S, (¢!, ¢?, h;) = 0 and
Brmaz (¢, €%, h;) = 6.0 x 10 are computed in order to achieve a stable and fast converging
non-linear simulation. Especially the two highest discretization levels do not need the stabi-
lization term at all. For particle discretization levels 17 x 17 x 3 and above a higher particle
density on the plate’s edges significantly improves the boundary enforcement accuracy, but
not the midpoint deflection. Apparently, the boundary approximation accuracy provided by
a regular particle distribution is in case of the non-linear constitutive model already sufficient
enough to achieve the best possible solution for given number of particles. The convergence
rate is almost as high as having the penalty method used with the optimal penalty param-
eter. Therefore, the load-deflection diagrams depicted in Fig. 4.12 are modelled for each
discretization level with a regularly spaced particle distribution only.

4.3.2 Shell deformation examples

After demonstrating the excellent applicability of the modified variational formulation Eq.
(4.11) in the previous sub-section, three further examples are presented that feature large
deformations of shells. The problem configurations of all examples are discretized by regu-
larly spaced particle grids and the modified variational principle is applied using the iterative
stabilization parameter computation algorithm to determine the stabilization parameter dis-
tribution 8(6', 6%, 4;) on B. The boundary enforcement error tolerance is set § = 1.0 x 1078,

Pinched cylinder with free edges

This example is a classical one, a cylindrical shell is subjected to two vertically opposite
point loads at its central points (point A) as depicted in Fig. 4.13. Assuming appropriate
symmetry boundary conditions, the cylinder is modelled using one octant with 6 particles in
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Figure 4.15: deformed configuration at Figure 4.16: deformed configuration at
loading parameter 8.78 loading parameter 53.95

longitudinal, 16 in radial, and 3 in thickness direction. The applied constitutive law is the
Saint-Venant-Kirchhoff model.

The displacement diagram in Fig. 4.14 is illustrated for point A and point B. The diagram
shows that the deformation process is split into two parts. The first part is bending domi-
nated which results in large deformations for small loading parameters. The second part is
characterized by a steep slope. In Fig. 4.16, the final deformed configuration is displayed. It
should be mentioned that this example has been considered by many authors using different
shell finite elements. In fact, our numerical results are in good agreement with those re-
ported in the literature. The iterative stabilization parameter determination provides values
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B¢t ¢2, hi) =118.8 - 6.1 x 10'°. Even if the solution exhibits a final boundary enforcement
error € = 1.3 x 10™* the modelling is stable and converges at high rates.

The remaining two applications make use of the non-linear statistically based model
involving as constitutive parameters the shear modulus Cg, the bulk modulus x and the
parameter N.

Square sheet under dead loading

The following example is a sheet which is fixed at all four edges and subjected to a dead
loading on its top surface as illustrated in Fig. 4.17. Due to the symmetry conditions, only
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one quarter of the sheet is modelled using 6 particles in length and 3 in thickness direction.
The load-deflection diagram is presented in Fig. 4.18 for the vertical midpoint displacement
and the deformed configurations are shown in Fig. 4.19 and Fig. 4.20 for different loading
parameters. This problem is out of all our examples the most sensitive one with respect
to the discretization. That is, the number of particle layers in length direction is limited
to maximal 7, if 3 particles layers in thickness direction are chosen. The best results we
can find however, if 5 particle layers are utilized in longitudinal direction. The stabilization
parameters in this particular examples is determined to 3(¢, (2, h;) = 1.4 x 10 - 3.5 x 10”.

Square sheet under pressure loading

The last example is a square sheet which is simply supported at two opposite edges shown
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in Fig. 4.21. On its top surface an uniform pressure load is applied. Due to symmetry
conditions, only one half of the sheet is modelled using 11 particles in length, 3 in width and
3 in thickness direction. Despite a not very refined discretization this example performs a
very large deformation which is depicted in Fig. 4.23 and Fig. 4.24. The entire deformation
process is displayed in Fig. 4.22 for the vertical midpoint displacement. The examples is
simulated with stabilization parameters 3(¢', ¢?, h;) = 0.0 - 7.0 x 1075,

Summarizing, the proposed augmented modified variational principle is demonstrated
to be a real alternative to the penalty method. This is as the solution dependency on the
stabilization parameter is minimized and so also the stabilization term’s affect on the physical
properties of the problem configuration. Furthermore, the magnitude of the stabilization
parameters 3(Ct, (2, h;) are kept on relatively low levels, but sufficiently high to enforce the
essential boundary at all integration points within a given error tolerance. This benefits
a high adaptivity to various problems with different essential boundary conditions applied.
The difficulty to find suitable values for 5(C!, (2, h;) is solved by using an iterative algorithm
which allows to determine them individually for each integration point.



Chapter 5

Cosserat continuum

5.1 Overview

The Cosserat continuum falls into the group of micropolar continua as defined by Eringen
(1999) and those are a sub-group of the so-called generalized continua which will be addressed
in more detail in Sec. 6. Micropolar continuum mechanical models originated in the so-called
Cosserat theory of elasticity (Cosserat and Cosserat 1909) are characterized by the property
that each material point inherits a rotation field which is independent of and additional to
the conventional displacement field. This rotation field can be introduced by means of a
rotation tensor which is element of the Lie group SO(3) (Sansour and Bednarczyk 1995).
The Cosserat continuum possesses two strain measures which are presented in Sec. 5.2.
Since the rotation tensor exhibits a multiplicative and non-linear structure, it is natural to
carry out its variation and updating multiplicatively. Sec. 5.3 addresses the variation of
the rotation tensor and both strain measures. The weak problem statement based on the
Cosserat continuum is outlined in Sec. 5.4 which also includes the corresponding equilibrium
equations. Sec. 5.5 provides the details of a multiplicative rotation updating algorithm and
investigates its applicability to the moving least square method. In Sec. 5.6 the enforcement
of the displacement boundary conditions is proposed by modifying the original variational
formulation. Finally, in Sec. 5.7 the presented modified variational statement is used to
model size-scale effects of bone and polymeric specimens.

The elaborations in Sec. 5.2 - Sec. 5.5 heavily rely on work of Sansour and co-authors
(Sansour and Bufler 1992; Sansour and Bednarczyk 1995; Sansour and Wagner 2003b).

5.2 Strain measures of the Cosserat continuum

In the Cosserat continuum every material point is assigned a rotation field which is considered
to be independent of the displacement. Motivated by the polar decomposition, the rotational
part of the deformation is extracted from the deformation gradient tensor by F = RU, where
the rotation tensor R € SO(3) and a stretch-type strain measure U can be distinguished.
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In opposition to the definition of the rotation tensor in Sec. 2.1, we consider here R to be
independent of the map ¢ (X, t) (Eq. 2.1). This also implies that U is not a priori symmetric.
Furthermore, whereas classical continua can be described by one strain measure, e.g. by the
stretch tensor, the Cosserat continuum requires, due to the independent rotation field, a
second strain measure.

Let us start with an explicit expression for R which can be found by using an exponential
map (Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick 1982; Dubrovin, Fomenko and
Novikov 1984)

. r r
R(@,t):exp(r)=1+r+§+§+... : (5.1)

where T' (Hk,t) € s0(3) which is the so-called Lie algebra corresponding to the Lie group
SO(3). That is T is a skew-symmetric tensor

r—_17, (5.2)
with the rotation vector ~ (0’“, t) as its axial vector

T (6F) =~ (0",1) x 1, (5.3)
and we arrive at the following expression (Rodrigues formula)

sin || cos ||

R(0%t) =1+ T+

r. (5.4)
[l [v|*

An important property of the rotation tensor R is that - is an eigen-vector of the rotation
tensor

Ry=7. (5.5)
With R € SO(3), the following relations hold
R'R=1 and detR=1 and RJI/R+R'R;=0, (5.6)

which implies that the tensor products R'R; are skew-symmetric and elements of so(3).

The axial vector of RTR; is then expressed by

k; (6*,¢) = axial (R"R;;) = —% e: (R'R;) . (5.7)
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One may elaborate the relation

sin|vy 1 — cos|y 1 sin|vy Y-V
k; (0%,t) = | |7,i+72‘ "Y,iX’Y+<—— ‘2|> ( )7- (5.8)
v v vl v

As a result we have together with the stretch-type tensor U (Eringen and Kafadar 1976) or
so-called first Cosserat strain tensor (Sansour and Bednarczyk 1995)

U (¢*,t) =R'F (5.9)
another strain measure which is the so-called second Cosserat strain tensor

) 1 .
K (0*t) =k ®G = —5€: (R"R;) ® G'. (5.10)

It is worth mentioning that the classical stretch tensor and the first Cosserat strain tensor
are obviously different from a physical point of view, but also their definitions indicate a
clear distinction. That is, the classical stretch tensor is symmetric and solely defined by the
deformation map (X, t) (Eq. 2.1), whereas the first Cosserat strain tensor makes use of the
orthogonal rotation tensor R which is assumed to be independent of this deformation map.

In the following we want to confine ourselves to the quasi-static case and consider no
time dependency.

5.3 Variation of the rotation group

Since the rotation field R is an element of the Lie group SO(3), we have to take into account
a certain multiplicative structure. Generally, the deformation in the Cosserat continuum is
assumed such that every point P € B is associated with a pair & = (u, R) and we consider
a set C which encompasses all admissible configurations of the body B

C(B) = {U|U:B—EB) x SOB3)}, (5.11)

where the cross operator denotes here the Cartesian product. That is all elements of C are
thought to be element of a linear Lie group and the group operation of two such elements

is given by the direct product (u, R) o (ﬁ, f{) = (u + 1, ﬁR) The neighbourhood of a
point of the configuration space defined by the pair (u, R) can be described by means of the
curve V (s) C C parameterized by s with V (s = so) = (u, R):

V(s) =[u+ (s — sp) du, exp((s — so) W)R] , (5.12)
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where we made use of Eq. (5.1) and W denotes an element of the Lie algebra so(3) cor-
responding to the the rotation field R which is element of the Lie group SO(3). Now the
variation of (u, R) can be obtained by the derivation of V with respect to parameter s

0
(0u, JR) = av (8) |s=so =

= % [u+ (s — sp) du, exp((s — s9) W)R]|s=5, = (0u, WR) . (5.13)

WR defines the left tangent vector in the tangent space of SO(3) as it was obtained by
making use of the so-called left group action. Accordingly, one can consider the right group
action

0
(0u, 0R) = %V (s) ls=so =

= % [u+ (s — o) du, Rexp((s — s9) Y)] |s=s, = (0u, RY) , (5.14)

which results in the right tangent vector RY. W is related to Y by
W =RYR'. (5.15)

For the quasi-static case it is sufficient to restrict ourselves to left variations which are simply
denoted by dR = WR in the following. Note that the pair (du, W) defines an infinitesimal
deformation which is superimposed to valid deformation state (u, R) by the group operation
(u, R) o (6u, W) = (u+ du, WR).

Now, we can immediately write the variation of the first Cosserat strain tensor U (Eq.
5.9) as

U = §(R"x;) ® G' =
= -R"W (x; ® G') + R (6x; ® G') . (5.16)

In order to proceed with the variation of k; (Eq. 5.7) we additionally consider a vector w to
be the axial vector of the skew-symmetric tensor W and we have as left variation

k; = axial [§ (R"R;)] =R"w ;. (5.17)
5.4 The weak form and its corresponding equilibrium
equations

Let us consider a non-linear boundary value problem on domain B with boundary 0B. Dirich-
let boundary conditions are prescribed on 0By C 0B and Neumann boundary conditions
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are prescribed on 0By = 0B \ 0Bp. Let us assume a hyperelastic material behaviour and

2

po(U, ) = o (U) + 12 pos™ () (5.18)

define the stored strain energy per unit undeformed volume which is considered to be a de-
coupled function of the two Cosserat strain tensors U and K, respectively. [ is the so-called
characteristic length of the couple stress theory and has the dimension of length. Motivated
by Sec. 6 the incorporation of [ into the stored energy function is achieved by the integration
over an assumed one-dimensional micro-continuum S with the coordinate chart ¢ in the

limits ( = [—%; %]

l

1 [3 1 3
(UK =1 [ it (V) dc+ g [t () (5.19)

L _1
2 2

where py1)! (U) and py!! (K) are considered to be independent of (. Then the internal
potential, which is a functional of the first Cosserat strain tensor U and the second Cosserat
strain tensor K, is given in the Lagrangian form by

v= [ {wo' W)+ L 1)} av. (5.20)

Furthermore, we have conjugate to U and K the force stress tensor n and the couple stress
tensor m, respectively, which are defined as follows

_ o' (U) _ 2 oW (K)
= po W and m = E poaT . (521)

Note that both stress tensors are generally non-symmetric. Corresponding to the internal
potential let W,,; define the external virtual work in the Lagrangian form as follows

Wm:/pob-audwr/pol-wdv+/ t™ . fu dA+ (5.22)
B B OBn

+ / q® - wdV (5.23)
OBy

where the vectors b, 1 are the external body force and torque, respectively, and the vectors
t(™_ q™ are the corresponding quantities on the boundary. The virtual rotation vector w
is conjugate to the external torque.

For the static case and considering only mechanical processes the first law of thermody-
namics provides the following variational statement

6\1’ - Wewt = 0, (524)
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which can be written with Eq. (5.20) and Eq. (5.23) as

0y (U) P 0y (K) | _
/B{pOTéU‘FEpOaTéK}dV—WeZt—O (525)

Making use of the expressions for the stress measures (Eq. 5.21) and the variational forms
of both Cosserat strain tensors (Eq. 5.16) and (Eq. 5.17), respectively, the above functional
takes its final form

/ { RnG' 6u; — RnF" : W+ RmG' - w; } AV —Wee = 0. (5.26)
B
Applying Gauss’s divergence theorem we can redraft the above functional as follows

—/i (@RnGZ) -ou dV + Rnn-du dA—/X,Z'XR’nGi-WdV—
8 VG i

oB B

1 .
—/Bﬁ (\/aRmGZ)i-WdV—F BBRmn'WdA—WethO- (5.27)

where G is the determinate of the Riemannian metric coefficients (Eq. 2.13) and where we
take into account the following expression

—RnFT W

-RnG'®x,;: W=-RnG'-Wx,; = -RnG' -wx x; =
—x; x RnG' - w. (5.28)

Note that here and throughout this section the basis vectors G; are considered to be inde-
pendent of #*. Since du and w are arbitrary functions, the local statements of the governing
equations of this functional, which are the equilibrium equations, are expressed by

1 i ,

Ve (\/G RnG ) —pb=0, B (5.29)
7 1 i o .

—xx RnG' — 7 (\/GRmG)ﬂ_—pol—O, in B. (5.30)

The corresponding natural boundary conditions are written as
Rnn = t™ and Rmn=q™, ondBy, (5.31)
whereas the essential boundary conditions are given by

u=h, and ~v=h,, ondBp. (5.32)
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5.5 Multiplicative updating of the rotation field

The simulation of a non-linear deformation process is performed as a sequence of loading or
time steps. In case of a static simulation, for each step 7 an external loading increment is
applied. The discretization of our problem as described in functional (Eq. 5.47) results in
a set of non-linear algebraic equations G (u, R) = 0 which are in our case the equilibrium
equations at the particles. These equations can be approximated by a Taylor expansion in
the vicinity of certain known displacement field uy and rotation field Rg as follows

0G (u,R) 0G (u,R)
FA\L VL Ag+ B
A T

uo

G (u,R) = G (uo, Ro) AR =0, (5.33)

where higher order terms are neglected. Au is the incremental displacement field and AR
the incremental rotation tensor which is computed with the help of Eq. (5.4) involving the
incremental rotation vector A-.

Due to the problem’s non-linear nature it is solved by some form of iteration procedure
such as the Newton-Raphson method. The iteration process involves several iteration steps
j, where for a state of equilibrium G{Ill = 0 the increments of the kinematical fields Au’
and A~? are determined. The total displacement field is updated after each iteration step
by relying on its additive structure

ufl =ul,, +Au. (5.34)
The new rotation tensor however, is computed by a multiplicative updating scheme, con-
sidering that R is element of the Lie group SO(3), where we have to take into account a
certain multiplicative structure. Considering the increment of the rotation vector A« to be
the axial vector of a skew-symmetric tensor AT' € so(3), the linearization of the rotation
tensor can be carried out according to its variation (Eq. 5.13) as AR = AT'R. Similarly,
the updating of the total rotation tensor can be achieved by left multiplication after each
iteration step j as follows

R/ =AR'R],,. (5.35)

Hence, the multiplicative structure of the rotational group is preserved.

A remaining issue is however, how to update the rotation vector. This is as the rotation
tensor R can not be approximated, but only the corresponding rotation vector 4. The same
applies to the incremental rotation tensor AR. A first approach (Simo and Vu-Quoc 1992)
is to approximate only the rotation vector increment A4’ at all integration points. Then
the AR/ can be evaluated using Eq. (5.4). The rotation tensor of the previous iteration step
R;,, is stored as a history variable for all integration points and the updated rotation tensor
can therefore be computed with the help of Eq. (5.35). Note, in the reference configuration
we have R = 1. Drawbacks of this idea are that only the the increment of the rotation field

A~7 can be approximated and the updated rotation field Rfill is only available as history
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variable at the integration points. In particular, it has been observed that this algorithm is
not path-independent (Jelenic and Crisfield 1999).

In order to circumvent the path-dependency the total rotation field 4 has to be approxi-
mated and it has been found that the use of spinors allows to update the total rotation field
at the nodes (Sansour and Wagner 2003b). In the following the spinor theory as well as the
rotation updating algorithm itself is briefly outlined. For more detailed information on the
spinor theory the reader is referred to Hestens (1990).

Let us first consider the spinor notation of the rotation tensor R which is expressed in
the Eulerian form as follows

R=a+is3, R =a-i8 (5.36)
with
|7|) . <|'7|> gl
a=cos|— ), B=sin|—)—, 5.37
( 2 2 ) (537
where i is a complex number with i*> = —1. Note that here the operation (+) is not the usual

addition of scalars or vectors. In order to update the rotation field R}, by an rotation field
increment ARY using the spinor methodology we first consider the following expressions

R, =a; +iB;, and AR/ =oay+iB, and RI' =ay+iB, (5.38)

()

with

J J J
0 = Cos (%) , B, = sin (%) Vi1 (5.39)

A~ ) AN\ Av7
a2=cos(| ;|) ) ,82:sm<| ;|)|A;| (5.40)
Vi (I
a3 =cos | —— |, B; = sin o (5.41)
( K 2 ) s

The resulting rotation field Rfill in spinor notation is now computed by a so-called geometric
product of two spinors

as +iB; = (on +1iB8,) (o +1iB,) =
a1 + iy + agif3; + i (B1-By+1i (B, xBy)) =
= (way — B By) +i(ouBy+ BBy — By X By) . (5.42)
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With the help of Eq. (5.41) we can extract the new rotation vector 'yfill

j+1_ 2arccos (a3)
Yit1 =

sin[arccos () | Bs (5.43)

This approach has clearly the advantage that the total rotation field can be approximated at
all times during the modelling process in the entire domain, that is not only at the integration
points, but also at particles.

In meshfree methods the rotation vector field 7 (x;) at a particle x; is not equal to the
vector which contains the rotational particle parameters which is denoted by r;, because
the meshfree interpolation functions do not possess the Kronecker Delta property. This fact
leads to the question whether to update the 4 (x;) or r; at the particles. It is found that
the spinor updating scheme can be applied to the vector containing the rotational particle
parameters as well as to the rotation vector field. This property is advantageous, because the
MLS shape functions are not interpolating at the particles. That is, in case of updating the
rotation vector 4y (xs), the particle parameters r; have to be obtained by solving an equation
system which assembles the rotation vector approximation equations

v (x1) =Y Nj(xs) rs (5.44)

JeA

at all particles x; in the problem domain. A is the set of particles which support x;, N (xr)
is the meshfree shape-function ordinate (Eq. 3.5) of a supporting particle x; at particle xr
and r; are the corresponding rotational parameters. Therefore, it is proposed to use this
updating algorithm with respect to the particle parameter vector r; instead of the rotation
field. Note that this distinction does not exist in the finite element method, where the
approximated rotation field at a certain particle coincides with its rotational degrees of
freedom.

However, two problems still remain unsolved. Firstly, the minimum convergence cri-
terium which is here the norm of the vector which contains the particle parameters of the
entire system can occasionally not be considered as strictly as in the algorithm of Simo and
Vu-Quoc, and secondly, the simulation becomes unstable, if at a particle x; the absolute
value of the current corresponding rotational particle parameter vector | (rr); 41 | approaches
2m. It is suspected that in both cases the involved trigonometric functions are the reason for
this behaviour. This is because for | (r;)],, | — 27 as well as for | (Ar;)’ | — 0 the vectors
B: (Eq. 5.39) and B, (Eq. 5.40) which hold the direction of the corresponding spinors be-
come null-vectors and the direction B4 of the updated vector (r I)Zill can not be determined
properly anymore. In fact, the new direction 35 (Eq. 5.41) becomes ambiguous and is signif-
icantly changing during the iteration process, whereas its new absolute value is still correctly
determined. This has the effect that also the rotational degrees of freedom vary increasingly
from iteration step to iteration step, until finally the divergence criterium is exceeded and
the simulation breaks down. In contrast to modelling in the three-dimensional space, this
characteristic of the updating algorithm is obviously not critical for the two-dimensional
space, because the rotation field is confined in the plain.
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5.6 Enforcement of displacement boundary conditions

Corresponding to Sec. 4.2 an augmented modified variational principle can be found so that
the displacement boundary conditions on 0Bp (Eq. 5.32) are part of the original problem
functional (Eq. 5.26). For this we modify the problem formulation as follows

SU + d(A-(u—hy)) dV =W =0. (5.45)
9Bp

where A are some set of mathematical functions. If this functional is transferred back to

the global equilibrium equation (Eq. 5.27), the unknown mathematical functions A can be
identified as the following physical quantity

A=—-Rnn. (5.46)

The modified variational principle takes its final form as follows

/ { RnG' - 6u; —- RmFT : W + RmG - w, } v — [ §Rnn)-(u—hy) dV—
B 9Bp
- Rnn-du dV+/ B(¢' (% hy) (w—hy) - 0udA— W, =0, (5.47)
6BD BBD

where the fourth integral expression in Eq. (5.47) is a stabilization term together with the
stabilization parameter 3 (¢', (2, hy,) which is a function of the coordinates charts ¢! and (2
of 0Bp and takes different values for each displacement degree of freedom. Note, it is usually
presumed that the the test function du is zero on 0Bp. Here however, the test function is
assumed to be arbitrary on the entire boundary 0B.

The procedure outlined above could also be utilized to enforce the rotation boundary
conditions. However, the physical quantity which is conjugate to the rotation field is very
involved and does therefore not seem to be suitable for computational application.

5.7 Numerical examples

Before addressing the examples an initial remark is made with regard to the used numerical
pre-conditioner and solver. Generally, the system of algebraic equations which is the result
of the evaluation of the problem functional (Eq. 5.47) is usually not adequately conditioned
and also asymmetric. Therefore, the right choice of a suitable pre-conditioning and solv-
ing method is indispensable. The Generalized Minimal Residual method together with the
Gram-Schmidt Orthogonalization and left pre-conditioning is found to perform excellent. All
numerical examples within this section make use of the hyperelastic Saint- Venant-Kirchhoff
constitutive model which involves as material parameters Young’s modulus E and Poisson’s
ratio v.
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Epoxy polymeric beams

Bending experiments on epoxy (bisphenol-A epichlorohydrin resin) polymeric micro-beams
revealed a size-scale dependency of the resulting deformation (Lam et al. 2003). The au-
thors demonstrated that in contrast to the classical elasticity theory the incorporation of
strain gradients enabled to approximate size-dependent behaviour of these small-scale struc-
tures. Apparently, the nano-structure influences the macroscopic response of the polymeric
specimens so that the heterogeneity of the material has to be addressed in order not to un-
derestimate stress and rigidity. Epoxy polymers consist of molecule chains which are partly
crosslinked to a network-type structures, if the side branches of such chains are joined up
with other polymer chains. Their morphology is semi-crystalline, that is they form mixtures
of small crystals and amorphous material. The amorphous or glass-like part though, exhibits
no long range order, and the chains are tangled. The experiment consisted of four different
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Figure 5.1: problem configuration Figure 5.2: load displacement with dia-

gram =21 pym and v = 0.3

micro-cantilever beams of length L = 1150 um, 750 pm, 380 um and 200 um depicted in Fig.
5.1. The width b = 235 um and the ratio length to height L/h = 10 was kept constant
for all four beams. This configuration allowed to compare directly the results of all beams
despite their different scaling levels. Young’s modulus was determined as E = 1.55GPa,
whereas the transversal contraction was found negligible. The experiments did not show
strictly linear deformation behaviour, but exhibited some kind of softening in the last third
of the deformation process. The relation between different scaling levels to changing rigidity
of the beams was clearly non-linear. The strain gradient formulation developed by Lam et al.
was based on the bending theory of plain strain beams and involved one additional material
parameter, a so-called length scale parameter [. Their approach provided a fairly accurate
match with the experimental data, if this length scale parameter was chosen to | = 24 um.

This bending experiment is now modelled with 31 x 3 x 3 particles in longitudinal and
thickness direction, respectively, making use of the modified variational formulation (Eq.
5.47) which also involves a length scale parameter [. In Fig. 5.2 - 5.4 the load-deflection
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graphs of all four scaling levels of the micro-cantilever beam are combined for micro-length
scale parameters [ = 21 uym and [ = 25 um, respectively. The classical elastic plain strain
relation between load and deflection is expressed by

1FL312v

U SHe B

(5.48)

which agrees with the red curves illustrated in Fig. 5.2 to 5.4. Each of the remaining colors
represents a different scaling level. The dotted curves are the experimental results and the
continuous curves illustrate the results which are simulated. Note that the experimental
data indicate no difference for the beams with L = 1150 gm and 750 ym. In Fig. 5.2 and 5.4
modelling with transversal contraction is illustrated setting Poisson’s ratio v = 0.3, while in
Fig. 5.3 it is neglected by setting v = 0. All simulated load-deflection diagrams do not show
any non-linearity, which is plausible as deformation and strain are fairly small. The relation
between the scaling and the changing rigidity however, is non-linear as it is in the experiment
too. The simulated results vary for different length scale parameters as expected, but also
the influence of the transversal contraction can not be neglected. Furthermore, there is a
difference between linear and non-linear modelling. That is, a preliminary linear simulation
actually indicates that the parameter setting [ = 25um and v = 0.3 should provide a
fairly accurate match with experimental data for the beam with L = 1150 ym and also for
L = 200 gm. In contrast, the non-linear simulation depicted in Fig. 5.4 shows that this is not
the case. Neglecting the transversal contraction illustrated in Fig. 5.3 significantly improves
the agreement of simulation with the experiment for the beams with L = 1150 um, 750 um
and 200 gm. But then again, this result is not predicted by the preliminary linear run with
v = 0, which indicates less accuracy than with v = 0.3. It can be generally stated that the
transversal contraction affects the least the beam with L = 1150 ym and most significantly
the beam with L = 200 um.

The simulation deviates the most from the experiment for the beam with length L =
380 um. Overall, no parameter setting for » and [ can be found which provides an accurate
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match between modelled and experimentally obtained tip-deflection for all scaling levels.
This might indicate that the micro-structural behaviour is not fully characterized by rotations
only.

Finally, the modelling of the micro-cantilever beams is undertaken without the stabi-
lization term of Eq. (5.47). This is beneficial, because its incorporation heavily affects the
result of the simulation. That is, the solution for the cantilever’s tip deflection varies up to
100% depending on the magnitude of the penalty parameters. Without the penalty term
the boundary enforcement is somewhat limited, but not substantially.

Micro-films

The second example is a thin square sheet which is clamped at all its four edges depicted
in Fig. 5.5. Due to the symmetry only one quarter of the sheet is modelled with 11 x 11 x
3 particles in longitudinal and thickness direction, respectively, applying the appropriate
symmetry conditions for displacement and rotation. The material is chosen to be the same
as for the micro-cantilever beam, except that the Poisson ratio is kept constant at v = 0.3.
Four different scaling levels are simulated with L = 6.0 mm, 3.0mm, 1.2mm and 0.6 mm
using the modified variational formulation (Eq. 5.47). The ratio L/h = 300 is fixed for
all four plates so that all results are directly comparable. The classical solution denoted
by the red line in all graphs Fig. 5.6 - 5.9 is obtained using the Green strain tensor based
model (Eq. 4.11) presented in Sec. 4.2. The results depicted in Fig. 5.6 and Fig. Fig. 5.7

35
3 classical
~N L =3.0 -
E 257 L=12
£
P4 L
g e
o
2 15f
g
|
© 05 e
o b —
0 0002 0004 0006 0008 0.01
normalized midpoint deflection w/h
Figure 5.5: problem configuration Figure 5.6: displacement diagram with

displacement boundary conditions

are achieved by fixing only all displacement but not the rotational degrees of freedom at the
outer edges of the plate. The load-deflection graph in Fig. 5.6 illustrates that in the first stage
of the simulation the rigidity of the clamped plate is increasing for smaller scaling levels. In
the subsequent modelling process displayed in Fig. 5.7 the increased rigidity relative to the
classical solution is again decreasing and eventually turning into a rigidity regime which is
of lower magnitude than the classical reference solution. The crossing point however, where
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the curves of the non-classical and classical solution meet, is increasingly delayed for the
smaller scaling levels.

Holding also all three rotational degrees of freedom at the outer edges of the plate
leads somewhat different results depicted in Fig. 5.8 and Fig. 5.9. The additional rotational
boundary conditions have the effect that the stiffness increase for smaller scaling levels is
much higher than without these rotational boundary conditions. Furthermore, the load-
deflection curves illustrated in Fig. 5.9 do not indicate a declining rigidity relative to the
classical solution.

The enforcement of the essential boundary conditions in this example is somewhat crit-
ical, because the incorporation of the stabilization term into the augmented modified varia-
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tional principle Eq. (5.26) has the effect that the solution for the displacement field noticeably
varies depending on the magnitude of the stabilization parameters. Note, that the magni-
tude of the augmentation is controlled by a numerical boundary enforcement error tolerance
0. This kind of sensitivity is similar to the previous example, however, in case of the clamped
plate the augmentation is necessary to provide a stable non-linear modelling. It is also found
that the magnitude of the stabilization parameter influences the achieved results of the four
scaling levels of the plate differently. In order to have comparable results this set of exam-
ples is therefore exclusively modelled using the penalty method with a penalty parameter
B = 1.0 x 10'. That is all boundary terms except for the stabilization term in Eq. (5.26)
are discarded.

Torsion experiments on human bone specimens

Materials such as foam and bones show a porous micro-structure which consists of osteons of
0.15mm — 0.25 mm in diameter. Torsion experiments on human bone specimens exhibited
a size-dependent elastic response (Yang and Lakes 1981). The authors employed the linear
elastic isotropic couple stress theory to model experimental results which involved two addi-
tional material parameters. These material parameters were related to a so-called internal
length scale parameter [ which had about the same magnitude as the bone pores. Later
on, Aifantis (1999) demonstrated that also his strain gradient approach was able to predict
these experimental results. His approach incorporated, besides the normal shear strain the
second order gradient of the same, the latter of which was associated with another material
parameter.

In the following, the experiment is idealized as a set of thin beams with a square cross-
section with side length a = 5.0 mm, 2.0 mm, 1.0 mm and 0.5 mm depicted in Fig. 5.10. It
is not the aim of this study to predict the experimental data, but to show qualitatively that
size-scale effects in torsion of thin beams can be modelled applying the proposed modified
variational principle (Eq. 5.47) to a MLS-based meshfree method. The ratio of beam length
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Figure 5.10: problem configuration Figure 5.11: diagram: normalized torsion

vS. cross-section size
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to side length L/a = 100 is kept constant all four beams so that the results for the twist # and
the corresponding torsion moment My are comparable. The torsion moment is applied to the
tip of the beam. The opposite end of the beam is clamped, that is all degree displacement
degrees of freedom are held over the entire cross-section. The problem is simulated with
21 x 4 x 4 particles in longitudinal and thickness direction, respectively. The internal length
scale parameter is assumed as [ = 0.25mm. Note that the enforcement of the essential

boundary conditions does not require the incorporation of the stabilization term in Eq.
(5.47).

If the twist is considered to be small, then the analytical relation of the applied torsion
moment to the resulting twist # is given by

o

My = CGa‘*Z, (5.49)

where C' is a constant and L = 100 a. Aifantis as well Yang and Lakis very closely fitted the
experimental data with their linear non-classical theories. Plotting the results in graphs with
% versus cross-section size a? for various bone specimens a slight but distinct difference
between classical and non-classical theory was recognizable. Qualitatively equivalent results
achieved with the modified variational principle based on the Cosserat theory (Eq. 5.47) are
depicted in Fig. 5.11, where for all sizes of the beam cross-section, also for the largest, the

predictions of classical and Cosserat theory indicate a clear difference. Nonlinear modelling

[ N/mm2]

torsion M_t/a*3

theta

Figure 5.12: diagram: normalized torsion
vs. twist

however, makes the size-scale effects much more visible as displayed in Fig. 5.12. Here, the
classical theory predicts that curves should fall for all side lengths a into one line which is
the red curve. In fact, the beams behave stiffer with decreasing cross-section size.



Chapter 6

Generalized Continua

This chapter is dedicated to the development of generalized continuum models for deforma-
tion based on the theoretical framework proposed by Sansour (1998b). Its basic principles
are in outlined Sec. 6.1. In the following it is demonstrated that by specific definition of the
topology of the micro-space this generalized deformation formulation allows for the deriva-
tion of strain measures, corresponding equilibrium equations and variational principles for
three different cases presented in Sec. 6.2, Sec. 6.3 and Sec. 6.4, respectively. Various compu-
tations show that these models are able to address fundamental physical phenomena which
are related to the underlying microstructure of the material, in particular scale-effects. The
computed results are also compared with the classical Green strain tensor-based formulation
presented in Sec. 4.2 and clear differences are revealed between classical and non-classical
formulations. The modelling is undertaken with the MLS-based meshfree method described
in Sec. 3. It is shown that this meshfree method provides the flexibility in terms of the
continuity and consistency requirements needed by generalized formulations.

6.1 Generalized deformation

The basic idea is that a generalized continuum G can be assumed to inherit the mathematical
structure of a fibre bundle (see e.g. Choquet-Bruhat et al. 1982). This is in the simplest
case the Cartesian product of a macro space B C E(3) and a micro space S (Sansour 1998b)
which we write as

G:=BxS. (6.1)

This defines the additive structure of the generalized continuum which implies that the
integration over the macro- and the micro-continuum can be performed separately. The
macro-space B is parameterized by the curvilinear coordinates #° and the micro-space S by
the curvilinear coordinates (®. Here, and in what follows, Greek indices take the values
1, ... or n. The dimension of & denoted by n is arbitrary, but finite. Furthermore, we want
to exclude that the dimension and topology of the micro-space is dependent on #°.
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Each material point X € G is related to its spatial placement X € G, at time ¢ € R by
the mapping

p(t):G— G:. (6.2)
For convenience but without loss of generality we identify G with the undeformed reference

configuration at a fixed time ¢, in what follows.

The generalized space can be projected to the macro-space in its reference and its current
configuration by

m(X)=X and m(X)=x (6.3)

respectively. The tangent space 7§ in the reference configuration is defined by the pair
(G; x 1) given by

. 0X aX
i = o I,= .
G o0 and ace

(6.4)

where the corresponding dual contra-variant vectors are denoted by G* and I%, respectively.
A corresponding tangent space in the current configuration 7G; is spanned by the pair

(&  ia) given by

. 0x . ox

& = 5gi and Iy = aca (6.5)

The generalized tangent space can also be projected to its corresponding macro-space by

respectively.

The Riemannian metric of the macro tangent space is denoted by G, g for the reference
and the current configuration, respectively. Their co-variant components are given by

Gij=G;- G and Gij = 8i - & (6.7)
and correspondingly the contra-variant components by

Gi=G.G and §l=g-g. (6.8)
In the same way we define the Riemannian metric of the micro tangent space denoted by I, i
for the reference and the current configuration respectively. Their co-variant components

are given by

Iaﬂ = Ia . Iﬂ and ia/g = ia . iﬂ (69)
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and correspondingly the contra-variant components by
1% =1°.1° and i =i*. P (6.10)
The determinants of the component matrices of G, g and I, i provide the metric coefficients

G =det(Gy), G=det(g;) and T =det(lg), i=det(inp). (6.11)

Now, we choose the placement vector % of a material point P (X € G) to be the sum of
its position in the macro-continuum x € ; and in the micro-continuum £ € S; as follows

x =x (0%,t) + € (6F,% 1) . (6.12)
Thereby, the macro-placement vector x defines the centerpoint of the micro-coordinate sys-

tem so that the micro-placement £ is assumed to be relative to the macro-placement. Ac-
cordingly, for ¢t = to the placement of a material point (Eq. 6.12) takes

X=X(0")+2(0",¢%), with Z€S. (6.13)

The micro-motion can be taken to be linear in (* considering it to be very small compared
to the macro-motion, a simplification also suggested by Eringen (1999), and we arrive at

%= x (6%,1) + (“a (64,1) . (6.14)

The vector functions a, (9’“, t) can be viewed as the directors of the micro-continuum with
their corresponding micro-coordinates (¢, the number of which must be chosen according to
a specific topology of the micro-space and the physical properties of a material due to its
intrinsic structure. Generally, the vector functions a, (0’“, t) can be described with the help
of a tensor A as follows

a, (0%,t) = AL,. (6.15)

Note, if the dimension of S is three, then we have A € GL*(3) which can be restricted to
subgroups as well.
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6.2 Generalized continuum based on a triade of normal
vectors n,,

In the previous section Sec. 6.1 the basic principles to formulate a generalized deformation
field was outlined. In this section this generalized formulation is specified to consist of the
macroscopic deformation field and relative to it, a microscopic deformation field which is
described by a triad of normal vectors n, attached to each material particle and defined by
the following expression

16/3 (g/gxgv)zleﬂ (F65XF6,Y)
2 " |ggx g, 2% /(Fey x Fe,) - (Fes x Fe,)

n, (6, ) (6.16)

where €,p, are the components of the Levi-Civita tensor (Eq. 2.16) and |fi,| = 1. The basis
vectors g, (#°,t) are with regard to the macro-space B C E(3) defined by Eq. (2.4) and
F (6%,1) is the corresponding deformation gradient tensor (Eq. 2.5).

The deformation within the micro-continuum which has its origin defined by the macro-
scopic position vector is therefore characterized by rigid body rotation and shear. This is
true, because, firstly, the triad of the normal vectors n, rotates corresponding to the chang-
ing orientation of the planes gg x g, to which these vectors are perpetual, and, secondly,
because the orientation of those planes to each other is altered according to the deformation
of the basis vectors gg.

In this approach the micro-directors a, (¢%,t) Eq. (6.14) are replaced by expression Eq.
(6.16) and we arrive at

% (0°,¢°,t) =x (0°,t) + ¢, (0,1) . (6.17)

Note, an advantage of this procedure is that it introduces rotation and shear of a lattice or
a particle without involving additional degrees of freedom.

A set of basis vectors for the reference configuration is defined by

- oX . OX N .
G; (0',¢%) = 8;3., L, (") = 8—? =N, (¢") (6.18)

and for the current configuration by

B (0.0 = o i (00) = o = h (01) (6.19)

Furthermore, the spatial derivatives of the position vector in the current configuration with
respect to the curvilinear coordinates #* of the macro-space are given by

_0x % (0,1) + g (07,1) (6.20)

i,i (02703:1’-) - w -
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and with respect to the coordinates of the micro-space by

% (07,7 1) = g—; =1, (0',¢) . (6.21)

Hereby it is important to recognize that n,; is constant over S.

With Eq. (6.20) and Eq. (6.21) a generalized deformation gradient is formulated as
follows

F(0%,¢% ) = (x; (6',t) + (*Ray (05,1)) ® GE+ 1, (0,1) ® N, (6.22)

In the following section we want to restrict ourselves to the static case.

6.2.1 Generalized Cauchy-Green deformation tensor

In order to formulate generalized strain measures based on Eq. (6.17) we compute at first cor-
respondingly to the definition of the classical Cauchy-Green deformation tensor the square of
the deformed arc length consisting of the macro-components dz* and the micro-components
dee

dx (0',¢%) = x;d0F +(* R df® +5,dE. (6.23)
Then we calculate the square of the deformed arc as follows

(d3)* =

¥

X-d% =
= (xp %+ C% (X gy + Agp - %) + (2P Ry - ﬁﬂ,l) do* do* +
+ (%6 Dig + (Do - Dig) d0F A&’ + (Ry - x; + (P g -Digy) dE™ df +
+1R,-fiy dEvdEP. (6.24)
Now we can identify three strain measures
CT(0%,¢%) =xp - x1 + (% (X - oy + Tap - X)) GF @ G (6.25)
CI1(6°,¢7) = (x - Ty + (e i) (GF @ N7+ NP @ GF) (6.26)

C (6%, ¢P) = (fiq - i) N* @ N7, (6.27)
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where higher order terms in (* within the first strain measure are regarded as negligible.
These three measures can be combined to an unified generalized strain measure

&=l 4 G 4 G (6.28)

Leaning on a classical variational formulation based on the Cauchy-Green deformation
tensor an adjacent approach is to establish a generalized variational principle based on C
and we have

/ / 7o o (é (?k’gﬂ)) :6CdSdV + Wiy =0, (6.29)
B S

oC

where pg 1 is the stored strain energy per unit undeformed volume and py is the density of
the micro-space in the reference configuration.

However, this approach is mathematically very involved due to use of the vector cross
product which is utilized to formulate the micro-directors Eq. (6.16). Especially this fact
makes it from the computational perspective impractical to pursue.
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6.3 Generalized continuum involving the macroscopic
basis vectors g,

In the previous section (Sec. 6.2) it was demonstrated how to formulate a generalized defor-
mation description, which incorporates an oriented micro-continuum, without adding extra
degrees of freedom to each material point. However, due to its involved character it is rather
impractical to make computational use of this approach.

Another possibility to avoid the incorporation of additional degrees of freedom, other
than the displacement degrees of freedom, is to define the directors of the micro-continuum
a, (6.15) as follows

9
8, (04,1) = 5o = ga (0%.1) (6.30)

where x € B;. Then the generalized deformation field (6.14) takes the following form
% (0%,C%,t) = x (0%,t) + (* ga (0,1) . (6.31)
In the reference configuration we have:

X

X (604,¢°,1) = X (%) +¢*Ga (64,1) ,  with Ga (¢%,1) = 2.

(6.32)

Note, even if the micro-continuum S is defined by the macroscopic basis vectors g,, it is
important to realize that the dimension of the micro-space does not have to coincide with
dimension of the macro-space. The spatial derivatives of the position vector in the current
configuration with respect to the macro-coordinates 6 are given by

- 0x
X, (ek’ Cﬁ’ t) = a—;i =X, (ek: t) + Ca 8a,i (Hka t) ) (633)

and with respect to the micro-coordinates (% by

%0 (0%, 1) = 83_; — g (65,1) . (6.34)

The generalized deformation gradient tensor is now expressed as follows

B (0%, C5.1) = (x4 (0%, 0) + (% gas (65,1)) ® G+ g, (65,0) ® I°. (6.35)
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6.3.1 Generalized Cauchy-Green deformation tensor
In order to formulate generalized strain measures based on Eq. (6.31) we proceed corre-
spondingly to the definition of the classical Cauchy-Green deformation tensor. For this, we

first consider a deformed arc length dx consisting of the macro-components dz* and the
micro-components d ¢ and we arrive at

dx = x,d0" +(*gordd’ +g,dE”. (6.36)
Subsequently, by calculating the square of the deformed arc as
(d3)? = dx-dx=

= (X,k X4+ C* (X By T Gak - Xy) + (2P ga - g,@,l) do* do' +

+ (X 85+ (8o - 8p) 0¥ dEP + (8o %1+ (P ga-gsy) dE*dO +

+8a-8p dE¥dEP (6.37)

and neglecting higher order terms in (“ we can identify three strain measures

Cl = (x4 X+ (* (X - Bag + 8ok - X)) GF® G (6.38)
C' = (x4 - 88+ (" Ba - 85) (ék N R ) é‘rk) (6.39)
C'"' = (ga-gs) I"®T°. (6.40)

These three measures can be combined to an unified generalized strain measure
C=C'+c"4+ct (6.41)
which alternatively, could be directly obtained via the formula

C=F'F. (6.42)
Furthermore, the following relation holds

aga 1 l
a = — = — $ @ o — Gqu s - 643
Bak = Hgr — 39 (Grta + otk — Goki) 8 (6.43)

where g,,; are the spatial derivatives of the Riemannian metric coefficients g;; (Eq. 2.13).
C! and C!! consist of strain caused by the deformation of a macro-line element and also
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strain which results from a relative deformation between macro- and micro-continuum. C?1
however, is a sole micro-strain.

In the reference configuration these strain measures are reduced to

Cl = (Gi G +(* (Gi+ Gay+ Gop Gy) GE@ G (6.44)
Cll = (G- Gp+ (*Gqy - Gp) (Gk e +1°® Gk) (6.45)
Cll"= (G, -Gp) I*°0T° (6.46)

which have to be subtracted from their counterparts in the deformed configuration Eq.
(6.38)-(6.40) in order to have strain measures which vanish in the reference configuration.

In summary, due to deformation of the micro-directors (Eq. 6.30) the micro-continuum
undergoes rotation, stretch and shear and we find an analogy to the so-called micromorph
continuum (Eringen 1999). However, the micro-directors are hidden in this approach within
the generalized deformation formulation (Eq. 6.31) and therefore, no additional degrees of
freedom are involved. Any generalized strain measure derived from Eq. (6.31) can only be
linear with respect to the micro-coordinate (%, as the generalized deformation is linear in
¢*. The micro-deformation £ is obviously dependent on the macro deformation gradient
Gradx, that is, the generalized deformation x is completely described by the unknown
macro-displacement field u and its first derivatives.

In the following we want to confine ourselves to the quasi-static case and consider no
time dependency.

6.3.2 A generalized variational formulation and its corresponding
equilibrium equations

In a similar fashion as in Sec. 6.2 a generalized variational principle is established which
is based on the generalized strain tensor C. Let us now consider a non-linear boundary
value problem in the domain B x & with the boundary 0B x S. The micro-space S is
confined by a corresponding boundary 0S. Accordingly, we have to distinguished between

Dirichlet boundary conditions prescribed on 0Bp x & C 0B x S denoted by hs-ln) and such

on 0Bp x 0Sp C 0B x 08 denoted by 135.1”), where n defines the normal vector on 9B and v
is the normal vector on 0S. Correspondingly, Neumann boundary conditions are prescribed
on 0By xS = 0B x S\ 0Bp x S denoted by t™ and on 0By x 0Sy = 0B x 0S5 \ 0Bp x 0Sp
denoted by t®).
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Furthermore, let W,,; define the external virtual work in the Lagrangian form as follows

gk
Weat (1) = — / b (6%) - u (%) dv — / o (04) - 6220 gy
k
— / t™ (6%) - 6u (0%) dA - / q™® (6%) L (") dA (6.47)
OBy OBy a9«
where the external body force
b (0%) = / pob (6%,¢%) dS + / b™) (6, ¢F) do (6.48)
s a8
and the external body couples
1* (0%) = / ¢* pob (6%,¢%) dS + / ¢*b™ (6%,¢%) do (6.49)
s 88

are acting on B x § and B x 08, respectively. The external traction

6 (9%) = / Fo E) (6%,¢) dS + / ) (6%, ¢%) do (6.50)
S 0

SN

and the external surface couples

4 (1) = [ A 060 a5+ [ i (0007) ar (651)
S 9Sn

are acting on 0By x § and 0By x 0Sy respectively. Furthermore, dV is a volume element of
the macroscopic domain B, whereas dA is a surface element of its corresponding boundary
0B, and accordingly, dS is a volume element of the microscopic domain S, whereas do is
a surface element of its corresponding boundary 0S. The density of the micro-space in the
reference configuration is denoted by py and the density of the macro-space is consequently
expressed by

S

In the following external loading applied on B x 0§ as well as on 0By x 0Sy is discarded.

Furthermore, we assume now that the body under consideration Bx S is hyperelastic and
possesses an elastic potential ¥ represented by the stored strain energy per unit undeformed
volume pg 1. If the material is in addition homogeneous, ¥ depends upon position in B x §
exclusively through the generalized strain measure C (Eq. 6.41). Further, it is reasonable to
assume that C7 is the dominant part of the generalized strain measure C, thus, we restrict
the dependency of ¥ to be on CI alone.
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For simplicity we define the projection map 7r§(C—~‘r,-) (Eq. 6.6) to be the identity, thus, we
have G; := G; and we also assume G; to be independent of §* in the following.

The variation of the internal potential with respect to C7 in the Lagrangian form reads
as follows

CI glc C’B)> ~
ov = // po :0CI dSdV (6.53)
OCI

which is further redrafted to
1 k k
6\1!:/—{S(G):(SC+ma(0):6KQ}dV (6.54)
5 2
with

S (0) = /S 2 fo s (é;églkﬂ)) ds (6.55)

0 (df (6%, gﬂ))

i} ds (6.56)
aC!

m* (6*) =/52§“f)0

and C! (6*,¢7) = C (6*) + (K, (6*). Note that C and K, are constant over S. Conse-
quently, the integration over the micro-continuum S leads to two different stress measures.
These are tensor S which is energy conjugate to the classical Cauchy-Green deformation
tensor C and tensors m® which are energy conjugate to the first order strain gradients K.

For the static case and considering only mechanical processes the first law of thermodyna-
mics provides the following variational statement

§U + Wiz =0, (6.57)

which can be written with Eq. (6.54) and Eq. (6.47) as
1 k a (nk
5 {8 (69) :0C+m2 (6%) : 0Ky } dV + W = 0. (6.58)
B

Note that the integration over the micro-continuum § in Eq. (6.48) - Eq. (6.51) as well as
in Eq. (6.55) and Eq. (6.56) provides for the implicit incorporation of the micro-structure
characterizing internal length scale parameters into Eq. (6.58). That is, the coordinates of
the micro-space (¢ are defined over the intervals [—%, 7] where [, are the internal length
scale parameters associated with the different dimensions of S.
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The governing equations of this functional with respect to macro-space B are found by
integration by parts and applying Gauss’s divergence theorem

[ = Voo (Vars @96 ou- e g (VG ggam® 0 67) -ou-

—b(e’“)-(su}dv+/% {FS(Hk)n 5u+§TFm (#*)n - ou—
—t<n>(9k)-5u}dA+/B{ 59 0 (VEEme () ) - 5%—

Ky 50w a(gh) g s 9% _ (ma (ghy . 500 _
1 (6%) - 60 }dV—|—/66N{Fm (6)n- 0o —a™° (%) -0 } dA =

:/Ig{—%%(\/élvs(ek)c;i -5u—%%( Ggi a(Hk)Gi)-(Su—
— b (6%) 5u}dV+/aBN{FS(0k)n-5u+%m (6*)n - ou—
— £ (¢*) - ou } dA+/B{LG%%(\/5Fma(0’C) G') - u+
+%la(0’“)-5u}dlf+/a&v{—%(Fm”‘(&k)Gi) P -6u | dA +
+/68N{ m® (0)n - 5%—q<n>a(9) 5%} dA =0, (6.59)

where G is the determinate of the Riemannian metric coefficients (Eq. 2.13) and it is assumed
ou = 0 on 0Bp. Note the 1% is set to zero on 0By. Taking into account that du is a
free variation we arrive at the local statement of the governing equations which are the
equilibrium equations of the above functional

(\/_FS (6% i—\/éFa%lma (%) Gi) —b (6%) +

\/_89z
a o kY __
+5ga | (0*) =0 on B (6.60)
OF ., 1 0 . Z. .
S(Hk)n—l—@m = /G 06 (@Fm (0’“)G> Ng = t! )(Hk) on 0By (6.61)
Fm® (0*)n=q™*(6*) on 0By (6.62)

where F is the deformation gradient tensor (Eq. 2.5). These field equations are supplemented
by essential boundary conditions, the so-called Dirichlet boundary conditions

u=h, ondBp (6.63)

ou

o = b5 ondBp. (6.64)
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6.3.3 Numerical examples

As the continuity and the consistency of the MLS-approximation functions (Eq. 3.5) have
to accommodate the requirements of the used variational formulation, the basis polynomial
and the weight function must be chosen according to Eq. (3.8) and Eq. (3.9), respectively.
Since the variational formulation (Eq. 6.58) contains second order spatial derivatives of the
deformation field, the meshfree approximants (Eq. 3.5) need at least a second order basis
polynomial in order to provide the required continuity. The examples in the following are
modelled using a second order Pascal-type basis polynomial (Eq. 3.37) together with the
quartic spline introduced in App. A as weight function. The numerical integration over the
micro-continuum & is carried out with the help of the Gauss quadrature, the order of which
is chosen to be second according to the used basis polynomial.

In all examples of this section the external loading is considered to be constant within
the micro-space S so that integration over the micro-continuum results in expressions which
are multiples of the micro-continuum volume Vg given by

Vs = /S ds . (6.65)

Since the micro-continuum attached to each macroscopic point X € B is assumed to possess
the same geometrical configuration and dimensions throughout the entire macro-space B,
it is admissible, when evaluating the external virtual work (Eq. 6.47), to perform only the
integral over the macro-space B and to multiply the result afterwards by Vs. Note however,
that the size of the micro-continuum can not be chosen arbitrarily small, but is limited by
the numerical precision.

The enforcement of the essential boundary conditions is carried out using the penalty
method.

The numerical applications in this section can be distinguished in four sets. The first one
focuses on size-scale effects in bending of small-scale structures, the second one investigates
torsion of very thin beams, the third one is an extensive study of excavation openings in
intact rock and the fourth one demonstrates oriented material behaviour for the bending
of a thin sheet. The first three sets make use of the hyperelastic Saint- Venant-Kirchhoff
constitutive model which involves as material parameters Young’s modulus E and Poission’s
ratio v, whereas the last one utilizes a non-linear hyperelastic material law.

Polymer micro-cantilever beam

The following example is a set of micro-cantilever beams, the problem definition of which
has been already introduced in Sec. 5.7. The variational principle (Eq. 6.58) presented
in the previous section allows to choose between one and three dimension for the micro-
continuum so that the size of the micro-continuum is controlled by one to three internal
length scale parameters [y, ls and l3. Here we assume l; = I, = I3 = [. Corresponding to
these parameters we have the directors or the basis vectors of the micro-continuum that
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are given by Eq. (6.30). In the following two cases are distinguished. These are firstly, the
one-dimensional micro-continuum having only one micro-director expressed by

ox

- = (6.66)

as

and secondly, the three-dimensional micro-continuum incorporating three micro-directors

defined by

ox

= o0 witha =1,2,3. (6.67)

Aa

The graphs illustrated in Fig. 6.1 - Fig.6.4 combine the load-deflection curves of the tip of
four different micro-cantilever beams of lengths L = 1150 ym, 750 um, 380 pm and 200 pm.
The width for all four beams is b = 235 um and the ratio of length to height L/h = 10
is kept constant so that these four beams represent four different scaling levels of one and
the same beam. The internal length scale parameter is assumed as [ = 42 uym. As depicted
in the load-deflection graph (Fig. 6.1) the one-dimensional micro-space provides a close
match to the experimental results indicated by corresponding dotted curves. Note that the
experimental data for the beams with L = 1150 um and 750 pm match each other. There is
not a recognizable difference, if the microspace is chosen to be three-dimensional, shown in
Fig. 6.2.

Neglecting the transversal contraction does not substantially change the results as illus-
trated in Fig. 6.3 and Fig. 6.4. This is in opposition to the use of the Cosserat continuum-
based model (Eq. 5.47) in Sec. 5.7, where the choice of Poisson’s ratio is of a great sig-
nificance. This indicates that using the generalized micromorph deformation description
(Eq. 6.31) the size-scale effects induced by the higher gradients outweigh those due to the
transversal contraction.
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The modelling of small-scale structures such as the above micro-cantilever beam is dis-
covered to be numerically critical, if the numerical integration over the micro-continuum
involves very small numbers which fall below the minimum limit of double precision num-
bers. The solution leads then to a material behaviour which is significantly too soft. In order
to achieve correct results it is necessary to change the geometrical units from meter to milli-
or micrometer.

clamped micro-sheet

The second example is a square sheet which is clamped at all its four edges. The problem
definition is the same already studied in Sec. 5.7 and can be found there depicted in Fig.
5.1. Due to the symmetry only one quarter of the sheet is modelled by introducing the
appropriate symmetry conditions for the displacement field. The material is chosen to be
the same as for the micro-cantilever beam, but with a constant Poisson ratio v = 0.3. Again,
four different scaling levels have been simulated with L = 6.0mm, L = 3.0mm, L = 1.2mm
and L = 0.6 mm. The ratio of the sheet’s length to its height L/h = 300 is fixed for all four
sheets so that the results are comparable.

Preliminary studies showed that the difference between one-dimensional micro-
continuum with micro-director a; (Eq. 6.66) and the three-dimensional micro-continuum
involving three micro-directors (Eq. 6.67) is negligible. This is clear as the bending of the
sheet results in a curvature which is almost exclusively described by vector az. Therefore,
only the impact of a one-dimensional micro-continuum within the generalized variational
formulation (Eq. 6.58) is investigated for scaling effects. The corresponding internal length
scale parameter is assumed to be [ = 42 ym.

The load-deflection curves for the vertical midpoint displacement in Fig. 6.5 and Fig. 6.6
illustrate distinct size-scale effects as the smaller sheets behave increasingly stiffer compared
to the classical solution denoted by the red line. In Fig. 6.5 the relation of loading to
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deflection is for all sheets linear. Fig. 6.6 displays non-linear deformation behaviour for
increasing loading. Interestingly, the curves which represent non-classical solutions do not
show the same tendency to converge to the classical solution as observed for the modelling
of this problem using the Cosserat continuum depicted in Fig. 5.7.

Torsion experiments on human bone specimens

This examples has already been presented in Sec. 5.7, where the reader can find further
details. The problem is a set of thin beams with a square cross-section with side lengths
a = 5.0mm, 2.0 mm, 1.0 mm and 0.5 mm depicted in Fig. 6.7. The ratio of the beam’s length
to side length L/a = 100 is kept constant for all four beams so that the results for twist 0
and corresponding torsion moment My are comparable. The torsion moment is applied on
the tip of the beams. The opposite end of the beams is clamped, that is all displacement
degrees of freedom are held over the entire cross-section. The material is assumed to be
hyperelastic and modelled by the Saint- Venant-Kirchhoff constitutive model which involves
as material parameters Young’s modulus E and Poission’s ratio v.

The micro-continuum &S is chosen to be two-dimensional defined by two basis vectors or
micro-directors which are given according to Eq. (6.30) by

ox ox
o M ™ T g

ag

(6.68)

respectively. Associated with these two micro-directors are the so-called internal length scale
parameters [ and [3 which control the the size of the micro-continuum. Here, we assume
lo, = I3 = 1 = 0.5mm which is twice the value as used in the Cosserat continuum-based
formulation (Eq. 5.47). The comparison of the simulation results of the micro-cantilever
beams provided in this section with the results illustrated in Sec. 5.7 indicate that the
internal length scale parameters in Eq. 5.47 and Eq. 6.58 can be related to each other by a
factor 2.
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If the twist is considered to be small, then the analytical relation of the applied torsion
moment to the resulting twist # is given by

6

Mr =CGa i (6.69)

where C' is a constant and L = 100 a.

The difference between the classical Green strain tensor-based (Eq. 4.8) and the gen-
eralized formulation (Eq. 6.58) is clearly recognizable in Fig. 6.8 which illustrates a linear
computation. This scaling effect is also more distinctive than shown in Fig. 5.11 which is
achieved using a variational principle based on the Cosserat theory (Eq. 5.47). The same
also applies for non-linear modelling, where the decreasing cross-section leads to increasing
rigidity displayed in Fig. 6.9, the magnitude of which is, however, much higher than for the
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Cosserat continuum-based model depicted in Fig. 5.12. The classical theory predicts that
curves should fall for all side lengths a into one line which is the red curve.

Underground excavations

In this section underground excavations in intact rock conglomerate with two different ge-
ometrical configurations are modelled applying a classical Green strain tensor-based (Eq.
4.11) and the non-classical generalized formulation (6.58). The micro-continuum is chosen
to be two-dimensional and the two micro-directors are given, according to Eq. (6.30), by the
spatial derivatives of the macroscopic placement vector x with respect to the macroscopic,
the problem domain defining coordinates #' and #? as follows

ox ox

= 2o (o7

ai

The dimensions of the micro-continuum are controlled by the internal length scale parame-
ters [; and l. These two parameters could be related to physical properties of the rock mass
such as a certain lattice structure which provides that the deformation and the stress can not
localize as much or slip between horizontal sediment layers which leads to higher horizontal
deformability compared to the vertical. The last feature can be achieved by choosing the
internal length scale parameters differently which will be demonstrated at the end of the
section. Note that sufficiently small values for these parameters provide the transition from
the generalized continuum formulation to the classical one. The constitutive parameters of
the used Saint- Venant-Kirchhoff model are Young’s modulus £ = 20.0 GPa and Poisson’s
ratio v = 0. As the meshfree code implemented in this work is three-dimensional the simu-
lated results can be directly related to those achieved using the two-dimensional boundary
element method (Hoek and Brown, 1982), if the transversal contraction is neglected. Both
excavation configurations are simulated under plane strain conditions assuming the displace-
ment vertical to the plane u3 = 0. Since both problems are rotationally symmetric, only one
quarter is modelled applying the appropriate symmetry conditions. The difference between
a linear and non-linear simulation is found negligible.

The first example has a circular excavation opening with diameter d = 4 m depicted in
Fig. 6.10. The diameter of the circular simulation domain D = 10m is chosen to be large
enough so that the pressure loading p = 54.0189 M Pa which is applied on the boundary
of the domain does not distort the stress distribution close to the opening. The problem is
discretized with 26 x 31 particles in three horizontal layers.

The classical solutions for the absolute values of the displacement vector, maximum
and minimum principal stress and shear stress are illustrated in Fig. 6.14, Fig. 6.16, Fig.
6.18 and Fig. 6.20, whereas the generalized continuum solution for internal length scale
parameters [y = [ = 4 in Fig. 6.15, Fig. 6.17, Fig. 6.19 and Fig. 6.21. Note that grid
lines in all figures are drawn with a distance of 1.0 m from each other. The illustrations of
maximum and minimum principal stress and shear stress are supplemented each by plots
along a line between point A and point B depicted in Fig. 6.11 - Fig. 6.13, where the
solutions obtained with classical and generalized theory, respectively, are compared with each
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other. The generalized solutions for principal and shear stress distributions are significantly
smoother than the classical ones, which is due to a regularizing effect of the second order
deformation gradients in the formulation. The maximum principal stress at the excavation
opening o = 115.19 M Pq illustrated in Fig. 6.16 agrees well with the boundary element
solution (Hoek and Brown, 1982) which predicts ¢ = 120 M Pa. The generalized model
provides displacement and maximum principal stress values depicted in Fig. 6.17 and Fig.
6.19 respectively, that are significantly lower than those of the classical approach, especially
close to the excavation. The magnitude of the in-plane shear stress near to the excavation for
the non-classical model illustrated in Fig. 6.21 is less than one half of the Green strain based
approach depicted in Fig. 6.20. This clearly indicates that the energy stored in the problem
domain splits into first order and second order strain energy parts and correspondingly into
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first and second order stresses. Obviously this discrepancy depends on the choice of the
micro-continuum.

Interestingly, the minimum principal stress along the excavation wall is not zero as it
is for the classical approach shown in Fig. 6.12. This is as the first order internal traction
equals the second order internal traction, if the external traction is zero, see Eq. (6.61).
Furthermore, the classical solution for minimum principal stress depicted in Fig. 6.18 is
constant on circles around the excavation opening which is not the case for the generalized
solution shown in Fig. 6.19. This difference is the result of the definition of the micro-
continuum. The micro-continuum can be seen as a square which is allowed to stretch and
rotate relatively to macro-continuum. The current position of this square is defined by
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two base vectors which are given by the derivatives of the current macroscopic placement
vector with respect to the two in-plane Cartesian coordinate directions Eq. (6.70). As those
derivatives are changing on circles around the excavation opening, the micro-continuum’s
shape is also changing and with it, the second order stress distribution. Reciprocally, the
second order stresses affect the first order stresses which are depicted in Fig. 6.17 - Fig.
6.21. However, if the micro-continuum axes would be chosen to be the derivatives of the
placement vector with respect to tangential and radial direction, you could expect a non-

classical solution for minimum principal stress which would qualitatively match the classical
one.
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The second examples has a square excavation opening of length and height a = 4m
depicted in Fig. 6.22. The problem domain is rectangular with A = 10m and the outer
edges of the domain are subjected to a pressure loading p = 60 M Pa. The configuration is
discretized with 4473 particles distributed in three horizontal layers.

The classical solutions for the absolute values of the displacement vector, maximum and
principal stress, and shear stress are depicted in Fig. 6.26, Fig. 6.28, Fig. 6.30 and Fig.
6.32. The corresponding plots for the generalized continuum solutions assuming the internal
length scale parameters as l; = [, = 4 are shown in Fig. 6.27, Fig. 6.29, Fig. 6.31 and Fig.
6.33. Again, the grid lines in all figures are drawn with a distance of 1.0 m from each other.
Additionally, plots along a line between point A and point B of maximum and minimum
principal stress and shear stress as depicted in Fig. 6.23 - Fig. 6.25 display the comparison
of classical and non-classical results. The classical approach provides a peak value of the



112 Generalized Continua

|Displacements | |Displacernents|

- 0.045712 0.044769

l 0041935 ' 0.041008

0.038158 0.037428

- 0.03438 - 0.033757

0030603 0.030087

0.026826 0.026416

- 0023048 - 0.022745

: 0.019271 0.019075

0.015494 0.015404

¥ 0.011716 0.011734
h. R R

[ Contour Fill of Displacements, [Displacements]. | L [ Contour Fill of Displacements, [Displacements]. | m

Figure 6.26: absolute value of displace-  Figure 6.27: absolute value of displace-
ment vector - classical solution [m] ment vector - generalized solution with a
two-dimensional micro-continuum [m]

Siii- stress Siii- stress

50,023
. 6534
70757

--76.174
81501
-87.007

- 92,424

-403.38 97,841

454.14 103,26

-504.9 -108.68
A — h. S

[ Contour Flllof_stress, Siii- stress. | | [ Contaur Fill of_stress, Sill- stress. | m

-251.00
-301.85
- -352.62

Figure 6.28: max principal stress - classi-  Figure 6.29: max principal stress - gen-
cal solution [MPal eralized solution with a two-dimensional
micro-continuum [MPal

maximum principal stress in the corners of the excavation opening o = 504.4 M Pa illustrated
in Fig. 6.28 which is only insignificantly lower than predicted in (Hoek and Brown, 1982)
to 0 = 510 M Pa. Similar to the application with circular opening, the maximum principal
stress distribution is smoother for the non-classical approach.

Using the classical Green strain tensor based formulation the localized stress zone is
confined between the first two layers of particles in radial direction. This is also the case
for higher discretization levels than 4473 particles. This means that the size of the stress
singularity is dependent on the particle distribution. This kind of behavior is known in FEM
as mesh dependency. Contrarily, the use of the generalized formulation provides a solution
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for the stress fields that do not show such a dependency. The non-classical formulation has

obviously a regularizing effect preventing the solution for stress and displacement fields to
be dependent on the density of the particle distribution.

The modelling using generalized formulation results in significantly lower principle and
shear stresses in the corner of the excavation opening than predicted by the classical theory
shown in Fig. 6.23 - Fig. 6.25 . The shear stress of the non-classical model is less than one
seventh of the Green strain based approach. However, the stresses are kept at significant
values around the entire excavation boundary. This finding matches with the displacement
along the excavation wall as it maintains at almost constant values. Contrarily, the classical
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result indicates a clear displacement minimum in the corner and increasing away from it.

The difference in the solution between the classical model and non-classical one is neg-
ligible for I; = [, = 0.01 and smaller.

If the internal length scale parameters are set as [y = 4 and [, < 0.01, the micro-structural
deformation only takes place in horizontal direction. The stresses and the displacement fields

depicted in Fig. 6.27 - Fig. 6.33 are obviously different and distorted compared to the results
illustrated in Fig. 6.34 - Fig. 6.37.

Summarizing, these examples in rock mechanics demonstrate for the case of plane elastic-
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ity that the incorporation of elastic strain gradients can significantly change the distribution
of stresses and displacement around excavation constructions. Furthermore, the generalized
formulation Eq. (6.58) proves to be independent of the particle distribution density unlike
the classical Green strain tensor based formulation.

Simply supported micro-sheet

Finally, orientated material behaviour is modelled making use of the non-linear statistically

35
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Figure 6.38: problem definition Figure 6.39: load displacement diagram

with I, = 4.2 x 1072

based constitutive law of hyperelasticity (Arruda and Boyce 1993; Sansour et al. 2003a)
which which involves as constitutive parameters the shear modulus Cr = 1.0 x 10*, the bulk
modulus k¥ = 1.0 x 107 and parameter N = 8. This material law was already utilized in
the classical Green strain tensor-based formulation (Eq. 4.11) in Sec. 4.3. Now however, it
is applied to generalized micromorph formulation (Eq. 6.58) to give another demonstration
that the incorporation of different constitutive laws is very straightforward. It shows that
it is possible to directly use conventional material models in the proposed non-classical
variational principle.

The problem illustrated in the following is a square sheet with L = 0.6 and h = 2.0x 1073
which is simply supported at its outer edges in vertical direction and subjected to a dead
loading depicted in Fig. 6.38. Only one quarter of the sheet is modelled with 11 x 11 x 3
particles in longitudinal and thickness direction, respectively, and appropriate symmetry
conditions are applied.

The oriented material response is achieved by a specific definition of the micro-continuum
S. That is, we consider a one-dimensional micro-continuum, the director or the basis vector
of which is given by Eq. (6.30).

Firstly, we define the basis vector to be g; and its corresponding internal length scale
parameter is determined as [; = 4.2 x 1072, In Fig. 6.39 it is illustrated that the mag-
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nitude of the displacement of point A in z-direction is larger than the one of point B in
y-direction which the classical Green strain tensor-based model (Eq. 4.11) predicts to be
equal as both curves fall into one line. The midpoint deflection displayed in Fig. 6.40 clearly
shows that the non-classical solution provides a stiffer material response than exhibited using
the Green strain tensor-based approach. The final deformed configuration of the sheet using
the generalized formulation is illustrated in Fig. 6.43.

Secondly, the basis vector of the micro-continuum is now chosen to be g, and the cor-
responding internal length scale-parameter is lo = 4.2 x 1072. Again, a clear displacement
difference of point A in z-direction and of point B in y-direction is recognizable displayed
in Fig. 6.41. Now however, the displacement magnitude of point B is larger than the one of
point A. The midpoint deflection obtained with the generalized formulation is equal to the
previous configuration as illustrated in Fig. 6.42. The final deformed configuration of the
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A,
(il

Figure 6.44: deformed configuration at
loading parameter ¢ = 3.3 with I, =
4.2 x 1072

sheet modelled with the help of the generalized formulation is depicted in Fig. 6.44.
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6.4 Generalized micropolar continuum involving the
macro-scopic rotation tensor R

The generalized continuum presented in Sec. 6.2 features a generalized deformation, where
the micro-continuum undergoes rigid body rotations as well as shear. The approach holds
the benefit that only the displacement field has to be solved for. This is achieved as the de-
formation of microspace is dependent on the first order derivative of the macro-deformation
field. Rigid body rotations of the micro-continuum however, can also be described by mak-
ing use of a rotation tensor (Sansour 1998b). The directors of the micro-space a, (#*,t) (Eq.
6.14) are in this case associated with a macroscopic rotation tensor Q which is considered to
be independent of the map (X, ) (Eq. 2.1) and element of the proper orthogonal transfor-
mation group SO(3). Therefore, the micro-directors only carry out micro-rotations and the
micro-continuum behaves as a rigid body. The use of the rotation tensor as kinematic field
induces three extra rotational degrees of freedom, i.e. the micro-rotations are not hidden
within the formulation.

If Q is substituted for tensor A into Eq. (6.15), then the generalized deformation (Eq.
6.14) takes the following form

x (0°,¢%t) =x (0",t) +¢*Q (¢, 1) 1, (6.71)

which may be called generalized micropolar deformation vector leaning on the definition of
Eringen (1999). This provides each material point P with extra three rotational degrees
of freedom and the micro-deformation is restricted to rigid body motion. Assuming I, to
be independent of §* and (® the spatial derivatives of the position vector in the current
configuration with respect to the macro-coordinates 6 are given by

= o5 = X (60%,t) + ¢ Q, (6%,1) L, (6.72)

i,i (ek’ Caa t)
and with respect to the micro-coordinates (* by

X (0,t) = o =

Q (¢, t)1,. (6.73)

The generalized deformation gradient which describes the mapping of the tangent space 7¢G
in the reference configuration to a corresponding tangent space in the current configuration
TG, is with Eq. (6.72) and Eq. (6.73) expressed by

F (0, 1) = <x (0',0) + ¢°Q,i (6, 1) Ia) ®G+Q ()L oL (6.74)
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6.4.1 Generalized micropolar strain measures

A natural passing to a classical continuum can be achieved, if, in the following, the strain
measures are required to be invariant with respect to the group SO(3), very much as in the
Cosserat continuum Sec. 5.2. This consideration will be elaborated in the next sub-section
after deriving the corresponding field equations. Following the above requirement a stretch-
type strain measure is chosen on the basis of a general decomposition of F (Eq. 6.74) as
follows

U (0%,¢t) = R' (6%,¢)F (0%,¢*t) =
= (RT (0%,1) x,; (6%,t) + C“RT (0*,1) Q, (6%, ¢) Ia> ® G +1,®1%, (6.75)

where R is given by Eq. (5.1). The first term in Eq. (6.75) is an analogy to the classical
stretch tensor and is denoted by

U (0%,t) =R" (6*,¢) x,; (6*,t) ® G*, (6.76)
whereas the second term is a set of curvature tensors

K, (0*,t) =R" (¢*,1) Q,; (¢*,1) I, ® G". (6.77)
Since the the third term is simply constant, Eq. (6.75) is re-defined as

U (6%,¢*t) = U (6%,1) + (“Ka (6%,1) . (6.78)
In the following it is assumed that

Q=R (6.79)
holds and the basis of the micro-space in the reference configuration is to be taken as

0X

I, =G, = —, 6.80
o (6.80)

such that the set of curvature tensor Eq. (6.77) can be re-written as

K, (6*,1) = R" (0%,6) R, (6",) G0 ® G (6.81)

With R € SO(3) relations Eq. (5.6) hold and the tensor products R'R,; are therefore skew-
symmetric with Eq. (5.7) as axial vector so that Eq. (6.81) can be alternatively expressed
as

K, (6*,t) = k; (6*,1) x G, ® G, (6.82)
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or

K, (6%,1) = —%e :R" (0", 1) R; (0",1) G, ® G'. (6.83)

Due the analogy to a micropolar continuum and the approach presented in this section
may be therefore called a generalized micropolar continuum.

In the following sub-chapters we want to confine ourselves to quasi static case.

6.4.2 The generalized variational formulation and its correspond-
ing equilibrium equations

Let us now consider a non-linear boundary value problem in the domain B x S with the
boundary 0B x §. The micro-space S is confined by a corresponding boundary 0S. Ac-
cordingly, we have to distinguished between Dirichlet boundary conditions prescribed on
8Bp x S C 9B x S denoted by h™ and such on 9Bp x 9Sp C OB x OS denoted by h{”’
where n defines the normal vector on 9B and v is the normal vector on dS. Correspondingly,
Neumann boundary conditions are prescribed on 0By x S = 0B x 8§ \ 0Bp x S denoted by
t™ and on 0By x 0Sy = 0B x 0S \ 0Bp x Sp denoted by t™).

The external virtual work W,,;; may then be define in the Lagrangian form as follows

Wt (u,7) = — / b (6%) - 5u (6%) dV — / L(0%) - w (65) dV— (6.84)
B B
- / 6 (4 - 5u (6%) dA — / a™ (i) -w (%) dA (6.85)
BN OBy
where the external body forces
b (%) = / pob (6%,¢%) dS+ / b™) (6F,\*) do (6.86)
S oS
and the external body moments
1(6%) = / po C*RG, x b (0%,¢%) dS + / (*RG, x b (6¥,\%) do (6.87)
S oS

are acting on B x § and B x 08, respectively, whereas the external traction

t(n) (’f}k) — L ﬁO E(ﬁ) (nk’ga) ds+/6 %(17) (nk’)\a) dO’, (688)

SN
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and the external surface moments

a™ (n*) = / po C*RG, x ™ (n*,¢*) dS + / C°RG, x t7 (n*, %) do (6.89)

oSN

are acting on OBy x S, and 0By x OSy respectively. Note that n*, k = 1,2 is the coordinate
chart on 0B and A\® is the coordinate chart on 0S. Furthermore, dV is a volume element of
the macroscopic domain B, whereas dA is a surface element of its corresponding boundary
0B, and accordingly, dS is a volume element of the microscopic domain &, whereas do is
a surface element of its corresponding boundary 0S. The density of the micro-space in the
reference configuration is denoted by pg. In the following, external loading applied on B x 0S8
as well as on OBy x 0Sy is discarded.

Furthermore, we suppose now that the body under consideration BxS is hyperelastic and
possesses an elastic potential ¥ represented by the stored strain energy per unit undeformed
volume gy . If the material, in addition, is homogeneous, ¥ depends upon position in Bx &
exclusively through the first generalized strain measure U.

For simplicity we define the projection map 7T0(G ) (Eq. 6.6) to be the identity, thus, we
have G; := G; and we also assume G; to independent of #* in the following.

The variation of the internal potential with respect to U in the Lagrangian form reads
as follows

o0 = / / po ek Ca)> 06U dS dV (6.90)

and with Eq. 6.76 and Eq. 6.83 it is further redrafted to

5T = / {n(0"): 00 +m (6" G ok, | av (6.91)
where
n (0F) = /S fo aw( a(ék ga)) ds (6.92)

ov (T (6%,¢))

m (6%) = /S Po C* Gg X e G' dS. (6.93)

Note that n is an analogy to the so-called Biot-Lurje stress tensor which is energy conjugate
to the classical stretch tensor U and with the first Piola-Kirchhoff stress tensor P Eq. (2.26)
defined as

n(0*) =R"P. (6.94)
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m may be interpreted as a couple stress tensor. For details on the variations U and dk;
the reader is referred to Sec. 5.3.

In the static case and by considering only mechanical processes the first law of thermo-
dynamics provides the following variational statement

§U + W, =0, (6.95)

which can be written with Eq. (6.91) and Eq. (6.85) as

/B{n (6%) : 6U +m (") G- 3k; | dV + Weey = 0. (6.96)

The governing equations of this functional can be derived, if we redraft Eq. (6.96) as
follows

—/{—(\/_Rn (0") G )'-5u+x7,~><Rn(0k)-w+

52

ﬂ

Q

—(me 0’“)G’> : }dV+/BB{Rn(nk)n-(Su—i-Rm(nk)n-w—
(6

—t® () - Ju— o () - w } dA—/{b ©)-out1(0)-w}dv=0,  (697)

where we made use of Gauss’s divergence theorem. G is the determinate of the Rieman-
nian metric coefficients (Eq. 2.13). Furthermore, the basis vectors G; are considered to be
independent of #* here and throughout this section.

Taking into account that du and w are free variations, we arrive at the local statement
of the governing equations which are the equilibrium equations of the above functional

—(Rn (¢*)G'),—b(¢#*)=0, in B (6.98)
—x; X Rn (0*) — (Rm (0*) G') . —1(0*) =0, in B. (6.99)
The corresponding natural boundary conditions are

Rn (nf)n=t™ (6¥), on By (6.100)

Rm (n*)n = q® (9’“) on By. (6.101)

These above field equations are supplemented by essential boundary conditions, the so-called
Dirichlet boundary conditions

u=h,, ondBp (6.102)

~v=h,, ondBp. (6.103)
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Figure 6.45: problem definition Figure 6.46: deformed configuration at
loading parameter 83.41 mN/mm? with
lh=21pum

Finally, we take up the statement made in Sec. 6.4.1 that a natural passing to a classical
continuum can be achieved, if the generalized strain measures are required to be invariant
with respect to the group SO(3). This can be readily shown, if we consider the micro-
continuum to be infinitely small so that the couple stress m (Eq. 6.93) vanishes. Hence,
only the well-known classical equilibrium equations (Eq. 6.98) and (Eq. 6.100) remain.

6.4.3 Numerical examples

We recall that the continuity and the consistency provided by the MLS-approximation func-
tions (Eq. 3.5) has to meet the requirements of the used variational formulation so that the
basis polynomial and weight function must be chosen according to Eq. (3.8) and Eq. (3.9),
respectively. The formulation (Eq. 6.96) presented in the previous section contains first order
spatial derivatives so that the meshfree approximants Eq. (3.5) only need a first order basis
polynomial in order to provide the required continuity. Nonetheless, a second order Pascal-
type basis polynomial (Eq. 3.37) is chosen to model the examples in the following. As weight
function the quartic spline introduced in App. A is utilized. The numerical integration over
the micro-continuum & is carried out with the help of the Gauss quadrature, the order of
which is chosen to be second according to the used basis polynomial.

The problem studied in the following is a square sheet which is considered in four different
scaling levels with lengths L = 6.0mm, L = 3.0mm, L = 1.2mm and L = 0.6 mm. The
ratio of the plate’s length to its height L/h = 300 is kept constant for all four sheets so
that the results are comparable. The sheets are simply supported at their outer edges in
vertical direction and subjected to a dead loading depicted in Fig. 6.45. Only one quarter
of the sheet is modelled with 11 x 11 x 3 particles in longitudinal and thickness direction,
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Figure 6.49: load displacement diagram  Figure 6.50: load deflection diagram with
with Iy =21 um lh=21pum

respectively, making use of the appropriate symmetry conditions.

The external loading is assumed to be constant within the micro-space & so that inte-
gration over the micro-continuum results in expressions which are multiples of the micro-
continuum volume Vs (Eq. 6.65). Therefore, similar to Sec. 6.3.3, the evaluation of the
external virtual work (Eq. 6.85) considers only the integral over the macro-space B and
the resulting external force vector is multiplied by Vs afterwards. The enforcement of the
essential boundary conditions is achieved using the penalty method.

The material behaviour is assumed to be hyperelastic and the Saint-Venant-Kirchhoff
constitutive model is utilized which involves as material parameters Young’s modulus £ =
1.55 GPa and Poission’s ratio v = 0.3.
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Making use of the generalized micropolar variational formulation (Eq. 6.96) it is now
the aim to illustrate oriented deformation behaviour due to a particular specification of the
micro-continuum S. That is, the micro-continuum is first assumed to be one-dimensional
and its basis vector in the reference configuration is taken to be G; according to Eq. (6.80).
The corresponding internal length scale parameter is determined as [y = 21 um. The final
deformed configuration of the smallest sheet with L = 0.6 mm displayed in Fig. 6.46 clearly
shows that the magnitude of the displacement of point A in z-direction is larger than the
one of point B in y-direction which the classical Green strain tensor-based model (Eq. 4.11)
predicts for all scaling levels to be equal, illustrated in Fig. 6.49. It can also be recognized
that the difference in displacement of point A in z-direction denoted by the continuous
graphs and of point B in y-direction denoted by the dotted line is increasing for the smaller
sheets. The curves of each scaling level are differentiated by separate colors, where the red
graphs represent the classical solutions. In the same way as the displacement discrepancy
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of points A and B is increasing, the midpoint deflection is decreasing for the smaller scaling
levels depicted in Fig. 6.50.

Subsequently, the basis vector of S in the reference configuration is now alternated to Go
and the corresponding internal length scale-parameter is chosen to be Iy = 21 um. Again, the
final deformed configuration of the smallest sheet with L = 0.6 mm illustrated in Fig. 6.47
indicates a distinct difference in the displacement of point A in z-direction and of point B
in y-direction. Now however, the displacement magnitude of point B is larger than the one
of point A shown also in Fig. 6.51. As expected the decreasing midpoint deflection depicted
in Fig. 6.52 indicates an increasing rigidity for the smaller sheets in vertical direction, but
the non-classical results are equal to the previous configuration.

Finally, we consider a two-dimensional micro-continuum with the basis vectors G; and
Go, and the corresponding internal length scale parameters are given by /; = 21 ym and
ly = 21 ym. Now, we find that there is no displacement difference of point A and point B
as illustrated in Fig. 6.48 and Fig. 6.53, as the curves for both points fall into one line. The
stiffness increase with respect to the vertical midpoint deflection exhibited by the problem
for smaller scaling levels though, is clearly larger than for the two previous configurations of
the micro-continuum, shown in Fig. 6.54.



Chapter 7

Experiments in mixed and modified
formulations with higher order
derivatives

7.1 Overview

Following the success of the generalized variational principle (Eq. 6.58) presented in the
previous chapter it remains to investigate, whether the continuity and consistency provided
by the MLS-based meshfree approximation functions can also be utilized to deal with clas-
sical variational principles which involve higher order derivatives. In this sense one could
consider to model not only the weak form of the problem which usually involves first order
derivatives in solid mechanics, but also its strong form. Furthermore, the order of the used
numerical integration scheme which, in this work, is the Gauss quadrature could be lowered
corresponding to the derivation order incorporated in the formulation.

Alternatively, a particle integration scheme could be considered which normally leads,
in case of the weak form, to under-integration and numerical instability caused by vanishing
first order shape function derivatives at the particles. Since the second order derivatives of
the MLS-based meshfree shape functions do not vanish at the particles, we might expect this
to compensate for the first order derivatives and thus, stabilize the formulation. The use of
a particle integration would be very advantageous, as no background grid for the integration
would be needed anymore and, consequently, the meshfree method could be truly called
meshfree. Moreover, the computational costs for the integration would be less, because
fewer integration points have to be evaluated in comparison to the Gauss quadrature.

The modified variational principles to be developed in Sec. 7.2, Sec. 7.3, Sec. 7.4 and Sec.
7.5 aim to enrich classical formulations by means of incorporating higher order derivatives
of the solution function and to study the suitability of MLS-based meshfree methods with
respect to the higher order derivatives.
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7.2 Mixed modified variational principle based on the
Hellinger-Reissner functional with independent dis-
placement and stress field

7.2.1 First version

Let us consider a non-linear boundary value problem on domain B with boundary 0B.
Displacement boundary conditions are prescribed on 0Bp C 0B and traction boundary
conditions are prescribed on 0By = 0B\0Bp. Let us assume hyperelastic material behaviour
and poY(E) define the stored energy per unit volume which is a functional of the Green
strain tensor B. Furthermore, let 1) (S) define the complementary function of (E), where S
denotes the second Piola-Kirchhoff stress tensor. Due to the convexity of ¢ (E) the following
expression holds

ot (B) + pot (S) =S : E, (7.1)
which is the so-called Legendre transformation. Reformulating (Eq. 7.1) as follows
F=S:E—pi(S), (7.2)

we arrive at an expression which is a functional of the Green strain tensor E and the second
Piola-Kirchhoff stress tensor S. Assuming that the body under consideration B possesses
an elastic potential we cast F in integral form and write first the internal potential in the
Lagrangian form as follows

q;:/{s:E—pmz(S)}dv, (7.3)

B

and finally the so-called Hellinger-Reissner functional is given by

II= / { S:E — pot) (S) } dV 4+ Wyt (u) = stationary . (7.4)
B

W..+ denotes the external potential which is expressed by

West (1) = —/b-u dV—/ t™ . udA (7.5)
B 0BN

with the body force vector b, the external traction vector t™ prescribed on By and vector
n defining the normal vector at the boundary 0B. Substituting for the Green strain tensor
E its definition (Eq. 2.23) we further write

= /B { %FS . F — %tr (9) } dv — /B pot (S) dV + We (u) = stationary . (7.6)
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Making use of Gauss’s divergence theorem we consider the following modification of Eq. (7.6)

H:—/B{%(\/@FSG")J-X—%H(S) } dv+/aB%an-di—

_ / ot (S) AV + Wit (u) = stationary, (7.7)
B

For simplicity, we consider the basis vectors G; to be independent of the coordinate charts
6" in what follows. The above functional is assumed to hold for any arbitrary displacement
field 0u and stress S which leads to the variation of Eq. (7.7) given by

= —/{% (F,SG' + FS,G) -(5u+% (x® GI) ST : 6F,; +
B
1 i QT . 1 T, 1 :
+5 (x®G)S,i.5F}dV—i—/aB{2 (x®n)S”: 6F + S FSn-du | dA +
+Wewt(5u):0

aH . ]_ T i . 1 T i . 1 .
a—s-as_—/g{iF,i(x@pG).astf (x®GY) 138+ 51: 98 } dV+
1 or ) (S)
+ —F (x®n):0SdA— [ py :0S dV =0. (7.8)

The implementation of the above formulation (Eq. 7.8) and first numerical tests indicate
that the functional is numerically instable. It is believed that this behaviour is related to
one particular term in Eq. (7.8) which is the following

—/ Ly s av. (7.9)
52

This leads to the consideration that the removal of this term, which has to be achieved
by modifying Eq. (7.6) in suitable manner, might lead to a numerically stable variational
formulation. In the following section this will be outlined in more detail.

7.2.2 Second version

Starting from Eq. (7.6) we replace the deformation gradient tensor by the following expression
F=1+H (7.10)

where H = u; ® G* is the displacement gradient tensor and we achieve

1 _
H:/{S:H+§HS:H} dV—/pow (S) dV + Wey (u) = stationary . (7.11)
B B
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After some simplification Gauss’s divergence theorem is applied and we further have

1= —/B{ % <\/§SG"),i-u+ % (\/EHSGz)ﬂ_-u} v+
+ / { Sn-u-+ %HSn . u} dA — / po (S) dV + Wy (u) = stationary . (7.12)
G) B

The variation of Eq. (7.12) in u and S is given by
11 - 1 - 1 .
a— -du = —/ {SZGZ -ou + —I‘IZ’S(;Z -ou + —HSZ'(;Z -du+
ou B ’ 2 2 ’
1 ) . 1 ) )
+5 (WO G)S'G b i+ (e G) SEG -bu, | dV +

+/ {Sn-du-{—lHSn-du-i-1(u®n)STGj-5uj} dA + Wegt (6u) =0
OB 2 2 ’

o1l _ i . osq .o Lo iy . Lot i) .59 .
ﬁ.(ss__/lg{(u®G),5S,Z+§H,i(u®G).(5S+§H (u®G).5S,Z}dV+

+/ {(u®n):5S+%HT(u®n):5S} dA —

(S)
BE

o8B
— | po :0SdV =0 (7.13)
B

7.2.3 Numerical applicability

The implementation of the mixed functional (Eq. 7.13) outlined in the previous section
gives rise to the difficulty that the coefficient matrix of the initial discrete equation system
holds zero entries on parts of its diagonal which correspond to the displacement particle
parameters. Therefore, it is necessary to incorporate at the beginning of the modelling an
additional formulation which acts as a kind of perturbation and makes the discrete equation
system solvable. This is achieved by altering Eq. (7.2) as follows

F=aF+(1-a)F. (7.14)
With Eq. (7.1) the following relation for F (Eq. 7.2) holds
F = pots (E) . (7.15)

Therefore, it is admissible to substitute Eq. (7.2) and Eq. (7.15) into Eq. (7.14) as follows

A

F=ap(E)+(1-a) (S:E-pi(9)) (7.16)
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where « is so-called perturbation parameter which controls degree of the perturbation of the
formulation. Replacing Eq. (7.2) in this functional with its modified counterpart (Eq. 7.7)
and we arrive at

H:a/pow(E) dV—(l—a)/{ (SGi)yi-qu%(HSGi)ﬂ.-u}dV+

+(1—oz)/ {Sn-u—i—lHSn-u}dA—(1—a)/p01/~)(S) av +
o8B 2 B
+ Weyt (u) = stationary . (7.17)

Finally, the variation of Eq. (7.17) in u and S is expressed as follows

oIl _ oy (E) o /
%6u—a/ﬂpo 5E OE dV — (1 —«) :

+% (u® G') STG’ - du; + % (u® G')STG - bu, } dv' +

{8:G"-u+ %H,ZSG"  u+ %HS,Z-G" L u+

+(1—a)/ {Sn-éu—i—%HSn-5u+%(u®n)STGj-5u,j} dA + Wiy (6u) = 0
B

8—H-5S:—(1—a)/{ (u®Gi):(5Si+1Hf(u®Gi):5S+
0S B T2

1 T 7\ . . —«
+5H (u®G~).6S,z}dV—i—(1 )/a
¥ (S)
—(1—04)/8,00 35S

As Eq. (7.17) is a combination of Eq. (7.15) and Eq. (7.7), accordingly, it is the solution for
the stress field. Therefore, the second Piola-Kirchhoff stress tensor must be computed as
follows

1
{(u®n):(5S+§HT(u®n):JS} dA —
B

:6S dV =0 (7.18)

S(E,S)=aS(E)+(1-a)S (7.19)

where S (E) is the material stress defined by

(7.20)

and S is the interpolated stress tensor. Note that in case of a non-linear calculation the
perturbation of the original variational formulation (Eq. 7.13) is needed only for the first
loading step. The initial value for the perturbation parameter « is chosen as small as possible,
usually we have o ~ 1.0 x 107%. Within the first calculation step during the iteration process
« is continuously decreased until it vanishes.
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In order to test the numerical applicability of Eq. (7.18) the hyperelastic Saint- Venant-
Kirchhoff model for the stored energy function is utilized:

pot) () = %DE .E, (7.21)

where D defines the fourth-order elasticity tensor. Assuming for ¢ (E) convexity its inverse
is given by

potd (S) = %D—ls 'S, (7.22)
The modelling of beams under tension provides accurate solutions for stress and displacement
field. However, very poor results are obtained for bending problems. Two reasons for
this behaviour might play a role. Firstly, it seems that the approximation of the stress
derivatives is not sufficiently accurate which is crucial as the derivations of the second Piola-
Kirchhoff stress tensor are a core part of this modified variational principle. This conjecture
is further confirmed in Sec. 7.5 and Sec. 6.3.3. Secondly, the use of Gauss’s divergence
theorem requires the equivalence of volume and surface integrals which, apparently, can not
be ensured numerically as the MLS-approximation of the solution function is substantially
more accurate within the domain than at the boundary. For details on the latter the reader
is referred to Sec. 3.2. Interestingly, the modelling becomes stable, if the boundary and the
interior of domain B is linked together at least at one integration point. That is, the particle
support zones of the MLS-approximation functions (Eq. 3.5) are chosen to be very large
so that the MLS-approximation scheme at this particular integration point incorporates all
particle parameters of the domain B. In that way the mathematical equivalence of volume
and surface integrals seems to be already integrated in the discrete equation system as kind
of additional condition.

The application of higher order polynomial should theoretically improve the approxima-
tion accuracy of the MLS-approximants (Eq. 3.5), but in fact, it leads to oscillating solutions.
The second order basis polynomial is found to be the highest applicable one. As the weight
function used in Eq. (3.5) signs responsible for the global smoothness of the approximation,
one could expect that the higher order continuity of the weight function might have a pos-
itive effect on the solution. However, the C* Gaussian spline spline (Eq. 3.33) does not
significantly improve the result compared with that obtained using the C? cubic spline (Eq.
3.30).

Another issue is the enforcement of the essential boundary conditions which are in case of
the mixed functional (Eq. 7.18) the displacement as well as the traction boundary conditions.
It basically means that at the entire boundary 0B essential boundary conditions are applied
which need to be enforced. For this model two different boundary enforcement methods
are implemented. These are, firstly, the modified boundary collocation method (see Sec.
3.3.2.1) which is very costly due to its involved algorithm and secondly, the penalty method
which becomes critical to use, if the ratio of the problem’s surface to its volume is large. In
this case a large part of the coefficient matrix of the discrete equation system is numerically
penalized and the problem becomes unsolvable.
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7.3 Mixed modified variational principle based on the
Hellinger-Reissner functional with independent dis-
placement, rotation and stress field

In the previous section it was outlined, how a mixed variational formulation based on the
Hellinger-Reissner can be modified to incorporate second order derivatives of the displace-
ment field as well as first order derivatives of the stress field. The general idea of this
approach can also be used to develop a formulation which involves additional to the inde-
pendent displacement and stress field an independent rotation field.

Let us assume hyperelastic material behaviour and py)(U) define the stored energy per
unit volume which is a functional of a stretch-type strain measure U:

U=R'F (7.23)
where F is the deformation gradient tensor (Eq. 2.5) and R € SO(3) is the rotation tensor
(Eq. 5.4) which is considered to be independent of the map ¢ (X, t) (Eq. 2.1) and consequently

of the displacement field. Furthermore, let 7 (n) define the complementary function of ¢ (U),
where n denotes a stress tensor defined by

9 (U) (7.24)

which is conjugate to the strain tensor U. Then assuming for ¢ (U) convexity and making
use of the Legendre transformation the following expression holds

povb (U) +podb (n) =m: (U—1). (7.25)

Reformulating (Eq. 7.25) as follows

F=n:(U-1)—pp(n), (7.26)

an expression is obtained which is a function of the strain tensor U and the stress tensor n.
Since the computation of U involves the deformation gradient F, which is a function of the
displacement field u, but also the rotation tensor R which is a function of an independent
rotation field v, Eq. (7.26) is therefore a three-field functional.

Now, the subsequent procedure is according to Sec. 7.2 that is we assume that the body
under consideration B possesses an elastic potential II which can be expressed with Eq.
(7.26) as follows

1= /B { n:(U-1)—pyt (n) } dV + Wegs (u) = stationary, (7.27)
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where the external potential W,,; is given by Eq. (7.5). Note that Eq. (7.27) is the so-called
Hellinger-Reissner functional. Redrafting Eq. (7.27) to

1= / {RnGi -x; — tr (n) — pob(n) } dV + Wegt (u) = stationary (7.28)
B
and applying Gauss’s divergence theorem leads us to the final expression

1= /B { — % (\/aRnGi)yi -x —tr(n) — ph(n) } av+ (7.29)

+ Rnn-x dA 4+ W,y (u) = stationary (7.30)
oB

where for simplicity the basis vectors G; are assumed to be independent of the coordinate
charts #°. In comparison with Eq. (7.12) this formulation also involves first order derivatives
of the stress field, but no derivatives of the displacement field and additional to Eq. (7.12),
first order derivatives of the rotation field. Note that corresponding to Eq. (7.30) we find as
underlying field equations the following relations

1 Z. B ,
ﬁ(@R’ﬂG)ﬂ—Fb—O, mn B, (731)
nU”" = symmetric  in B, (7.32)
Rnn=1t", ondBy. (7.33)

This approach is surely an interesting one from the theoretical point of view, however, it
is conjectured that its use for modelling would exhibit similar difficulties as the formulation
Eq. (7.12) outlined in Sec. 7.2. Therefore, no further efforts with the approach presented in
this section are undertaken.
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7.4 Modified variational principle inspired by the Hu-
Washizu functional

7.4.1 Variational formulation

In this section a variational principle is introduced which is inspired by the so-called Hu-
Washizu functional (Washizu 1975). The Hu-Washizu functional originally incorporates
three independent fields which are the displacement field u, the Green strain tensor E and
the second Piola-Kirchhoff stress tensor S. It reads in the Lagrangian form as follows

Hpw = / {pow (E)—S:E+S: % (FTF — 1) } dV + Wegt (u) = stationary (7.34)
B

where F is the deformation gradient tensor (Eq. 2.5) and the external potential W,,; is given
by Eq. (7.5). The variation of Eq. (7.34) leads to the following relations

—1 ] ~
_ i B . . ) _
/B ( = (\/GFSG)J b) sudv =0, /6 . (Fsn i) uaa=o0, (7.3

/B (% (FT'F-1) - E) 108 dV =0, (7.36)
/B (,;0 a%gE) - s) :6E dV =0, (7.37)

where for simplicity the basis vectors G; are considered to be independent of the coordinate
charts §". Considering that du, 6E and &S are free variations, thus, the integrands must
vanish so that we can identify Eq. (7.35) as the equilibrium equations, Eq. (7.36) as the
kinematics, i.e. the definition of the Green strain tensor (Eq. 2.23), and Eq. (7.37) as the
material law.

With F = 1 + H and H denoting the displacement gradient we write the Hu- Washizu
functional (Eq. 7.34) as follows

Hz/{pow(E)—S:E—F%(l—i—H)S:(1—|—H)—%S:1}dV—|—

+ W,y (u) = stationary . (7.38)

Further simplified we arrive at

1= / {pov,b (E)—S:E+ (1 + %H) S: H} dV + Wzt (u) = stationary . (7.39)
B
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After integration by parts and making use of Gauss’s divergence theorem we obtain

H:/B{poz/J(E)—S:E—% <\/5 <1+%H>SGi>i-u} v+

’

1
+ / <1 + EH) Sn - u dA + W,y (u) = stationary . (7.40)
o8B

In order to reduce this formulation to a pure displacement based one we have to replace
the independent field functions E and S by functions of the displacement field u. These are
Eq. (2.23) and

9y (E (u))

S ()= po” g (7.41)

respectively. Thus, we arrive at

H:/B{pofz/)(E(u))—S(u):E(u) ! dV—/B% <\/§ <1+%H>S(u)Gi>i-udV+

)

1
+ / (1 + §H> S (u)n-u dA + W,y (u) = stationary (7.42)
o8

Of all admissible deformations the solution corresponds to that one which makes the
functional stationary. For this reason we vary all terms with respect to the unknown dis-
placement field u. The variation of IT (Eq. (7.42) is given by the following functional

511:/6{;)02—% 5E—poa(:gE JE:E— pogg 6E}dV—
—/Ig{%aﬂ,ipog—gGZ u+1H,,pOa§gJE6EG“ +1H,Zpog—;§Gl bu } av -
—/B{%(SH <pog—f)),iei-u+ (1+%H) (poaijg)EéE)’iGi-u—i-

(1+%H) (pog—;é;) iGi-éu} dV +

+

1 oY 1 0?1

- — . A
+/68{25Hp06En u+(1+ H) pOaEaEéEn u}d +

L) 2
(

o
+ Wewt (511) =0. (743)
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E=20x10°
v=03
L=100
E=20x10° =
v=0.3
te L=20
b
| 4.{
Figure 7.1: problem configuration Figure 7.2: problem configuration
Further redrafting leads to the final variational expression given by
1 0% 1 0%
o= [ { -3 SFTF:E— = F/6F :E | dv
/B 2 " 9EOE 2 " EOE *
1 o 1 0* 1 o ,
- H,pon G'out ; H, SFTFG'-u+ ; H, FTFG - u+ |
/3{25 PSR P S EOR Ut M SRR u
1 o _;
+ - H; poa—EG (5u} dv —

2
/ { Glu+t Liiily SFTFG -u +
”OaE Uy 2 pOaEaE v

+ % <1+%H) (poa?;gE),iFTéFGi-unL% ( ;H) 8(;)2§E SFiFG'-u+
+ % <1+ %H) poa?;;/’E F:‘G(SFGi-u++% <1+ % H) poaing SFIF,G"-u+
+ % <1+ %H) poaijg]E FT6F ;G -u + <1+ %H) (pog—;é>’i Gi-au} dv +
+ aB{%deog—;/;n u+; (l-i—%H) poaa];gEéFTFn-u+
+% <1+;H) poaijg}EFTéFn-u—i- <1+%H> po%n-éu} dA +
+ Wege (0u) = 0. (7.44)

7.4.2 Numerical experiments

The modified variational principle (Eq. 7.44) developed in the previous section is obviously
very involved. Its practicability for numerical computations is now investigated with two
different problems. For both examples the Saint- Venant-Kirchhoff constitutive model for the
stored energy function pyt is chosen which involves as material parameters Young’s modulus
E and Poisson ratio v.
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Figure 7.3: deformed configuration

DOF3-displs

0.0z3es
l 0.01357 66
0.01641

- 0.013053

- 0.0096955
H 0.0083381
- 00029806
-0.00037684
-0.0037343
-0.0070913

Gl

Contour Fill of Displacements, DOF3-displs
Deformation { 8171.212): Displacements of |, step 1

Figure 7.4: deformed configuration

direction depicted in Fig. 7.1.

The first example is a cantilever beam subjected to a body force b = 1.0 acting in y-
The solution of the deformed configuration illustrated in Fig.
7.2 is oscillating and called a spurious mode.
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The second example a square plate depicted in Fig. 7.2 subjected to a dead loading
g = 1.0 and clamped at all four edges. The solution of the square plate turns out to be a
rather spurious mode as well.

It is discovered that the oscillations disappear for both examples, if at least one Dirichlet
boundary particle lies within the influence radius of all other particles. This however results
in huge particle influence zones and is therefore not practical.

Interestingly, the simulation of a beam under tension which is not shown here, provides
good results for linear as well as for non-linear modelling. This observation might be ex-
plained by the fact that the analytical solution is a linear function of the beams’s longitudinal
coordinate. Hence, the consistency requirements on the meshfree approximation functions
are lower and the approximation accuracy of the second order derivatives of the solution
function is apparently sufficient.
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7.5 Integral form of the equilibrium equations

The mixed formulation (Eq. 7.13) as well as displacement based formulation (Eq. 7.44) pre-
sented in the previous sections failed to be numerical stable. It is believed that the elaborate
mathematical modifications of the Hellinger Reissner functional and the Hu-Washizu func-
tional, respectively, which result in various to each other corresponding volume and surface
integral expressions, are not suitable to be modelled.

Therefore, the objective to incorporate second order derivatives of the solution function
into a modified variational principle is pursuit by another very straightforward approach
which is the integral form of the equilibrium equations (Eq. 4.4) which can be directly
implemented in MLS-based meshfree methods as the MLS shape functions are capable to
provide the necessary continuity. For this, the equilibrium equations are at first multiplied
by a weight function du and integrate over the domain B and its boundary 0By, respectively,
and we have:

1 .
— | —= (VG FSG* -5udV+/ FSn-dudA+W,.; =0, 7.45
IS ), t (7.45)

where the external potential W,y is given by Eq. (7.5) and the basis vectors G; are assumed
to be independent of the coordinate charts #°. Note however, that this formulation is not
symmetrical.

In contrast to the variational formulations (Eq. 7.13) and (Eq. 7.44) the approach in the
previous section (Eq. (7.45) does not make use of Gauss’s divergence theorem. Accordingly,
the boundary integral expression in Eq. (7.45) is not directly related to the volume integral
expression as result of mathematical manipulations, but is explicitly incorporated as natural
boundary condition. Therefore, the boundary term does not enter the formulation, if no
external traction loading is applied.

This formulation is therefore ideal to study the applicability of second order derivatives
in comparison to the variational principles presented in Sec. 7.2 and Sec. 7.4. For this, we
consider the cantilever beam introduced in Sec. 7.4.2 and depicted in Fig. 7.1, but we replace
the traction loading by a body force. The approximation functions (Eq. 3.5) are computed
using second order polynomial and a cubic spline (Eq. 3.30) to provide the necessary con-
tinuity. Geometrically linear modelling provides a good solution already for low particle
discretization levels. However, non-linear computation fails, even if a very fine particle dis-
tributions is utilized. Exactly the same behaviour is observed for traction loading, where
the natural boundary conditions are part of the formulation. The use of weight functions
with higher continuity such as the Gaussian spline (Eq. 3.33) does not improve the results
and higher order polynomials have a rather negative effect. The latter is conceivable as
it is well-known that function approximation based on higher order polynomials exhibit a
tendency to oscillate.

Considering that the variational formulation (Eq. 7.45) is very straightforward and noth-
ing else than the integral form of the equilibrium equations, the suspect is further confirmed
that the MLS approximation accuracy is not adequate for derivatives higher than first order.
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7.6 Summary

In Sec. 7.2 - 7.5 various modified variational principles have been studied which involve higher
order derivatives of the solution function. The numerical stability of all these formulations
was not satisfying, this was especially the case for non-linear computations. It is well-
known that in particular non-linear modelling has higher requirements on the approximation
accuracy. The meshfree approximation functions are computed by a weighted least square
fit (Eq. 3.2) which is minimized with respect to sample points of the solution function, but
not for its derivatives. It is therefore clear that the approximation accuracy for the solution
function derivatives is less than for the solution function itself. This fact is also shown in Sec.
3.2. Furthermore, the modifications which involved Gauss’s divergence theorem and led to
the mixed formulations (Eq. 7.13) and (Eq. 7.30) as well as to the variational principle based
on the Hu-Washizu functional (Eq. 7.44) put additional constraints on the approximation
accuracy. That is, the equivalence of the volume and the corresponding surface integral
expressions.

Since the variational formulation (Eq. 7.45) which represents the integral form of the
weighted equilibrium equations also fails to perform satisfactorily, and taken into account
that it is not modified by the use of Gauss’s divergence theorem, it is obvious that the lacking
approximation accuracy for the second order derivatives of the solution function is a main
issue. Now, it is not clear, whether or not the use of Gauss’s divergence theorem has part
on the numerical instabilities. This is due to the fact that it leads to the incorporation
of additional boundary integral terms and it was shown in Sec. 3.2 that the boundary ap-
proximation accuracy is substantially worse than for the interior domain. Testing the mixed
formulation with an independent rotation field (Eq. 7.30) could perhaps provide more clarity,
because it does not involve higher than first order function derivatives, but it is modified
utilizing Gauss’s divergence theorem.

Considering that all formulations outlined in the previous sub-sections are not stable us-
ing the Gauss quadrature, the original aim to study the applicability of a particle integration
scheme is not pursuit any further.
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Conclusion

The presented generalized deformation formulation in Sec. 6.1 is an elegant way to describe
physical behaviour originated from the microstructural level. Three different approaches
for a generalized deformation description illustrate its adaptivity to certain properties of the
material’s underlying micro-structure. Moreover, these models allow the incorporation of any
conventional constitutive law in a very straightforward manner. This fact is demonstrated
using two different hyperelastic materials, firstly, the linear Saint- Venant-Kirchhoff model
and secondly, a non-linear statistically based one.

The simulated results of size-scale effects of elastic bending experiments on epoxy poly-
mer micro-beams show a very good agreement with the experimental data. Obviously, the
epoxy material is well characterized by the generalized micromorph deformation description
(Eq. 6.31). The discrepancy between classical and non-classical continuum theory is clearly
demonstrated in case of torsion of human bone specimens. This difference in the predicted
solution is shown to be more distinct than exhibited for the Cosserat continuum-based for-
mulation (Eq. 5.26). This is especially true for non-linear modelling.

The study on the excavation openings in rock specifically reveals that the incorporation of
elastic strain gradients can significantly change the distribution of stresses and displacement
around excavation constructions. Moreover, it is shown that the generalized micromorph
deformation formulation can be defined in such a way that orthotropic material behaviour
is described. In particular, the use of meshfree methods enables to directly approximate the
higher gradient parts of the formulation which is so not possible using FEM. Furthermore,
meshfree approximations of generalized continuum-based approaches as applied in this thesis
prove to be independent of the particle distribution density. Moreover, it is demonstrated
that this feature is lost, when the formulation is based on the classical Green strain tensor
which exhibits clear dependency on the particle distribution.

The generalized Cosserat continuum formulation (Eq. 6.96) provides the possibility to
model micropolar material behaviour by linking the spatial change of the rotation tensor with
the basis vectors of the micro-space. This allows to control the influence of the corresponding
parts of the curvature tensor (Eq. 6.82) by the specific definition of the micro-continuum’s
dimension and the corresponding internal length scale parameters. The computation of
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micro-films demonstrates that the macroscopic response is significantly influenced by the
incorporation of deformation related to the material’s microstructure. In particular, the
deformation process exhibits oriented behaviour which is directly connected to the choice of
the microspace. The magnitude of this property is manipulated by the value of the internal
length scale parameters which is shown to allow to model size-scale effects.

The investigation of the moving least square method-based approximation functions gives
valuable details which facilitate its application in the engineering area in general. It is shown
that the minimum applicable influence radius depends on the utilized basis polynomial as
the invertibility requirement of the moment matrix (Eq. 3.4) necessitates a specific minimum
particle support for each point in the domain. However, in order to achieve smooth shape
functions, a certain minimal overlapping of the particle influence zones is required. Other-
wise, the involved weight function ordinates are numerically too small. Furthermore, the
lack of particle support at the boundary has the effect that the influence radius of particles
at the boundaries of the domain and adjacent to it must be chosen larger than that actually
required for the interior domain. It is also demonstrated that for the lower polynomial or-
ders the MLS shape functions possess under certain conditions the Kronecker Delta property
which, however, is applicable in practise and can therefore not be exploited. The approxima-
tion accuracy is shown to increase according to the order of the used basis polynomial and
the continuity of the weight function. However, the use of higher order polynomials is limited
as the needed particle support rapidly rises so that the gain on accuracy is not justifiable in
relation to the high demand on computing time. Furthermore, it is found that the optimal
influence radius which provides the best accuracy is not necessarily the minimum applicable
one. Moreover, the influence radius which minimizes the error of the approximation is dif-
ferent for the function and its derivatives, respectively. This is clear as the approximation
accuracy of the function is only dependent on the locality of the approximation, so that
the minimal applicable influence radius provides the least error. The approximation of the
function derivatives additionally requires smoothness of the approximation of the function
in the first place. This however, is not given for the minimal applicable influence radius,
but only for this radius which ensures sufficient overlapping of the particle influence zones.
This fact has to be considered when modelling problems which also involve the derivatives
of the solution function. Another important finding is that the approximation accuracy at
the boundary is considerably less than within the interior domain.

The modified variational principle (Eq. 4.11) presented in Sec. 4 primarily serves as a ref-
erence model representing the classical continuum approach. Nevertheless, a novel method
is proposed which accounts for the imposition of the Dirichlet boundary conditions. That is
to incorporate the essential boundary conditions in the functional and to enforce these con-
ditions as a Euler-Lagrange equation. Numerical instabilities are addressed by including an
additional penalty term, where the magnitude of the stabilization parameters 3(6*, 62, 4;)
are kept at relatively low levels, but sufficiently high to enforce the essential boundary con-
ditions at all integration points within a given error tolerance. This is achieved by making
use of an iterative algorithm to determine suitable values for 3(#', 2, ;) individually for
each integration point. Furthermore, Sec. 4.3.1 provides insight in the boundary approxi-
mation accuracy of MLS, as it is crucial for this modified variational principle. The lacking
approximation accuracy at the boundary, which is compensated by the stabilization term,
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already gives some indications to the difficulties which arise in Sec. 7 as those models also
rely on an adequate boundary approximation accuracy.

In Sec. 5 a variational principle based on the conventional Cosserat continuum is in-
troduced. A multiplicative updating scheme of the rotation field is investigated for its ap-
plication in a MLS-based meshfree method. The result is somewhat in-conclusive, because
the updating algorithm can be used in principle. However, if the rotation reaches 27, the
updated rotation tends to become ambiguous. The usage of the rotation updating method
is therefore limited to a rotation smaller than 27.

Finally, the applications of size-scale effects in elasticity show good results for the torsion
of the human bone specimens. The predictions for the epoxy micro-beams however, only
partially match the experimental data. It is therefore concluded that the physical properties
of the epoxy polymer material is not satisfactorily described by this micropolar continuum.

The study of variational principles presented in Sec. 7.2 - 7.5, which are derived from
classical variational formulations and involve higher order derivatives, prove to be numer-
ically unstable. This fact indicates that the approximation accuracy of meshfree methods
based on mowving least squares is lacking. Therefore, the modelling with formulations incor-
porating higher order derivatives is rather problematic and needs further investigation. It
can however, not definitely be determined, whether the insufficient approximation accuracy
alone or also the mathematical manipulations involving Gauss’s divergence theorem sign
mainly responsible for the difficulties.



Chapter 9

Future work

The variational formulation (Eq. 6.58) based on the generalized micromorph deformation
description introduced in Sec. 6.3.2 does not incorporate the generalized strain tensor (Eq.
6.41) as a whole. In particular, a constitutive law could be developed which separately
addresses the pure micro-strain (Eq. 6.40) and an additional material parameter could be
associated with this strain tensor.

The part of the generalized deformation approach (Eq. 6.14) which describes the micro-
deformation is only linearly related to the micro-coordinate. A further extension would be
a non-linear dependency on the coordinates of the micro-continuum.

The application on rock excavations presented in Sec. 6.3.3 and the micro-films exam-
ples illustrated in Sec. 6.4.3 demonstrate that it is possible to simulate orthotropic material
behaviour. This potential is however not fully exploited yet, because the directional macro-
scopic material response is strictly linked to the basis vectors of the macro-continuum. It
would be therefore of interest to induce a variable dependency on those basis vectors in a
sense that the directors of the micro-continuum (Eq. 6.15) are rotated around the micro-
space’s origin by a set of angles which can be freely chosen. Then it would be also possible
to address anisotropy originated in the material’s microstructure.

Furthermore, it is believed that the real potential of this non-classical approach becomes
visible in modelling non-linear plastic material behaviour. In general, it would be also
interesting to study other material behaviour which is related to underlying microstructure
such as localization phenomena.

As the modified variational principles proposed in Sec. 4.2 and Sec. 5.6 are shown to
enhance the enforcement of essential boundary conditions, it would be worthwhile to consider
similar modifications of the proposed generalized variational principles.

Considering the improvement in smoothness of the stress shown in Sec. 6.3.3 it might
be possible to increase the accuracy of the first order stress derivatives by the incorporation
of higher order strain gradients in such a way that the modified variational formulations
presented in Sec. 7 could be dealt with. Furthermore, the suspended efforts on the particle
integration could be taken up again.
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