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Chapter 1

Introduction

1.1 Background

In modern physics it is a well-known fact that matter on the microscopic scale is discontinu-
ous as one can distinguish molecules, atoms and even smaller units. Traditional engineering
however, is usually concerned with problems which are related to a significantly larger scale
than the one which the construction elements of matter belong to. Therefore, the classical
continuum theory assumes that with the exception of discontinuity surfaces all mechanical
fields smoothly vary over the spatial dimensions of the continuum, such that higher gradients
or degrees of freedom beyond displacements are negligible. In this context the variation of
strain is considered to be substantial only within a so-called representative volume element
(RVE) to which the external loading corresponds. As a result elastic moduli can be found
which represent the material behaviour of the entire body. In this sense elastic material
properties are always associated with the RVE and are a statistical average. Consequently,
these properties can be applied to field equations which describe the behaviour of a body in
the limit. The concept though, is based on the presumption that the RVE is large enough
compared to the size of the micro-constituents such as granule, crystalline or heterogeneous
aggregates, so that the behaviour of the single constituent and the interaction to each other
can be neglected. It also implies that a large number of micro-constituents respond to an
external stimuli as a whole and mean values of material properties can be taken which rep-
resent the entire body. Thus, the validity of the classical field theory has to be questioned
especially for small-scale structures, where the external loading interrelates to sub-continua
which refer to the micro-constituents. That is, the dimensions of the body under consider-
ation are not very much greater than the characteristic length of the material of this body,
e.g. interatomic spacing in a crystal or the particle size of a granular material. In this case
no statistical average can be found which can be applied to field equations valid for the
whole body. Consequently, strategies have to be considered which go beyond the classical
continuum approach and lead to new enriched theories.

A large number of phenomenological constitutive models have been proposed in the last
two decades which captured macroscopic material behaviour found by empirical observation
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within the mechanics of metal, polymer, concrete, wood as well as geo- and bio-materials. In
opposition to phenomenological methods, predictive models rely on a thorough analysis of a
material’s micro-structure as well as the understanding of the microscopic processes which
lead to a certain macroscopic response such as plastic hardening induced by dislocation
within a crystal lattice (Fleck et al. 1994), microcrack induced creep or embrittlement
due to stress corrosion. Moreover, it must be distinguished between microscopic processes
related to the atomic or molecular scale as well as material behaviour which originates at the
micro-structure of some sub-macroscopic scale, e.g. ductile fracture characterized by void
nucleation, growth and coalescence (Garrison and Moody 1987), sintering material due to a
decreasing porosity or a particular kind of creep damage caused by an increasing number of
micro-cracks along grain boundaries. One way to account for these kind of phenomena was
to incorporate internal variables which address the void nucleation or the density of micro-
cracks as well as the scaling ratio of micro- to macro-space (e.g. Gurson 1977; Rousselier
1987; Tvergaard and Needleman 1995; Sun et al. 1997).

Alternatively, non-classical continuum mechanical formulation can be considered which
involve specially designed kinematical quantities, stress measures or internal variables and
their dependency on position and time. Furthermore, the purely mechanical approach could
also be extended to include interaction with thermal or chemical factors which can be found
for degrading bodies, as well as other physical phenomena such as electrical-mechanical
coupling. These generalized continuum formulations were already shown to be able to address
orientation of a material as well as micro-structural effects which lead to localization of
deformation, e.g. the development of shear bands (e.g. Triantafyllidis and Aifantis 1986;
Gutkin and Aifantis 1999).

The development of generalized continuum theories can be traced back to early founda-
tions that have been laid by researchers like Cauchy (1850), Voigt (1887) and the Cosserat
brothers (1909). The motivation was to extend the physical range of the validity of contin-
uum methods. At the end of the fifties, major input came Ericksen and Truesdell (1957)
who provided a differential description of an oriented body. Each material point was asso-
ciated with an additional set of directors which were functions of the conventional defor-
mation gradient tensor. These directors could deform in the sense of stretch and rotation
and allowed to formulate the so-called Wryness tensor. Also, the milestone work of the
brothers Cosserat was translated into modern tensor notation (Giinther 1958; Schéfer 1967).
Subsequently, geometrically linear formulations were proposed involving non-linear material
behaviour such as plasticity (Lippmann 1969; Besdo 1974). A further development and gen-
eralization was to consider the directors as a micro-displacement gradient tensor independent
of the macro-displacement and to define a relative deformation gradient between macro- and
micro-continuum (Mindlin 1964). Additionally, a second order gradient tensor was intro-
duced which was the macro-gradient of the micro-displacement gradient. The incorporation
of these two non-classical gradient tensors into the classical potential energy density required
five extra linear elastic parameters. It was also mentioned that it would be possible to in-
tegrate the size of the micro-continuum into the constitutive parameters. Moreover, it was
shown that the classical couple stress theories (Toupin 1962; Koiter 1964) were encompassed
as special cases. Classical couple stress theories commonly involve only one additional ma-
terial parameter and do actually not regard any microstructure. Taking up again the idea
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of micro-directors attached to each material point, it is possible to constrain the motion of
these directors in such a way that the micro-body only exhibits certain strain conditions. In
this sense the continuum is called micromorph, if the micro-body undergoes stretch, shear
and rigid body rotations, microstretch for stretch and rigid body rotation only and micropo-
lar, if the micro-continuum behaves as a rigid body (Eringen and Suhubi 1964; Eringen and
Kafadar 1976; Eringen 1999). Micropolar continuum mechanical models originated in the
so-called Cosserat theory of elasticity (Cosserat and Cosserat 1909) are characterized by the
property that each material point inherits a rotation field which is independent of and addi-
tional to the conventional displacement field. The material response of a body to an external
stimuli is a corresponding force stress field (force per unit area) as well as a couple stress
field (torque per unit area). Whereas the classical elasticity involves two elastic constants,
isotropic micropolar elastic solids account for at least one extra material constant. These
additional elastic constants corresponding to the couple stress are dependent on a so-called
characteristic length scale parameter which can be related to the material’s micro-structure.

Classical elasticity does not account for contributions of strain gradients which can be
linked to the micro-structure with physical properties such as compactness of the packing,
particle size, crystal lattice structure or contact friction between the particles (Aifantis 1999).
This can lead to an underestimation of the magnitude of the stresses, but also of their
distribution. To the contrary, generalized continua can be designed to incorporate material
information from the microscopic space into a macroscopic constitutive model. Triantafyllidis
and Aifantis (1986) demonstrated that for localized deformation of hyperelastic materials,
the tendency of the resulting governing equations to lose ellipticity can be overcome by
incorporating second order gradient of the deformation field into the stored energy function.
Furthermore, this approach provided a natural way not only to predict direction and the
critical stress levels, but also the size of the localized zone can be controlled by an additional
material parameter.

The need of alternative generalized continuum formulations was also recognized, when so-
called size-scale effects have been observed for problems which were characterized by a critical
ratio of macro- to micro-geometry. This was found e.g. for elastic bending experiments of
marble (Vardoulakis et al. 1998) and epoxy polymeric beams (Lam et al. 2003). Also in
porous media, such as bone or foam material, similar size-scale effects were noticed for pore
diameters significant compared to the specimen size (Yang and Lakes 1981; Lakes 1986;
Aifantis 1999). In all cases classical theories substantially failed to predict the experimental
results. In contrast, the Cosserat theory applied by Lakes and his co-workers as well as the
strain gradient theory developed by Aifantis and his colleagues were shown to approximate
the experimental data very well. In the approach of Aifantis and his co-workers Hook’s
law was modified to incorporate strain gradients up to second order and additional material
constants were associated with the first as well as the second order strain gradients. The idea
was motivated by the approximation of the average strain by a Taylor expansion, where only
terms up to second order were maintained (Miihlhaus and Aifantis 1991). The additional
material constants were necessary to calibrate the formulation to different kinds of problems
and materials.

The ability to describe orientation and size of the material constituting particles in a
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completely natural way predestined micropolar continua in particular, to predict physical
phenomena which are related to the microstructure. An example was the modelling of
size effects in crystal plasticity (Forest et al. 2000). In the domain of non-linear material
behaviour, linear micropolar continuum theories have especially been accounted for in sim-
ulating of strain localization phenomena within plasticity. In particular, it was discovered
that the loss of ellipticity of the underlying governing equations and the pathological mesh
dependency of finite element solutions could be overcome by micropolar continuum based
formulations (Miihlhaus and Vardoulakis 1987; Miihlhaus 1989; de Borst 1993). The next
logical step was to formulate non-linear micropolar continuum theories in the sense of a
geometrically exact description of finite deformation and rotation (Sansour and Bufler 1992;
Sievert 1992; Steinmann 1994; Sansour and Bednarczyk 1995; Sansour 1998a).

Another way to deal with heterogeneous materials was to establish a relation between a
macro- and meso- or micro-domain in terms of localization and homogenization techniques
(Aboudi 1999, Williams 2005). That was for an example to compute the micro-strain by
localizing the macro-strain so that the constitutive law could be applied on the micro-space
calculating the micro-stress. Subsequently, the micro-stress was projected by a homogeniza-
tion rule onto the macro-space again (Forest 1998). It was shown that the homogenization
could also be achieved by making use of internal variables such as the fluctuation of kine-
matical quantities which cause energy dissipation within the meso-continuum. The material
law was therefore defined on the meso-scale incorporating those internal variables (Walsh
and Tordesillas 2004).

When it comes to modelling formulations of solids and structures, it is the finite element
method (FEM) which is the usual choice. However, in case of formulations which involve
higher order derivatives such as strain gradient plasticity theory, it was shown that their im-
plementation into the finite element code is rather limited. In the one- and two-dimensional
case cubic Hermite type shape-functions are able to provide C! continuity, because they
interpolate the displacement field as well as their first derivatives. The performance of these
type of elements however, was reported to be poor in the context of strain gradient theories
(Xia and Hutchinson 1996), and the extension to a three-dimensional interpolation is con-
sidered to be too complex. Another way of dealing with higher order derivatives proposed
by Xia and Hutchinson was to utilize hybrid elements interpolating displacement, the first
order derivatives of the displacement and the anti-symmetric component of the stresses. An
approach, which went one step further, was to incorporate not only strain and first order
strain gradient but also the second order strain gradient. In order to confine the number of
nodal degrees of freedom the use of C! continuous elements was proposed so that only the
first and second order derivatives of the displacement had to be approximated (Zervos et al.
2001). The result was in either case a very large number of nodal degrees of freedom.

Contrarily, so-called meshfree methods based on moving least squares (MLS) can easily
provide higher order continuity and are considered in this work to be the logical alterna-
tive to FEM. It was only within the last decade that the research activity into meshfree
methods significantly increased, realizing that these methods can deal especially well with
problems characterized by extensive deformations, changing domain geometry, or necessitate
higher order approximation continuity. These are areas, where the more established finite
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element method (FEM) exhibits shortcomings. Essentially, meshfree methods do not require
a rigid background mesh which is beneficial as finite element modelling of large deforma-
tion problems usually leads to mesh distortion which makes re-meshing necessary. In most
large-scale numerical simulations of physical phenomena however, a high percentage of the
overall computational effort is expended on technical details connected with meshing. These
details include, in particular, grid generation, mesh adaptation to domain geometry, element
or cell connectivity, grid motion, and separation of mesh cells to model fracture, fragmenta-
tion and free surfaces. Moreover, in most computer-aided design work, the generation of an
appropriate mesh constitutes, by far, the most costly portion of the computational analysis.

In order to solve problems given as partial differential equations (PDE) computationally,
the PDE must be approximated and discretized. Within meshfree methods, two different
methodologies can be found in literature to achieve this: Firstly, there are methods dealing
with the strong form of the PDE. An example of these is the smoothed particle hydrodynam-
ics (SPH) method developed by Lucy, Gingold and Moghan in the early stages of meshfree
methods in the 1970s (Lucy 1977; Gingold and Monaghan 1977; Monaghan 1985). Origi-
nally, this method was applied to simulate problems without boundaries such as exploding
stars and dust clouds in astrophysics. Later, other authors modified SPH so that, because of
its efficiency, it also became popular in other research fields such as molecular dynamics and
hydromechanics. However, the strong form of the PDE is not commonly used. Generally, the
Galerkin weak formulations is preferred, because no higher order derivatives are involved.
The various Galerkin weak formulations are the second kind of methods that are mainly
applied to solve PDEs. These methods have been commonly called meshfree Galerkin meth-
ods and became popular at the beginning of the 1990s. In this context SPH was applied to
problems involving a material law, but it became obvious that the exactness of the solution
was not sufficient (see e.g. Belytschko et al. 1996). A known reason for this is the fact
that the used approximants are similar to the Shepard-approximants (Shepard 1968), which
have been shown to provide insufficient solution accuracy (see e.g. Duarte and Oden 1996).
Groups of researchers in France (Nayroles, Breitkopf, Touzot, Villon) as well as the USA
(Belytschko and Liu), were therefore looking for new strategies to make meshfree methods
applicable in solid mechanics. By this, in 1992 the french group re-discovered the moving
least square method, formerly derived by Shepard (Shepard 1968) and further improved by
Lancaster and Salkauskas (Lancaster and Salkauskas 1981). This discovery subsequently
was the starting point of a quickly growing interest in meshfree methods and of their rapid
development within the last fifteen years.

A brief literature on meshfree methods will familiarize the reader with most important
developments since their introduction.

¢ Diffuse element method (DEM)

After the French group had re-discovered MLS they made it usable for engineering com-
putations and presented their diffuse element method (Nayroles, Touzot and Villon 1992;
Breitkopf, Touzot and Villon 1998; Breitkopf et al. 2000). In their first approach the
authors simplified the derivation of the approximated solution function. That is, it was
only partially derived, because they considered the coefficients of the basis polynomial,
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used for approximation of the solution function in Galerkin methods, as constant in the
vicinity of the sample points which are the particles.

From an implementational point of view DEM is similar to the element free Galerkin
method and the reproducing kernel particle method described in the next paragraph.
However, it was recognized by Nayroles and his co-workers that the precision and the
convergence rate was quite poor in comparison to FEM and to other meshfree methods
using complete approximation derivatives.

In general, they stated that the reason for the lesser convergence of all meshfree methods
based on MLS was the rational (non-polynomial) shape of the MLS-approximants opposed
to the FEM ones (Breitkopf et. al. 2002). However, the commonly applied Gauss-
Legendre integration scheme would require shape functions with polynomial form for
high convergence rates. Therefore, they introduced a special adaptive integration scheme,
where the original integration weights were modified. This procedure involved the solving
of an equation system that incorporated integration constraints that were to be fulfilled
for proper exactness. Although high solution precision was reached, this equation system
must be solved in each integration cell. For this reason the researchers themselves found
fault with the computational costs.

Element free Galerkin method (EFGM) and the reproducing kernel particle
method (RKPM)

The element free Galerkin method developed by Belytschko and his co-workers (Belyschko
et al. 1994b; Belyschko et al. 1996; Belytschko et al. 2000) and the reproducing kernel
particle method introduced by Liu and his co-workers (Liu et al. 1996; Li and Liu 1998;
Li and Liu 2000) are quite alike. Both methods can be traced to the MLS-algorithm,
where RKPM though, can be seen as an advanced version of it. The main difference
between both is that in EFGM a discrete approach was chosen, whereas in RKPM it was
started from a continuous one, where the interpolation functions had to be integrated.
The implementational details of both methods however, are practically equivalent.

The discrete version of RKPM exhibits subtle differences to MLS, such as the shifted
basis and a variable support of the approximants (Gosz and Liu 1996; Jun et al. 1998).
The original splines were modified regarding the particle support which was defined by
a dilation parameter and the lumped particle weight. The dilation parameter was a
constant which could be calculated by using the energy error ratio from a normalized
set of particles. A shifted basis meant that the polynomial was centered by the usage of
local coordinates. The local coordinates were expressed as the ratio of the distance of the
sample points to the evaluation points and the influence radius of the sample points, the
particles.

As it comes to the imposition of the essential boundary conditions Belytschko and his
co-workers applied the penalty method (Belytschko et al. 1994a), the Lagrange multiplier
method (Belytschko et al. 1994b; Dolbow and Belytschko 1998), modified variational prin-
ciples (Lu et al. 1994), or a combination with finite elements (Krongauz and Belytschko
1996). Liu and his co-worker developed a special algorithm based on a traditional col-
location method which resulted in modified RKPM shape functions which possessed at
boundary the Kronecker Delta property (Wagner and Liu 2000).
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The continuity of the EFGM- and the RKPM-appproximants was not only dependent
on the basis polynomial, but was further improved by usage of splines. Furthermore,
the authors claimed that at the boundary a high solution accuracy could be achieved.
However, this can not fully be confirmed, as double curved surfaces especially, lead to
reduced approximation accuracy. Another difficulty is the determination of the particle
supports or zones of influence. These had to be varied in both methods to find out the
optimal influence radius for each particle. That is, it must be ensured that a minimum
number of particles support each point of the domain, otherwise the computation is not
stable. Especially for irregular particle distributions, this is a tricky task. This fact
was also emphasized by Liu and his co-workers (Chen et al. 1996). In addition, it was
realized that the computation of the approximants and the numerical integration of the
final discrete equation system consumes considerably more computer performance than
FEM. A main reason for the performance difference is the essentially greater support of
the particles in meshfree methods.

hp-cloud method

Duarte and Oden proposed a meshfree method called the hp-cloud method (Duarte and
Oden 1996; Liszka et al. 1996) in which they modified Shepard- or MLS-approximants by
multiplication with higher order basis functions such as Legendre polynomials. One could
consider this modification is a kind of enrichment which however, increases the necessary
computational costs to generate these shape functions. On the other hand, because the
Shepard shape functions were preferred, this drawback may be levelled out. This means
in particular that the approximation performance of the enriched Shepard functions was
improved. The characters h and p denote that his method and the meshfree approxima-
tion, respectively, should be flexible in the sense of h-adaptivity and p-adaptivity. The
authors expounded that the resulting approximants satisfied the partition of unity prop-
erty at any point of the domain. Similar to Liu and his co-workers, they showed that
non-polynomial functions, e.g. trigonometric functions, might also be incorporated.

Lagrange multipliers were chosen to impose Dirichlet boundary conditions. Furthermore,
a second method has been analyzed to handle the boundary condition. They denoted it as
boundary projection which was originally based on theories of Lancaster and Salkauskas

(1981).

For the integration of the problem formulation Duarte, as well as Liu and Belytschko,
suggested a Gauss-Legendre quadrature.

Partition of unity method

Melenk and Babuska (1997) concentrated their research efforts on developing the
partition of unity method which went in a similar direction as Duarte, but in a more
general way. They also chose approximation function - mainly simple ones - which
fulfill the partition of unity condition and multiplied them with a suitable basis of linear
independent functions. The term ’suitable’ means that, based on the knowledge of the
behaviour of the solution function, an adequate basis should be selected which would be
able to reproduce this function sufficiently accurate.
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e Natural neighbour Galerkin method

Sukumar et al. (2001) developed a meshfree method, the so-called natural neighbour
Galerkin method, which is originated in the natural element method (NEM) (Traversoni,
1994; Braun and Sambridge 1995; Sukumar, Moran and Belytschko 1998). This meshfree
method aimed to combine the advantages of FEM and the known meshless methods, but
without their disadvantages.

The approximation of an unknown field function is constructed using a Vorono: diagram
together with a Delaunay tesselation. These geometrical methods had three objectives:
Firstly, to obtain a irregular distribution of nodes, secondly, the so-called influence zones
of these nodes and thirdly the overlapping of adjacent nodes. Afterwards the entire do-
main was subdivided into polygons which were used to apply the Gaussian quadrature.
The Voronoi diagram and the Delaunay tesselation were not only used for the numerical
integration, but also to construct the test and trial functions. Hereby, the authors made
use of the so-called non-Sibsonian interpolation scheme (Belikov et al. 1997) which was
referred to the natural neighbour co-ordinates, introduced by Sibson (1980). They demon-
strated that their method was capable of enforcing the essential boundary conditions as
easily as in FEM, because the non-Sibsonian approximants maintained the Kronecker
Delta condition at the particles. Furthermore, they showed that the non-Sibsonian ap-
proximants fulfilled the partition of unity condition and possessed at least C'! consistency
everywhere.

The presented algorithm to calculate the non-Sibsonian shape functions in R? is however
quite involved and also the set-up of the Voronoi diagram and the Delaunay tesselation
is not an easy task in the three-dimensional space.

e Meshless local Petrov-Galerkin method (MLPG) and local boundary integral
equation method (LBIE)

As truly meshless methods Alturi and Zhu introduced the meshless local Petrov-Galerkin
method (Atluri and Zhu 1998; Atluri and Zhu 2000a) and the local boundary integral
equation method (Atluri and Zhu 2000b; Zhu, 1999; Zhu, Zhang and Atluri 1999). One
main difference between both methods was the different usage of test and trial functions.
The MLPG method belongs to the Petrov-Galerkin-family for which two unequal function
spaces are characteristic. On the other hand the LBIE theory belongs to the conventional
Bubnov-Galerkin methods. In MLPG as well as in LBIE the approximation of the trial
functions was achieved by MLS-approximants.

Now, the following properties are similar for both methods. The assembly of the global
discrete equation set was achieved without underlaying shadow FEM elements. This laid
in the fact that Alturi and Zhu applied the weak form of the PDE separately to each
particle support. Correspondingly, the numerical integration of these local PDEs was
performed independently within each particle support. One achieves for each computed
support patch as a result one equation and so, a global equation system can be assembled
containing as many lines as necessary to obtain all the global unknowns.

For integration purposes, Alturi and Zhu chose a Gauss-Legendre quadrature on each of the
regularly distributed particle patches. However, the computation of the Gauss coordinates
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and weights was unspecified. A drawback may be that, because of the overlapping of all
particle sub-domains, the integration costs are probably higher than applying a global
problem formulation onto the underlying background mesh.

e Finite spheres method

De and Bathe presented a meshfree method which they called finite spheres method (De
and Bathe 2000; De and Bathe 2001). As shape functions they chose Shepard approxi-
mants so that the partition of unity condition was fulfilled. The authors stated that the
computational performance was not as high as in the recent FEM. Furthermore, if only
the displacement function was interpolated, volumetric locking appeared. Therefore they
proposed a mixed formulation involving the approximation of displacement and pressure.

As well as Breitkopf et al. (2002), they elaborated that the Gauss-Legendre integration
scheme was not suitable by means of exactness considering the non-polynomial form of
their meshfree approximants. Due to this characteristic the authors proposed to replace
the commonly utilized Gauss-Legendre with the Gauss-Chebyshev integration scheme.
However, the needed amount of integration points were much larger than applying Gauss-
Legendre quadrature. Above all, it was necessary to treat the boundary areas in a special
manner - they denoted it as integration on a lens. Therefore, even if a higher solution
accuracy could be achieved, it involved extra computational efforts.

e Local maximum entropy approximation schemes

The local maximum entropy approximation schemes proposed by (Arroyo and Ortiz 2006)
is a new and interesting approach to achieve a meshfree approximation. Its computation
is constrained by the partition of unity condition as well as the first order consistency
conditions and the positivity of the shape functions, where the latter leads to a so-called
convex approrimation. The domain is discretized by a Delaunay triangulation, where the
Delaunay approximants are computed in a sense that they maximize the so-called approx-
imation entropy. The mazimum entropy principle is well-known in the information theory
and statistical physics, where probability schemes are evaluated by means of minimizing
the certainty of known events and maximizing the uncertainty of unknown events. This
principle clearly exhibits an analogy to the least square method considering as known
events a set of sample points of a certain function which need to be approximated. Since
the mazimum entropy principle is non-local, additionally a locality requirement needs to
be enforced by introducing a weight function and formulating a minimization problem
which needs to be solved iteratively e.g. applying the Newton Raphson method. The
approximants satisfy the weak Kronecker Delta property which is clearly of great benefit
imposing essential boundary conditions. However, considering that the presented exam-
ples are characterized by simple geometries, it is not quite clear, if this weak Kronecker
Delta property is sufficient for more complex structures. An open issue is the extension
of this approximation scheme so that higher order continuity can be achieved.

The high diversity of meshfree methods clearly indicates the intense research undertaken
in this area as well as their current popularity. Even if their use in real engineering prob-
lems is not as wide-spread yet, they already have been applied to mechanical engineering
problems in the form of case studies in metal forming (Xiong et. al. 2005), dynamic fracture
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(Belytschko and Tabbara 1996) and shear band propagation (Li et. al. 2001), excessive
particle motion (Chen et. al. 2004), shell computation (Li and Liu 2000) and fluid mechan-
ics (Iske and Kaeser 2005). In areas such as petroleum and geotechnical engineering only
very few applications of meshfree methods can be found yet. The Reproducing Kernel Par-
ticle method was utilized in a Lagragian-type formulation to model elastoplastic behaviour
in geotechnical material (Wu et. al. 2001). The Smooth Particle Hydrodynamics method
(SPH) has its origin in astrophysics modelling star dust clouds (Gingold and Monaghan
1977), but was later on successfully applied in fluid dynamics too. A particular case is the
modelling of diffusion processes in porous media (Zhu and Fox 2001). Various geometrical
configurations of the porous structure were investigated in order to compute the diffusion
coefficients. This research has direct application to oil and gas reservoir simulation. More
recently, micropolar elasticity was applied to the local boundary integral equation method
(Sladek and Sladek 2003). However, the application of the micropolar continuum was re-
stricted to the two-dimensional case and only linearity in geometry and material was taken
into account.

1.2 Thesis motivation, aim and objectives

The variety of methods within the generalized continua as previously outlined shows that it
is possible to address the same problems, e.g. size effects exhibited in elasticity, by means of
different approaches such as Cosserat continuum or strain gradient-based formulations. On
the other hand, considering the diversity of problems one is confronted in the mechanics,
it is clear that the proposed methods usually tried to reflect closely the physical behaviour
associated with certain material. Consequently, they incorporated certain simplifications,
restrictions or assumptions, e.g. linearity in geometry or material, so that the area of appli-
cation was a very narrow one. Now, it is however desirable to develop a generalized formula-
tion based on a non-linear and three-dimensional continuum mechanical theory which allows
to deal with a broader range of physical phenomena. That means a theoretical framework
which carries in principle a certain universality, but can be easily adapted to the specific
properties of a problem.

In this work therefore, the micro- or meso-structure is modelled in a very general manner
which is to incorporate the size and the dimension of the micro-continuum into a contin-
uum mechanical approach. The focus however, is primarily set on solid mechanics. The
approach is based on a theory developed by Sansour (1998b) which is originated in theoret-
ical considerations of Ericksen and Truesdell (1957) as well as Eringen and his co-workers
(Eringen 1975). The basic idea is to construct a generalized continuum consisting of macro-
and micro-continuum and subsequently to compose the generalized deformation by a macro-
and micro-component. The dimension of the micro-continuum or the number of degrees of
freedom additional to those needed for a classical continuum, respectively, may be freely cho-
sen depending on the accuracy of the description of a physical property, but must be finite.
The approach considers a geometrically exact description of finite deformation within the
macro-continuum, but as a first step linearizes the deformation within the micro-continuum.
In general however, this ansatz also allows as to formulation of the micro-deformation non-
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linearly. Based on the approach of a generalized deformation new non-linear strain measures
can be defined and a generalized variational principle can be formulated. Furthermore, cor-
responding field equations can be identified. Here it is assumed that the deformation field
can only be varied within the macro-continuum so that the balance equations are established
for the macro-space. The constitutive law however, is defined at the microscopic level and
the geometrical specification of the micro-continuum is the only material input which goes
beyond that needed in a classical description.

In this research project three different generalized deformation formulations are derived
from the initial unified framework. Two of them are constructed in such a way that no extra
degrees of freedom are required which are additional to those in a classical continuum. By
a specific definition of the micro-deformation the first approach allows as to describe the
orientation of the micro-continuum relative to the macro-continuum, but also micro-shear,
whereas the second additionally introduces micro-stretch. The latter can be therefore called
generalized micromorph continuum. A special detail of these two approaches is that they
involve first order strain gradients. The third approach makes use of a macroscopic rotation
field which is considered to be independent of the macroscopic displacement field so that the
formulation incorporates three additional rotational degrees of freedom. The rotation field
is included in this generalized deformation description by means of the macroscopic rotation
tensor. The procedure leads to a generalized micropolar continuum which is closely related
to the Cosserat Continuum. It may be therefore called generalized Cosserat continuum.

Besides the aim to provide the theoretical framework to address heterogeneous media,
this thesis also puts a strong emphasis on modelling generalized continua with meshfree
methods. As described previously, meshfree methods clearly have much potential for allevi-
ating some of the difficulties associated with finite element analysis. However, when applying
MLS-based meshfree methods to an elliptic partial differential problem the enforcement of
the corresponding essential boundary conditions provides difficulties. The reasons for this
are twofold. Firstly, the direct and explicit enforcement of essential boundary conditions,
which is the common procedure in FEM, is not available for meshfree methods. This is
rooted in the fact that the approximation functions do not possess the Kronecker Delta
property. Secondly, the boundary areas exhibit a limited particle support, as there is no sup-
port from outside the problem domain. In order to ensure the minimum necessary support,
the influence zones of those particles adjacent to the boundary have to be larger than within
the domain. This consequently results in a significantly reduced approximation accuracy at
and near the boundary which in fact causes difficulties, if the problem formulation involves
boundary integral expressions.

In the context of micropolar continuum-based formulations, a remaining question is the
treatment of the independent rotation field using meshfree methods. Considering the rotation
tensor to be element of the Lie group SO(3) one has to take into account its multiplicative
and therefore non-linear structure. That is, the updating of the rotation field is naturally
carried out multiplicatively.

Furthermore, the potential in modelling formulations involving higher order derivatives
has not been widely recognized and studied yet, except for a few one- and two-dimensional
case studies (Askes and Aifantis 2002; Pamin et al., 2003, Tang et al., 2003) which only
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considered linear geometry. Nevertheless, the flexibility of MLS-based meshfree methods to
design approximation functions which provide any desired continuity strongly aids the aim of
this thesis to model with generalized formulations which also involve higher order derivatives.

First of all however, it is necessary to thoroughly investigate the specific properties of
the so-called moving least square method (MLS) and its use in meshfree methods, i.e. the ap-
proximation accuracy of a function and its derivatives, the boundary condition enforcement,
the numerical integration and discretization strategies. The findings will help to design con-
tinuum mechanical formulations in general. The next step is to study less involved models
such as a Green strain tensor and a classical Cosserat continuum-based formulation, as it
is considered to be essential to gather experience which can be applied to the development
of more sophisticated approaches. In particular, the multiplicative updating of the inde-
pendent rotation field of the Cosserat continuum needs to be examined, when it is applied
to meshfree methods. Widely accepted is the multiplicative updating scheme by Simo and
Vu-Quoc (1986) which however, has been proven to be path-dependent (Jelenic and Crisfield
1999). Therefore, this work resorts on a completely different method (Sansour and Wagner
2003b) which is path-independent and also allows to approximate the total rotation field
and not only its increment. The main attention however, lies on the modelling with the
generalized micromorph and the generalized Cosserat continuum. As a field of application
elastic problems exhibiting size-scale effects are chosen. These are elastic bending exper-
iments on epoxy micro-films, torsion of human bone specimens and a large-scale study of
excavations in dry rock conglomerate with different geometrical configurations. Differences
are highlighted for each model assuming different dimensionality of the micro-space, as well
as for the direct comparison of both models to each other, but also to Green strain tensor
and the conventional Cosserat continuum-based model. Moreover, the potential use of the
proposed generalized continuum approaches in solid mechanics is illustrated in general.

This thesis is concluded by experiments in modified and mixed formulations involv-
ing higher order derivatives. In contrast to the generalized formulations the incorporation
of higher order derivatives is here achieved by modifying classical functionals such as the
Hellinger Reissner and the Hu-Washizu functional, or by simply making use of the integral
form of the equilibrium equations. It is expected that the order of the used numerical inte-
gration scheme, which in this work is the Gauss quadrature, can be lowered corresponding
to the derivation order incorporated in the formulation. Moreover, it might allow to utilize a
particle integration scheme, as the higher order derivatives might compensate for the vanish-
ing first order derivatives at the particles and thus, stabilize the formulations. The outcome
would be a truly meshfree method, as no background grid for the integration would then be
needed.

Part of this work is the C'++ implementation of a MLS-based meshfree method and
the developed variational formulations. The coding is parallelized making use of the so-
called message parsing interface (MPI) so that a supercomputer with a distributed memory
architecture can be utilized. The efforts devoted to a parallelized implementation is justified
considering that meshfree methods generally involve significantly more computation time
than e.g. the finite element method due to the larger particle interaction. Furthermore,



1.3 Layout of the thesis 13

the theory and the modelling is focused on the three-dimensional space and no dimensional
reduction scheme is applied. Moreover, in case of the generalized continua, the numerical
integration over the micro-continuum binds additional computing performance. The C++
programming language is chosen, because it is an object-oriented language which makes
it easy to structure and extend the code. Furthermore, C++ features a flexible, dynamic
memory allocation as well as various so-called standard libraries that facilitate the coding
and are already optimized with respect to numerical performance. Additionally, diverse
software libraries are available for C'++ such as equation solvers and graph partitioner.

1.3 Layout of the thesis

Sec. 1.1 presents an introduction to the research topic. Subsequently, Sec. 1.2 outlines the
motivations, aims and objectives sought by this research project. Finally, a synopsis of the
following chapters of this thesis is detailed below.

Chapter 2 gives a brief introduction on the continuum mechanical principles which are
needed to account for non-linear problems in solid mechanics. Included are the kinematical
relations, strain and stress measures as well as the fundamental balance equations.

In Chapter 3, a detailed description of a MLS-based meshfree method is provided. Its
essential construction elements are addressed and the approximation accuracy is thoroughly
investigated. Further attention is devoted to implementational issues such as the essential
boundary condition enforcement and the numerical integration.

In Chapter 4, a modified variational formulation based on the Green strain tensor is
presented. Furthermore, a new technique is proposed which allows for the stabilization of
this modified variational principle in a flexible and adaptive way. The impact of non-linearity
in geometry as well as in material is studied with regard to the boundary condition imposition
accuracy and numerical stability. This methodology is demonstrated on shell deformations
in non-linear structural mechanics involving two different hyper-elastic material laws.

Chapter 5 is dedicated to the well-known Cosserat continuum. The Cosserat strain
tensors and their variational forms are derived. It is followed by the presentation of a
variational principle based on the Cosserat continuum which also includes the correspond-
ing equilibrium equations. Further efforts are concentrated on the displacement boundary
condition enforcement which is achieved by modifying the original variational formulation.
Subsequently, details of a multiplicative rotation updating algorithm are provided and its
applicability to the moving least square method is studied. Finally, the proposed modified
variational principle is used to model size-scale effects of bone and polymeric specimens
making use of the Saint- Venant-Kirchhoff constitutive model.

In Chapter 6, the framework of a generalized continuum approach for deformation is in-
troduced. Subsequently, three different models for a generalized deformation are derived from
this theory. The first two approaches only involve the conventional displacement degrees.
The incorporation of the first order derivatives of the macroscopic deformation field allows
in the first model to account for the micro-continuum’s orientation as well as micro-shear,
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and in the second additionally for micro-stretch. The third approach assumes a micropolar
material behaviour which is achieved by the incorporation of the macroscopic rotation tensor
and involves three extra rotational degrees of freedom. Various computations demonstrate
that those models are able to address fundamental physical phenomena which are related
to the underlying microstructure of the material, in particular scale-effects. The computed
results are compared with the classical Green strain tensor-based formulation presented in
Chapter 4 in order to reveal the differences between classical and non-classical formulations.
Furthermore, it is shown that the MLS-based meshfree method described in Chapter 3 pro-
vides the flexibility in terms of the continuity and consistency requirements needed by the
generalized formulations.

In Chapter 7, modified variational principles are introduced which involve higher order
derivatives. The first two models are mixed formulations which are based on the Hellinger-
Reissner functional, another one is originated in the Hu- Washizu functional and the last one
represents the integral form of the equilibrium equations. The overall aim of this chapter
is to study the suitability of MLS-based meshfree methods with respect to the higher order
derivatives.

The conclusions drawn from this research project are outlined in Chapter 8.

Finally, Chapter 9 contains suggestions and recommendations for future work on the
topic.



Chapter 2

Foundations of continuum mechanics

Problems in continuum mechanics are usually described by boundary value problems which
are given in form of field equations and make use of certain kinematical quantities, physical
and a material laws. Generally, solution of such problems cannot be achieved analytically
so that discretization strategies have to be utilized. In doing so, the problem is transferred
into a system of algebraic equations which are solved numerically.

This chapter will provide an introduction to the general foundations dealing with geo-
metrical non-linear problems in continuum mechanics. This includes the kinematics, strain
and stress measures and the balance equations. For more details the reader is referred to
(Truesdell and Noll 1965; Spencer 1980; Marsden and Hughes 1983; Mase G.T. and Mase
G.E. 1999).

2.1 Kinematics and geometry

Let B C E(3), where B is a three-dimensional manifold defining a material body. A motion
of B is represented by a one parameter non-linear deformation mapping ¢, : B — B;, where
t € R is the time and B; is the current configuration at time ¢. Accordingly, each material
point X € B is related to its placement x in the spatial configuration B; by the mapping

x = ¢ (X,1) (2.1)

In what follows and without loss of generality we identify the body B with its undeformed
reference configuration at a fixed time ¢,. The deformation map possesses an invertible
linear tangent map F = Grad ¢ denoted by the deformation gradient, where the Jacobian
J = detF > 0. The operator Grad represents the gradient with respect to the reference
configuration

Grad := BiX . (2.2)
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With €%, i = 1, 2, 3 being the coordinate charts in B which we assume to be convected, the
co-variant base vectors

00"
and

span the tangent spaces 7B and 7 B; associated with B and B; respectively. The corre-
sponding dual contra-variant vectors are denoted by G' and g*, respectively.

The deformation gradient is then alternatively be defined by
F(0't)=g®G (2.5)
Here, and in what follows, Latin indices take the values 1, 2 or 3. For the later use we

further consider that a volume element in the reference configuration dV' can be related to
its counterpart in the current configuration dv by

dv =det (F) dV = JdV, (2.6)

and a surface element in its material configuration dA with its unit normal n to its counter-
part in the spatial configuration da with its unit normal v by

vda = det (F) F "' ndA. (2.7)
The material derivative of the Jacobian J is expressed by
J=Jdivx, (2.8)

where div is the divergence operation in the current configuration.

The displacement field u is given by
u(8,t) =x (6',1) — X (6) (2.9)
and with (2.3) we rewrite (2.4) as
g (0',t) = Gi +uy, (2.10)

where partial derivatives are denoted by a comma. Thus, the definition of the deformation
gradient (2.5) can also be written as

F(0',t) = (Gi+u;) @ G'. (2.11)
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For later use some additional definitions may be provided. The Riemannian metrics are
denoted by G and g for the reference and the current configuration, respectively. Their
co-variant components are given by

Gij=Gi- Gy and 9ij = 8i " &j (2.12)
and, correspondingly, the contra-variant components by
GY=G" G’ and gl =g -gl. (2.13)

The determinants of the component matrices of G, g are indicated by G, g, respectively. A
Cartesian frame denoted by base vectors e; with ¢ = 1, 2, 3 is correlated to G; by

Gi = C;i;€; and e, = CijGj (214)
where
Cij = G‘rZ - €5 . (215)

Furthermore, we have the basic skew-symmetric third order Levi-Civita tensor € (permuta-
tion tensor)

€=€ijk G1®Gj®Gk = €ijk G‘rz(g)(?tJ(X)G']C (2.16)
with its components defined by

eijr = VG eijk and ek = e’k . (2.17)

Sl

Its Cartesian components are given by
1, for even permutations of 7, 7, k

€ijk = e* = { -1, for odd permutations of 7,7,k . (2.18)
0, otherwise

The deformation gradient tensor is not invariant with respect to spatial rotations. The
rotational part can be extracted by the polar decomposition as follows

F=QU and F=VQ (2.19)
where U = U7 and V = V7 are the right and the left stretch tensors and Q is the rotation
tensor which is dependent on the deformation, respectively on the map (X, t) (Eq. 2.1).

That is, Q is fully determined by means of one of the following symmetry conditions

Q'F=F'Q, QF’ =FQ’. (2.20)
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The stretch tensors U and V are objective strain measures of a classical continuum and
computed by the use the deformation gradient F and the rotation tensor Q.

The stretch tensors U and V can also be associated with the right and left Cauchy-Green
deformation tensor as follows

C=F'F and B=FF". (2.21)
These strain measures can be linked to each other and the following expressions hold

V=QUQ?! and C=U? and B=V? and B=QCQ’. (2.22)

The tensors U, V, C and B share the property to be equal to 1 in the reference configu-
ration. Alternatively, tensors can be defined which vanish in the undeformed configuration.
This is the Green strain tensor E and the so-called engineering strain H defined by

E=-(C-1) and H=U-1. (2.23)

DN |

2.2 Stress measures

In continuum mechanics the force intensity distribution for a bounded body in the deformed
configuration B; is expressed with the help of stress measures. The stress in a body corre-
sponds to externally applied body forces b and surface forces t(*), where the second is the
so-called traction vector acting on a surface with its unit normal vector v.

Following the Cauchy stress principle that the resulting force Af on surface element Aa
which is part of a cutting plane throughout the body B, defines in the limit the traction
vector t)

Af _df )

— = 2.24
A}LI—I;IO Aa da ( )

then the state of stress at each point x € B; is introduced by the Cauchy stress lemma
t™) (x,1) = o7 (x,1) v (x,1) (2.25)

with the Cauchy stress tensor & which is a function of the spatial coordinates of x.

If the Cauchy stress principle is referred to a differential surface element in the reference
configuration dA with its unit normal vector n, the first Piola-Kirchhoff stress tensor P may
correspondingly be defined by

t™ (X, 1) =P (X,t)n (X, 1) (2.26)
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which is function of the material coordinates X. Additionally, use is often made of the
so-called second Piola-Kirchhoff stress tensor S which is linked to P by

P =FS. (2.27)

Taking into account that the resulting differential force df acting on a differential surface
element da in the current current configuration and on a differential surface element dA in
the reference configuration are equal, the Cauchy stress o can be directly linked to P by the
following relation

df =PndA =0"vda=0o"det(F) F ndA,
where we made use of Eq. (2.7). Subsequently, we can extract

P =det(F) o' F 7. (2.28)

2.3 Balance Laws of Continuum Mechanics

To complete the framework of continuum mechanics needed within this research project,
three fundamental balance laws are introduced. These are the balance laws of mass conser-
vation, linear momentum conservation and angular momentum conservation.

2.3.1 Conservation of mass

The mass m of a material continuum body B; at time ¢ is given by

m:/p(x, t) dv, (2.29)

where p is the density in the current configuration. The law of conservation of mass asserts
that the total mass of a body B, or of any portion of the body, is conserved with motion.
Thus, the material derivative of Eq. (2.29) is zero

mzé/p(x,t) dvz/B {p’(x,t)—i—p(x,t) Jdivic} dv =20, (2.30)

where the relations (Eq. 2.6) and (Eq. 2.8) were used. Since B; is any arbitrary part of
the continuum the integrand in Eq. (2.30) must vanish, resulting in the so-called continuity
equation in the Eulerian form

p(x,t)+p(x,t) Jdivk=0. (2.31)
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The conservation of mass also states that the mass in the current and the reference config-
uration are equal

mz/p(x,t) dvz/po (X) dv | (2.32)

where py denotes the density in the reference configuration. With Eq. (2.6) and considering
x = x(X,t), Eq. (2.29) can also be expressed in its Lagrangian form by

m = /p(X, t)y J dV, (2.33)

and substituting this equation for the left-hand side of Eq. (2.32) we arrive at
/{p(x,t)J—po(X)}dV:O. (2.34)
B

This must be again valid for any arbitrary part of the continuum and we have the Lagrangian
or material form of the continuity equation

p(X,) J = po(X) . (2.35)
With gy = 0 we further have

% <p (X, 1) J) _o. (2.36)

This equation in particular, is very useful to evaluate the material derivative of an integral
over some product p A

5 [ Pt ARxt) dv :/p(x, t) A(x,t) dv, (2.37)

Bt Bt

where A(x,t) is a field of some property per unit mass.

2.3.2 Linear momentum principle

Consider a material continuum body B subjected to body force b and a bounding surface 98
subjected to surface traction t*). Then the principle of linear momentum asserts that the
time rate of change of the linear momentum equals the resultant force acting on the body

% p(x,t) x dv = / t®) (x,t) da + / b (x,t) dv. (2.38)

B: oOB: By
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Making use of the Cauchy stress lemma (Eq. 2.25) and Gauss’s divergence theorem we can
rewrite Eq. (2.38) so that we arrive at the global equation of motion in its spatial form

/{p(x,t))"c—divch—b(x,t) }dsz, (2.39)

where Eq. (2.37) has been used to evaluate the material time derivative. The corresponding
local equation of motion follows considering that B; is arbitrary and therefore the integrand
in Eq. (2.38) must vanish

dive® +b (x,t) = p(x,1) %. (2.40)

If the velocity field x (x, t) is constant or zero, the equation of motion reduces to the so-called
equilibrium equation

dive” +b (x,t) =0. (2.41)

We further have the global equation of motion in its material form by referring all quan-
tities in Eq. (2.38) to the reference configuration

% pox (X, 1) dV:/t(“) (X, 1) dA+/b(X,t) dv . (2.42)
oB

B B

Subsequently, we replace the traction vector by Eq. (2.26), apply Gauss’s divergence theorem,
take material derivative of the left-hand side and arrive at

pok (X,t)—DivP —b(X,t) t dV =0, (2.43)
/1 )

where Div stands for the divergence operator with respect to the reference configuration.
The integral over B is arbitrary and the integrand in Eq. (2.43) must vanish

DivP + b (X,t) = po % (X, 1), (2.44)

which is the Lagrangian equation of motion. If the acceleration field is zero, we have the
Lagrangian equilibrium equation

DivP (X,t) +b(X,t) =0. (2.45)
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2.3.3 Angular momentum principle

The angular momentum is defined as the moment of the linear momentum with respect to
some reference point. This point of reference is usually chosen to be the origin of some
coordinate system. The angular momentum principle asserts that the time rate of change of
the moment of linear momentum is equal to the resultant moment of the surface and body
forces acting on the body B:

%/xxp(x,t)kdv:/xxt(")(x,t) da+/x><b(x,t) dv . (2.46)
B: OB Bt

Taking the material derivative of the left-hand side with the help of Eq. (2.37), introducing
the Cauchy stress tensor with Eq. (2.25) and subsequently applying Gauss’s divergence
theorem, we have:

/{XXp(x,t))"c—diV (xxaT)—xxb(x,t)}dvzo, (2.47)

By
where the divergence term with respect to the current configuration is evaluated as follows
div (x x 07) =gradx x o7 +x x divo” . (2.48)

For the definition of the product x x o’ the reader is referred to App. D. The relation holds
grad x = 1 and the global principle of angular momentum in its spatial form is expressed by

/{XXp(x,t) X+e:0” —xxdivel —x x b(x,t) } dv=0. (2.49)

Bt

For the definition of the tensor product € : o7 the reader is again referred to App. D. The
corresponding field equation is expressed by

xxp(x,t) %k —xxdivel —xxb(x,t) +e: 0" =0, (2.50)

because B; is arbitrary and the integrand in Eq. (2.49) must vanish. With Eq. (2.40) we
further have

e:o’ =0, (2.51)

which shows the symmetry of the Cauchy stress tensor. Note it is assumed in this chapter
that no surface couple acts on the body.
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The angular momentum principle in the Lagrangian form is achieved by referring all
quantities in Eq. (2.46) to the reference configuration

x (X,t) X pox (X,t) dV =

dt
/ x (X, 1) x 6 (X, 1) dA + / X (X, 1) x b (X, 1) dV . (2.52)
oB B

After taking material derivative of the left-hand side, the traction vector is replaced by Eq.
(2.26) and Gauss’s divergence theorem is applied so that we arrive at

/{X(X,t) % po (X, 1) —

B

— Div (X(X,t) ><P> —x (X, 1) xb(X,t)} dV =0. (2.53)
The evaluation of the divergence term similar to Eq. (2.48) leads to

/{X(X,t) x (po% (X,t) = DivP — b (X,1)) -
— Gradx (X, 1) x P} AV =0, (2.54)

and with Eq. (2.44) we have the following expression

/FdeV:O. (2.55)

B

The integrand must vanish

FxP=e¢:(FP") =0, (2.56)
which results in the following symmetry condition

FPT = PFT. (2.57)

The substition of Eq. (2.27) for P finally results in the symmetry of the second Piola-
Kirchhoff tensor

S''=8§. (2.58)

In the following and throughout this thesis all expressions will be written in the material
description. The focus will be exclusively on a purely mechanical theory within three-
dimensional elasticity, thermal and other effects are not considered.



Chapter 3

Meshfree methods

It is an essential aim of this research project to model problems which also involve higher
order derivatives of the solution function. The flexibility of moving least square (MLS)-based
meshfree methods to design approximation functions which provide any desired continuity,
greatly aids this purpose. Therefore, a MLS-based meshfree method is utilized for the
modelling with the formulations developed later on in this thesis.

The outline of the this chapter is as follows: A detailed description of the basic principles
a MLS-based meshfree method and its core components is given in Sec. 3.1. As it is consid-
ered to be essential to gain more insight in the MLS-approximation properties, Sec. 3.2 is
devoted to MLS and its construction elements for their impact on the approximation accu-
racy. In Sec. 3.3 implementational issues are addressed which includes the essential boundary
condition enforcement and the numerical integration. Notes regarding the parallelization of
the meshfree code are provided in App. B.

3.1 Meshfree approximation based on MLS

In this work a meshfree method is implemented which is based on the mowving least square
method and improvements suggested in element-free Galerkin and reproducing kernel par-
ticle method such as the normalized weight function, the shifted polynomial basis and the
numerical integration over the least square fit are incorporated. In the following MLS is
briefly outlined. Subsequently, important characteristics such as the weight function and
the polynomial basis are elaborated in more detail.

3.1.1 Moving Least Square Method

MLS has been originally introduced as data-fitting algorithm, where an approximation of a
function is constructed based on a given set of particles. Let us consider a function u(x)
defined over the field Q € R®. A possible approximation for u(x) is defined by a complete
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polynomial P(x) and its non-constant coefficients a(x):
u' (x) =P (x)-a(x) . (3.1)

To each particle Py with its coordinates x;, a so-called weight function ®; with compact
support is attached. That is, the size of the support is defined by the so-called influence
radius 0. The sum of all particles, that support the point x, constitute the set A. With the
help of this set a weighted least square fit in the vicinity of a point x can be constructed
according to

J(@ax) =Y [P (x) a(x)—ulx) e (X — Xf) . (3.2)

IeA 9

Thereby, the locality of the least square fit is controlled by the weight function ¢ and the
influence radius p, respectively. That is, only those particles in the closest neighbourhood of
x are taken into the computation of the least square fit (Eq. 3.2) and the minimization of the
difference between approximated function values u” (x;) and exact ones u(x;) is emphasized
the closer a particle is placed to x.

The unknown coefficients a(x) can be determined by minimizing the functional J (Eq.
3.2) with respect to a(x). Then the substitution of the coefficients a(x) into (Eq. 3.1)
provides the approximation of u(x) as follows

uh(x) =P (x)- M (x) Y P (x;) @ (X - X’) ur, (3.3)

IeA 9

where M(x) is the so-called moment matriz of the weight function ®:

M(x) =Y P (x)) P (x)) @ (X — Xf) , (3.4)

I=A 0

and uy are the so-called particle parameters. The MLS-approximation function for a particle
Py can be expressed by

Ny (x) =P (x)- M~ (x) P (x;) & (X ;’”) , (3.5)

and (Eq. 3.3) takes

ul (x) =) Ny (x) ur. (3.6)

IeA

The terminology mowving least square is related to the consideration that the point x may be
any point P € ). This means that by "moving” x throughout the domain 2 the approxi-
mation u"(x) (Eq. 3.3) is transferred from a local to a global approximation.
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Since the least square fit (Eq. 3.2) is weighted by function ® which has compact support,
the local character of the approximation u” (x) is ensured. Consequently, the accuracy of
the approximation u” (x) is optimized the smaller the value of g is chosen. The minimum
value of p is however restricted by the invertibility requirement of the moment matrix (Eq.
3.4). That is, the minimum number supporting particles for a point x must be equal or
larger than the number of elements in the basis polynomial P. Considering that due to the
locality of the weight function the influence of a particle and its shape function ordinate
over X, respectively, is usually rapidly deferring with increasing distance to point x, the
number of supporting particles must be higher than the minimum needed. Especially, for
an irregular particle distribution we find that the particle support is up to ten times as high
than minimal required. Note that for each point x the weighted least square fit (Eq. 3.2)
needs to be separately evaluated which results in a unique and local approximation for each
point X.

The basic technique applied in this algorithm is the so-called inverse distance weighted
principle. The simplest form of an approximation constructed by this principle is by the
so-called Shepard-method

s )
" e )

JeA

ur, (37)

which is equivalent to a MLS interpolation using a zero order basis polynomial P(x) = 1.

The smoothness of the MLS approximation is determined by the invertibility requirement
of Eq. ( 3.4) as well by Eq. (3.3). This is as both expressions depend on the continuity of
the basis polynomial P € C™(Q) as well as the weight function ® € C'(Q) and it holds

u" (x) € CF (3.8)

with £ = min(/, m) (Lancaster and Salkauskas 1981).

The consistency conditions on the MLS-approximants, that is, the requirement to repro-
duce a polynomial of a certain order

ZNI (x) P(x1) =P (x), (3.9)

IeA

have been proven to be fulfilled (Belytschko et al. 1996), as these conditions are incorporated
in the MLS-algorithm. In particular, it has been shown that a MLS-approximation exactly
represents its basis polynomial. The so-called partition of unity condition

Y Ni(x)=1, (3.10)

IeA
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which is imperative to reproduce rigid body motions correctly (Liu et al. 1995), is always
satisfied as it means to reproduce a constant polynomial P = 1 which is achieved, if a zero
order basis polynomial is used in Eq. (3.5).

The computation of the MLS-approximants can be accelerated (Dolbow and Belytschko
1998), if the expression P (x) - M™! (x) in Eq. (3.5) is replaced by a vector b (x) and we can
write

N;(x) =b (x)P (x;) & (X _QXI) , (3.11)

where b (x) is computed by solving the following linear equation system
M(x)b(x) =P (x) . (3.12)

Note that this linear equation system is nothing else than consistency conditions (Eq. 3.9).
Similarly, the first order partial derivatives of vector b (x) which are needed for the MLS-
shapefunction derivatives can be obtained by solving the following expressions with respect
to b, (x), b, (x) and b, (x)

oM (x) ob(x) 0P (x)
ox b (x) + M (x) oxr  Or '
31\gy(x)b (x) + M (x) 813;)() _ 81:(;5() ’
OM (x) ob(x) 0P (x)
o b (x) + M (x) 5 = g, (3.13)

where b (x) computed by Eq. (3.12) is substituted. The second order partial derivatives
b sy (X), by, (%), b s (X), by (X), by, (x) and b ., (x) are determined by solving

T ) AU A 0200 OTL
T ) AL P O30 7T

T AU M 0000 2TL0
A 2 AN 200 OTL)
k]

TR )2 I 200 OTL0)
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where b (x), b, (x), b, (x) and b, (x) computed by by Eq. (3.12) and by Eq. (3.13), respec-
tively, are substituted. Note, before solving Eq. (3.12) - Eq. (3.14) with respect to vector b(x)
and its derivatives, respectively, the moment matriz (Eq. (3.4) should be pre-conditioned by
LU-factorization.

In case of an irregular particle distribution the moment matriz can be ill conditioned.
As this matrix must be inverted, it was suggested by Liu et al. (1997) to make use of a
so-called shifted basis which can be additionally normalized by the influence radius p. The
moment matrix is then given by the following expression

M(x)ng (X_XI)P(X_XI)cb(X_XI) . (3.15)

0 0 0

Accordingly, Eq. (3.12), Eq. (3.13) and Eq. 3.13) take

M (x)b (x) = P (0) , (3.16)
P+ M B <o,

P )+ n g 2 o,

MO 0 + M) 20—, @.1)
and

i B 0 2

A A BN

P BB MBS 0 20
IR

D

respectively, where P (0) =[1, 0,...,0].
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Liu and his co-workers (see e.g. Li and Liu 1998) suggested in their RKPM that the
accuracy of the MLS algorithm was improved, if the summation over the residuals of exact
and approximated function values in Eq. (3.2) was replaced by a numerical integration. They
proposed to use a numerical integration method, the so-called Nystrom method (Delves and
Mohamed 1985), which is a particle integration scheme. Consequently, the summation in
Eq. (3.3) and Eq. (3.4) was also replaced by a continuous integral expression. Each particle
P; was associated with an integration weight AV, which corresponded to the particle’s share
on the system volume

YA =V. (3.19)

Furthermore, it was proposed, as continuum mechanical formulations are usually numerically
integrated by the Gauss quadrature, that an underlying FEM-background mesh could not
only be utilized to obtain the coordinates and weights of Gaussian integration weights, but
also the particle weights AV} as follows

AV =T (Ennnn) (3.20)
Ae

where J is the Jacobian and the A, is a set of background mesh elements which incorporate
particle P;. Now, the equation for the moment matriz (Eq. 3.4) takes the following form

X — Xy
0

M(x)=> P(x)P(x)® < ) AV, (3.21)

and the MLS-approximation formula (Eq. 3.3) is expressed by

u'(x) =b(x) Y P(x;) @ (X — Xf) u AV (3.22)

0

Now it is important to realize that MLS was originally considered as curve fitting algo-
rithm, where the sample points u(x;) were known. When MLS is used in a meshfree methods
however, these sample point values are unknown. That is, the MLS-approximation (Eq. 3.3)
with unknown particle parameters u; is implemented in a formulation which describes the
physical state of body. Subsequently, the integration over the problem domain results in a
discrete equation system. The solution of this discrete equation system are particle param-
eters u; which are determined in such a way that the difference to the exact function values
u(x;) is as minimal as possible and the approximation u” (x) is a solution of the problem
formulation. In fact, there is usually quite a significant difference between u; and u(x;) due
to the limited approximation capability of the utilized basis polynomial. Therefore, it must
be stressed that we usually have

ur # u(Xg), (3.23)
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Figure 3.1: domain covering

unless the used basis polynomial is capable to approximate u(x) exactly at the particles.
Even if the MLS-approximation is usually non-interpolating, it provides nevertheless a very
high approximation accuracy in the entire domain €.

The MLS-algorithm does generally not underly any restrictions by means of the shape
of domain 2 as well as its boundaries. It was shown that also non-convex boundaries and
cracks can be dealt with (Organ et al. 1996). In the case of cracks, the MLS interpolation
function took near the crack a discontinuous shape in order to reassemble the discontinuity
of the displacement field at the crack.

3.1.2 Weight function

The weight function ® or window function in the MLS-approximation scheme (Eq. 3.3)
ensures the local character of the approximation around a point of interest x within a domain
Q) by restricting the support of each particle P;:

R o
0 0 , x¢supp{®}

where p denotes the influence radius of each particle. This means, each particle x; € 2
has attached its own support w; which is also called domain of influence or influence zones
depicted in Fig. 3.1.

In two dimensions the influence zones reassemble discs or rectangles and in three dimen-
sions balls or cuboids. Accordingly, each particle is associated with a shape function (Eq.
3.5), the support of which is the same as for the weight function. The shape functions are
overlapping each other so that each point in domain €2 is supported by several particles.



3.1 Meshfree approximation based on MLS 31

As mentioned before, the local support of each particle plays a crucial role with respect
to the accuracy and the stability of the solution, similar as the element size in FEM does.
The window function ®, however, does not only ensure the locality of the approximation,
but also its global smoothness in domain 2. This means that the coefficients a in (Eq. 3.1)
obtained with 1) a constant weight function in the entire domain €2 would be constant over €,
2) with a constant weight function having compact support w; associated with particles Py
would be piecewise constant over sub-domains @ C {2 which have the same particle support
denoted by the set Ag:

W= {x|x€w1 A XEwJ}, with I, J € Ay C A = const., (3.25)

and 3) a smooth weight function having a compact support w; would be a function of x over
the entire domain 2 denoted by a(x). As a consequence the global approximation u" (x)
would be 1) a linear polynomial fit through the sample points u (xs), 2) a piecewise linear
polynomial fit through the sample points, or 3) a smooth and continuous approximation of
u (x). That is, the local approximation on & inherits the smoothness of the weight function
(Dolbow and Belytschko 1998).

It was suggested by Liu et al. (1997) that the following normalizing rule should be taken
into account

/ 1 / / ) dudydz =1 (3.26)

which is equivalent to

/Q/Q/Qi3 < X’) drdydz = 1. (3.27)

In three dimensions a weight function with cuboid support w;

wr = {XER?" |33—~TI|SQx/\|Z‘/_yI|§Qy/\|Z_ZI‘§QZ}’ (3.28)

can be computed as follows (Dolbow and Belytschko 1998)

o () =w ()= ()= () 329

The cuboid influence zone has the advantage over the spherical one that its shape can be
individually designed with respect to each coordinate direction. This is especially beneficial
e.g. for structures which are thin in one or two directions.

The usual choice for the one-dimensional weight-functions w are splines, as they can be
specifically designed to meet any desired continuity requirements. This is very beneficial,
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because the conventional finite element method fails to provide C'(Q)-continuity with > 1.
In the following, a few splines are presented which were suggested by Liu and Belytschko
in various publications and also implemented in the coding of this research project. The

illustrations of these splines will be shown as two-dimensional plots.

e The cubic spline defined by

for |r| > 1,

(3.30)

where r = (x — 1)/ 0, possesses C? -continuity and is illustrated in Fig. 3.2. Its first
and second order derivatives are depicted in Fig. 3.3, Fig. 3.4 and Fig. 3.5, respectively.
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e The quartic spline given by

(r) = 1—6r248r%—3rt for|r| <1,
AR for |r| > 1,
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Figure 3.9: second order derivative of the
quartic spline ® ,, = 91—2 w(z) w4y (y)

(3.31)

is characterized by C?-continuity. The quartic spline is displayed in Fig. 3.6 and its
first and second derivatives in Fig. 3.7, Fig. 3.8 and Fig. 3.9, respectively.

e The Gaussian spline expressed by

e 09" for |r| <1,
w(r) =
0 for |r| > 1,

(3.32)
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Figure 3.10:  Gaussian spline & = Figure 3.11: first order derivative of the
w(z) w(y) Gaussian spline ® , = %w(a:) w4 (y)

Figure 3.12: second order deriwative of the Figure 3.13: second order deriwative of the
Gaussian spline ® ,, = Q% w4 (x) wy(y) Gaussian spline ® ,,, = 91—2 w(z) w4y (y)

actually possesses C~'-continuity, because it does not exactly vanish for |r| = 1, but
takes values which are only numerically equivalent to zero. However, from a numerical
perspective the Gaussian spline can be assumed to be C'* continuous.

e Another Gaussian spline was introduced in the EFG method (Lu, Belytschko and Gu
1994) which possessed C'*°-continuity

NI forz —xr <p,
w(x —x1) = 1—e(8) (3.33)

0 forx —x; > 0,
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where parameter £ = 1 and ¢ were given by
c=acr, withl < a <2 (3.34)
and ¢y was determined individually for each particle x; as follows

cr = }Iel/%:i lzy — x| (3.35)

The set of particles A., was defined by
A, ={J|zr €wys N z€wy}. (3.36)

As parameter c is related to the local particle density, this weight function is adaptive
to any irregular particle distribution. Parameter oo was found best to be chosen close
to 1, if singularities and high gradients were to be dealt with. The Gaussian spline, its
first derivative and second derivatives are shown in Fig. 3.10, Fig. 3.11, Fig. 3.12 and
Fig. 3.13, respectively.

Overall, out of the above selection of splines the MLS scheme provides the best solution
approximation using the cubic spline which will be elaborated in Sec. 3.2.

3.1.3 Basis polynomial

As discussed in Sec. 3.1.1 the MLS-algorithm requires a complete polynomial basis to ap-
proximate an unknown function u(x) which also involves that a polynomial of certain degree
must be reproduced (Eq. 3.9). In fact, the approximation properties of a MLS interpolation
is strongly dependent on the used basis polynomial, as the approximation for sub-domains
@ C Q (Eq. 3.25) which have the same particle support solely relies on the basis polynomial.

In this work three different basis polynomials are used: the Pascal, the Lagrange and
the Bernstein polynomial.

e Pascal polynomial

The elements of a polynomial basis of the Pascal type are given by the so-called
Binomian formulas which are defined by

(z+y+2)", (3.37)

where m denotes the order of the polynomial. Vector P which contains the three-
dimensional basis polynomial has consequently | = ¢(m + 1)(m + 2)(m + 3) elements.
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e Lagrange polynomial

A Lagrange polynomial of m-th order is in one dimension defined as follows

(x —x0) (z —21) oo (T — 1) (T — Tpg1) - (T — 27)

P, (z) = , fork=0,m
k(@) (g — o) (x — x1) oo (Tk — Th—1) (Tk — Tt1) - (T — Tn)
(3.38)
and consists of | = m + 1 elements. In three dimension we have
PZEP[JK:PI(.Z')PJ(:U)PK(Z), forI,J,K:O,m (339)

and vector P possesses [ = (m + 1)® elements.
¢ Bernstein polynomial

The three-dimensional Bernstein polynomial of order m is given by

HEPIJKZ(?) (ZL) (ITZ)x(l—x)m_’y(l—y)m‘“’z(1—z)m—K,

for I,JJK=0,m  (3.40)

where

(7)==

and has got [ = (m + 1)® elements.

Other complete polynomials which could also be applied are for e.g. the Serendipity or the
Legendre polynomial.

It is also worthwhile noting that the basis does not necessarily need to be a polynomial,
but can include any linearly independent functions. It was shown for an example that the
modelling of crack propagation (Belytschko et al. 1996) benefits from the incorporation of
trigonometric functions

6

0 0 0 0
P (x) = |1,z,y,2, /T cos 5,\/7_“ sin§ + /T sin§sin0, VT sin§ +/r cosisinﬁ (3.41)
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Figure 3.14: shape function distribution Figure 3.15: shape function distribution
for a zero order basis polynomial o = 0.51 for a first order basis polynomial p = 1.01

3.2 MLS-approximation characteristics

In order to illustrate the characteristics of the MLS approximation scheme in more detail,
let us consider a three-dimensional domain

Q:={xeR|ze[-55 A ye[-55] A ze[-55]} (3.42)

which is discretized by 11x11x 11 equally spaced particles. That is, the particle distance is in
each coordinate direction exactly d = 1.0. Four different MLS-approximants (Eq. 3.5) shall
be distinguished by computing the approximation functions involving a zero order Pascal-
type polynomial (Eq. 3.37), its first, second and third order pendant. As weight function
the quartic C®-continuous spline is utilized. Note that in case of the zero order polynomial,
which is a constant basis polynomial, we find the analogy to the Shepard approximation
functions which are used in the Shepard method (Eq. 3.7).

The minimum applicable influence radius for the zero order polynomial is determined
as Omin > 0.5. That is, every point of the domain €2 is supported by only one particle,
except for the contact plane between two neighbouring influence zones which is supported
by two particles. Hence, the shape function of each particle takes the constant value N(s) =
1.0 within its support depicted in Fig. 3.14, and correspondingly, its derivatives are zero
everywhere. The shape function ordinates N(s) are here and in the following plotted along
a line starting from point (—5,0,0) and ending at point (5,0,0). For the higher order
polynomials the minimum influence radius is dictated by the invertibility requirement of the
moment matrix (Eq. 3.4) so that the use of the first order polynomial needs at least four
supporting particles which is given for g,,;, > 1.0, the second order at least ten particles
which is provided for g,,;, > 2.0, and the third order at least twenty particles which is ensured
for omin > 3.0. The shape function distribution for the first, second and third order basis
polynomial is shown in Fig. 3.15, Fig. 3.16 and Fig. 3.19, respectively. The use of the first
order basis polynomial results in a shape function which is not smooth and does accordingly
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Figure 3.18: second order shape function Figure 3.19: shape function distribution
deriwative distribution for a second order for a third order basis polynomial o = 3.01
basis polynomial o = 2.01

not possess continuous first and second derivatives, whereas involving the second or third
order basis polynomial results in a smooth shape function and also first order shape function
derivative depicted in Fig. 3.17 and Fig. 3.20, respectively. Accordingly, the latter have both
a continuous second order derivative illustrated in Fig. 3.18 and Fig. 3.21, respectively. The
reason for the non-smoothness of the MLS-approximations functions based on the first order
basis polynomial is found in the fact that for o = 1.01 only the outskirts of the influence
zones are intersecting, where the weight function values are negligible. The overlapping must
be therefore of a certain magnitude for numerical reasons. It should be noted that the lack
of particle support at boundary makes it necessary that the influence radius of all particles
must be chosen larger than actually required for the interior domain. This is especially so
when using the second or third order basis polynomial, which also explains the smoothness
of the corresponding shape function and its derivatives due to the sufficient overlapping of
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the influence zones.

In case of the zero and first order polynomial the minimal applicable influence radius
provides that the Kronecker Delta condition is fulfilled at each particle. Thus, the shape
function ordinates of all neighbouring particles vanish and as MLS is a partition of unity, the
shape function of the particular particle itself takes the value one. As reason for this char-
acteristic we find that the minimum particle support coincides with the maximum number
of sample points which can be exactly approximated by the weighted least square fit (Eq.
3.2). The minimum influence radius determined for the second and third order polynomial
however, results in a particle support which is higher than actually required and therefore
higher than the used basis polynomial can exactly interpolate. Consequently, they do not

hold the Kronecker Delta property.
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As mentioned before, the smoothness of the shape function and its derivatives requires
a certain minimum overlapping of the support zones, otherwise the involved weight function
ordinates are numerically too small. The regularity of MLS-approximation functions how-
ever, is also dependent on the overlapping. This is clear as the MLS-shape function is with a
constant weight function only piecewise continuous in sub-domains @ C Q (Eq. 3.25) which
have the same particle support. Accordingly, the discontinuities between those sub-domains
have to be closed by the weight function. Furthermore, MLS is a partition of unity (Eq. 3.10)
so that a higher particle support means a smaller magnitude of each of the corresponding
shape function ordinates of the involved particles and consequently, of the discontinuities
which have to be bridged. This fact is illustrated in Fig. 3.22 for the MLS-shape function of
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the particle which is in the center of domain (2 making use of the first order basis polynomial
and a constant weight function ® = 1.0. Correspondingly, the use of the C3-continuous
quartic spline introduced in App. A exhibits a different level of smoothness and regular-
ity depicted in Fig. 3.23. Furthermore, a higher density of sub-domains @ within a single
influence zone wy further reduces the discontinuities between the sub-domains @ which is
clearly visible for the shape function and its first order derivatives shown in Fig. 3.22 and
3.24. The same applies using the second and third order basis polynomial, where a larger
particle influence radius reduces the discontinuity gap of the shape function, its first and
second order derivatives as displayed in Fig. 3.26 - Fig. 3.31. It can be therefore summarized
that a certain minimum amount of overlapping of the influence zones is necessary, however,
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at the same time the approximation locality should be preserved, i.e. the minimal needed
particle support should not be exceeded too much. Thus, there should be an optimal influ-
ence radius for which the maximization of the approximation locality on the one hand and
the minimization of the discontinuity gaps between continuous parts of the shape function
as well as its derivatives on the other hand is in balance. This assumption will be confirmed
in the latter.

Now, a smooth and regularly formed shape function with a distinct maximum is achieved
in case of the zero order basis polynomial for g,,;, = 1.51 and the first order polynomial for
Omin = 1.75 depicted in Fig. 3.32 and Fig. 3.35, respectively. Accordingly, the smoothness
of both shape functions provides that their first and second order derivatives are continuous
too, shown in Fig. 3.33 and Fig. 3.34 as well as in Fig. 3.36 and Fig. 3.37, respectively.
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Figure 3.38: function based on a tenth- Figure 3.39: first order derivative of the
order polynomial function based on tenth-order polynomial

In the following the dependency of the approximation accuracy on the used weight
function and basis polynomial will be investigated. Furthermore, it will be demonstrated
that the optimal influence radius, which provides the best accuracy, is not necessarily the
minimal applicable. For this, we consider a function defined in the domain Q (Eq. 3.42)
which is constructed by a tenth order polynomial as follows

f (%) =100(1—7%)°(1.0 —5°)° (1.0 — 2*)°,  withx= 31—5 X. (3.43)

This function and its derivatives % and ;jgw are illustrated in Fig. 3.38, Fig. 3.39 and Fig.
3.40, respectively, which are plots along a line starting from point (—5,0,0) and ending at
point (5,0,0) . This function and its derivatives shall now be approximated by different

MLS-approximations computed with the Pascal-type polynomial (Eq. 3.37) of zero, first,
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second and third order as well as various values for the influence radius po. Note that the
same o is always applied to all particles in the domain 2. The error, which is the ratio of
the approximation to the exact value of the function and its derivatives, will be displayed
along the same plotting line as the function before. Error values which are beyond 25 % will

be cut off.

Using the zero order polynomial and setting ¢ = 0.51 the MLS-approximation de-
picted in Fig. 3.41 is very accurate at the particles as expected, considering that the MLS-
approximation holds the Kronecker Delta condition at the particles as shown in Fig. 3.14.
The same applies for the first order polynomial, when we use ¢ = 1.01 shown in Fig. 3.44,
as the shape functions also hold the Kronecker Delta condition as depicted in Fig. 3.15. The
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first order and second order derivatives though, are in case of the zero order basis polynomial
most accurately approximated for o = 3.0 illustrated in Fig. 3.42 and Fig. 3.43. However, at
the boundary the error lies for both beyond 25 %. Utilizing the first order polynomial, the
optimal influence radius is determined as p = 2.75 to achieve to best MLS-approximation
of the first and second order derivative of the investigated function depicted in Fig. 3.45
and Fig. 3.46. Again, the error at boundary is considerably higher than within the domain,
but the error of the first order derivative is significantly lower than computed with the zero
order polynomial. Using the second or the third order basis polynomial we achieve the best
approximation of the function for an influence radius p = 2.01 and p = 3.01, respectively,
displayed in Fig. 3.47 and Fig. 3.50 which is the smallest possible one. This is clear, as it
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first order derivative of a tenth-order poly- second order derivative using a tenth-
nomial using a second order basis polyno- order polynomial using a second order ba-
mial for various o sis polynomial for various o
o | supporting particles

0.51 1-2

1.01 18 - 27

1.51 18 - 36

2.01 75 - 125

2.51 75 - 150

2.75 75 - 150

3.01 196 - 343

3.51 196 - 392

4.01 405 - 729

Table 3.1: particle support distribution for various o

follows the principle that the more local the approximation, the more accurate it is. For the
function derivatives however, the best choice of the influence radius is somewhat indifferent.
That is, in case of the second order basis polynomial o = 3.01 gives a good approximation for
the first and second order derivative depicted in Fig. 3.48 and Fig. 3.49, respectively, except
for the second order derivative at boundary, where o = 2.01 provides a better result. In case
of the third order basis polynomial no clear choice is possible for the first and second order
function derivative shown in Fig. 3.51 and Fig. 3.52. However, the boundary approximation
accuracy lacks the most for o = 3.01.

In the Tab. 3.1 the number of supporting particles are listed for different choices of the
influence radius. The minimum particle support is always found at s = —5 and s = 5 and
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second order derivative of a tenth-order tenth-order polynomial using a first order
polynomial using a third order basis poly- basis polynomial for various spline weight
nomial for various o functions with o = 2.51

the maximum support in the interior domain. Obviously, an influence radius o > 2.75 can
not be considered to be practical anymore, as the particle support goes beyond 200.

Finally, it is of interest what influence the weight function has on the approximation
accuracy. For this, four different weight functions are taken under consideration: these are
the cubic spline (Eq. 3.30), the C? continuous quartic spline (Eq. 3.31), the C3-continuous
quartic spline presented in App. A and the C~'-continuous Gauss spline (Eq. 3.32). Note
that the Gauss spline takes very small numbers at the outskirts of its definition space which
are numerically equivalent to zero. Therefore, it is assumed to be C'* from the numerical
point of view. Now, the MLS-approximation of the function based on the tenth order spline
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shows an error distribution which is decreasing with the increase of the weight function
continuity as displayed in Fig. 3.53, Fig. 3.56 and Fig. 3.59. However, for the approximation
of the function derivatives, the numerical continuity of the Gauss spline is obviously not
quite sufficient anymore as depicted in Fig. 3.54, Fig. 3.55, Fig. 3.57, Fig. 3.58, Fig. 3.60 and
Fig. 3.61, because the use of the cubic spline and also of both quartic splines results in a
better approximation. The approximation error of the function and its first and second order
derivatives clearly indicates that the C3-continuous quartic spline is superior in comparison
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to the cubic and the C?-continuous quartic spline.

Summarizing, the minimal possible influence radius provides good approximation results
for the function itself, but not for its derivatives. It seems that the reduction of the discon-
tinuities between the sub-domains @ (Eq. 3.25) displayed in Fig. 3.22 - Fig. 3.31 achieved by
enlarging the particle influence radius is of greater benefit for the shape function derivatives
than for the shape function itself. Correspondingly, when dealing with problems which in-
volve higher order derivatives, the choice of the influence radius has to accommodate both,



50 Meshfree methods

the accuracy needed of the function as well as its derivatives. This obviously stands in con-
tradiction, because the approximation accuracy of the function itself is best for the minimal
usable p. Therefore, the optimal influence radius is usually not the minimally applicable
one, but also not much larger. For an irregular particle distribution the exact value of g can
not be predicted anymore, but has to be determined for each particle individually.

Furthermore, the approximation accuracy is increasing with the order of the used basis
polynomial and the continuity of the weight function. This is clear as the global continuity of
the meshfree approximants in a domain ( is given by min(C!, C™), where the basis polyno-
mial P € C™(Q) and the weight function ® € C'(2) (Lancaster and Salkauskas 1981). Note
that the approximation quality of a function and its derivatives within the sub-domains
@w, which have a constant particle support, solely depends on the used basis polynomial.
Nonetheless, the global approximation is also strongly influenced by the smoothness of the
weight function, as it ensures the continuity between those local sub-domains. However,
higher order polynomials need a far larger particle support, and therefore amplify the com-
putational costs. A known phenomenon is also that the use of higher order polynomials
results in an oscillating solution and spurious modes. Thus, the application of polynomials
higher than second order are not found to be practical within this work. Even more so, as
the difference in approximation accuracy between second and third order is not very sub-
stantial. This shows that the accuracy gain induced by the higher order polynomial is again
consumed by the loss of locality due to the larger particle influence zones.

Finally, the approximation accuracy of the function derivatives at the boundary is signif-
icantly worse than for the interior domain. In order to decrease the approximation error at
boundary, a denser particle distribution in these areas must be applied. For more details the
reader is also referred to Sec. 4.3.1, where the boundary approximation accuracy is studied.
Furthermore, in Sec. 6.3.3 it is found that especially the symmetry boundary needs a higher
particle distribution density in order to achieve an accurate stress field at the boundary.

3.3 Details of a MLS implementation

Generally, there are three major differences between a MLS-based meshfree method and
FEM. Firstly, the problem formulation is implemented in global coordinates, i.e. the ap-
proximation of the solution function u” (x) is expressed in global coordinates. Secondly, the
numerical integration over the problem domain €2 provides at each integration point not only
entries of the discrete equation system that are related to direct neighbour particles of this
integration point, but also to neighbour particles which are more distant. This is as each
particle usually does not only influence its direct neighbour particles which may be seen as
its first layer of surrounding particles, but also its second and sometimes even its third layer.
Thirdly, the essential boundary conditions cannot be imposed as easily as in FEM. This is
clear recalling that meshfree interpolation functions (Eq. 3.5) do not fulfill the Kronecker
Delta condition

N] (XJ) ?é (SIJ (344)
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unless the weight functions are singular at the particles. Therefore, the particle parameters
uy are not equal to its degrees of freedom. It was proposed by Lancaster and Salkaukas
(1981) to avoid this dilemma making use of singular weight functions so that the MLS shape
functions are interpolating at the boundary particles. In practise however, it was discovered
that the approximation convergence was rather poor (Cheng and Wang 2000).

The basic procedure computing the discrete equation system is comparable between
MLS-based meshfree method and FEM. In the following sub-sections implementational issues
will be addressed such as the numerical integration and the essential boundary condition
enforcement. Notes on the parallelization of the meshfree code which enables it to be run
on a distributed memory architecture supercomputer are given in App. B.

3.3.1 Numerical integration

In opposition to meshfree methods which utilize a point collocation approach, most meshfree
Galerkin methods such as DEM, EFGM, RKPM, hp-cloud, PUM and NEM can not be called
truly meshfree, because of their need for a background mesh or background cells to perform
the numerical integration over the problem domain. In particular, if the geometry within
these cells is separately approximated e.g. by FEM approximants so that in case of the Gauss
quadrature the integration point coordinates and weights can be determined, the meshfree
method is not purely meshfree anymore. Therefore, some authors considered methods which
do not require an extra background mesh such as LBIE (Atluri and Zhu, 2000a), MLPG
(Atluri and Zhu, 2000b) and the finite sphere method (De and Bathe, 2000), where the
numerical integration is applied on the particle support patches. Alternatively, the use of a
particle integration scheme (Beissel and Belytschko 1996; Chen et al. 2001; De and Bathe
2001) frees the meshfree method from an underlying grid. However, none of these methods
can be seen as ultima ratio which will be addressed in the following.

Three numerical integration schemes can be distinguished which are commonly applied.

3.3.1.1 Gauss-Legendre quadrature

Before alternative integration methods will be described, the Gauss-Legendre quadrature and
its implications, when applied to meshfree methods, is outlined. Note that the majority of
meshfree methods use the Gauss-Legendre quadrature to integrate over the problem domain.
For this, a background mesh is laid over the domain and the quadrature has to be performed
separately within each cell. That is, a suitable grid has to be found which usually covers the
domain exactly. Furthermore, the integration points and their weights have to be determined.
If the background grid is taken to be a FEM mesh, simple finite element shape functions
can be utilized to approximate the geometry and to obtain coordinates and weights of the
integration points. In case of a problem given in the Lagrangian form the approximation of
the geometry via FEM is not a serious drawback. However, this integration scheme causes,
especially applied to MLS-based meshfree methods, integration errors which lead to a reduced
accuracy of the solution. Breitkopf and his co-corkers (2002) as well as De and Bathe (2000)
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found that this were due to the non-polynomial character of the meshless approximants.
Dolbow and Belytschko (1999) though made the misalignment between particle support
zones and integration cells responsible for reduced numerical integration accuracy. Especially
the spherical particle influence zone was claimed to be disadvantageous. Therefore, they
proposed a so-called bounding box technique to match particle support with background
mesh and so to improve the performance of the integration.

3.3.1.2 Gauss-Chebyshev quadrature

As mentioned above the rational character of the MLS-type shape functions suggests the
use of a more suitable numerical integration scheme. In case of the finite sphere method
the lens shaped integration cell was the cause of a further deterioration of integration ac-
curacy (De and Bathe 2001). Therefore, the authors proposed the usage of the so-called
Gauss-Chebyshev quadrature, where in contrast to the Gauss-Legendre quadrature the use of
spherical coordinates allows to determine the integration coordinates and weights exactly.
However, this approach necessitated a by far larger number of integration points than needed
by the Gauss-Legendre quadrature.

3.3.1.3 Particle integration

Another possibility to become independent of a background grid is the particle integration.
A major benefit of this integration scheme is that no computing time has to be invested
in mesh generation and distribution of the integration points. Furthermore, when plotting
the solution at the particles, the MLS shape functions and their derivatives have to be
only calculated at particles, whereas in case of the Gauss quadrature also at the quadrature
points. However, the particle integration usually causes oscillatory modes, because of under-
integration and vanishing shape function derivatives at the particles.

Therefore, Beisel and Belytschko (1996) added to the problem functional a stabilization
term which involved the second order derivatives of the shape functions. Nevertheless, it was
stated that the particle arrangement was still a delicate matter in order to prevent spurious
modes. Additionally, a hybrid formulation was proposed which should further stabilize the
particle integration.

Chen and his co-workers (2001) made use of a Voronoi diagram, where the particles were
placed in the center of each Voronoi cell. The strain at particles was then replaced by a
divergence counterpart of its spatial average within each cell. By this, the resulting formu-
lation did not involve shape function derivatives anymore and numerical instability due to
vanishing shape function derivatives at particles was hoped to be cured. The computation of
assumed particle strain needed the evaluation of the integral over the Voronoi cell boundary.

Randles et al. (1999) proposed to use another set of points additional to the existing
the particle distribution. One set was used for the discretization of velocity and another
set for stress and the velocity gradient. Thus, the derivatives of the approximants had not
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to be computed at the particles which substantially reduced the oscillating behaviour and
improved so the accuracy of the solution.

3.3.1.4 Summary

The majority of meshfree methods make use of the Gauss-Legendre quadrature which, how-
ever, involves the use of a background grid so that these methods can not be truly called
meshfree. Furthermore, MLS-based meshfree methods are additionally subjected to integra-
tion errors due to the non-polynomial character of the shape functions and the misalignment
between particle support zones and integration cells. Some researchers have tried to utilize
a particle integration instead of Gauss-Legendre quadrature. However, spurious modes, due
to vanishing shape function derivations and under-integration, are still an issue and need
further investigations.

In this work a particle integration scheme is tested on the mixed variational formulation
(Eq. 7.13) outlined in Sec. 7.2. As this formulation is enriched with second order derivatives
of the displacement and stress fields, the vanishing first order shape function derivatives
are hoped to be balanced out by the non-vanishing second order derivatives. However, the
lacking approximation accuracy prevents in case of the Gauss-Legendre quadrature as well
as the particle integration the use of this variational formulation for modelling purpose. For
more details the reader is referred to Sec. 7.2. Therefore, the meshfree code which is part of
this work solely relies on the Gauss-Legendre quadrature due to the lack of real alternatives.

3.3.2 Enforcement of essential boundary conditions

The enforcement of essential boundary conditions is surely the most critical issue in MLS-
based meshfree methods. We recall that the MLS approximation functions (Eq. 3.5) do not
meet the so-called Kronecker Delta condition Ny (x;) # d;; which has as consequence that
the particle parameters u; in (Eq. 3.3) are not equal to the particles degrees of freedom, i.e.
u (x7) # ur. Therefore, the traditional boundary collocation method, which serves very well
in FEM, can not be applied to MLS-based meshfree methods.

Now, there are basically four techniques to deal with the imposition of essential boundary
conditions which will be addressed in the following.

3.3.2.1 Modified boundary collocation method

The modified boundary collocation method (Wagner and Liu 2000) was based on the tradi-
tional boundary collocation method, where the essential boundary conditions were exactly
enforced only at the particles which are part of the boundary. In the following, a brief in-
troduction on the traditional collocation method will help to illustrate its differences to the
modified version.
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Let a boundary value problem be defined on a domain 2 € R® with boundary 92
Lu(x)=1f(x), x € (3.45)
u(x) =1u(x), x € 0p, (3.46)

where L is second order differential operator and 0€2p C 0€2 denotes the Dirichlet boundary,
where essential boundary conditions are applied. Eq. 3.45 is the so-called strong form of
the boundary value problem. The multiplication with a weight function w (x) and partial
integration leads to the so-called weak form of the problem

a(w (%), u(x))p, 0 = (W) f(X),q@ - (3.47)
where w(x) is arbitrary in {2 and it is assumed

w(x) =0, x € 092 . (3.48)
Now let a particle distribution D be defined as follows

D:={x/|x,€Q}, (3.49)

and A C D be the set of particles which support a point x. Then the solution function u(x)
and the weight function w(x) can be approximated with the help of a set of shape functions
N; (x) and corresponding particle degrees of freedoms d; and ¢y, respectively

u" (x) =Y N;(x)d;=N(x)d (3.50)
wh (x) =) N;(x)e;=N(x)c. (3.51)

In FEM, the traditional collocation method is usually applied on the weak form of the
problem (Eq. 3.47) and the following expressions can be distinguished

c-r=0 (weighted residual vector), (3.52)
r=Kd —f (residual vector), (3.53)
K=a(N(x),N(x)) (stiffness matrix), (3.54)

f=(N(z),f(x)) (force vector). (3.55)
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The elaborations outlined in the following consider the essential boundary conditions for
each coordinate direction separately as they usually vary with the coordinate directions.
Since the total number of particles n is the summation of the number of Dirichlet boundary
particles n, € 0€2p and the number of particles being placed on the Neumann boundary as
well as in the interior domain n,, € Q = Q\ Qp

n="ny+ Npp, (3.56)

vectors d, ¢ and r are separated into two parts according to entries which are related to
particles on 0{2p and entries which correspond to particles in €2

a—l @ ! o 3.57
o A T el R (3.57)

In a similar fashion the stiffness matrix K, the force vector f and the shape function ordi-
nates of the boundary particles N of all particles that support those boundary particles are
modified

Fy
K={Ky, Kn}, F = -

}a N:{NbaNnb} : (358)
nb

In order to enforce the essential boundary conditions we consider a vector b of size n, with
its elements defined by

b[ (XI) = Z NJ (X[) dJ - ’l) (X[) (359)

JEA

and take into account that its elements need to be zero so that boundary conditions u (x7) =
@ (x7) at the corresponding boundary particles Py are fulfilled. Now, all rows of the discrete
equation system (Eq. 3.53) which are related to a boundary particle degree of freedom having
an essential boundary condition applied are replaced by the corresponding elements of vector
b and the weak form (Eq. 3.52) can be written as

Cp b
(21} o

In FEM, it is furthermore admissible to modify the vectors which contain the particle degrees
of freedom for the solution function d and the weight function c as follows

d= u = 0 3.61
_{dm}, c_{cm}. (3.61)
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That is, the approximation of the solution function u"(x;) at boundary particles P; € 9Qp
equals the corresponding particle degrees of freedom d; so that with Eq. 3.59 these degrees of
freedom can be replaced with the corresponding essential boundary conditions. Recalling Eq.
3.48 the weight function is assumed to vanish at these boundary particles which is achieved
by simply setting

c,=0. (3.62)

This simplification however, does not apply to MLS-based meshfree methods, because the
approximation functions do not fulfill the Kronecker Delta condition.

In order to overcome this problem Wagner and Liu have modified the traditional collo-
cation method which is described in the following. Let us recall the approximation of the
weight function (Eq. 3.51) and write with (Eq. 3.57) an equation system which contains the
approximation of the weight function at all particles x; € €2

h _ Wy | Ne(xr) N (xs) ¢ | _
et = L3 N o H o)
le o)1c)
= , ITeA. (3.63)
C D Cnb

Now elements w’, were replaced by the particle degrees of freedom c,,;, which led to

co [ AB “ Lo 3.64
C_{Cnb}_{o I}{Cnb}_ © ()

where I is the identity matrix of size n,; X nn,. Now the weak form of our differential problem
(Eq. 3.60) could be written as

{ C } (N_1> Pl (3.65)

~ ~ T
Cnb (N_l) rnb

The inverse of N was expressed by

-, [ At A'B N AahH" o
N _{ . } (N ) _{_BT(Al)T 1}. (3.66)

In the same way it was dealt with the approximation of the solution function u" (x)

dnb 0 1 dnb
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and Eq. (3.65) was transferred to the following form

{ & } (N1) NN -a
. , , »=0. (3.68)
(N*l) KNfla_(Nfl) £

Similar to the traditional collocation method the modified particles degrees of freedom dj
which correspond to boundary particles P; € {2p could be replaced by the corresponding
essential boundary conditions and, assuming that the weight function w" (x) vanished on
0€p, it held €, = 0. Consequently, Eq. (3.67) and Eq. (3.63) were modified as follows

d= o T 3.69
“Va, [ ¢ = o [ (3.69)

The essential boundary conditions were enforced by incorporating the relations (Eq. 3.69)
into the modified discrete equation system (Eq. 3.68). After solving this final modified dis-
crete linear equation system the real particle parameter vector d could be finally determined
by

d=N"14. (3.70)

Note that the entire algorithm must be applied for each coordinate direction separately.

The procedure appears to be very straightforward as the essential boundary conditions
can be directly enforced, after the discrete equation system has been modified. However, the
implementation is very involved. Firstly, in order to avoid large scale matrix multiplications
those parts of the discrete equation system, which have to be modified, must be determined
beforehand. This requires an elaborate algorithm as the boundary particles only interact
with certain particles in their vicinity and correspondingly, the majority of the discrete
equation system is not affected. Secondly, a sparse storage scheme is usually applied to the
coefficient matrix so that only its band structure is considered. After the modification of
the coefficient matrix some elements of the original matrix which happen to be zero become
non-zero in the modified matrix. This fact must be taken into account, when the structure
of the sparse storage scheme is initially ascertained.

Another issue is that during the transformation of the discrete equation system the
original coefficient matrix and the modified one must be kept allocated at the same time.
Thus, already medium size problems can exceed the memory limits of a single workstation.
Furthermore, despite the fact that the boundary condition enforcement is precise at the
boundary particles, it is not on the Dirichlet boundary as a whole. This is due to the
characteristic of MLS-based meshfree methods that the boundary conditions are literally
enforced only on the boundary particles, but not between them. In case of the Gauss
quadrature however, the integration points are distributed between the boundary particles,
where the boundary conditions are not exactly enforced. Whereas the finite element method
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can fulfill constant essential boundary conditions exactly on the entire Dirichlet boundary,
this is not the case for meshfree methods using the modified boundary collocation method.
Especially for a curved boundary a sufficiently dense particle distribution on the boundary
must be ensured in order to provide an accurate solution on the boundary and consequently
for the whole domain.

This method is implemented in the meshfree code which is part of this research project.
Despite its deficiencies the method was found to be numerically very stable.

3.3.2.2 Penalty method

Using the penalty method is probably the easiest way to impose the essential boundary con-
ditions (Belytschko et al. 1994a; Liu and Chen 2001). It results in a banded and positive
definite coefficient matrix of the discrete equation system. The boundary enforcement accu-
racy corresponds to the magnitude of the penalty parameter, which, accordingly, has to be
set to a fairly high value. However, the solution is significantly dependent on the value of
the penalty parameter considering that the penalizing physically represents the stiffness of
fictional springs enforcing the constraints. If the essential boundary conditions affect large
parts of boundary, the problem can become unsolvable as the penalty treatment basically
replaces parts of the coefficient matrix of the discrete equation system by values of very
high magnitude which are not related to the initial formulation which describes the physical
state of the body under consideration. Particularly in MLS-based meshfree methods the af-
fected parts of the coefficient matrix are much larger than in FEM due to the larger particle
support.

3.3.2.3 Lagrange multiplier method

An alternative is the Lagrange-multiplier-method which introduces to the problem another
unknown field the so-called Lagrange multipliers (Belytschko et al. 1994b; Chen et al. 1997;
Ventura 2002). Even if the implementation of this method is not complicated and a very
high boundary condition fulfillment accuracy can be achieved, it has to deal with two main
disadvantages. Firstly, the problem size is increased as it contains a further unknown field
and secondly, the coefficient matrix of the discrete equation system is neither positive definite
nor banded. This procedure is therefore not suitable for larger problems. These drawbacks
can be partly avoided, if the Lagrange multipliers can be identified with a physical quantity
corresponding to constraint reaction resultant. This leads to a modified variational prin-
ciple (Lu et al. 1994) which holds the benefit that the coefficient matrix of the discrete
equations system is banded. However, the boundary enforcement accuracy is significantly
less compared to the original Lagrange multiplier method. The authors mentioned that an
increase of the particle distribution near to Dirichlet boundary could enhance the imposi-
tion of essential boundary conditions. Nevertheless, the presented examples only consider
linear geometry and material, whereas non-linearity requires higher accuracy to achieve a
reasonable convergence rate.
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3.3.2.4 Stabilized modified variational principle

The lacking boundary enforcement accuracy of the kind of modified variational principle
addressed in the previous section can be improved, if a penalty term is added (Nitsche 1970-
1971). The stabilized modified variational principle holds the benefit that the coefficient
matrix is not as much manipulated as in case of the penalty method, because the penalty
term only serves for stabilizing purpose and so the magnitude of the penalty parameter can
be set lower than in case of the penalty method. Nevertheless, the stabilization term ensures
that the coefficient matrix is not ill-conditioned.

Related to this approach is the so-called augmented Lagrangian method (Hestens 1990;
Powell 1969) which was initially proposed in order to improve the Lagrange multiplier method
by avoiding an ill-conditioned discrete equation system and so ensuring a higher convergence
rate.

In Sec. 4.1 a modified variational formulation is developed which is based on Nitsche’s
formulation. Note however, that Nitsche’s formulation only considered linearity, whereas the
approach derived in this thesis involves non-linearity in geometry and material. In fact, the
non-linearities prove to be very significant in the application of the proposed method.

In Sec. 4.2 a new technique is proposed which allows to stabilize the modified variational
principle introduced in the previous section in a flexible and adaptive way.

3.3.2.5 Hybrid FEM-meshfree method

Another possibility to impose the essential boundary conditions is to combine a MLS-based
meshfree method and FEM in such a way that the domain boundary consists of a layer
of finite elements and the interior domain of a meshfree particle distribution. As already
mentioned in the paragraph on the traditional boundary collocation method, the bound-
ary condition enforcement in FEM is easily achieved and the advantages of the meshfree
approximation is maintained for the interior domain (Krongauz and Belytschko 1996).
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