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Abstract

In recent years, current engineering technology lead to a renewed interest in generalized
continuum theories. In particular, generalized continua are able to address fundamental
physical phenomena which are related to the underlying microstructure of the material.
Specifically scale-effects are of special interest.

In this work a generalized deformation formulation is developed which allows to incor-
porate material information from the microscopic and the macroscopic space into an unified
constitutive model. The approach is based on a theory developed by Sansour (1998) which
was originated in theoretical considerations of Ericksen and Truesdell (1957) and later on
Eringen and his co-workers (Eringen 1999). The basic idea is to construct a generalized
continuum consisting of macro- and micro-continuum and subsequently to compose the gen-
eralized deformation by a macro- and micro-component. This procedure results in a gen-
eralized problem formulation. Furthermore, new strain measures as well as corresponding
field equations can be identified. Here, it is assumed that the deformation field can only
be varied within the macro-continuum so that the balance equations are established for the
macro-space. The constitutive law is defined at the microscopic level and the geometrical
specification of the micro-continuum is the only material input which goes beyond those
needed in a classical description.

A special detail of this approach is that it involves first order strain gradients which are
expressed by second order derivatives of the displacement field. It allows to address relative
motion between micro- and macro-space without adding extra degrees of freedom. In order
to model this formulation this work makes use of a meshfree method based on moving least
squares (MLS) which is able to provide the required higher order continuity (Lancaster and
Salkauskas 1981).

Examples of meshfree methods are the diffuse element method (Nayroles, Touzot, and
Villon 1992), the element-free Galerkin method (Belytschko, Lu and Gu 1994), the repro-
ducing kernel particle method (Liu and Chen, 1995), the partition of unity method (Melenk
and Babuska 1997) and the hp-cloud method (Duarte and Oden 1996), just to name a few.
It was demonstrated that these kind of methods can deal especially well with problems
which are characterized by large deformation or changing domain geometry. The potential
in modelling formulations involving higher order derivatives has not been widely recognized
yet, with the exception of a few one- respectively two-dimensional case studies (Tang et al.,
2003).

This work now aims to illustrate the excellent applicability of the proposed generalized
deformation formulation in combination with MLS by modelling elastic and plastic problems
which are proven to exhibit size-scale effects (Yang and Lakes 1981; Fleck et al. 1994; Aifantis
1999; Lam et al. 2003). Furthermore, a large-scale case study on underground excavation
design reveals the potential and adaptivity of this theory with respect to heterogeneous
material such as rock.
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XII Notation and list of symbols

Notation and list of symbols

In the following the general scheme of notation and list of frequently used symbols are
assembled:

- roman lower-case bold-face letters denote vectors
A roman upper-case bold-face letters denote tensors
a;,A;...... partial derivatives of a vector or tensor quantity are denoted by sub-

scripted primed indices

Ao calligraphic upper-case letter denote sets
E@3) ........ three-dimensional Fuclidian vector space
R........... set of real numbers

= definition of equivalence

Grad ........ gradient operator with respect to the reference configuration
Div ......... divergence operator with respect to the reference configuration
det () ....... determinant of (-)

Further notations are explained as they appear in the thesis. The used operations and
relations of tensor calculus are specified in App. D.
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