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Abstract 14

ABSTRACT

Regional exploration in the Barrow Sub-basin has dominantly focused on
structural traps in the Top Barrow Group. A lack of recent discoveries has
focused attention more towards the economic potential of the Early Cretaceous
intra-Barrow Group plays. The aim of this study was to interpret the seismic
sequence stratigraphy and depositional history of the intra-Barrow Group within
the Barrow Sub-basin, with emphasis on the identification of stratigraphic traps
and potential locations of economic seal/reservoir couplets within the study area.

The study area lies south of Barrow Island, and contains the topsets, foresets
and toesets of the ‘Barrow delta’, which are an amalgamation of Mesozoic sand-
prone fluvial, coastal deltaic and deepwater successions. The final stages of the
break-up of Gondwana impacted on the structural development of the Barrow
Sub-basin, when a large shelf-margin fluvial/deltaic system built out toward the
north to northeast, contributing to northerly shelf margin accretion, with large-
scale clinoform features and associated depositional environments.

The dataset comprises the Flinders 3D seismic survey 1267 km? and 35 well
logs. Eleven seismic sequences are identified and a seismic sequence
stratigraphic framework tied to the wells has been developed, via detailed
sequence stratigraphic mapping, integrated with 3D visualisation techniques with
the use of Petrel. These eleven second-order sequences are further subdivided
into lowstand, transgressive and highstand systems tracts. The movement of the
palaeo-shelf break, slope and base of slope can be traced throughout each
sequence, displaying an overall trend of building out in a north to northeast
direction. A series of palaeo-geographic maps for each sequence has been
developed to illustrate the basin’s evolution. The seismic sequences identified
display progradation, followed by aggradation, then downstepping, concluding
with progradation and aggradation.

A high-resolution sequence stratigraphic study of Seismic Sequence 1 showed
that several higher-order sequences can be identified, including numerous
lowstand systems wedges, along with associated channel features, which could
be targeted as new plays. The sequence stratigraphic framework developed,
palaeo-geographic reconstructions and all other interpretations made for this
project have been integrated to assess the prospectivity of the intra-Barrow
Group over the study area, resulting in the identification of a number of leads and
prospectivity summaries for each of the 11 Seismic Sequences identified within
the intra-Barrow Group.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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1.0 INTRODUCTION

1.1 RATIONALE

The Barrow Sub-basin has been a key area for exploration since 1962 and
includes the largest onshore oilfield discovery in Australia namely Barrow Island
discovered in 1964. The Barrow Sub-basin covers an area both onshore and
offshore and spans some 15,000 km? (Figure 1.1) (Baillie and Jacobson, 1997).
The Barrow Sub-basin is a major hydrocarbon province in Australia and has
produced oil, condensate and natural gas from a large number of discoveries
since the early 1960s. The bulk of discoveries have been in structural traps at
the top Barrow Group level. These discoveries are now either nearing the end of

their producing life or have been entirely exhausted.

This project looks in detail at the intra-Barrow Group succession. Minor and
major oil and gas shows have previously been identified throughout this
succession, such as at South Pepper-1. However, due to the smaller field sizes
discovered within the Barrow Sub-basin recently, few discoveries have been
made commercial. Consequently, the rationale for this project is to examine the
hydrocarbon prospectivity that may be present in the intra-Barrow Group. An
improved understanding of this succession may contribute to future exploration
programs within the Barrow Sub-basin. Extensive work has been carried out in

the past to identify obvious structural traps within the study area. This project will
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discuss the identification of new play types in the study area through the use of

sequence stratigraphy, especially in the form of stratigraphic traps.

1.2 AIMS AND OBJECTIVES

The aim of this project is to locate potential stratigraphic plays within the intra-
Barrow Group succession, based on 3D seismic stratigraphic analysis. The
integration of all available data, including the 3D seismic dataset, well logs,
palynology data, core and cuttings descriptions, will aid the objective of creating
a seismic sequence stratigraphic framework over the study area. Additional
steps in this process include outlining a depositional model for the intra-Barrow
Group, thus creating a predictive tool for hydrocarbon prospectivity within the
study area. A subsequent deliberate search through the 3D seismic survey may
result in the location of new hydrocarbon prospects (both stratigraphic and

structural).

The main objectives of this study, within the interval of interest over the study

area, are to:

e Review all available data and previous interpretations.

¢ Identify significant seismic-based sequence boundaries within the intra-

Barrow Group succession.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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e Develop a seismic sequence stratigraphic framework for the intra-Barrow
Group succession.

e Develop a depositional model illustrated in schematic palaeogeographic
reconstructions for each interval.

e Provide a quick-look high resolution sequence stratigraphy study for
Seismic Sequence 1.

e Integrate the seismic sequence stratigraphic framework developed into the
hydrocarbon prospectivity evaluation and explanation.

e Evaluate the hydrocarbon prospectivity of the interval of interest (intra-

Barrow Group) in the study area.

1.3 STUDY AREA

The study area is located in the Barrow Sub-basin and focuses on the area
covered by the Flinders 3D survey area (Figure 1.2). It is located entirely
offshore, just south of Barrow Island (Figure 1.2). The study area covers
approximately 1,267 km? and extends over the petroleum production and
exploration licenses; TP/7 (Parts 1-4), TL/2 and parts of EP 364 and EP 409.
Apache Energy Australia, Santos, Tap Oil and Pan Pacific Petroleum presently

have equity within some or all of these permits (June 2007).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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2.0 GEOLOGIC SETTING

2.1 INTRODUCTION

The Northwest Shelf of Australia encompasses the offshore and marginal coastal
areas of the northwest part of Australia, including four basins: the Northern
Carnarvon, Offshore Canning, Browse and Bonaparte basins (Figure 2.1)
(Hocking, 1990). The Northwest Shelf has been involved in a number of
continental rifting periods. This has been characterized by shifts in the location
of rifts, failure of rifts, and changes in the direction of stress. These rifts are
associated with Cambrian age separation of Australia from Chinese continental
blocks forming the paleo-Tethys Ocean (Baillie and others, 1994), and
Carboniferous to Permian age separation of China-Burma-Malay-Sumatra

continental blocks forming the neo-Tethys Ocean (Veevers, 1974).

The Northern Carnarvon Basin is located at the southern extreme of the
Northwest Shelf and was developed by rifting during the Jurassic to earliest
Cretaceous times (Etheridge & O’Brien, 1994). The Northern Carnarvon Basin is
375,000 km? and contains up to 15 km of Mesozoic sedimentary rocks. The
main structural subdivisions of the Northern Carnarvon Basin are dominated by a
southwest-trending set of troughs and include the Exmouth, Barrow, Dampier
and Beagle Sub-basins, and the Rankin Platform and Exmouth Plateau (Figure

1.1) (Hocking, 1988). Water depths are generally less than 200 m, with a gentle
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seabed that slopes to the NW. Numerous islands in the area provide excellent
locations for production facilities such as those found at Barrow and Varanus

Islands (Ferdinando, 2004).

2.2 TECTONIC EVOLUTION

The evolution of the Northern Carnarvon Basin commenced in the Late
Palaeozoic (Figure 2.2). Key phases in its evolution include extension, which
terminated in the late Permian, and three main post-Permian phases (Veevers et
al., 1991) (Figure 2.2). The evolution during post-Permian time can be divided
into a Triassic pre-rift phase, a syn-rift continental break-up phase and a post-rift
(thermal sag) phase (Westphal & Aigner, 1997) (Figure 2.2). The major structural
elements of the Northern Carnarvon Basin include major basin faults trending

north or northeast which define a series of structural highs (Hocking, 1988).

The key stages identified in the tectonic evolution of the Northern Carnarvon

Basin have been divided into four parts:

1. The first phase occurred from the Silurian to Permian and developed as a

series of intracratonic basins during the break-up of Gondwana along the

western margin of Australia (Hocking, 1988).
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2. The second phase occurred during Early Jurassic extension, which
initiated four main depocentres; the Exmouth, Barrow, Dampier and

Beagle sub-basins (Hocking, 1988).

3. A third extensional phase in the Middle Jurassic resulted in seafloor

spreading in the Argo Abyssal Plain to the north (Hocking, 1988).

4. The fourth (Tithonian to Valanginian) rifting phase culminated in the
creation of the Gascoyne-Cuvier abyssal plains to the west and south.
This was followed by the formation of the Exmouth Plateau in response to

thermal sag after the Valanginian break-up (Hocking, 1988).

2.3 BARROW SUB-BASIN EVOLUTION

The Barrow Sub-basin is an elongate trough situated on the northwestern margin
of the Australian continent, within the Northern Carnarvon Basin, and is classified
as a rift basin (Figure 2.2 & 2.3) (Ehrhard et al., 1992). The sub-basin covers an
area of approximately 15,000 km? and is bounded on the west by the Triassic
horsts of the southern Rankin Platform and on the east and south by the faulted
edge of the Peedamullah Shelf (Bradshaw et al., 1994). Sediments range in age
from Permian to recent and are up to 15,000 m thick in some sections of the sub-

basin (Figure 2.3) (Thomas & Smith, 1976). The sub-basin is located entirely
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offshore, although some Tertiary sediments crop out on a number of islands,

including Barrow Island.

2.3.1 TECTONIC EVOLUTION OF THE BARROW SUB-BASIN

The development of the Barrow Sub-basin commenced in the Palaeozoic and is
largely a result of Late Triassic to Early Jurassic rifting between Australia and the
Greater India/Western Burma Block break-up of eastern Gondwanaland (Baillie
and Jacobson, 1997) (Figure 2.2). In the Middle Jurassic, continental break-up
occurred west of the Exmouth Plateau and rifting ceased in the Barrow Sub-
basin (Boote & Kirk, 1989). The structural traps present in the Barrow Sub-basin
are due to extensional events in the Middle to Late Jurassic and Early
Cretaceous, Late Cretaceous inversion and Miocene compression (Ehrhard et

al., 1992).

2.3.2 MAIN STRUCTURAL ELEMENTS OF THE BARROW SUB-

BASIN

The Barrow Sub-basin is an elongate, north-northeast to south-southwest
trending offshore basin which is bound to the west by horst blocks, to the south
by the Rankin Platform and to the east by the faulted edge of the Peedamullah
Shelf (Tait, 1985). The major structural elements include the Flinders Fault

System which defines the eastern limits of the basin and the east-west trending

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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Long Island Fault System which delineates the southern margin of the basin

(Figure 2.4).

Normal faults, representing the dominant fault style, occur in the eastern part of
the Barrow Sub-basin. In areas such as the South Pepper discovery and Barrow
Island, faulting is oblique or sub-parallel to the regional trend (Figure 2.4). These
en-echelon faults are normal faults with minor reverse components. Other
regional structural styles present in the Barrow Sub-basin include anticlinal and
synclinal structures that trend northeast to southwest. These trends, such as the
Barrow Island anticlinal trend, form prominent, elongate, arched anticlines in the
north and south of the sub-basin and are partially fault-bounded (Kospen &
McGann, 1985). These anticlinal features form the predominant structural

trapping style in the basin.

2.3.3 STRATIGRAPHY OF THE BARROW SUB-BASIN

The Palaeozoic to Cainozoic Barrow Sub-basin is a deep, synclinal graben that
formed a depocentre during the Mesozoic to Cainozoic (Polomka & Lemon,
1996). Strata at the deepest part of the basin are over 10 km thick, while on the
shallower faulted terraces, the stratigraphy is up to 5 km thick (Parry & Smith,

1988) (Figure 2.5).
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2.33.1 Pre-Mesozoic

The Palaeozoic succession present in the Northern Carnarvon Basin is poorly
understood due to the sparse number of wells drilled through this succession.
Thick, rhythmic, parallel-bedded seismic reflectors have been identified and
correspond to this era. These beds typically comprise marine shelfal sediments

and are therefore possible source rocks (Kospen & McGann, 1985).

2.3.3.2 Triassic

The Triassic succession was initially deposited during a transgression, followed
by a regression (Jablonski, 1997). The lower Locker Shale interval was
deposited mid-transgression and resulted in widespread deposition of thick
claystone (Figure 2.5). The upper Triassic consists of regressive fluvio-deltaic
sediments and coal of the Mungaroo Formation (Longley et al., 2002) (Figure

2.5).

2.3.3.3 Jurassic

Key formations forming the Jurassic succession include the Brigadier Formation,
Murat Siltstone, North Ranking Formation, Athol Formation, Legendre Formation,

Dingo Claystone, Angel Formation and Dupuy Formation (Figure 2.5). During

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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the Hettangian, the North Rankin Formation, a widespread sandstone, was
deposited as a succession of nearshore/shoreline facies (Jablonski, 1997)
(Figure 2.5). A widespread transgression during the Sinemurian time led to the
deposition of the think marine Dingo Claystone (Bradshaw et al., 1988) (Figure
2.4). Marine claystone deposition continued until the Tithonian with marine
sandstone units such as the Dupuy Sandstone being deposited locally (Longley

et al., 2002) (Figure 2.5).

2.3.3.4 Cretaceous

The Cretaceous succession overlies the Dupuy Formation and Dingo Claystone
(Figure 2.5). The deposition of the thick clastic sequence of the Barrow Group
occurred in the Early Cretaceous (Figure 2.5) (Wiseman, 1979). Followed by a
major transgression during the late Valanginian that led to the widespread
deposition of a marine claystone unit called the Muderong Shale (Bradshaw et
al., 1988) (Figure 2.5). The Birdrong Sandstone and Mardie Greensand units are
found at the base of the Muderong Shale (Figure 2.5) and are thought to have
been deposited in a littoral to sublittoral environment (Arditto, 1993). At the top of
the Muderong Shale, the Windalia Sandstone Member was deposited and
possibly represents a minor regressive phase (Longley et al., 2002) (Figure 2.5).
During the middle to late Cretaceous, the deposition of the Gearle Siltstone and

Haycock Marl occurred, followed by the deepening of seas and eventual

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King



Geologic Setting 25

deposition of fine-grained carbonates and argillaceous calcilutite, calcarenite and

marl (Longley et al., 2002) (Figure 2.5).

2.3.35 Tertiary

During the Tertiary, carbonate sedimentation in shallow seas was dominant
(Mollan et al.,, 1969). Members include the Walcott Formation, Giralia
Calcarenite and Mandu Calcarenite, as well as several others (Longley et al.,

2002) (Figure 2.5).

2.3.4 BARROW GROUP STRATIGRAPHY

The Barrow Group is the main formation of interest for this study, in particular the
intra-Barrow Group (Figure 2.6 & 2.7). The Barrow Group was deposited over
the entire Barrow Sub-basin and across a large part of the Exmouth Plateau
during the Early Cretaceous (Barber, 1994). The Barrow Group is interpreted as
a prograding shelf complex, which built north from the Cape Range area into the
Exmouth and Barrow Sub-basins (Tait, 1985). Its provenance was the northern
Gascoyne Sub-basin and, to a lesser extent, the Pilbara Block and Hammersley
Basin (Hocking, 1988). The subaerial part of the Barrow Group covered at least

50,000 km? (Tait, 1985). The approximate time span for the Barrow Group is 8

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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million years (Tait, 1985). Seismic displays continental slope dips between 2 and

5 degrees once structural dips are removed (Tait, 1985).

Through time, the Barrow Group has been sub-divided and given numerous
names (Figure 2.7). The most accepted is the division of the Barrow Group into
two seismically evident lithostratigraphic units comprising the Flacourt Formation
(topset and foreset facies) and the Malouet Formation (bottomset facies) (Figure
2.7) (Tait, 1985). Western Mining Co. Ltd. adopted an informal four-fold division
of the Barrow Group (Units A, B, C and D) based on lithology and interpreted

depositional environment (Figure 2.7) (Williams & Poyton, 1985).

The Barrow Group is a coarsening-upward sequence, from interbedded siltstone
and sandstone, in the Malouet Formation, to sandstone with minor siltstone, in
the Flacourt Formation (Eriyagama et al., 1988). The two formations are
distinguished by different seismic reflection signatures: the Malouet Formation
consists of horizontal reflections (bottomsets), and the Flacourt Formation
consists of inclined, progradational reflections (topsets and foresets) (Eriyagama
et al., 1988). For this study, reference is made to the intra- and lower-Barrow
Group, which encompasses part of/or entirely, the bottomsets, foresets and
topsets of the Barrrow Group succession (Figure 2.7). It is thought using this
nomenclature will lead to less confusion, due to the numerous naming

conventions previously used.
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The Barrow Group is Early Cretaceous or Berriasian in age (Figure 2.4). The
corresponding palynological zonations defined for the Berrasian in the Northern
Carnarvon Basin include the dinoflagellate zones: P. iehiense, K. wisemaniae, C.
delicata, D. lobispinosum, B. reticulatum and E. torynum (Figure 2.7) (from Helby
et al., 1987). Hooker (2005) recently re-evaluated the palynological data for a
number of wells in and nearby the study area in conjunction with this project.
From the available data, Hooker (2005) interprets the B. reticulatum
dinoflagellate zone as constituting the majority of the intra-Barrow Group (interval
of interest). Hence the majority of the intra-Barrow Group succession discussed

for this study lies within this one palynological zone.

24 EXPLORATION HISTORY

Oil was discovered in the first well drilled in the Carnarvon Basin (Rough Range
1), at the eastern edge of the Exmouth Sub-basin in 1953, but this field was too
small for commercial development. Follow-up discoveries of oil at Barrow Island
(1964) and of gas in North Tryal Rocks 1 (1971) established the Northern
Carnarvon Basin as a major hydrocarbon province (Campbell et al., 1984). After
a decline in exploration during the 1990’s, in 2001 and 2002 the level of
exploration activity in the region began to increase. As of March 2005, there
were 39 producing fields, several new fields in extension or development drilling,

and numerous undeveloped hydrocarbon accumulations (Geologic Survey of
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WA, 2005). In 2005, some 78 million barrels of oil, 38 million barrels of
condensate and 930 BCF of gas were produced from the Northern Carnarvon

Basin (Geologic Survey of WA, 2005).

The offshore part of the Northern Carnarvon Basin (Figure 1.1) is covered by a
regional and in parts detailed seismic grid. Overall three-dimensional surveying
has become a common tool in both exploration and development scenarios
(Geologic Survey of WA, 2005). The numerous oil and gas fields of the Northern
Carnarvon Basin demonstrate the petroleum potential of the region, particularly

offshore (McClure et al., 1988) (Figures 1.1 and 1.2).

Oil is produced primarily from within the Early Cretaceous Barrow Group and
Windalia Sandstone. The Barrow Group has excellent reservoir characteristics,
and Middle Miocene faulted anticlines provide structural trapping. The main
source rock for these post-break-up accumulations is considered to be the Upper
Jurassic Dingo Claystone (Zaunbrecher, 1994). The source rocks are estimated
to have the capacity to expel eight billion barrels of oil, of which just over 10 %
has been discovered within the Barrow Sub-basin to date (Geologic Survey of
WA, 2005). The sub-basin margins such as the Peedamullah Shelf, Rankin
Trend, Exmouth Gulf, and the sub-basin axes may hold the key to a major

portion of the undiscovered reserves (Geologic Survey of WA, 2005).
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During 2004, 19 exploration and 38 appraisal/development wells were drilled in
the Northern Carnarvon Basin, and a number of oil and gas discoveries were
made. The most significant of these are Harrison, Monet, Wheatstone and
Stickle. Development and appraisal drilling was undertaken on a number of
fields in the Carnarvon Basin in 2006 as numerous hydrocarbon projects in the
region commenced development. These included wells for the Exeter-Mutineer
development, in-fill drilling in the Bambra, Stag, Wanaea and Lambert fields, and
appraisal drilling on the Stybarrow, Ravansworth, Woolybutt and Scarborough
fields (Geologic Survey of WA, 2005). Overall, the Northern Carnarvon Basin is
the most prolific oil- and gas-producing basin in Australia today and dominates

Western Australia production (Geologic Survey of WA, 2005).

2.5 DATABASE

The database for the study includes the Flinders 3D seismic survey, wire-line
logs, well completion reports, palynological data, conventional core and cuttings

descriptions.

The Flinders 3D survey covers an area of approximately 1267 square kilometres
and was provided by TGS (Geophysical Company). The survey lies just south of
Barrow Island and is located entirely offshore. Some restrictions on this survey
include water depth (hence shape of survey) and islands which disrupted the

survey (holes in data). The survey was sufficient to develop a seismic sequence
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stratigraphic framework for the intra-Barrow Group and was adequate to perform

detailed high-resolution sequence stratigraphy on specific sequences.

Digital wire-line logs from 35 wells in the Barrow Sub-basin were available for this
study along with well completion reports for all 35 wells, which provided
composite logs, thin section descriptions and conventional core and cuttings
descriptions. Also, the majority of palynological data used in this thesis was
extracted from well completion reports. New palynological reviews for some six
wells within the study area were provided by Apache Energy Australia (Hooker,

2005).
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3.0 METHODOLOGY

SUMMARY OF PROJECT WORKFLOW

The methodology used for this master’s project involves first gathering all
necessary and available data applicable to the undertaking the project (Figure
3.1). This included all seismic, well and biostratigraphic data. The next step
comprised gaining a good understanding of the regional geology and previous
studies carried out for the study area (literature review). This was followed by
numerous phases of interpretation of the seismic data (Flinders 3D seismic
survey). First regional picks were interpreted (Base Cretaceous, Top Barrow
Group, Top Muderong Shale etc.). Then internal erosional truncation, downlap
and onlapping events were identified and interpreted. The result was the
interpretation of 12 seismic sequence boundaries and associated systems tracts,
leading to the development of a sequence stratigraphic framework. The
incorporation of well data, the new seismic interpretation, and sequence
stratigraphic framework for the intra-Barrow Group then led to the construction of
a number of palaeogeographic maps. This step was followed by an analysis of
the prospectivity associated within the interval of interest and included the

identification of geological analogues.
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3.1 WELL DATA

There are currently 35 wells located within or nearby the Flinders 3D survey area
(Figure 1.2 & Table 3.1). For this study, key wells intersect the specific interval of
interest (the intra- and

lower-Barrow Group sediments) and aid in the

understanding the clinoform features viewed on seismic. For all wells, well
completion reports and wireline logs were available. Gamma ray and sonic logs

were used for this study due to their sensitivity to lithology changes (Figure 3.2).

Table 3.1 Well list

AIRLIE-1 CYRANO-1 IMMORTELLE-1 PEPPER-1
ALUM-1 DILL-1 JASPER-1 RIPPLE SHOALS-1
BAY-1 DILLSON-1 LEAF-1 SALADIN-1
BASIL-1 EAST PEPPER-1 LINDSAY-1 SANTA CRUZ-1
BENNET-1 ELDER-1 MARYANNE-1 SOUTH CHERVIL-1
BLACKTHORN-1 EMPEROR-1 MOSMAN-1 SOUTH PEPPER-1
CADELL-1 FENNEL-1 NARES-1 TAUNTON-1
CHERVIL-1 HARDMAN-1 NASUTUS-1 WEST PEPPER-1
CRACKLING-1 HYSSOP-1 NORTH HERALD-1

Additional wells have been drilled within the vicinity of the study area since
commencement of this study and include Boojum-1 (intra-Barrow Group
discovery). However, the results of these wells are currently confidential to this

study.
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3.2 BIOSTRATIGRAPHY

Biostratigraphic data is available for all wells and was sourced from well
completion reports. The palynology has recently been updated by Hooker (2005)
for seven wells in the study area, including Pepper-1, South Pepper-1, Alum-1,
Chervil-1, Basil-1, South Chervil-1 and Ripple Shoals-1. The biostratigraphic data
used were dinoflagellate information for the Early Cretaceous (Figure 2.7). The
presence of dinoflagellates coincides with a siliciclastic-dominated restricted
marine to marginal-deltaic environments (Powell, 1982). The use of
biostratigraphic data, along with the 3D seismic dataset, has allowed

approximations of age and time range of deposition for each of the sequences.

3.3 SEISMIC DATA

The Flinders 3D seismic survey used in the seismic sequence stratigraphic study
was acquired by Veritas DGC Asia Pacific Ltd. using the M/V Pacific Sword from
the 6™ January 2001 to the 9" September 2001. The survey covers an area of
approximately 1267 km?, offshore Western Australia and extends over offshore
licence areas TP/7 (Parts 1-4), TL/2 and parts of EP 364 and EP 409 (Figure

1.2).
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The seismic data was processed by Veritas DGC Asia Pacific Ltd and produced
a medium to high quality dataset that was initially interpreted during the second
half of 2002 and 2003 by TGS. The data is relatively high frequency and has
high signal to noise ratio. However, data quality deteriorates significantly along
the southeastern edge of the survey, in the footwall of the Flinders Fault.
Additionally, other poor quality data areas can be attributed to the presence of

islands and shallow water depths at the edges of the survey area.

Using Hampson Russell software, a zero phase operator was applied to the
migrated dataset by TGS Nopec. After processing by TGS of the raw Flinders
3D data, a ‘zero phase’ dataset was obtained which was utilised for all the
interpretation in this study. The polarity of the data is SEG negative (i.e. a hard is

a trough and a soft event is a peak).

3.4  SEISMIC INTERPRETATION

The program used for seismic interpretation was the PC-based Schlumberger

program called Petrel (Version 2004). The package used included all available

tools for seismic interpretation. Petrel is noted for it's strong visualisation

capabilities and ability to QC all data in 3D.

The seismic interpretation of the dataset (occurred in time) included the initial

identification of major surfaces within the interval of interest. These surfaces
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include sequence boundaries, transgressive surfaces and maximum flooding
surfaces. The latter two types of surfaces tended to be harder to identify
confidently.  Sequence recognition numbering was based on sequence
boundaries. Identification of sequence boundaries throughout the succession
was chiefly seismic-based via the presence of onlapping, downlapping and
erosional truncations features viewed on seismic (Figure 3.3). Wireline log
responses were incorporated where appropriate and linked to seismic reflectors.
This method led to the identification of eleven seismic sequences within the

interval of interest.

Isochron, and time-structure maps for each interpreted sequence were then

created in Petrel. Amplitude maps were created for some sequences as well.

3.5 PROPORTIONAL SLICING

Proportional slicing was used to assit in paleogeographic reconstructions.
Proportional slicing for each interpreted seismic sequence was performed via the
use of Petrel. Individual depositional models were interpreted for each seismic
sequence. The process involved flattening on both the top and base sequence
boundaries, which defined each seismic sequence, followed by the generation of
time slices. Geologic features, such as meander channel belts, which would help

describe the depositional history of the intra-Barrow Group, were identified by
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scrolling up and down through each sequence. Comparisons were then made to

decide which time slices displayed higher clarity geologic features.

3.6 PALAEOGEOGRAPHIC RECONSTRUCTIONS

One to two schematic palaeogeographic reconstruction diagrams were
constructed for each seismic sequence identified within the interval of interest.
The basis for these maps consists of the current seismic interpretation, including
the identification of all seismic-based sequence boundaries and the mapping out
of the shelf break and base of slope over the study area during the time of
deposition. The time slices and isochron maps generated for each seismic
sequence were incorporated along with the overall sequence stratigraphic
configuration. Additionally, all key well data were integrated into the construction
of these maps, including log response and interpretation, cuttings and core

results and previous depositional environment interpretations.

3.7 HIGH RESOLUTION SEISMIC SEQUENCE STRATIGRAPHY

This study has identified eleven new seismic sequences and developed a
sequence stratigraphic framework tied to the wells. These eleven sequences
have been further subdivided into systems tracts. A number of the seismic
sequences identified display seismically resolvable, higher frequency

depositional packages. High-resolution sequence stratigraphy has been
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attempted for Seismic Sequence 1 and it has been further broken down into
numerous higher-order sequences. The quality of the seismic characteristics has
allowed for the identification and detailed mapping of the higher resolution key
surfaces and packages linked to seismic reflectors (e.g. onlapping and erosional
truncation features for Seismic Sequence 1 (as described previously in section

3.4)).

3.8 PLAY AND PROSPECTIVITY ANALYSIS

The identification of leads in the study area followed a methodology involving the
sequence stratigraphic framework and depositional history developed for the
interval of interest. The combined use of both of these aspects was applied in
the search for prospective areas, so that they could be clearly highlighted and
then rated. The search for leads in the study area was based on depositional
environments, including shelf, slope and basin-floor. Specific lowstand systems
tracts, high-resolution sequence stratigraphic and purely structural leads have

been identified.
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4.0 SEISMIC SEQUENCE STRATIGRAPHY

41 INTRODUCTION

Sequence stratigraphy is ‘the subdivision of sedimentary basin fills into genetic
packages bounded by unconformities and their correlative conformities’ (Emery &
Myers, 1996). It is used to provide a chronostratigraphic framework for the
correlation and mapping of sedimentary facies and for stratigraphic prediction.
Several geological disciplines contribute to the sequence stratigraphic approach,
including seismic stratigraphy, biostratigraphy, chronostratigraphy and
sedimentology (Posamentier & James, 1993). Many different concepts and
definitions exist for what constitutes sequence stratigraphy, including genetic
stratigraphic sequences (Galloway, 1989) (Figure 4.1), depositional episodes
(Frazier, 1974) and transgressive-regressive cycles (Embry, 1990). For this
project the sequence stratigraphic concepts will be used in the sense of
Posamentier & Vail (1988) (Figure 4.1a), who advocate the use of regional

unconformities and their correlative conformities as sequence boundaries.

4.2 HISTORY OF SEQUENCE STRATIGRAPHY

In the late 1970s, Peter R. Vail and his colleagues at Exxon Production Research

Company developed stratigraphic techniques and principles, based on time

stratigraphic rather than rock stratigraphic (lithostratigraphic) relationships, using
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multifold seismic reflection data (Vail et al., 1977). Seismic stratigraphic units
were called depositional sequences by Mitchum (1977), where the strata within
the units seemed conformable and free of any internal stratal discontinuities,
except at the maximum flooding surface which is downlapped, as illustrated in
Figure 4.1. Sequence boundaries of the units could be mapped by erosional
truncation below and onlap above. Sequences were defined as unconformity-
bounded successions, implying that a maximum marine flooding surface occurs
within the sequence. In places, this may appear to be inconsistent, where some
sequences contain multiple maximum flooding surfaces; however this is due to
the scale of sequence responses to various controls on long-term and short-term
variations in accommodation and sediment supply (i.e. 1%, 2" 3" etc. order

sequences) (Posamentier and Vail, 1988).

Although Haq et al. 1987, advanced the idea that global (eustatic) sea-level
change was the major control on sequences, and produced a global sea-level
chart; on this basis it was clear that local tectonics and sediment supply could be
significant factors, especially in active tectonic basins. During the late 1980s and
early 1990s, sequence stratigraphy continued to evolve, and new concepts such
as accommodation and parasequences were introduced (Posamentier and Valil,
1988). An alternative model for the development of depositional or ‘genetic
stratigraphic units’, bounded by major flooding surfaces, rather than
unconformities was proposed by Galloway in 1989. However this was mainly

applicable in high subsidence basins, like the Gulf of Mexico, where
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accommodation on the shelf was mainly increasing, resulting in few mappable

sequence boundaries marked by erosion on the shelf.

The major controls on accommodation are changes in relative sea level (i.e. the
combined product of eustasy and tectonic movement) (Jervey, 1998). Coe et al.,
2002 and Catuneanu, 2002, among many others, put an emphasis on rates of
sedimentation as at least a co-equal control of accommodation. "Physical"
accommodation comprises the space between sea floor and the "shelf
equilibrium profile", as described by Swift and Thorne (1991). Overall eustasy
and total sea-floor subsidence, as well as changes in hydrodynamic conditions,

govern many of the changes of accommodation space.

Recent advances in sequence stratigraphy have been in the area of high-
resolution sub seismic-scale sequence stratigraphy and computer modelling of

sedimentary fill, based on outcrops, logs and core (Emery & Myers, 1996).

For this study, 11 seismic sequences have been identified to comprise the intra-
Barrow Group within the defined study area. Detailed descriptions and
subsequent interpretations for each of the 11 seismic sequences follow in

sections 4.3 to 4.12.
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4.3 SEISMIC SEQUENCE 1

DESCRIPTION

4.3.1 KEY SURFACES

Seismic Sequence 1 is defined by sequence boundary 1 (SB1) at the base and
sequence boundary 2 (SB2) at the top (Figure 4.2, 4.3, 4.4 and 4.5). SB1l is
identified at the abrupt base of a blocky sandstone at Emperor-1 and
corresponds to downlapping features onto this surface in seismic section (Figure
4.2 and 4.6). SB2 is also defined by erosional truncation, viewed in seismic
section (Figure 4.2), and also, from the Emperor-1 log response, which displays
an abrupt change in facies (Figure 4.6). Overall, the log response for Seismic
Sequence 1 displays constant high gamma ray, indicative of the shaley character

of the facies (Figure 4.2).

4.3.2 SEISMIC CHARACTER/SEISMIC FACIES

Seismic character of Seismic Sequence 1 is progradational and is characterised
by both high and low amplitude continuous and semi-continuous reflectors
(Figure 4.2). There is a continuous set of moderate amplitude reflectors that
downlap onto SB1. These are then overlain by semi-continuous moderate to

high-amplitude reflectors of variable amplitude facies.
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4.3.3 DISTRIBUTION AND EXTENT

Seismic Sequence 1 was mapped across the Flinders 3D survey, covering
approximately 246 km? of the study area (Figure 4.7) ranging in thickness from 0
to 180 ms. This time package is thickest near Emperor-1 and thins to the

northeast.

4.3.4 DEPOCENTRE POSITION

Isochron maps of Seismic Sequence 1 indicate the main centre for deposition

lying in a NW-SE tending direction between Emperor-1 and Basil-1 (Figure 4.7),

indicated by the thickening of deposition toward the southeast.

4.3.5 STACKING PATTERNS (seismic and well)

Seismic stacking patterns for Seismic Sequence 1 include initial retrogradation at

the base of the sequence and then progradation to the northeast across the

study area (Figure 4.2).

The log motif of Emperor-1 displays a basal retrogradational stacking pattern

followed by aggradational stacking patterns for the majority of the package with
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maximum flooding surfaces represented by high gamma ray readings (Figure

4.6).

4.3.6 SLOPE ANGLE

The structurally restored slope angle calculation for the sigmoidal clinoforms of

Seismic Sequence 1 was approximated at 5° (Figure 4.2). This average for the

entire sequence agrees with Poreski and Steel's (2003) estimate that shelf-

margin clinoform slope gradients should be between 3 and 6°.

4.3.7 AGE

Seismic Sequence 1 is Berriasian in age and was deposited during the late

synrift mega-sequence during the Early Cretaceous. Seismic Sequence 1 spans

the B.reticulatum dinocyst zone. The age of this sequence is estimated at 135-

137 Ma.

INTERPRETATION

4.3.8 SYSTEMS TRACT

A transgressive systems tract (TST) overlain by a highstand systems tract (HST)

is recognised for Seismic Sequence 1 (Figure 4.8). Maximum flooding surface 1
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(MFS 1) interpreted at Emperor-1 (Figure 4.6) separates the lower TST from the
upper HST and is regionally extensive over the study area. The lower TST is
also regionally extensive over the study area as it tends to build back over the
lower sediments (retrogradational nature displayed on seismic) with a minor
amount of erosion and slumping present (Figure 4.8). The upper prograding
HST is relatively thick and extensive, composed of mainly shaley sediments, with
a high degree of erosion post-deposition occurring due to the presence of a

significant unconformity representing the top of Seismic Sequence 1.

4.3.9 RESERVOIR/SEAL POTENTIAL

Emperor-1 well logs indicate that Seismic Sequence 1 is comprised mainly of
shaley/silty sediments with occasional thin sands and is described overall as a
mud-prone package (Figure 4.6). Both log (constant high gamma ray response)
and seismic response (low amplitude continuous reflectors) indicate that Seismic
Sequence 1 is mainly comprised of massive shale/siltstone with minor sand
interbeds. Therefore Seismic Sequence 1 is more likely to consist of potentially

sealing facies.

4.3.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 1 was deposited initially during a minor transgression followed

by a major regressive phase. The bulk of sediment was supplied via the large

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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fluvial/deltaic system building out towards the north-north-east, hence the
relatively thick preserved succession (>180 ms) (Figure 4.9). Multiple shelf-edge
deltas have been interpreted from seismic and well logs to have been building
out onto the shelf and contributing to the overall shelf margin accretion.
Positions of the palaeo-shelf break, slope and base of slope have also been

inferred from the seismic data (Figure 4.9 and Figure 4.9a).

For a complete summary of Seismic Sequence 1, please refer to Appendix 1.0,

Seismic Sequence 1 A3 summary sheet.

4.4  SEISMIC SEQUENCE 2

DESCRIPTION

4.4.1 KEY SURFACES

Seismic Sequence 2 is defined by key surfaces SB2 and sequence boundary 3

(SB3) (Figure 4.10). SB2 extends across part of the study area and is defined by

apparent erosional truncation (Figure 4.5). The upper bounding SB3 is onlapped

by overlying Seismic Sequence 3 sediments and has been mapped over the

seismic survey area (Figure 4.11).
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4.4.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 2 is generally low-amplitude

continuous reflectors (Figure 4.10).

4.4.3 DISTRIBUTION AND EXTENT

Seismic Sequence 2 has a regional extent of approximately 166 km? and ranges
in thickness from 0 to 70 ms (Figure 4.12). The isochron map suggests that the
inferred depositional trend filled up the accommodation space left by Seismic
Sequence 1. The thickest part of Seismic Sequence 2 lies ~10km west of North

Herald-1 and Alum-1 and is generally lobate in shape (Figure 4.12).

4.4.4 DEPOCENTRE POSITION

The position of Seismic Sequence 2 depocentre displays that sedimentation has

shifted further north and slightly more towards the east, towards the vicinity of

North Herald-1 and Alum-1 (Figure 4.12), indicating the progradational nature for

the intra-Barrow Group.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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445 STACKING PATTERNS (seismic and well)

The seismic stacking patterns of Seismic Sequence 2 are retrogradational and

aggradational across the study area. The log motif for Seismic Sequence 2 at

Emperor-1 displays three retrograding and prograding stacked packages,

followed by serrated aggradational stacked patterns (Figure 4.13).

4.4.6 SLOPE ANGLE

Seismic Sequence 2 is not laterally extensive and does not have a substantial

enough thickness to calculate the paleo-slope angle.

4.4.7 AGE

Seismic Sequence 2 is Early Cretaceous (Berriasian) in age, spanning the

B.reticulatum dinocyst zone. The age of this sequence is estimated at 135-137

Ma.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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INTERPRETATION

4.4.8 SYSTEMS TRACTS

Seismic Sequence 2 is interpreted as a TST bound by sequence boundaries 2
and 3 (Figure 4.8). The transgressive sediments consist of blocky sands and
interbedded shales. In seismic section backstepping trends building back over

the highstand sediments of Seismic Sequence 1.

4.49 RESERVOIR/SEAL POTENTIAL

Seismic Sequence 2 is mud-prone based on the log response in Emperor-1
(Figure 4.13). The sequence is predicted to be mostly interbedded, shaley and
silty sediments, with some minor sandstone intervals and therefore potentially

consisting of non-reservoir facies.

4.4.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 2 is interpreted to be within an overall transgression with an

associated rise in relative sea-level (Figure 4.14). Slight backstepping of deltas

may have occurred and deepwater sediments accumulated on the slope and

basin floor.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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For a complete summary of Seismic Sequence 2, please refer to Appendix 1.0,

Seismic Sequence 2 A3 summary sheet.

45 SEISMIC SEQUENCE 3

DESCRIPTION

45.1 KEY SURFACES

Seismic Sequence 3 is defined by key surfaces SB3 and sequence boundary 4
(SB4) (Figure 4.15). Seismic Sequence 3 is present mainly in the southwest
part of the study area. The basal SB3 is identified by onlapping and downlapping
sediments above the boundary, which corresponds to an erosive boundary at
Emperor-1 (Figure 4.11). SB3 marks an abrupt facies change seaward. The
upper SB4 is onlapped by overlying Seismic Sequence 4 sediments (Figure

4.16).

4.5.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 3 displays reflectors that are

moderately continuous to discontinuous and sub-parallel (Figure 4.15). The

reflectors near the base consist of high amplitudes (and onlap and downlap onto

SB3), and are fairly continuous. A decrease in reflection amplitude (low to

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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moderate) is seen toward the top of the sequence, and reflectors range from

continuous to discontinuous.

4.5.3 DISTRIBUTION AND EXTENT

Seismic Sequence 3 has a regional extent of approximately 255 km? within the
study area (Figure 4.17), ranging in thickness from 0 to 95 ms. The sequence is
thickest in the southwest region of the study area, thinning to the southwest and

northeast.

4.5.4 DEPOCENTRE POSITION

The depocentre position of Seismic Sequence 3 tends to step back south of the

position of Seismic Sequence 2, to the northeast of Emperor-1 (Figure 4.17).

4.5.5 STACKING PATTERNS (seismic and well)

The log motif for Seismic Sequence 3 at Emperor-1 displays an overall

retrogradational stacking pattern with intermittent prograding packages and

aggrading packages (Figure 4.18). A maximum flooding surface is identified

from the high gamma ray reading at the top of the sequence (Figure 4.18).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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Seismic stacking patterns for Seismic Sequence 3 are mainly aggradational with

slight progradation towards the top of the sequence.

45.6 SLOPE ANGLE

The internal seismic character of Seismic Sequence 3 is too discontinuous to

enable accurate slope angle calculations to be performed.

45.7 AGE

Based on the intersection at Emperor-1 Seismic Sequence 3, spans the B.

reticulatum dinocyst zone. The age of this sequence is estimated at 135-137 Ma.

INTERPRETATION

45.8 SYSTEMS TRACTS

From the integration of the seismic data available and well logs intersecting
Seismic Sequence 3 a lowstand systems tract (LST) overlain by a TST, followed
by a HST have been identified (Figure 4.8). Prograding lowstand wedge
sediments dominate the basal section of the package (with corresponding
onlapping and downlapping features viewed on seismic), although they are not

extensive in nature. The bulk of the remaining sediments lie within the HST

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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(which seismically displays progradation and aggradation) and is separated by a

thin TST/transgressive surface (TS) (Figure 4.8).

4.5.9 RESERVOIR/SEAL POTENTIAL

Seismic Sequence 3 is mud-prone, but has some sand present in the Emperor-1
well (Figure 4.18). Seismic Sequence 3 is predicted to be interbedded with
alternating layers of shale and silty/sandy sediments, thus consist of more

sealing facies.

4.5.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 3 is interpreted to be an initial lowstand wedge (Figure 4.19)
followed by a thin TST, then HST (Figure 4.20). The deposition of the basal
prograding lowstand wedge may be localised and confined to areas near the
mouths of the incised rivers and in the distal parts of the incised valley (Figure
4.19). Seismic interpretation (time slices) and well log response provide the
basis for the interpretation of incised valleys and the associated fall in relative
sea-level. The upper part of the succession (late) represents the TST followed
by a HST, resulting from a rise in sea-level producing subsequent aggradation

due to high sediment supply and accommodation (Figure 4.20).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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For a complete summary of Seismic Sequence 3, please refer to Appendix 1.0,

Seismic Sequence 3 A3 summary sheet.

46 SEISMIC SEQUENCE 4

DESCRIPTION

4.6.1 KEY SURFACES

Seismic Sequence 4 is bounded below by SB4 and above by sequence
boundary 5 (SB5) (Figure 4.21). SB4 is defined by an onlap surface (Figure
4.16). The upper SB5 corresponds to the onlapping and downlapping of the
overlying Seismic Sequence 5 sediments (Figure 4.22). Log responses at
Emperor-1 display relatively constant low gamma ray readings for the bulk of the

sequence (Figure 4.23).

4.6.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 4 displays sub-parallel, moderately
continuous to discontinuous reflectors (Figure 4.21). The bulk of the package
consists of relatively low to moderate amplitude. The reflectors within Seismic
Sequence 4 onlap onto the lower SB4 and consist of continuous to semi-

continuous reflectors.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.6.3 DISTRIBUTION AND EXTENT

Seismic Sequence 4 was mapped out across the study area, but it is confined
due to poor seismic data and island locations (holes in survey). The sequence
covers an area of approximately 216 km? (Figure 4.24), ranging in thickness from
0 to 55 ms. The sequence thins to the southeast, and is thickest to the northwest

of North Herald-1 and Alum-1.

4.6.4 DEPOCENTRE POSITION

The shelf depocentre position of Seismic Sequence 4 is located west of North
Herald-1 and NNW of Emperor-1, similar to the position of Seismic Sequence 2
(Figure 4.24). In comparison to the depocentre position Seismic Sequence 3,

Seismic Sequence 4 has shifted towards the north.

4.6.5 STACKING PATTERNS (seismic and well)
The well log character of Emperor-1 in Seismic Sequence 4 displays one
retrogradational and three progradational stacked packages, with an overall high

net-to-gross. Low gamma ray readings are interpreted as higher-order maximum

flooding surfaces (Figure 4.23).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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The seismic character of Seismic Sequence 4 is aggradational and slightly

progradational towards the top of the sequence. A reduction in the

progradational nature of the sequence is seen toward the northeast.

4.6.6 SLOPE ANGLE

Seismic Sequence 4 is not laterally extensive or of substantial thickness to

perform slope angle calculations.

4.6.7 AGE

The B. reticulatum dinocyst zone approximately 135-137Ma spans Seismic

Sequence 4.

INTERPRETATION

4.6.8 SYSTEMS TRACTS

Seismic Sequence 4 is interpreted as mainly a HST that is bounded by a lower

TST/TS and an upper sequence boundary (SB5) (Figure 4.8). The regressive

package is regionally extensive, displays some progradation seismically, and is

composed of interbedded sands and shales at Emperor-1.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.6.9 RESERVOIR/SEAL POTENTIAL

The log response at Emperor-1 indicates that Seismic Sequence 4 is more sand-
prone (Figure 4.23). Seismic Sequence 4 is likely to consist of thick sands with

shale layers in between.

4.6.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 4 is interpreted to have been deposited within a transgression
followed by a highstand (Figure 4.25). The sequence displays an overall relative
sea-level rise during deposition, with slight backstepping of the shoreline toward
the sediment source direction (based on seismic character). Subsequently, the
building out of deltas onto the shelf and transport of sediment to the slope and

base of slope (deep water) is predicted to have occurred (Figure 4.25).

For a complete summary of Seismic Sequence 4, please refer to Appendix 1.0,

Seismic Sequence 4 A3 summary sheet.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King



204000 205000 312000 316000 220000 224000 225000
T T T T T T T

232000
T

338000
T T T

o EAST PEFEERA

*South-Pepper-1

& CYRANG-

Schematic
Diagram

p OFFLE SR0AE

T T T T T T
304000 312000 316000 320000 324000 328000

1] 2000 4000 8000 2000 10000m

1:202187

Figure 4.25 Seismic Sequence 4 schematic palaeo-geography map.

T
322000

frrt wes s
SW an an a1 a1 5 5 « ai an a1 a1
o ag E E] p? w405 E 52 L3 o
! L 2 I I !

% NE
:

T

LEGEND
- Deltaic deposits

- Fluvial/floodplain deposits

[]
hv]
\h
\\

Deepwater deposits

Incised valleys

Shelf Break position

Base of slope position

SEISMIC SEQUENCE 4

*SB’s 4-5
« Transgression followed by a highstand
« Emperor-1 intersect sequence 4




Seismic Sequence Stratigraphy 57

4.7  SEISMIC SEQUENCE 5

DESCRIPTION

4.7.1 KEY SURFACES

Seismic Sequence 5 is defined by key surfaces SB5 and sequence boundary 6
(SB6) (Figure 4.26). SB5 can be tracked under both onlapping and downlaping
seismic reflectors of Seismic Sequence 5 sediments (Figure 4.22). The upper
SB6 displays onlapping features via the overlying Seismic Sequence 6

sediments (Figure 4.27).

4.7.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 5 consists of reflectors that are
moderately continuous to discontinuous (Figure 4.26). Towards the base of the
sequence the reflectors are moderately continuous, sub-parallel and mounded
and of moderate to high amplitude. Towards the top of the sequence the
reflectors are slightly discontinuous and of low to moderate amplitude. Overall
the seismic facies of Seismic Sequence 5 can be divided into two reflection
expressions; the basal high amplitude continuous facies and the lower amplitude

continuous to discontinuous mounded facies.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.7.3 DISTRIBUTION AND EXTENT

Seismic Sequence 5 was mapped out across the Flinders 3D survey, covering
approximately 114 km? of the study area (Figure 4.28). The sequence ranges in
thickness from 0 to 100 ms. The sequence is missing in the vicinity of Emperor-1

but thickens to the southeast and thins to both the northeast and southwest.

4.7.4 DEPOCENTRE POSITION

The shelf depocentre position for Seismic Sequence 5 is located west of Bennet-
1 and south of North Herald-1 (Figure 4.28). This depocentre has switched
towards the east and only moved towards the north slightly in comparison to the

previous depocentre for Seismic Sequence 4.

4.7.5 STACKING PATTERNS (seismic and well)

Seismic Sequence 5 displays dominantly aggradational, with some weak
progradational stacking patterns across the study area. The log motifs at North
Herald-1, South Pepper-1 and Alum-1 display blocky sands with sharp tops and
bases interbedded by thick intermittent siltstone and claystone layers (Figure

4.29 and 4.30).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.7.7 SLOPE ANGLE

The sigmoid-oblique clinoforms viewed on seismic for Seismic Sequence 5
comprised of slope angles calculated at 4.2° (Figure 4.26). This average for the
entire seismic package agrees with Poreski and Steel’'s (2003) estimate that are

shelf-margin clinoform slope gradients between 3 and 6°.

4.7.8 AGE

Seismic Sequence 5 spans the B. reticulatum dinocyst zone and is Berriasian in

age. The age of this package is interpreted as ~135-137Ma.

INTERPRETATION

4.7.9 SYSTEMS TRACTS

The systems tracts interpreted for Seismic Sequence 5 are a LST overlain by a
HST, which is separated by a thin TST/TS (Figure 4.8). The prograding wedge
of sediments that dominate the basal part of the sequence are composed mainly
of thick blocky sands, (e.g. South Pepper-1) and display onlapping and
downlapping features seismically, and are interpreted as comprising a LST. The

overlying TST is relatively thin and mainly shale prone. The upper HST section

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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displays both prograding and aggrading characteristics and is predominantly

sand prone.

4.7.10 RESERVOIR/SEAL POTENTIAL

From numerous well log responses, Seismic Sequence 5 is predicted to be more
sand-prone (Figure 4.29 & 4.30). Seismic Sequence 5 is interpreted to consist of

thick sands interbedded with shaley intervals.

4.7.11 PALAEOGEOGRAPHIC RECONSTRUCTIONS

During the initial fall in sea-level, the fluvial and deltaic sediments built out almost
to the shelf break and deposited a large quantity of sediment on the shelf and
slope and in deep water (Figure 4.31). Depositional environments present
include fluvial, shallow floodplain, deltaic, shallow marine, slope and deepwater
deposits. Evidence for this includes the well log responses at South Pepper-1
representing the deposition of deep water sands (basin floor fans) during this
time (Figure 4.30). Seismic Sequence 5 is interpreted to be deposited during a
major forced regression followed by a smaller scale transgression and highstand,
as similar interpretation made by Posamentier et al., 1992 (Figure 4.31 and
4.32). The later transgression represents a rise in relative sea-level and

backstepping of the coastline (Figure 4.32). Palaeo-shelf break, slope and base

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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of slope interpretations for this sequence also contribute to depositional

environment interpretations.

For a complete summary of Seismic Sequence 5, please refer to Appendix 1.0,

Seismic Sequence 5 A3 summary sheet.

4.8 SEISMIC SEQUENCE 6

DESCRIPTION

4.8.1 KEY SURFACES

Seismic Sequence 6 is defined by key surfaces SB6 and sequence boundary 7

(SB7) (Figure 4.33). The lower SB6 is a well-defined onlapped surface (Figure

4.27). The upper SB7 is recognisable due to its erosional nature and can only be

mapped over a small region in the centre of the Flinders 3D survey area (Figure

4.34). Both these surfaces are only recognisable seismically, as there are no

well intersections present in this area.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.8.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character and facies of Seismic Sequence 6 consists of reflectors
that are moderately continuous and parallel, typically of low to moderate

amplitude (Figure 4.33).

4.8.3 DISTRIBUTION AND EXTENT

Seismic Sequence 6 has a regional extent of approximately 59 km? based on
existing seismic resolution (Figure 4.35), ranging in thickness from O to 40 ms,
thickening slightly to the southeast. Additionally, an isochron from SB6 to SB8
has been created, to better display the extent of Seismic Sequence 6 (Figure

4.36).

4.8.4 DEPOCENTRE POSITION
The shelf depocentre for Seismic Sequence 6 is located just south of North
Herald-1. In comparison to the previous depocentre location (Seismic Sequence

5), Seismic Sequence 6 has shifted slightly towards the north (Figure 4.35 and

4.36).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.8.5 STACKING PATTERNS (seismic and well)

The seismic interpretation of Seismic Sequence 6 indicates progradation toward

the northwest, which has subsequently undergone some erosion. No wells

intersect Seismic Sequence 6 in the study area.

4.8.7 SLOPE ANGLE

Seismic Sequence 6 is not laterally extensive or of substantial thickness to

calculate slope angle estimates.

48.8 AGE

Although Seismic Sequence 6 has not been penetrated by wells, based on

stratigraphic position it should be within the B. reticulatum (?) dinocyst zone

(Berriasian) approximately 135-137Ma.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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INTERPRETATION

4.8.9 SYSTEMS TRACTS

Seismic Sequence 6 displays onlap and downlapping features on seismic and is
interpreted predominantly to comprise of a LST (Figure 4.8). The lowstand

wedge is relatively thin and not extensive over the study area.

4.8.10 RESERVOIR/SEAL POTENTIAL

Seismic Sequence 6 is predicted to be a succession of interbedded sand and

shales, due to its position in the seismic sequence stratigraphic framework.

4.8.11 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 6 is interpreted as a lowstand wedge. This wedge is localised
and may have directly been fed by one river over a small area. A slight fall in
sea-level is interpreted, with fluvial and deltaic conditions dominating during the
time of deposition (Figure 4.37). It is possible the main centre for deposition

during this period may have been outside the study area.

For a complete summary of Seismic Sequence 6, please refer to Appendix 1.0,

Seismic Sequence 6 A3 summary sheet.
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4.9 SEISMIC SEQUENCE 7

DESCRIPTION

49.1 KEY SURFACES

Seismic Sequence 7 is defined by key surfaces SB6 and sequence boundary 8
(SB8) (Figure 4.38). Both extend across most of the northeastern part of the
study area, with a loss in seismic resolution due to faulting in the northeastern
corner. The lower SB6 is onlapped by Seismic Sequence 6 and 7 sediments
(SB6 is merged into SB7) (Figure 4.27). The upper SB8 is both onlapped and

downlapped by overlying Seismic Sequence 8 sediments (Figure 4.39).

49.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 7 consists of fair to moderately

continuous parallel reflectors of moderate amplitude (Figure 4.38).

4.9.3 DISTRIBUTION AND EXTENT

Seismic Sequence 7 has a regional extent of approximately 58 km? within the

study area (Figure 4.36 and 4.40), ranging in thickness from 0 to 110ms. This

package displays thinning to the northeast and northwest. The second isochron

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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Figure 4.39 Sequence Boundary 8 Time-Structure Map.
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map displayed, includes both Seismic Sequence 6 and Seismic Sequence 7

sediments, due to both small areal extent and the combination of both better

displaying their overall distribution (Figure 4.36).

49.4 DEPOCENTRE POSITION

The shelf depocentre of Seismic Sequence 7 is located just south of North

Herald-1 (Figure 4.36). In comparison to the depocentre location of Seismic

Sequence 6, this sequence has shifted slightly towards the north.

495 STACKING PATTERNS (seismic and well)

Seismic stacking patterns are mainly progradational at the base of the sequence

and slightly aggradational towards the top of the package.

The log motif at South Pepper-1 displays two blocky aggrading stacked

packages, separated by thick intermittent high gamma ray packages (Figure 4.41

and 4.42).

49.6 SLOPE ANGLE

Seismic Sequence 7 is not laterally extensive or of substantial thickness to

calculate slope angle estimates.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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49.7 AGE

Based on the intersection in South Pepper-1, Seismic Sequence 7 spans the
middle B. reticulatum dinocyst zone (Berriasian). The age of this package is

approximated between 135-137Ma.

INTERPRETATION

49.8 SYSTEMS TRACTS

The systems tracts recognised for Seismic Sequence 7 are a TST overlain by a
HST (Figure 4.8). This interpretation is made due to the initial back-stepping
nature of the seismic reflectors viewed within the seismic sequence, (as is similar
interpretations made by Walker, 1992), followed by apparent progradation. The
TST is thin and the bulk of the sequence is dominated by prograding HST

sediments that are bound by an upper sequence boundary (SB7).

49.9 RESERVOIR/SEAL POTENTIAL

Based on multiple well log responses, Seismic Sequence 7 is predicted to be

more sand-prone (Figure 4.41 and 4.42). Seismic Sequence 7 is likely to have

thick sandstones interbedded by shale layers comprising the package.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.9.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

The seismic response for Seismic Sequence 7 displays of apparent backstepping
of seismic reflectors onto the shelf, followed by progradation. Additionally, well
log responses for Seismic Sequence 7 display thick blocky sandstones and
occasional coarsening upwards successions. Seismic Sequence 7 is interpreted
to have been deposited initially during a regression, where the backstepping of
the shoreline and deposition of sediments occurred landwards. This was then
followed by a sea-level rise and subsequent progragation and deposition of
sediments in a dominantly fluvial and deltaic depositional environment (Walker,

1992) (Figure 4.43).

For a complete summary of Seismic Sequence 7, please refer to Appendix 1.0,

Seismic Sequence 7 A3 summary sheet.

4.10 SEISMIC SEQUENCE 8

DESCRIPTION

4.10.1 KEY SURFACES

Seismic Sequence 8 is defined by key surfaces SB8 and sequence boundary 9

(SB9) (Figure 4.44). Both have been mapped across the northeastern part of the

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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seismic survey area. The lower SB8 is both onlapped and downlapped by
Seismic Sequence 8 sediments (Figure 4.39). The upper SB9 is onlapped by
overlying Seismic Sequence 9 sediments (Figure 4.45). Other key surfaces
present within this package include a TS and MFS, separating the lower LST and

the upper HST, although is below seismic resolution.

4.10.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 8 displays sigmoid to oblique
layered reflections (Figure 4.44). Continuous reflections of moderate to high

amplitude are characteristic of this sequence.

4.10.3 DISTRIBUTION AND EXTENT

Seismic Sequence 8 has a regional extent of 225 km? within the study area

(Figure 4.46), ranging in thickness from 0 to 80 ms. The thickest part of this

package is represented by an ‘oval-shaped’ wedge of sediment, thinning to the

southwest, northeast and northwest (Figure 4.46).

4.10.4 DEPOCENTRE POSITION

The shelf depocentre position for Seismic Sequence 8 is located just west of

North Herald-1 and Alum-1 (Figure 4.46). In comparison to the depocentre

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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position for the previous seismic sequences, Seismic Sequence 8 has shifted

both northward and eastwards.

4.10.5 STACKING PATTERNS (seismic and well)

The seismic stacking patterns for Seismic Sequence 8 display initially prograding
clinoforms, followed by aggradation and slight retrogradation, lastly followed by

progradation towards the top of the sequence.

The log motif of South Pepper-1 displays blocky aggradational sandstones
towards the base of the sequence and a number of stacked prograding packages

towards the top of the sequence (Figure 4.41 and 4.42).

4.10.6 SLOPE ANGLE

Seismic Sequence 8 comprises of sigmoid-oblique clinoforms (viewed on
seismic) (Figure 4.44). The slope angle calculated for Seismic Sequence 8 was
approximated at 3.8°. This average for the entire seismic package agrees with
Poreski and Steel's (2003) estimate that shelf-margin clinoform slope gradients

are between 3 and 6°.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.10.7 AGE

Based on the intersection in South Pepper-1, Seismic Sequence 8 spans the

middle B. reticulatum dinocyst zone (Berriasian ~135-137Ma).

INTERPRETATION

4.10.8 SYSTEMS TRACTS

The systems tracts recognised are a LST overlain by a TS/TST followed by a
HST (Figure 4.8). The systems tracts are bounded by the lower SB8 and the
upper SB9. The lower part of Seismic Sequence 8 displays excellent
downlapping and onlapping features throughout the survey and is interpreted as
a lowstand wedge which is relatively thick and extensive over the study area
(similar methods of interpretation indicated by Labutis, 1994). While the
overlying TST/TS is relatively thin. The bulk of the upper part of Seismic
Sequence 8 is dominated by highstand sediments (with progradational features
interpreted over the study area) (similar method to Porebski & Steel, 2003).
Seismic Sequence 8 sediments are sand-prone as viewed in the South Pepper-1

gamma ray log response (Figure 4.41).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.10.9 RESERVOIR/SEAL POTENTIAL

Based on numerous log responses, Seismic Sequence 8 is predicted to be more
sand-prone (Figure 4.41 and 4.42). Seismic Sequence 8 is likely to have thick

sandstones interbedded by shale layers comprising the package.

4.10.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 8 is interpreted to be within an initially regressive phase
followed by a transgressive phase (Figure 4.47 and 4.48). The major
depositional environment present early in the sequence includes fluvial and
deltaic environments, displaying the seaward movement of the shoreline toward
the shelf break position (Figure 4.47). Deep water deposition is indicated by well
log interpretations (Figure 4.41 and 4.42). The later part of the sequence infers a
sea-level rise and progradation and aggradation of sediments along with
backstepping of the shoreline landward (similar method seen to Porebski & Steel,
2003) (Figure 4.48). Fluvial, deltaic and shallow marine are the dominant

depositional environments for Seismic Sequence 8.

For a complete summary of Seismic Sequence 8, please refer to Appendix 1.0,

Seismic Sequence 8 A3 summary sheet.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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411 SEISMIC SEQUENCE 9

DESCRIPTION

4.11.1 KEY SURFACES

Seismic Sequence 9 is defined by the lower SB9 and the upper sequence
boundary 10 (SB10) (Figure 4.49). SB9 is identified by sediment from Seismic
Sequence 9 onlapping onto the surface (Figure 4.45). The upper SB10 has both
onlapping and downlapping of the overlying Sequence 10 sediments (Figure
4.50). The gamma ray response for this succession is generally high with

intermittent blocky low gamma ray intervals (Figure 4.41 and 4.42).

4.11.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Seismic Sequence 9 displays parallel to sub-parallel

continuous reflectors with overall moderate amplitude (Figure 4.49).

4.11.3 DISTRIBUTION AND EXTENT

Seismic Sequence 9 has a regional extent of approximately 230 km? within the

study area (Figure 4.51), ranging in thickness from 0 to 60 ms and thins

substantially to the southwest and also to the northeast.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.11.4 DEPOCENTRE POSITION

The shelf depocentre position of Seismic Sequence 9 is spilt into two (Figure
4.51). One depocentre is just south of Mosman-1 and other just south of North
Herald-1 and Alum-1. These depocentres have both moved northwards and
created two main depocentres, one to the northeast and the other northwest in

comparison to the previous depocentre for Seismic Sequence 8.

4.11.5 STACKING PATTERNS (seismic and well)

The seismic stacking patterns of Seismic Sequence 9 across the study area are

aggradational and progradational.

The log motif of South Pepper-1 displays prograding and retrograding stacking

patterns followed by aggradational stacking patterns with maximum flooding

surfaces occurring within the high gamma ray intervals (Figure 4.41 and 4.42).

4.11.6 SLOPE ANGLE

Seismic Sequence 9 comprises of sigmoid clinoforms (viewed on seismic)

(Figure 4.49). The slope angle calculated for Seismic Sequence 9 was

approximated at 3.8°. This average for the entire seismic package agrees with

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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Poreski and Steel's (2003) estimate that shelf-margin clinoform slope gradients

are between 3 and 6°.

411.7 AGE

Based on the intersection in South Pepper-1 Seismic Sequence 9 spans the

middle B. reticulatum dinocyst zone (Berriasian ~135-137Ma).

INTERPRETATION

4.11.8 SYSTEMS TRACTS

Seismic Sequence 9 seismically displays progradational and aggradational

features throughout the bulk of the it's mapped extent and has an overall high net

to gross (as viewed at South Pepper-1, Alum-1, Mosman-1 and North Herald-1)

(Figure 4.42). Seismic Sequence 9 is thus interpreted to consist of a mainly

regressive HST that is bounded by a lower TS (SB9) and an upper sequence

boundary (SB10) (Figure 4.8).

4.11.9 RESERVOIR/SEAL POTENTIAL

Based on numerous log responses, the Seismic Sequence 9 package is

predicted to be more sand-prone (Figure 4.41 and 4.42). Seismic Sequence 9 is

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King



Seismic Sequence Stratigraphy 76

likely to have thick sandstones interbedded with shale layers (Jennette et al.,

2000).

4.11.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 9 s interpreted to have been deposited during a

transgression and highstand, with continued progradation and aggradation of

sediments (Figure 4.52). Isochron maps infer the influence of two main sediment

sources as there are two areas displaying thick Seismic Sequence 9 successions

(potentially two separate river systems).

For a complete summary of Seismic Sequence 9, please refer to Appendix 1.0,

Seismic Sequence 9 A3 summary sheet.

4.12 SEISMIC SEQUENCE 10

DESCRIPTION

4.12.1 KEY SURFACES

Seismic Sequence 10 is defined by key surfaces SB10 and sequence boundary

11 (SB11) (Figure 4.53). The lower SB10 corresponds to both onlapping and

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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Figure 4.53 Seismic section displaying Seismic Sequence 10, bound by SB10 and SB11. Location of line

indicated in Figure 4.3.
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downlapping of sediments from within Sequence 10 (Figure 4.50). The upper

SB11 is onlapped by overlying Sequence 11 sediments (Figure 4.54).

4.12.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic facies of Seismic Sequence 10 is represented by both sigmoid-
oblique layered reflections and continuous to discontinuous reflections. The

reflectors range from low to moderate amplitude (Figure 4.53).

4.12.3 DISTRIBUTION AND EXTENT

Seismic Sequence 10 has a regional extent of 143 km? within the study area
(Figure 4.55), ranging in thickness from 0 to 110ms. The package shows a
consistent thickening to the northeast, which may imply some structural (shelf

collapse) influenced deposition.

4.12.4 DEPOCENTRE POSITION

The shelf depocentre of Seismic Sequence 10 is located near North Herald-1,
Alum-1 and Mosman-1 well locations and displays one large, thick elongate
depocentre (Figure 4.55). This depocentre represents a consistent thickness of
Seismic Sequence 10 sediments over a large area. The depocentre has shifted

further towards the northeast in comparison to the previous sequence and is

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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likely to have been influenced by some structural processes such as shelf

collapse.

4.12.5 STACKING PATTERNS (seismic and well)

The seismic stacking patterns for Seismic Sequence 10 are mainly

progradational across the study area.

The log motifs of South Pepper-1, Alum-1, North Herald-1 and Mosman-1 display
a number of prograding and retrograding packages with intermittent
aggradational packages, and minor progradation at the top of the sequence
(Figure 4.41 and 4.42). Maximum flooding surfaces are represented by zones of

high gamma ray readings (Figure 4.41 and 4.42).

4.12.6 SLOPE ANGLE

Seismic Sequence 10 comprises of sigmoid-oblique clinoforms (viewed on
seismic) (Figure 4.53). The slope angle calculated for Seismic Sequence 10 was
approximated at 4.2°. This average for the entire seismic package agrees with
Poreski and Steel's (2003) estimate that shelf-margin clinoform slope gradients

are between 3 and 6°.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King



Seismic Sequence Stratigraphy 79

4.12.7 AGE

Based on the intersection in South Pepper-1 Seismic Sequence 10 spans the

middle B. reticulatum dinocyst zone (Berriasian ~135-137Ma).

INTERPRETATION

4.12.8 SYSTEMS TRACTS

Seismic Sequence 10 seismically displays onlapping and downlapping features
(interpreted extensively throughout the study area), indicative of a prograding
lowstand wedge (Labutis, 1994). Seismic Sequence 10 is interpreted as a LST
bounded by the lower SB10 and an upper TS/SB11 (Figure 4.8). The lowstand
wedge is relatively thick and consistently interpreted and present over the bulk of
the study area. Seismic Sequence 10 sediments display either a slope collapse
due to large sediment supply and following instability or shelf collapse at a larger
scale due to tectonics in the region at the time of deposition, due to the

consistent thickness across the study area for the entire sequence.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.12.9 RESERVOIR/SEAL POTENTIAL

Based on numerous log responses, Seismic Sequence 10 is predicted to be
more mud-prone (Figure 4.41 and 4.42). Seismic Sequence 10 is likely to have

thick shale intervals interbedded by sandstone layers comprising the package.

4.12.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 10 is interpreted as a lowstand wedge within a major
regressive phase (Figure 4.56). The palaeo-shoreline is interpreted to be near or
at the shelf-break edge with incised valleys feeding to the shelf edge and
depositing large amounts of sediment via the growth of deltas on to the
slope/base of slope (Porebski & Steel, 2003). Associated deeper water systems
are interpreted to have also been present during the time of deposition as
indicated by palaeo shelf-break, slope and base of slope interpretations (Walker,

1992).

For a complete summary of Seismic Sequence 10, please refer to Appendix 1.0,

Seismic Sequence 10 A3 summary sheet.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.13 SEISMIC SEQUENCE 11

DESCRIPTION

4.13.1 KEY SURFACES

Seismic Sequence 11 is defined by SB11 and the regionally extensive sequence
boundary 12 (SB12) (Figure 4.57). The lower SB11 is onlapped by Seismic
Sequence 11 sediments and corresponds to a sharp base of blocky sand,
indicated by the gamma ray log response at South Pepper-1 (Figure 4.58). The
upper SB12 displays sediments toplapping this surface and has been mapped
extensively over the study area (Figure 4.59). Also present within this sequence
is a MFS, TS, which are identifiable on the South Pepper-1 wireline log
responses, and which displays the transition from LST deposition to HST

deposition (Figure 4.58).

4.13.2 SEISMIC CHARACTER/SEISMIC FACIES

The seismic character of Sequence 11 is represented by continuous to
discontinuous, parallel to sub-parallel reflectors (Figure 4.57). The reflectors
range from low to high amplitude, with the basal part of the sequence
represented by higher amplitudes, in comparison to the low to moderate more

transparent facies towards the upper part of the sequence (Figure 4.57).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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4.13.3 DISTRIBUTION AND EXTENT

Seismic Sequence 11 has a regional extent of 184 km? within the study area
(Figure 4.60), ranging in thickness from 0 to 160 ms. The package increases in
thickness to the northeast and two main depocentres can be identified. Seismic
Sequence 11 displays a trend of thickening characteristics to Seismic Sequence

10.

4.13.4 DEPOCENTRE POSITION
Two depocentres can be identified from isochron mapping (Figure 4.60). The
first shelf depocentre position is northeast of Alum-1 and the other is in close
proximity to the location of South Pepper-1. In comparison to the previous
seismic sequence depocentre for Seismic Sequence 11 has shifted more to the
northeast.

4.13.5 STACKING PATTERNS (seismic and well)

The seismic stacking patterns for Seismic Sequence 11 are mainly

progradational across the study area with slight aggradation (Figure 4.57).

The log motif of South Pepper-1 displays basal prograding and aggrading blocky

sand stacking patterns, followed by a thick serrated (aggrading) high gamma ray

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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SB11/TS and upper SB12 (Figure 4.8). The TST is relatively thin, but extensive

over the study area.

4.13.9 RESERVOIR/SEAL POTENTIAL

Based on the South Pepper-1 well log response and cuttings descriptions, the
bulk of Seismic Sequence 11 is comprised of shale/silt sediments with occasional
thin sands, and is overall a more mud-prone package (Figure 4.42 and 4.58).
Based on both log and seismic response, Seismic Sequence 11 is largely

massive shale/siltstone with minor sand interbeds (Figure 4.42 and 4.58).

4.13.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS

Seismic Sequence 11 is interpreted to have been deposited during a regression
followed by a retrogradation, (Figure 4.61, 4.62 and 4.63). Depositional
environments present during the basal part of the succession may have included
fluvial, deltaic and deepwater environments (Figure 4.61). Well data displays
these typical log responses for specified depositional environments. The palaeo-
shoreline is interpreted to be near the shelf break with rivers feeding deltas and
building out and transporting sediment to deep water systems. The later part of
the succession displays a transgression and retrogradation of sediments, with

the sea-level rise and backstepping of the shoreline (Figure 4.62 and 4.63).

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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package comprising the majority of the remaining sequence (Figure 4.42 and

4.58).

4.13.6 SLOPE ANGLE

The internal seismic character of Seismic Sequence 11 is too discontinuous to

enable slope angle calculations to be estimated.

4.13.7 AGE

Based on the intersection in South Pepper-1, Seismic Sequence 11 is Berriasian
in age, spanning the middle to upper B. reticulatum dinocyst zones. The age of

this package is between ~135-137Ma.

INTERPRETATION

4.13.8 SYSTEMS TRACTS

The lower most 45m of Seismic Sequence 11 is represented by thick sandy

intervals and the upper 180m of the sequence is dominated by thick, mostly

shaley sediments (as seen at South Pepper-1). The systems tracts recognised

within Seismic Sequence 11 include a LST (representing the lower part) followed

by a TST, overlain by a HST (representing the upper part), bounded by the lower

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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Figure 4.61 Seismic Sequence 11 schematic (early) palaeo-geography map.
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Figure 4.62 Seismic Sequence 11 schematic (mid) palaeo-geography map.
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For a complete summary of Seismic Sequence 11, please refer to Appendix 1.0,

Seismic Sequence 11 A3 summary sheet.
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5.0 HIGH RESOLUTION SEQUENCE STRATIGRAPHIC ANALYSIS

5.1 INTRODUCTION

High-resolution sequence stratigraphy is emerging as a powerful tool in the
analysis and prediction of all sedimentary successions. It has clear applications
in deciphering fundamental stratigraphic controls (namely sediment supply and
relative sea-level change) and delineating genetic units both in the subsurface
and at outcrop (Van Wagoner et al., 1990). In the petroleum industry it provides
a rigorous framework for subsurface correlation, and can help in the delineation
of reservoir flow units. In addition, it can provide a means for classifying

analogue data, and highlighting stratigraphic traps (Emery & Myers, 1996).

This study has identified eleven new seismic sequences and developed a
sequence stratigraphic framework tied to key wells. These eleven sequences
have been subdivided into systems tracts. A number of these seismic
sequences display seismically resolvable, higher frequency depositional
packages. High-resolution sequence stratigraphy has been attempted for
Seismic Sequence 1, which has been further broken into a number of higher-
order sequences. The quality of seismic data within Seismic Sequence 1 has
enabled the identification and detailed mapping of reflection geometries at
boundaries such as onlapping and truncation features to define the higher-order

sequences.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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The purpose for performing a high-resolution sequence stratigraphic study for
Seismic Sequence 1 is to use it as a tool in hydrocarbon reservoir delineation to
enable better predictions in relation to the reservoir-seal couplets that may be

present and prospective.

5.2 HIGH-RESOLUTION DESCRIPTION OF SEISMIC SEQUENCE 1

5.2.1 KEY SURFACES

Seismic Sequence 1 is defined by sequence boundary 1 (SB1) and sequence
boundary 2 (SB 2) (Figure 4.2). Numerous higher-order surfaces have been
interpreted within Seismic Sequence 1. These include sequence boundaries
(SB) 1.1 and 1.2, maximum flooding surfaces (MFS) 1.1, 1.2, and 1.3 and
transgressive surfaces (TS) 1.2 and 1.3 (Figure 5.1). Reflection terminations
used to identify these key surfaces include erosional truncation, downlapping and
onlapping features (Figure 5.2). Each new higher-order surface identified
differentiates higher frequency depositional packages from those previously

described.

5.2.2 SYSTEMS TRACTS

The sequence stratigraphic framework outlined in chapter 4 interprets Seismic

Sequence 1 as comprising of a transgressive systems tract (TST) and a thick

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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prograding highstand systems tract (HST). The high-resolution study focuses
mainly on the middle and upper parts of Seismic Sequence 1. From the high-
resolution sequence stratigraphy study undertaken for Seismic Sequence 1, six
higher resolution systems tracts have been interpreted to be present. These
include TST 1.1, HST 1.1, LST 1.2, HST 1.2, LST 1.3 and HST 1.3 (Figure 5.3).
These higher-order systems tracts are defined by the higher-order key surfaces
interpreted, associated reflection terminations viewed on seismic, as well as the
overall seismic character and mounding features present (Figure’s 5.1, 5.2 and

5.3).

TST 1.1 has been interpreted due to the nature of the succession building back
on to the shelf, followed by the deposition of the prograding sediments of HST
1.1 over the top (Figure 5.3). A slight fall in relative sea-level and/or increase in
sediment input has seen the deposition of LST 1.2 distributed locally (with
onlapping and downlapping features viewed on seismic) (Figure 5.3). This was
then followed by a gradual rise in sea-level and deposition of HST 1.2, with
prograding features viewed on seismic (Figure 5.3). LST 1.3 is then interpreted
to have formed in response to an associated fall in relative sea-level forced
regression (Figure 5.3). This interpretation has been made via the progradational
nature of the lowstand wedges viewed on seismic, subaerial exposure and fluvial
influence (Emperor-1 channel sand) (Posamentier et al., 1992). Lastly, a gradual
rise in sea-level and HST 1.3 has been interpreted to comprise the remaining

Seismic Sequence 1 (Figure 5.3). This is due to the overall seismic character
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displaying prograding sediments building out over the top of the previous
lowstand wedge. Additionally the low amplitude character of the seismic for this

interval also adds to the HST interpretation.

5.3 ISOCHRON MAPPING AND TIMESLICE INTERPRETATION

Localised mapping of high-resolution sequence boundaries was slightly
hampered due to the quality of the seismic data. However, accurate mapping
was attempted and the resultant maps analysed. Two depocentres can be
recognised from the isochron maps produced (Figure 5.4). During lowstand
deposition, up to three different depocentres or lobes can be mapped out, due to
the greater thicknesses visible on the isochron maps. Thus, lobe switching may
have occurred. Alternatively, numerous feeder systems may have been present
at the time of deposition (Figure 5.4). Therefore, the development of these main
centres for deposition and progradation of lowstand wedges during this period is
consistent with the forced regression interpretation (relative SL fall) and

subsequent movement of the shoreline in a seaward direction.

Time-slices of Seismic Sequence 1 show potential channelised features,
deposited during the higher-order LST’s within Seismic Sequence 1 (Figure 5.5).
These features strengthen the interpretation of the higher-order LST’s

(associated with prograding lowstand wedges viewed on seismic) within Seismic
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Sequence 1 and suggest potential locations of the associated sandy lobes (if

sand dominated) at their termination.

5.4 RELATION TO HYDROCARBON PROSPECTIVITY

The high-resolution sequence stratigraphic interpretation of Seismic Sequence 1
can assist in assessing hydrocarbon prospectivity. The differentiation of
numerous high-resolution LST’s enhances the accuracy of identifying prospective
areas within the sequence and can also enable more detailed descriptions of
depositional history. The presence of LST’'s also corresponds to more sand-
prone intervals, because sub-aerial erosion associated with the relative sea-level
fall causes deposition of sandier intervals further offshore rather than shaley
deposits (Walker, 1992). In turn this provides a means of shifting seaward a
package of reservoir-prone clastics where they will be sealed during subsequent
transgression; thus identifying a potential reservoir-seal couplet of high

prospectivity.

The high-resolution sequence stratigraphic study directly promotes the increased
knowledge of the prospectivity and depositional environment for Seismic
Sequence 1. Undertaking such detailed high-resolution sequence stratigraphic
studies for each seismic sequence identified is recommended, where thickness
and resolution of seismic sequence is adequate, in conjunction with detailed

petroleum system analysis.
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6.0 PLAY AND PROSPECTIVITY ANALYSIS

There are key elements that make up any given play type: reservoir, seal, source
and timing (explusion, migration, preservation). The different combinations of
each of the elements give rise to different play types. The following discussion
outlines the key elements of the each potential play type, in respect to the

prospectivity of the interval of interest over the study area (Table 6.1).

6.1 SOURCE ROCK

The Barrow Sub-basin contains several intervals in the Mesozoic that are
recognised as major source rocks. The middle to late Triassic Mungaroo
sequence is mainly coaly and humic and is thus gas prone (Smith et al, 2002)
(Table 6.1). The early Triassic Locker Shale contains sapropel-enriched zones
and is therefore oil generating (Table 6.1). The current view is that the Triassic
rocks are the source for most gas and condensates found on part of the Rankin
Trend (van Aarssen et al., 1996). The Early to Late Jurassic Dingo Claystone is
recognised to be a marine and partly terrestrial source rock (Baillie & Jacobson,
1997) (Table 6.1). The Dingo Claystone was mainly deposited in a deepwater,
low-energy, anoxic environment and is the principal source for oil for much of the
Carnarvon Basin. The Dingo Claystone retains high total organic carbon contents
with mixed sapropelic and humic type Il/lll to type Il kerogens (Kopsen &

McGann, 1985). It became thermally mature in the deeper parts of the basin
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during the Cretaceous (Smith et al, 2002). The Dingo Claystone is up to 3000 m
thick in the depocentres of the Exmouth, Barrow and Dampier Sub-basins and is
regarded as the most important source rock in the Barrow Sub-basin, generating

mainly oils, but also gas (van Aarssen et al., 1996).

6.2 EXPULSION AND MIGRATION

Several episodes of oil generation and migration have occurred within the Barrow
Sub-basin (Baillie & Jacobson, 1997). The Triassic Locker Shale is currently in
the gas window, due to depth of burial, whereas the younger late Jurassic Dingo
Claystone is in or just below the oil window within the Barrow Sub-basin (van
Aarssen et al., 1996) (Table 6.1). The main pulse of hydrocarbon generation in
the sub-basin occurred from the Dingo Claystone (Table 6.1). Hydrocarbons
were expelled during the Early Cretaceous, a process which continued
throughout the Late Cretaceous to Cainozoic (Kopsen & McGann, 1985). In the
Tertiary, the upper and shallower part of the Dingo Formation generated and
expelled oil into interbedded sandstones and the overlying Barrow Group

(Kopsen & McGann, 1985).
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Table 6.1 Barrow Sub-basin Petroleum Play Elements Summary

Locker-Mungaroo (Triassic) Gas
Dingo Claystone (Late Jurassic) Oil

Paleocene sandstone, Windalia Sandstone (Early Cretaceous),
Mardie Greensand (Early Cretaceous), Angel Formation (Late
Jurassic), Dupuy Formation (Late Jurassic), Early Jurassic
reservoirs and the Mungaroo Formation (Late Triassic).

Muderong Shale (Early Cretaceous), Windalia Radiolarite
(Early Cretaceous), Dingo Claystone (Late Jurassic), and intra-
formational seals.

Drape anticlines, horsts blocks, fault roll-over structures and
stratigraphic pinch-outs.

The study area is in close proximity to existing infrastructure
associated with gas and oil developments around Barrow
Island. Established gas and oil market.

6.3 PLAY TYPES IN STUDY AREA

Potential play types that can be targeted in the study area include combination
structural/stratigraphic (fault-bound) and purely stratigraphic plays.  The
sequence stratigraphic understanding for the interval of interest has led to the
identification of numerous potential play types. Specific plays include shelfal
(incised valley fill, lowstand and highstand shoreface sands), slope (channels,
lowstand wedges) and basin-floor fan plays (Figure 6.1). Understanding the
locations of potential maximum flooding surfaces and other potential sealing
facies increases the prospectivity of each play type. Also new structural and
combination structural/stratigraphic (fault-bound) plays are potential targets in the

study area.
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Incised Valley

Play types by George Bertram and Emma King

1 | Erosional Truncation 6 Levee/edge traps
2 | Levee Traps 7 Slope channel systems / lowstand
/ midstand downstepping
3 | Valley Fill Slope channel systems
Canyon Fill Fan systems
5 | Slope/slumped sands in Canyon 10 | Slump blocks

Figure 6.1 Summary of the intra-Barrow Group potential play types within the Flinders 3D (project study area).
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6.4 SEISMIC SEQUENCE PROSPECTIVITY

6.4.1 SEISMIC SEQUENCE 1

The sequence stratigraphic framework developed for Seismic Sequence 1
identifies a transgressive systems tract (TST), overlain by a maximum flooding
surface (MFS), followed by a prograding highstand systems tract (HST) package.
The high-resolution sequence stratigraphic analysis undertaken for Seismic
Sequence 1 (Chapter 5), has increased the detail known about Seismic

Sequence 1 and hence the prospective areas within the sequence.

Potential plays that can be targeted within Seismic Sequence 1 include lowstand
plays (incised valleys, channels, deep-water deposits, shelf-edge deltas),
stratigraphic plays (onlapping reservoir beds overlain by impermeable materials —
prodelta material, updip pinchouts), and highstand plays (including deltas, fluvial,

shallow marine) (Figure 6.1).

The overall prospectivity of Seismic Sequence 1 can be rated as medium after
examining the results of the high-resolution sequence stratigraphic analysis and
the subsequent identification of higher-order LST's. If a sandy system was
dominant at time of deposition, then potential exists for these lowstand wedges to
be sand-rich and thus prospective. Additionally, the identification of numerous
MFS’s indicate the probability that sealing material may be present and could

hold back hydrocarbons which contributes further to the medium rating. A
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potential incised valley fill has also been identified from the Emperor-1 log,
suggesting that further exploration for incised valleys during times of lowstand

deposition in the study area would be worthwhile.

6.4.2 SEISMIC SEQUENCE 2

Seismic Sequence 2 has been interpreted mainly as a TST according to the
sequence stratigraphic analysis. Based on Seismic Sequence 2’s intersection at
Emperor-1, silty/shaley intervals are dominant and thus Seismic Sequence 2
displays potentially sealing lithologies. Overall the hydrocarbon prospectivity of

Seismic Sequence 2 is low due to its thin interval and limited areal extent.

Potential plays that could be targeted within Seismic Sequence 2 could be
stratigraphic with potential reservoir facies deposited in an alluvial, coastal plain
and/or shelfal environment, with sealing facies potentially also deposited via
these environments as well (Figure 6.1). Hydrocarbons would most likely have to
travel via long-distance migration, due to the overall thinning and limited extent of
the seismic sequence and also the likelihood of the lack of deposited source rock
intervals. Overall this sequence is most likely to have a lower sandstone
percentage (Emperor-1 intersection) and is most likely to host non-reservoir

claystone lithologies.
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6.4.3 SEISMIC SEQUENCE 3

The sequence stratigraphic framework developed for Seismic Sequence 3
includes a LST, TS, MFS and HST. The hydrocarbon prospectivity rating for
Seismic Sequence 3 is medium to high. This can be attributed to the sequence’s
thickness, lithology combination (reservoir/seal), areal extent and sequence
stratigraphic interpretation allowing for a number of potential stratigraphic plays
that could be targeted in Seismic Sequence 3. These include onlap, incised
valley, downlap pinchouts and truncation. Potential reservoir facies include
beach, deltaic estuarine, basin floor fans and distributary channels (Figure 6.1).
Potential sealing facies include shelf mudstones and/or coastal/delta plain

mudstones.

6.4.4 SEISMIC SEQUENCE 4

Seismic Sequence 4 has been interpreted as a HST. Overall, the hydrocarbon
prospectivity of Seismic Sequence 4 displays some potential, although the
sequence is not regionally extensive or of great thickness. Potential plays that
could be targeted within Seismic Sequence 4 include downdip and updip
pinchout and truncation plays (Figure 6.1). Associated potential reservoir facies
involved in these play types could include fluvial, coastal plain and/or shallow

marine. Sealing facies including coastal plain and/or shelfal mudstones. A
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stratigraphic component is also included in the majority of the Seismic Sequence

4’s plays, with structural features also highlighted.

6.4.5 SEISMIC SEQUENCE 5

The sequence stratigraphic framework for Seismic Sequence 5 includes a LST,
TS, MFS and HST. Seismic Sequence 5 can be categorised as having high
hydrocarbon prospectivity. This rating can be attributed to the thick and
regionally extensive nature of the sequence, the sequence stratigraphic
interpretation and also intersections of thick blocky sands at South Pepper-1.
Potential plays that could be targeted with Seismic Sequence 5 include onlap,
downdip pinchout, mounding features and/or truncation (Figure 6.1). Potential
reservoir facies include lowstand incised valley sands, shallow marine, slope,
deltaic, deep water and channels. Potential sealing facies could include shelf
and slope mudstones and also deep water shales, e.g. basin floor fan
stratigraphic play or onlapping lowstand wedge sands stratigraphically sealed by

overlying shelfal/slope mudstones (or MFS).

6.4.6 SEISMIC SEQUENCE 6

Seismic Sequence 6 is interpreted as comprising of a thin LST. Overall, the

hydrocarbon prospectivity for Seismic Sequence 6 can be classed as low to

medium. This is due to the seismic sequence’s small areal extent and overall
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thinness and also lack of internal character. Some potential plays that could be
targeted within Seismic Sequence 6 include lowstand wedge sands onlapping
and being sealed via shelfal mudstones stratigraphically or incised valley fill

sealed by shelfal mudstones.

6.4.7 SEISMIC SEQUENCE 7

The sequence stratigraphic framework developed for Seismic Sequence 7
identifies a TS followed by a prograding to aggrading HST. The hydrocarbon
prospectivity for Seismic Sequence 7 is overall low to medium. Potential plays
within Seismic Sequence 7 include stratigraphic traps such as downdip pinchouts
of deltaic or beach sands, sealed by shelfal mudstones, isolated channels with
distributary channel sand reservoir facies and coastal or delta plain mudstones
as potential sealing facies and/or truncation of beach or deltaic sands that have

been sealed stratigraphically by shelfal mudstones (Figure 6.1).

6.4.8 SEISMIC SEQUENCE 8

The sequence stratigraphic framework developed for this sequence identifies a
LST, TS, MFS and HST. The internal character, thickness and areal extent of
this sequence is excellent for a thorough investigation into the prospectivity of the
seismic sequence. Overall, the hydrocarbon prospectivity for Seismic Sequence

8 can be rated as high. Potential plays that could be targeted with Seismic
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Sequence 8 include onlap, downdip pinchout, mounding features and/or
truncation (Figure 6.1). Potential reservoir facies include lowstand incised valley
sands, shallow marine, slope, deltaic, deep water and channels. Potential
sealing facies could include shelf and slope mudstones and also deep water
shales, e.g. basin floor fan stratigraphic play or onlapping lowstand wedge sands
stratigraphically sealed by overlying shelfal/slope mudstones (or MFS).
Additionally, South Pepper-1 displays good quality reservoir sandstones within
Seismic Sequence 8, which further reinforces the high rating of the prospectivity

of this sequence.

6.4.9 SEISMIC SEQUENCE 9

The sequence stratigraphic framework developed for Seismic Sequence 9
includes a TS, MFS and an aggrading HST. The overall hydrocarbon
prospectivity for Seismic Sequence 9 can be rated as low to medium. Potential
plays that could be targeted within Seismic Sequence 9 include downdip and
updip pinchout and truncation (Figure 6.1). Associated potential reservoir facies
involved in these play types could include fluvial, coastal plain and/or shallow
marine and sealing facies including coastal plain and/or shelfal mudstones. A
stratigraphic component is also included in the majority of Seismic Sequence 9's

plays, with prospective structural features highlighted.
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6.4.10 SEISMIC SEQUENCE 10

Seismic Sequence 10 has been interpreted as a lower-order LST from the
regional sequence stratigraphic framework developed in Chapter 4. This seismic
sequence displays coherent internal seismic character, thickness and areal
extent, with the potential for the ability to attempt detailed mapping of higher-
order sequences. The overall hydrocarbon prospectivity for Seismic Sequence
10 is rated as high. Potential plays that could be targeted within Seismic
Sequence 10 include basin floor fans and incised valleys with fluvial reservoir
facies, sealed by shelfal mudstones (Figure 6.1). Also onlapping lowstand
wedge of beach, deltaic or estuarine sandstones sealed stratigraphically by shelf
mudstones could be a targeted play type. The development of adequate sealing
facies is highlighted as the greatest risk for Seismic Sequence 10, this is due to
thick reservoir quality sandstones intersected by nearby wells such as South

Pepper-1 within Seismic Sequence 10.

6.4.11 SEISMIC SEQUENCE 11

Based on the sequence stratigraphic framework developed for this study a LST,
two TS's and a HST has been identified within Seismic Sequence 11. Overall, the
hydrocarbon prospectivity for Seismic Sequence 11 can be rated as high. The
basal part of the sequence includes potential plays such as onlapping lowstand

wedge, beach, deltaic and/or estuarine reservoir sands stratigraphically sealed
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by shelfal mudstones and/or MFS with potential for the development of basin
floor fans could be targeted for future exploration (Figure 6.1). Additionally the
intersection of reservoir quality sandstones with interbedded shaley/silty sealing
facies at nearby wells further encourages targeting such potential play types.
The upper part of Seismic Sequence 11 displays potential for play types such as
downdip pinchout of shore face sands sealed by shelfal mudstones and
truncation of shore face sands sealed by overlying shelfal mudstones to be

targeted.

6.5 LEADS

Five leads have been identified related to the depositional setting relative to the

play type and are discussed as follows (Figure 6.2).

6.5.1 SHELF LEADS

Numerous shelfal leads have been identified based on the currently available
data and the technique of using seismic sequence stratigraphy in this study. The
shelfal leads identified are mainly incised valleys (Figure 6.1). Incised valleys are
associated with a fall in relative sea-level when river profiles adjust to lowered
base level. The river creates an incision into the deposits of the previous
sequence (Posamentier & Allen, 1999). A grid of wells or outcrop data is usually

needed to prove the existence of an incised valley and although neither of these

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King



- Z

Leat-®  (@rb-line)

LEAD LOCATION
MAP

Bay-1®\, West Pepper-®

South Pepper ® East Pepper-1

Mosman-

Lead

Alum;.
North Herald-
t Lead 4
o Tnine 38357”
Emperpr-® Lead 2 — F||nderS 3D
Lead 1 —O (InI|ne 3658) survey outline
(Inline 4118) Basnclher\/”—’.‘Eldgr 1

Tauntpn-® Airlie- 1. -

- .
- R‘ South Chervil-1
-~
-~
>

Lead 3
7 (Inline 3358) PLAY TYPES

L/ Slope Lead
O Canyoning Lead

O Structural Lead

10 km

Figure 6.2

Lead location map, note different colours representing different play types.




Play and Prospectivity Analysis 102

are available for this study area, Emperor-1 gives some evidence for the
existence of an incised valley, displaying a sharp-based sandstone representing
an abrupt shallowing from marine shelfal facies to sandy fluvial valley-fill (Figure
4.13). A valley-fill deposit can also be shaley when, as part of a TST, estuarine

conditions dominate.

6.5.2 SLOPE LEADS

Two slope leads have been identified via the combined search through the
currently available data and the seismic sequence stratigraphic interpretation
completed for this study. The first comprises a toe-of-slope play, with potential
reservoir sandstones onlapping and pinching out against the older sequence
below (Figure 6.3). According to the seismic sequence stratigraphic framework
developed, the lead lies within a HST. This lead displays good potential for the
presence of a stratigraphic trapping mechanism via the onlapping nature of the
sediments highlighted. Although a HST lowers the chance for the presence of

reservoir quality sands, it does increase the probability that sealing facies exist.

The second slope lead identified in the study area, is also a toe-of-slope play
(Figure 6.4). Potential reservoir sands may be present and display onlapping
characteristics (thus potentially trapping hydrocarbons). This lead also displays
the presence of an anticlinal structure above the onlapping sediments. Despite

the quality of the 3D data being of good quality available, the lack of direct well
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-“I‘ — \- _-_I 1 = = _\— _q-\— : 1 1 I_ -\—-“— \’- I_ 1 _\-_ \-— 1 ¥
“11 Slope Lead
e —— e — =
1100 s —  —
1200 — — = q : - L f"‘ — = : —_—
..-:-:-.--n.____ - - — = : \ — —
——— S —
S — it ~ —— — : I -
- e — N — T F‘l" -
1200 S e — I P S— R
ws-anf_ — _T__—? ?_-'—_ x
~_-1000m
1600
- p—— — — —" - -—
17008 — — . -‘"'\--—-'""--'-'"--'""'"\------—'-""""'m._--...._____ — i e »
— -~ '“-....------..-—--..-.--.--""'""'"--
1800 .

Inline 3658 — Without interpretation
SWe = om o om oz oms2 o2 om oz oz oz om oz o=z ME
- I‘ = \- 1 1 = - _\‘ _‘-\- - 1 1 \_ -I_--__ I’- I-_ 1 _\-_ \-— 1

1000 N
Slope Lead
—— e e e S ——
1|gg—$- — W—r — —
1200 — — ~ = .— -— o S — ’ g-:‘ \ — = -——
L] : / :_ — — —
Mound-like structure —— ; ——
. : — = - =
with potential for two e e S
play types including s e
|={ a possible slope sand =
1000m
— ﬁ
1600
1700 — ™ ey, S - — . g = - - il
" — T e N o g, — |
~ 5'%..-.----..-—-q.-.--.--"'""'-"-'---.
Inline 3658 | Lead2 == With interpretation

Figure 6.4 Potential intra-Barrow Group slope lead, key risk is top seal.



Play and Prospectivity Analysis 103

penetrations makes it difficult to distinguish whether or not there is a sealing
facies overlaying the potential reservoir sands for the anticlinal structure that has
been interpreted. The issues dealing with timing and migration make it also
difficult to ascertain whether or not hydrocarbons have leaked and is beyond the

scope of this study.

6.5.3 BASIN-FLOOR LEADS

The palaeo-depositional environments interpreted for the intra-Barrow Group
displays the potential for the identification of basin-floor fans. Submarine fan
creation is associated with erosion and incised valleys. Siliciclastic sediment
bypasses the shelf and slope through the valleys and canyons to feed the basin-
floor fan. Further investigations into regions similar to that of the palaeo-
depositional schematic interpretations may result in the identification of new
basin-floor fans. These prospective areas are in the northeastern part of the
study area proximal to Mosman-1, Bay-1 and South Pepper-1. All these wells

have intersected distal and proximal portions of submarine fans.

6.5.4 LOWSTAND SYSTEMS TRACTS LEADS

The regional sequence stratigraphic framework developed for the intra-Barrow

Group for this study has identified a number of lower-order LST's. A LST is

deposited during an interval of relative sea-level fall, and subsequent relative
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sea-level rise. A LST can be divided into two parts: a unit of submarine fans
deposited during falling relative sea-level, and a topset/clinoform system, initially
progradational but becoming aggradational, deposited during a relative sea-level

rise.

Overall the LST's identified in the study area correspond to well developed,
‘blocky’ thick sandstones in wells. Potential sealing facies for this LST include
overlying TST’s and MFS’s which have been identified throughout the study area.
The thickness, extent and capacity of potential sealing facies, however, need
further understanding. The presence of well developed and excellent quality
reservoir and sealing intervals coupled with known hydrocarbon charge in the
Barrow Sub-basin may lead to the discovery of stacked reservoir/seal objectives

within a stratigraphic play.

6.5.5 HIGH-RESOLUTION SEQUENCE STRATIGRAPHY

LEADS (SEISMIC SEQUENCE 1)

The high-resolution sequence stratigraphic study undertaken for Seismic
Sequence 1 has identified numerous leads. The features identified have been
interpreted as lowstand prograding wedges and display onlapping features.
Sandy lowstand wedges can be sealed against underlying shales of a HST and
overlying shales of a TST, thus forming stratigraphic traps. The presence of

sealing lithologies is high, as indicated by the mainly shaley interval displayed by
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the Emperor-1 intersection for Seismic Sequence 1. Minor reservoir quality
sandstones were intersected at Emperor-1 for Seismic Sequence 1, therefore the
chance of the presence of reservoir quality sands across the area is low. The
presence of associated incised valleys is also possible and has been discussed

in Chapter 5 and section 6.5.1.

6.5.6 STRUCTURAL/OTHER LEADS

Two purely structural leads have been identified within the study area and consist
of anticlinal structures (Figure 6.5). The first structural lead is on the Barrow
Island anticline trend and displays associated roll-over into a fault (Figure 6.5).
Previous discoveries in the study area have comprised of such attributes, such

as South Pepper-1 and North Herald-1 (Baillie & Jacobson, 1997).

Other potential leads identified in the study area include canyon features (Figure
6.6). These features are present below the interval of interest, but still display
potential for hydrocarbon prospectivity. The features associated with the canyon
include remnant erosional features and slope/slumped sands within the canyon

(Figure 6.6).
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7.0 DISCUSSION

7.1 SHELF DEPOCENTRE EVOLUTION

The evolution of the main depositional centre for the interval of interest can be
approximated as part of this study. The position of depocentres has been
interpreted for each seismic sequence using isochron mapping (Figure 7.1). The
purpose of analysing the position of multiple depocentres is to help in predicting
the deposition of reservoir units, for example in the form of basin floor fans.
These main areas of deposition during each time period (or seismic sequence)

range from broad and elongate in shape to almost restricted in distribution.

The migration of the main depocentre for each sequence was interpreted based
on the identification of numerous areas of greater thickness, with thinning of the
sediments in between. The presence of multiple depositional centres for some
seismic sequences may be due to the input of sediment from more than one
source direction. The intra-Barrow Group’s development can be clearly
understood visually from the progression of each seismic sequence’s interpreted
depocentre. From oldest to youngest the depocentres build out in an overall
northeasterly direction over time (Figure 7.1). Overall this technique is a good
integrative method and is also discussed in relation to shelf-margin deltas by

Porebski and Steel, 2003.
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7.2 N-NE SHELF PROGRADATION AND ROTATION

The palaeo-shelf break position for each seismic sequence has been mapped
out over the Flinders 3D seismic survey study area. The movement of the shelf
break position for the interval of interest displays the progradation of the shelf in
a northeasterly direction (Figure 7.2). During the evolution of the shelf break, a
slight rotation in its direction of movement has been interpreted (Figure 7.2).
This rotation alters from a north-easterly stepping direction in the older parts of
the succession, to a more northerly direction for the younger part of the

succession (Figure 7.2).

Gawthorpe & Colella (1990) discuss tectonic controls on coarse-grained delta
depositional systems in rift basins, such as East Greenland, the Dead Sea and
the Gulf of Suez, that provide potential analogues applicable to the intra-Barrow
Group seismic stratigraphic interval of interest. The analogues suggest that the
creation of depocentres and sediment sources due to tectonic movement are
caused by rifting, Gawthorpe & Colella (1990) also note the rotation of shelf-

break positions in these analogues.

It has been noted that the tectonic activity and associated subsidence with half-
graben developments has a marked effect on the basin-fill architecture
(Gawthorpe & Colella, 1990). Thus, the tectonic activity occurring during the

Early Cretaceous for the study area may have involved development of half-
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grabens with rifting and subsequent rotation and further movement of these fault
blocks (Eriyagama et al., 1988). This suggests that the continued extension in
the Argo-Abyssal Plain and the creation of accommodation space to the west of
the study area contributed to the movement of the depocentre during intra-
Barrow Group sedimentation (Eriyagama et al., 1988). This provides a possible
explanation for the northeast to more northwards change in shelf-break evolution

as seen in the study area (Figure 7.2).

7.3 ALASKAN ANALOGUE: NANUSHUK AND TOROK FM

Similar investigations to this project have been undertaken in the Beaufort Sea
area in the northeast corner of the National Petroleum Reserve of Alaska (Figure
7.3). The Lower Cretaceous fill in this area includes the coeval clinoform and
topset couplet of the Nanushuk Group and Torok Formation (Houseknecht &
Schenk, 2002) (Figure 7.3). These deposits include fluvial, deltaic and marine
sediments and have a well established regional sequence stratigraphic
framework (Johnsson & Sokol, 1998). Studies performed for the Nanushuk
Group and Torok Formation include the geometric relationship of sequences,
delta migration and local and regional tectonics via the application of seismic

sequence stratigraphy (Houseknecht & Schenk, 2002).

The presence of very clear prograding clinoforms in this part of Alaska is

comparable to those of the Barrow Group in the Northern Carnarvon Basin,
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NATIONAL PETROLEUM 1
RESERVE OF ALASKA i
{

Brookian

| COLVILLE BASIN

NPRA
ALASKA

Figure 7.3 Alaskan Analogue: Nanushuk and Torok Formations

stratigraphy (modified from Johnsson & Sokol, 1998).

location map and cross-section of



Discussion 109

Australia (Figure 7.4). The discussions involving these Alaskan sediments again
mirror those of the intra-Barrow Group, particularly in regard to the explanation
for rotations in progradation direction and reasons why this is seen in the study
area. Similarly, the mapping of the crests of the clinoforms can be compared to
the mapping of the shelf-break for the intra-Barrow Group over time (Figure 7.4).
Both locations display shelf boundary/break progradation and rotation or change

of progradation direction over time.

7.4 WEST SPITSBERGEN AND TRINIDAD ANALOGUES

Additional large shelf-margin deltas from West Spitsbergen and Trinidad can be
discussed as analogues in respect to the Barrow Group. The shelf-edge
successions and shelf-slope-basin floor clinoforms are exposed in outcrop along
mountainsides in the Central Basin of Spitsbergen, Norway (Porebski & Steel,
2003) (Figure 7.5). These shelf-edge deltas provide excellent examples from the
outer shelf to basin plain facies distributions (Steel et al., 2000). Furthermore
canyons, shelf collapse, formation of incised valleys and prograding shelf-edge
systems are viewed at Spitsbergen (Porebski & Steel, 2003), can be directly

related to and are comparable in scale to the Barrow Group.

The Pliocene aged palaeo-Orinoco Delta, Trinidad can also be used a direct
analogue to the Barrow Group. This shelf-edge deltaic system displays
prograding sigmoid oblique clinoforms (Steel, 2005) (Figure 7.6), similar to those

viewed on seismic at the intra-Barrow Group level. The Orinoco Delta thus

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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provides analogous examples of high resolution seismic imaging and subsequent
understandings of tectonic, fluvial process and accommodation space
fluctuations that influence deltaic and shelfal architecture, of which can be used

to further understand the Barrow Group evolution (Israel, 2005).
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8.0 CONCLUSIONS

The majority of discoveries in the study area have been Top Barrow Group
structural plays. Therefore, an investigation into the sequence stratigraphy and
the stratigraphic-play potential of the lower intra-Barrow Group was warranted
and has the ability to propose new play types in the study, which will have the
potential to add to the discovered resource in the region and revive the
exploration methods undertaken. The Flinders 3D seismic dataset used for study
has only recently been acquired to enable such a detailed study, hence the ability
to have 3D is important to conduct studies such as those undertaken for this

project.

A seismic-based sequence stratigraphic framework has been developed for the
intra-Barrow Group via the integration of the Flinders 3D seismic survey and the
currently available well data. 11 seismic sequences separated by sequence
boundaries have been identified and mapped out across the majority of the study
area where good quality data prevailed. Each seismic sequence was classified
in terms of systems tracts nomenclature taken from Posamentier and Vail (1988),

which aided in the interpretation for this study.

The palaeo-shelf break, slope and base of slope positions have been mapped

out for each seismic sequence in order to help with the interpretation of

depositional environment and also the later prospectivity study. Palaeo-
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geographic reconstructions for each seismic sequence has been drawn
schematically via the integration of seismic, well, map, sequence stratigraphic
framework and palaeo-shelf break, slope and base of slope positions. These
provided a useful reference for comparison of intervals and also for future

exploration activities.

The main depositional centres for each seismic sequence display an overall
northward progression. Switching of depocentres and occasional splitting into
two main depocentres also occur. This interpretation also aided in the in the
palaeo-geographic reconstructions for each seismic sequence and also play

analysis/lead identification for the interval of interest.

Shelf-break rotation, possibly due to rifting, coincided during the time of
deposition along with associated fault block rotation. This was interpreted for the
overall study interval and was useful for each of the palaeo-geographic
reconstructions throughout the interval of interest.  Similar investigations
analogous to the intra-Barrow Group have been undertaken in the Beaufort Sea
area in the northeastern corner of the National Petroleum Reserve of Alaska,
where similar shelf-break rotation has been interpreted (Houseknecht & Schenk,

2002).

A high-resolution sequence stratigraphic study was undertaken for Seismic

Sequence 1. Numerous higher-order sequence boundaries and systems tracts
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were identified, which resulted in the identification of a number high-resolution

leads.

From the play analysis/lead identification study undertaken, 5 leads have been
identified in the study area and are defined by play type including shelfal, slope
and basin-floor, along with structural plays. Additionally, each seismic sequence
identified has been discussed in detail in regards to prospectivity and each key
play element (reservoir, source, seal, trap). Seismic Sequence’s 1, 3, 4, 5, 8, 10
and 11 have all been graded as displaying medium to high hydrocarbon
prospectivity. The remaining seismic sequences (2, 6, 7 and 9) have been
highlighted as potentially comprising of solely sealing or reservoir facies. The
combination of well intersections, seismic response and, most importantly, the
seismic sequence stratigraphic framework has led to such conclusions being

made for each seismic sequence’s prospectivity.

The seismic sequence stratigraphic framework developed for the intra-Barrow
Group has been integrated to assess the hydrocarbon prospectivity, with areas of
future exploration potential highlighted in the form of numerous leads. Further
work is required to asses these leads. However, this method has demonstrated
that the seismic sequence stratigraphic framework developed is a valuable
technique in helping to identify focal points to help fast track the search for
hydrocarbon accumulations in an area where conventional play types (structural

closures) have been the historical norm.
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Overall, this study has shown that stratigraphic plays have been under explored,
as new plays have been documented in the study area, and that developing a

seismic sequence stratigraphic framework can be used as a predictive tool.
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9.0

RECOMMENDATIONS

The following recommendations are presented as a result of this study:

It is recommended that the regional sequence sequence stratigraphic

framework is extended to the entire Barrow Group.

It is recommended that the regional sequence stratigraphic framework is
extended to 3D seismic surveys adjoining the Flinders 3D survey (e.g.

Snark 3D seismic survey).

Integration of all recent well results (Boojum-1 and Gaius-1) intersecting

the intra-Barrow Group nearby to study area.

Integration of all available core and cuttings data from the wells in study

area.

High-resolution sequence stratigraphic studies are recommended to be

attempted for most seismic sequences identified.

Additional work on the leads identified is necessary, in particular focusing
on the presence and quality of sealing lithologies, and also presence and

timing of expulsion of potential source rocks.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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e The application of RMS, coherency and opacity functions to the seismic is
recommended as a further possibility of improving seismic quality and

geologic features viewed and interpreted from the 3D seismic survey.

e The inclusion of synthetic seismograms for key wells would also add value

to the overall thesis.

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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10.0 Appendix

1.0 A3 summary figures for each Seismic Sequence interpreted from project

Seismic Sequence Stratigraphy of the intra-Barrow Group Emma King
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