

Genetics and Agronomy of Transient Salinity In

Triticum durum and T. aestivum

by

David Seth Cooper

Thesis submitted for the degree of Doctor of Philosophy

in the

School of Agriculture and Wine,

The University of Adelaide

August, 2004

TABLE OF CONTENTS

CONTENTS

Table of contents	i
Abstract	vii
Statement of originality and consent to photocopy or loan	x
Acknlowledgements	xi
Chapter 1	
Introduction	1
Chapter 2	
Review of literature	5
2.1 Salts in the southern Australian landscape	5
2.1.1 Origin of salts	5
2.1.2 Composition of salts	7
2.2 Forms of salinity	7
2.2.1 Salinity resulting from shallow water tables (seepage salinity)	8
2.2.2 Transient salinity	8
2.2.3 Magnesia patches	9
2.3 The distribution of transient salinity in the cereal growing regions of	
South Australia	10
2.4 The effect of salinity on plant growth	13
2.4.1 Toxic effects on plant metabolism	14
2.4.2 Osmotic effects of salt on plant growth	16
2.4.3 Two-phase response to salinity	18
2.5 Options for improving cereal production on transient saline land	20
2.6 Adaptive mechanisms for tolerance to transient salinity	21
2.6.1 Ion exclusion	21
2.6.2 Compartmentalisation of excess ions	24
2.6.3 Neutral cytoplasmic solutes	24
2.7 Screening methods for identification of salinity tolerance	25
2.7.1 Screening for tolerance at germination and early stages of growth	25
2.7.2 Screening at later stages of development	27

2.7.3 Screening in the field	27
2.8 The availability of genetic variation in durum wheat	30

32

Chapter 3

An investigation into the effects of subsoil constraints at selected sites within South Australia

3.1 Introduction	32
3.2 Field experiments to investigate the effect of subsoil constraints on grain	
yield and screenings, 2001.	33
3.2.1 Introduction	33
3.2.2 Materials and methods	33
3.2.3 Results	38
3.2.4 Discussion	54
3.3 Field experiments to investigate the effect of subsoil constraints on grain	
yield and screenings, 2002.	56
3.3.1 Introduction	56
3.3.2 Materials and methods	56
3.3.3 Results	58
3.3.4 Discussion	63
3.4 General discussion of Chapter 3	64

Chapter 4

67
67
70
70
70
71
73
73
73
75

4.4 Investigation into the effects of soil salinity on the grain size and yield of	
Worrakatta and Krichauff	77
4.4.1 Introduction	77
4.4.2 Materials and methods	77
4.4.3 Results	78
4.4.4 Discussion	82
4.5 Field testing of the $F_{2,5}$ derived lines to assess the relationship between	
Na exclusion and transient salinity tolerance	82
4.5.1 Introduction	82
4.5.2 Materials and methods	83
4.5.3 Results	85
4.5.4 Discussion	93
4.6 Chromosomal location of the Na exclusion locus of Krichauff determined	
bulked segregant analysis	95
4.6.1 Introduction	95
4.6.2 Materials and methods	96
4.6.3 Results	99
4.6.4 Discussion	103
4.7 General discussion of Chapter 4	103

Introgression of a sodium exclusion trait into durum wheat and its mode

of inheritance	106
5.1 Introduction	106
5.2 Population constuction	109
5.2.1 Introduction	109
5.2.2 Materials and methods	109
5.2.3 Results	111
5.2.4 Discussion	114
5.3 Development of selection techniques for detecting hetero	ozygous
Na excluding F1 plants	115
5.3.1 Introduction	115
5.3.2 Materials and methods	116
5.3.3 Results and discussion	118

5.4 Na accumulation of the F_2 derived population in a pot experiment	121
5.4.1 Introduction	121
5.4.2 Materials and methods	121
5.4.3 Results	122
5.5 Progeny testing of the BC_3F_2 derived lines for Na exclusion in the field	126
5.5.1 Introduction	126
5.5.2 Materials and methods	127
5.5.3 Results	129
5.5.4 Discussion	135
5.6 general discussion of Chapter 5	137

An investigation into the conflicting conclusions made about the genetic	
control of the Na exclusion of Na49	141
6.1 Introduction	141
6.2 Materials and methods	146
6.3 Results	148
6.4 Discussion	154

Chapter 7

The effect of Na exclusion on grain yield and grain size of durum wheat	157
7.1 Introduction	157
7.2 Materials and methods	161
7.3 Results	162
7.4 Discussion	181

Chapter 8

The effect of Na exclusion on the uptake of other elements in durum wheat	186
8.1 Introduction	186
8.2 Analysis of correlations between Na and the other elements measured	
by ICP spectrometry in the genetics study (Chapter 5)	188
8.2.1 Introduction	188
8.2.2 Materials and methods	189
8.2.3 Results	190

8.3 Solution culture experiment to investigate the effect of Na exclusion on	
micronutrient uptake	219
8.3.1 Introduction	219
8.3.2 Materials and methods	220
8.3.3 Results	223
8.3.4 Discussion	232
8.4 The effects of Na exclusion on the accumulation of Na and other elements	
in grain	233
8.4.1 Introduction	233
8.4.2 Materials and methods	234
8.4.3 Results	235
8.4.4 Discussion	239
8.5 General discussion of chapter 8	240

Tolerance to high internal concentrations of Na in a synthetic hexaploid	
(Triticum aestivum)	244
9.1 Introduction	244
9.2 Tolerance to high internal Na concentrations identified in a synthetic	
hexaploid wheat	244
9.2.1 Introduction	244
9.2.2 Materials and methods	245
9.2.3 Results	247
9.2.4 Discussion	255
9.3 Salt tolerance of doubled haploid progeny from the cross	
(Aus#29663*Krichauff)	256
9.3.1 Introduction	256
9.3.2 Materials and methods	257
9.3.3 Results	258
9.3.4 Discussion	260
9.4 General discussion of chapter 9	261

General discussion

Appendix 1

Variation in locally adapted wheat and barley varieties for salt tolerance

during germination	274
A1.1 Introduction	274
A1.2 Materials and methods	277
A1.3 Results	277
A1.4 Discussion	282

Appendix 2

Proceedure for the development and evaluation of BC₃F₂ derived lines from

The cross (Kalka#4*Na49)	284	1

References

286

ABSTRACT

Transient salinity in soils is characterised by high concentrations of salts in the subsoil, which vary with depth and change throughout the season in response to rainfall, surface evaporation and water usage by vegetation. Soils affected by this form of salinity comprise at least 50% of the area cropped to cereals in South Australia and have a large impact on grain production, particularly in years receiving below average spring rainfall. Durum wheat (*Triticum turgidum* L. Var *durum*) is less tolerant of transient salinity than locally developed bread wheat (*Triticum aestivum*) varieties, and this results in reliable durum production being restricted to relatively unaffected soils.

Field trials were conducted to assess the relative impact of transient salinity, boron toxicity and bicarbonate on crop production. Despite more than half of the sites being located on subsoils with salinity levels in excess of 4dS/m ECe, there was only one transient saline site, at Roseworthy, where EC was the dominant soil co-variate affecting yield. Boron toxicity was the dominant covariate at another Roseworthy site, while high pH was the dominant factor at half of the locations investigated. At many of the sites, more than one constraint was present at levels expected to restrict crop growth, yet one dominant factor explained most of the variation in yield. This highlighted the importance of combining tolerance to all three subsoil constraints into varieties intended for widespread adoption.

A Na exclusion trait was backcrossed into the background of the boron tolerant variety Kalka three times (BC₃), and a population of 196 F_2 derived lines selected. The trait segregated in ratios indicative of control by a single dominant gene at all stages of the backcross process, and full recovery of the Na excluding ability of the donor parent was

achieved. Na exclusion reduced the Na concentration in grain and it was found that grain analysis can be used as an accurate selection method.

The population was sown at three field sites with subsoil salinity levels in excess of 10dS/m ECe. A significant yield difference between Na excluding and non-excluding lines was detected at one of these sites; however, one site suffered from a severe infection of crown rot (*Fusarium pseudograminearum*), while the other has been shown to be dominated by high pH. In the latter site, the sensitivity of the recurrent parent Kalka to high pH restricted root growth to the upper soil layer, above that affected by transient salinity.

 Na^+ exclusion was expected to increase the concentration of K^+ in plant tissue, but it was found that other ions were also affected. The cations Ca^{2+} and Mg^{2+} increased in concentration, while the concentration of the anions Cl^- and SO_4^{2-} decreased, suggesting that the exclusion of Na^+ ions was to some degree balanced by changes in concentration of other ions. The specific ions affected and the relative change in each varied depending on the soil. The increase in concentration of the low Na accumulating genotypes was large enough to be the difference between deficient and adequate nutrition of K, Mg and Ca at some field sites.

Bread wheat is able to exclude Na, so whole plant concentrations are commonly 5-10 fold lower than that of durum; however the variety Krichauff was shown to exclude more Na than its sister variety, Worrakatta. A population of F_5 derived lines developed from the cross between these two varieties, was yield tested at four sites affected by transient salinity. The population was sampled at the Redhill site, and assessed for Na concentration in the whole tiller by inductively couped plasma (ICP) spectrometry. Significant correlations were detected between the Na concentration at Redhill and grain yield at Buckleboo, and screenings (%) at Port Pirie, indicating that the Na exclusion of Krichauff can have a beneficial effect on transient salinity tolerance.

Bulked segregant analysis revealed that the Na exclusion trait of Krichauff was controlled by a QTL on the long arm of chromosome 4B, which was linked to the microsatellite marker *gwm149*. This marker explained 61% of the variation in Na concentration among the lines included in the bulks.

A synthetic hexaploid (*Triticum aestivum*), which was identified as having the ability to tolerate high internal concentrations of Na, was able to maintain a significantly higher green leaf area than either Kharchia 65 or Krichauff when irrigated with saline nutrient solution. A significant salinity x genotype interaction occurred, which resulted in the synthetic line having higher fresh shoot weight in 75mmol/L NaCl. ICP analysis revealed that there was no significant difference in Na concentration, suggesting that an internal tissue tolerance mechanism, rather than exclusion was responsible for the observed tolerance.

This work has been incorporated into local breeding programs and has illuminated agronomic work on toxic subsoils and nutrient deficiencies.