
DIRECTED UNFOLDING

Reachability Analysis of Concurrent Systems
& Applications to Automated Planning

by

Sarah Louise Hickmott

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering
Faculty of Engineering

Computer and Mathematical Sciences

University of Adelaide, Australia

2008

This page left blank.

Abstract

The factored state representation and concurrency semantics of Petri nets are closely re-

lated to those of classical planning models, yet automated planning and Petri net analysis

have developed independently, with minimal and mainly unconvincing attempts at cross-

fertilisation. This thesis exploits the relationship between the formal reachability prob-

lem, and the automated planning problem, via Petri net unfolding, which is an attractive

reachability analysis method for highly concurrent systems as it facilitates reasoning about

independent sub-problems. The first contribution of this thesis is the theory of directed

unfolding: controlling the unfolding process with informative strategies, for the purpose of

optimality and increased efficiency. The second contribution is the application of directed

unfolding to automated planning.

Inspired by well-known planning heuristics, this thesis shows how problem specific infor-

mation can be employed to guide unfolding, in response to the formal problem of develop-

ing efficient, directed reachability analysis methods for concurrent systems. Compliment-

ing this theoretical work, this thesis presents a new forward search method for partial order

planning which can be exponentially more efficient than state space search.

Our suite of planners based on directed unfolding can perform optimal and suboptimal

classical planning subject to arbitrary action costs, optimal temporal planning with respect

to arbitrary action durations, and address probabilistic planning via replanning for the most

likely path. Empirical results reveal directed unfolding is competitive with current state of

the art automated planning systems, and can solve Petri net reachability problems beyond

the reach of the original “blind” unfolding technique.

iii

This page left blank.

For my parents.

v

Acknowledgements

I would not have been able to complete this thesis without support from many people and

in particular, supervision from Langford White, Ian Fuss and Sylvie Thiébaux. Lang pro-

vided me with an endless stream of ideas, but equally importantly, supported me to take my

own direction with this project, and consistently conveyed his belief in me and this work.

Ian challenged my ideas and worked to broaden my perspective and assist me in seeing a

bigger picture. Sylvie provided invaluable guidance and encouragement; her energy and

determination both assisted and inspired me. Without the knowledge, experience and gen-

erous support of each of these people I would not have been able to complete this work; my

gratitude for each person’s contribution is heartfelt.

Throughout this thesis there are significant contributions from Blai Bonet, Patrik Haslum

and Jussi Rintanen, my co-authors in conjunction with Sylvie and Lang, on publications

relating to this work. I am grateful for and appreciative of the insight, knowledge and

enthusiasm Blai, Patrik and Jussi brought to this research. Patrik also read and provided

useful feedback on this thesis for which I am thankful.

Over the last four years I have had the opportunity to discuss my work with many scien-

tists, but am particularly grateful to Alban Grastien, Jinbo Huang, Subbarao Kambhampati,

Sophie Pinchinat and David Smith for fruitful discussions; I also thank Stefan Schwoon for

his assistance with MOLE.

This work has been financially supported by the University of Adelaide (UofA) Faculty of

Engineering, Mathematical and Computer Sciences and the National ICT Australia (NICTA)

via the Dynamic Planning, Optimisation and Learning Project (DPOLP). I would like to

thank all members of DPOLP, for interesting discussions and useful responses to this work,

in particular Jonathon Billington and Guy Gallasch for their technical advice, and Sanjeev

Naguleswaran for valuable guidance. I thank Bob Williamson for helping to facilitate my

extended visits to Canberra. I also wish to express my gratitude to Owen Thomas and

Olivier Buffet, for programming support beyond the call of duty.

Finally, I take this opportunity to thank my friends, who have strongly supported and pa-

tiently endured me, throughout my increasing absorption in this project. And last but def-

initely not least I want to thank my family, who always stand by me, and have shared the

difficulty as well as the excitement of this journey.

vii

This page left blank.

Contents

1 Introduction 1

1.1 Initial Motivation . 3

1.2 Contribution . 5

1.3 Overview . 7

I Directed Unfolding 11

2 Reachability Analysis 13

2.1 System Modelling . 14

2.1.1 Restricted State-Transition System 14

2.1.2 Concurrent System . 17

2.2 The Reachability Problem . 17

2.2.1 Definition . 18

2.2.2 Relevance: Automated Planning, Formal Verification and Diagnosis 18

2.2.3 Optimal Solution . 19

2.2.4 Partially Ordered Solution . 20

2.2.5 Forward State Space Search . 20

Optimal Solution . 20

2.3 The State Explosion Problem . 21

2.3.1 Alleviating the Problem . 23

Symbolic Algorithms . 24

ix

Partial Order Methods . 25

Decomposition Techniques . 26

Abstraction and Symmetry Reduction 27

2.3.2 Heuristic Search . 28

Heuristic State Space Search . 29

2.4 Directed Unfolding: Facilitating Optimality and Improving Efficiency . . . 30

2.5 Conclusion . 31

3 Unfolding a Petri Net 33

3.1 Petri net . 33

3.1.1 Place Transition Net . 34

3.1.2 General Assumptions . 36

3.2 Unfolding a Place Transition Net . 37

3.2.1 Unfolding: Representation and Method 38

Branching Process . 38

Configuration . 41

Possible Extensions . 42

The Unfolding Algorithm . 42

3.2.2 A Complete Finite Prefix of the Unfolding 43

The ERV Unfolding Algorithm 44

MOLE: An Implementation of The ERV Algorithm 44

3.3 The Reachability Problem . 45

3.3.1 Connection with Unfolding . 46

3.3.2 Complexity . 47

3.3.3 On-the-fly Reachability Analysis via Unfolding 49

The ERV-Fly Algorithm . 51

MOLE: An Implementation of the ERV-Fly Algorithm 51

3.4 Conclusion . 52

3.4.1 Personal Contribution . 53

x

4 Directed Unfolding 55

4.1 Reconsidering Adequate Orders . 58

4.1.1 A Semi-Adequate Order on Configurations 58

4.2 Directing the Unfolding for Optimality . 60

4.2.1 A Notion of Optimality . 60

4.2.2 Notions of Cost . 64

4.2.3 Optimal Cost Reachability Analysis 65

Additive Cost . 65

Parallel Cost . 66

4.3 Directing the Unfolding with Heuristics 72

4.3.1 Direct Translation . 73

4.3.2 Generic Framework for Heuristic Guidance 73

4.3.3 Specific Instantiations . 75

Heuristic Guidance with Additive Cost Function 75

Heuristic Guidance with Parallel Cost Function 77

Summary . 78

4.4 Size of the Finite Prefix . 78

4.5 Heuristic Functions . 80

4.5.1 Heuristic Functions For Additive Cost 81

4.5.2 Heuristic Function For Parallel Cost 84

4.6 Experimental Results . 84

4.6.1 Petri Net Benchmarks . 85

4.6.2 Random Problems . 86

4.6.3 Planning Benchmarks . 90

4.7 Conclusion . 93

4.7.1 Personal Contribution and Collaboration 94

xi

II Planning Via Directed Unfolding 97

5 Automated Planning 99

5.1 Automated Planning . 100

5.1.1 Practical and Theoretical Motivation 100

5.1.2 Domain Independent Planning . 101

5.1.3 Conceptual Model of the Planning Problem 102

5.2 Classical Planning . 103

5.2.1 Representation . 105

STRIPS Representation . 105

5.2.2 Analysis . 108

State Space Planning . 108

Plan Space Planning . 109

Partial Order Planning and The Least Commitment Principle 110

Planning As Propositional Satisfiability 112

Graphplan . 113

Heuristic State Space Planning . 115

A Revival of Partial Order Planning? 115

5.3 Extending the Classical Planning Problem 116

5.3.1 Action Costs . 116

Additive Cost of a Plan . 116

Parallel Cost of a Plan . 117

5.3.2 Probabilistic Action Effects . 117

5.4 Conclusion . 119

6 Planning Via Directed Unfolding 121

6.1 Translating a Planning Problem to a PT-Net System 122

6.1.1 Establishing 1-safe Planning Operators 125

Example . 126

xii

Equivalence . 126

6.1.2 Eliminating Negative Preconditions 129

Example . 129

Equivalence . 129

6.1.3 Mapping to PT-Net System . 131

Example . 131

Correctness . 131

6.1.4 Limitations of Translation . 133

Size of Translation . 133

Notion of Concurrency . 134

6.2 Planning as Reachability Analysis . 136

6.2.1 Planning via Directed Unfolding 136

6.2.2 Probabilistic Action Effects . 137

6.3 Comparison with Classical Planning Methods 139

6.4 The PUP SUITE . 141

6.4.1 Artificial Problems . 144

6.4.2 IPC Benchmarks . 145

Translation Time . 147

Suboptimal Classical Planning . 147

Optimal Classical Planning . 150

Optimal Temporal Planning . 156

Replanning . 156

Plan Flexibility . 159

6.5 Conclusion . 162

6.5.1 Personal Contribution and Collaboration 163

7 Conclusions 165

Bibliography 171

xiii

This page left blank.

Chapter 1

Introduction

Consider a situation described by the values of a finite set of variables. There are various

relationships between these variables, captured by a set of rules governing how they can

deterministically transition from one discrete value to another. There are only finite possi-

ble values for each variable. Now change the focus: consider the same situation from the

perspective that there is a set of possible actions. When one is executed, it may enable the

occurrence of other actions not previously viable; it may also disable an action that was pre-

viously possible. The causal dependency between actions is governed by their interaction

with particular variables. Overall, the repertoire of actions is finite.

Observe that the first perspective focuses on the sensed world (states); the second focuses

on the world of process (actions). A useful question one may ask of this situation is “What is

possible?” Or, more specifically, “Is this possible, and how?”, where this is a particular as-

signment of values to variables, and how requests a partially ordered set of actions that will

transform the situation to meet these values. Let us refer to the later question, as the reach-

ability problem, and the dynamic situation described as a restricted discrete event-driven

system (DES). A simple approach to the reachability problem is to take the state based

perspective and systematically search through all possible value-variable assignments by

applying the rules governing their interaction. Or, adopting the action based perspective,

one could identify which actions interact with the variables of interest and attempt to co-

ordinate them. This thesis builds on a unique method of analysis that utilises both state

and action based perspectives to explicitly reveal the correlations between variables in the

sensed world and actions in the world of process: Petri net unfolding [59, 119, 53, 125].

Whilst the detail captured in a restricted DES is limited, there is sufficient information to

answer reachability questions, i.e. the problem is decidable. But even with such limited

expression, the reachability problem quickly becomes intractable. This is because the num-

1

2 CHAPTER 1. INTRODUCTION

ber of states grows exponentially in the number of variables used to describe the system:

the state explosion problem. This is obviously serious even for the case where variables

are logical propositions, which can only be true or false. If analysing a concurrent system,

consisting of largely independent processes, the problem worsens. Considering the global

combination of each process’s variables (i.e. the global state) makes the total number of

states the product of the number of local states for each process. Interleaving independent

state transitions (i.e. concurrent actions) further aggravates the problem, as the number of

transitions between states will increase exponentially with the number of concurrent ac-

tions. Petri net unfolding addresses each of these “fictional” components of complexity

via its factored state representation and concurrency semantics, which facilitate reasoning

about the local state of a process and avoid the arbitrary interleaving of concurrent actions

[119]. Note however that the cost incurred by such reasoning means it is only lucrative for

highly concurrent systems.

This research is primarily interested by the reachability problem in the context of planning.

Planning, generally speaking, involves identifying how one can actively influence a situa-

tion to achieve a particular result. In particular, this thesis addresses the classical planning

problem; classical planning considers situations which can be represented as restricted DES

[67]. Automated planning, a key component of Artificial Intelligence (AI), is the act of for-

malising the planning process computationally. Based on Petri net unfolding, this thesis

presents a new approach to automated classical planning that is suitable for situations with

many concurrent actions.

Petri nets are traditionally used for modelling and analysing distributed systems [126]. Thus

it is not surprising that their factored state representation and concurrency semantics are

similar to those of classical planning domains. However planning and Petri net analysis

have developed independently, with minimal attempts at cross-fertilisation. Unfolding is

a Petri net analysis technique which reveals all partially ordered runs of the net. In this

way, contingent upon an appropriate mapping between a planning problem and Petri net

reachability problem, unfolding the net is equivalent to a forward search through the space

of partially ordered plans.

The reachability problem also arises in formal system verification, via model checking [40],

and model based system diagnosis [149], e.g. [140]. In each of these application areas, but

especially planning, there is benefit in identifying the cheapest or fastest way to achieve a

particular value-variable assignment. But until now Petri net unfolding has not facilitated

finding optimal solutions to the reachability problem, with respect to various cost functions.

Furthermore, Petri net unfolding is not actually oriented to solving the reachability problem

1.1. INITIAL MOTIVATION 3

as it was developed for deadlock detection, which requires exhaustive search. In the face

of state explosion, and the context of reachability analysis, controlling the search for a

solution and pruning the search space can be the critical difference in a problem being

solvable within available time and memory constraints. Heuristics, which estimate the

potential of different search decisions, are central to search control [132, 147]. In the last

decade, AI planning research has revealed state based heuristics, extracted directly from

a problem description, are particularly effective for guiding search and pruning the search

space. Indeed, the use of state based heuristics has significantly increased the scalability of

state based planning algorithms [18, 86, 116]. This has inspired the integration of heuristics

in model checking algorithms, e.g [50, 47, 109, 143, 51]. Unfortunately however the state

based perspective does not offer the flexibility of an action based perspective; in particular it

generally encourages a total ordering of actions. The flexibility of action based approaches,

which generally facilitate a partial ordering of actions based on causality, comes at a cost

which is worsened by the relative inefficiency of non state based heuristics. This thesis

shows how a compromise can be made via Petri net unfolding.

When applied to solve the reachability problem, Petri net unfolding traditionally performs

a breadth-first search, which can only guarantee optimality with respect to the number

of actions in a solution, and only manages to prune parts of the search space repeated

elsewhere. This thesis presents the theory of directed unfolding: controlling the unfolding

process with informative strategies, for the purpose of optimality and increased efficiency.

In particular, it employs state based heuristic functions. So, directed unfolding offers the

flexibility of an action based perspective, but at the same time utilises state based heuristic

functions for guidance and pruning.

Inspired by well-known planning heuristics, this thesis shows how problem specific infor-

mation can be employed to guide unfolding, in response to the formal problem of develop-

ing efficient, directed reachability analysis tools for concurrent DES. Complimenting this

theoretical work, this thesis also presents a new forward search method for partial order

planning which can be exponentially more efficient than state space search.

1.1 Initial Motivation

Before outlining the contributions of this thesis, let us summarise the reasons why we en-

deavoured to build a bridge between Petri nets and AI planning, via unfolding, and thus

give due credit to the work that originally inspired the direction of this thesis.

This thesis contributes to the Dynamic Planning, Optimisation and Learning Project (DP-

4 CHAPTER 1. INTRODUCTION

OLP). DPOLP is an initiative of Ian Fuss from the Australian Defence Science and Tech-

nology Organisation (DSTO), Langford White from the University of Adelaide (UofA),

and Bob Williamson from the National Information Communications Technology Aus-

tralia (NICTA). Fuss, White, and Williamson sought to enhance the theory and practice

of automated planning, with particular focus on military operations planning, by fostering

collaboration between researchers from machine learning (ML), AI planning, and systems

engineering. They were helped in setting up DPOLP’s initial research agenda by other re-

searchers in these disciplines, most notably Douglas Aberdeen (NICTA), Lars Kristensen

(University of Aarhus, Denmark), Sylvie Thiébaux (NICTA), and Lin Zhang (DSTO).

This thesis began with a desire to develop and exploit connections between systems engi-

neering and AI planning. The connection between Petri nets and planning was originally

communicated to us by Lin Zhang, who was coordinating development of the Course of

Action Scheduling Tool (COAST) [175]. This is a scheduling tool designed specifically to

support operations planning in the Australian Defence Force. At the core of COAST is a

coloured Petri net model, which captures and exposes the dynamics of a planning domain

in an accurate and pragmatic manner. Unfortunately however, empirical results revealed

that the state based approach employed by COAST does not scale well due to the state ex-

plosion problem. In response, some DPOLP members set out to explore the trade off with

using slightly less expressive predicate Petri nets. Conversely, we decided to begin at the

foundation of both AI planning and Petri nets: classical planning and place transition Petri

nets.

In the investigation which followed Langford White was captured by Benveniste, Fabre and

Haar’s attempts to utilise the concurrency semantics of Petri net unfolding to the reduce the

complexity of analysing Markov Decision Processes with concurrent actions [10]. This led

us to McMillan [119] and Esparza, Römer and Vogler’s [56] specific presentations of the

unfolding algorithm. Further review revealed research in system verification, e.g. [57, 96,

79, 78], and diagnosis, e.g. [22, 21, 62, 11], which looks to unfolding for some relief of

the state explosion problem in the context of concurrent systems. We could find no attempt

to use unfolding for AI planning, despite the fact McMillan accredits inspiration for the

unfolding method to partial order planning techniques [117]. It was also clear that the

potential of unfolding is still under exploration. Thus there was apparent opportunity for

us to translate, tailor and apply the method to planning problems, and inherently improve

it as a method for reachability analysis. Furthermore, it appeared that unfolding navigates

a unique search space, compared to popular automated planning methods. This suggested

planning via unfolding could offer a different trade-off between flexibility and efficiency,

compared to current planning approaches.

1.2. CONTRIBUTION 5

This, in short, is why we began exploring the connections between planning and Petri net

unfolding. What followed is the topic and contribution of this thesis.

1.2 Contribution

The primary contributions of this thesis are the theory of directed unfolding, and its appli-

cation to automated planning:

(1) The theory of directed unfolding.

This thesis shows how the unfolding process can be directed with informative strate-

gies, for the purpose of optimality and increased efficiency, when solving the reacha-

bility problem. This contribution includes:

(a) Identifying that the requirements on strategies for controlling the unfolding are

stronger than necessary;

(b) Recognising and developing the potential for Petri net unfolding to solve the reach-

ability problem optimally by:

• Identifying conditions which ensure optimality with respect to a particular

cost function; and

• Crafting strategies that minimise additive and parallel cost functions. These

can be used to model financial cost or execution time respectively, for exam-

ple.

(c) Evolving the unfolding to be a principled method for solving the reachability prob-

lem, by enabling the process to be directed with problem specific information in

the form of heuristics. This includes:

• Developing a framework for associating an arbitrary cost function with a

heuristic function, such that the cost function can be optimised if the heuristic

function is admissible;

• Providing the option to prioritise efficiency or solution optimality by using

non-admissible or admissible heuristics respectively;

• Instantiating this framework for the case of additive and parallel cost func-

tions, using results from (b); and

• Adapting heuristic functions developed for AI planning, to the Petri net struc-

ture, and thus demonstrating that a range of suitable heuristic functions can be

automatically extracted from the original Petri net.

6 CHAPTER 1. INTRODUCTION

(d) Comparing the performance of directed unfolding with the original “blind” ap-

proach by:

• Extending MOLE1, a freeware program which unfolds place transition Petri

nets, to implement the theory of directed unfolding with additive and parallel

cost functions and various heuristic functions adopted from AI planning;

• Providing empirical results comparing directed unfolding with the original

“blind” approach on a series of Petri net benchmarks and planning problems;

• Explaining the superior performance of directed unfolding, for both positive

and negative solutions to the reachability problem.

(2) Planning via directed unfolding.

Based on directed unfolding, this thesis presents a new forward search method for

partial order classical planning that can optimise the additive or parallel cost of a plan,

and be guided by admissible or inadmissible state based heuristics. This contribution

includes:

(a) Translating a classical planning world to a place transition Petri net, then casting a

classical planning problem as a Petri net reachability problem;

(b) Showing how directed unfolding can then be employed to synthesise a partially

ordered solution plan which is optimal or suboptimal with respect to the additive

cost of actions, or optimal with respect to the parallel cost of actions. Action costs

can be arbitrary positive numbers;

(c) Comparing planning via directed unfolding with other approaches to automated

planning by:

• Looking at planning via unfolding from the perspective of refinement plan-

ning and thus recognising that it offers a compromise between state based and

action based (commonly referred to as plan space) approaches;

• Crafting artificial problems to demonstrate the ideal situation for planning via

directed unfolding, and assist in explaining why it can be exponentially more

efficient than state based approaches;

• Developing the PUP SUITE, a collection of planners that implement Petri net

Unfolding Planning, and REPUP, a replanner built onto the PUP SUITE that

addresses probabilistic planning;

1http://www.fmi.uni-stuttgart.de/szs/tools/mole/

1.3. OVERVIEW 7

• Presenting empirical results which display the performance of the PUP SUITE

for suboptimal and optimal classical planning, optimal temporal planning, and

replanning for probabilistic action effects, using appropriate benchmarks from

the International Planning Competitions; and

• Comparing results from the PUP SUITE with those of current state of the art

planing systems, giving consideration to the planner runtime, plan length, ad-

ditive and parallel plan costs, and plan execution flexibility.

This work has already found interest in the planning community, e.g. [83], the Petri net

community, e.g. [20], the model checking community, e.g. [82] and the broader AI com-

munity, e.g. [84]. Indeed, after being introduced to the notion of planning via unfolding,

various researchers from the planning community became personally involved in the de-

velopment, application and implementation of the theory presented here. The conclusions

of Chapter 4 and Chapter 6 detail the invaluable contributions of Sylvie Thiébaux, Pa-

trik Haslum, Blai Bonet and Jussi Rintanen. We are also aware that some members of

the Petri net community are further investigating the implications of this research, having

found it challenged their previous understanding of unfolding. On a minor note, developers

of MOLE have expressed interest in extending their publicly available software to utilise

directed unfolding.

1.3 Overview

In accordance with its primary contributions, this thesis is presented in two parts. Part I,

titled Directed Unfolding, presents the background to, and theory of, directed unfolding. It

comprises of Chapters 2, 3 and 4. Part II, titled Planning via Directed Unfolding, applies

the theory of directed unfolding to automated planning. This part comprises of Chapters 5

and 6.

Chapter 2 provides a “big picture” perspective of the reachability problem. We detail the

motivation behind modelling a situation as a DES, explain our particular interest in concur-

rent systems, formally define the reachability problem for a restricted DES, and describe

its relevance to automated planning, system verification and diagnosis. We then discuss the

state explosion problem in detail, focusing on the “fictional” complexity that can be man-

dated by how we model a problem, rather than the problem itself. This leads to explanation

of why Petri nets are an appropriate model for concurrent systems. We then move from

the issue of modelling to analysis: the main techniques for combating the state explosion

8 CHAPTER 1. INTRODUCTION

problem are symbolic algorithms, partial order methods, abstraction techniques, symme-

try reduction and decomposition methods. We compare Petri net unfolding with a range

of algorithms employing these ideas. In this chapter we also consider the value of opti-

mal and/or partially ordered solutions to the reachability problem, and look at how state

based heuristics have impacted the scalability of some AI planning algorithms. We present

a simple state based search and show it can be controlled for the purpose of optimisation

and efficiency, using state based heuristics, but suffers greatly from the aforementioned

“fictional” complexity when used to analyse highly concurrent systems. In this way we

motivate the development and application of directed unfolding, for answering reachability

questions for concurrent DES.

Chapter 3 describes the syntax and semantics of Petri net unfolding. This includes a de-

scription of place transition Petri nets (PT-nets), and the technique and data structure of

PT-net unfolding. We define the reachability problem for PT-nets, outline the main ap-

proaches to PT-net reachability analysis, and state our interest in the unfolding approach.

We then formalise the connection between reachability analysis and PT-net unfolding, dis-

cuss the implications in terms of complexity theory, and finally present the fundamental

algorithm this thesis builds on: on-the-fly reachability analysis via PT-net unfolding.

Chapter 4 presents the theory of directed unfolding. This chapter integrates intuitive expla-

nation and useful examples, with thorough theoretical results. All contributions outlined in

the previous section, collectively referred to as the theory of directed unfolding, are found

in this chapter. The conclusion of this chapter includes a detailed synopsis of the collab-

orative work, and individual contributions, which led to the development of the theory of

directed unfolding.

Moving into Part II, Chapter 5 serves as an introduction to automated planning: what, why

and how? This includes an outline of the theoretical and practical motivations for automated

planning in general and classical planning in particular. It presents a conceptual model for

a planning problem which, subject to various assumptions, is equivalent to the reachability

problem discussed in Chapter 2 and, importantly, represents the classical planning problem.

We formulate the classical planning problem and summarise the main approaches to anal-

ysis: state space search, plan space search, planning as satisfiability and Graphplan. The

discussion here includes comment on the impact of informative heuristic functions, and the

benefits of partial order versus total order planning. We then present extensions to the clas-

sical planning problem, such that a solution plan is a partially ordered set of actions, and

actions may be associated with an arbitrary cost or duration; we also briefly consider the

possibility of actions with probabilistic effects.

1.3. OVERVIEW 9

Chapter 6 presents the application of directed unfolding to automated planning, which we

refer to as Petri net Unfolding Planning (PUP). All contributions outlined in the previous

section, collectively referred to as planning via directed unfolding, are found in this chapter.

The chapter begins with a summary of other approaches to planning which employ a Petri

net model. We then present our translation from a planning world to a PT-net, and subse-

quently cast the classical planning problem presented in Chapter 5 to the PT-net reachability

problem presented in Chapter 3. Following this is a discussion of how PUP fits within the

larger picture of automated planning algorithms. We then describe the PUP SUITE, and

present empirical results for PUP versus a range of state of the art planning systems, on

various International Planning Competition benchmarks. The conclusion of this chapter

includes a detailed synopsis of the collaborative work, and individual contributions, which

led to the development of planning via directed unfolding.

Finally, Chapter 7 concludes this thesis by highlighting the benefits and limitations of its

contributions, and suggesting directions for future research.

This page left blank.

Part I

Directed Unfolding

11

This page left blank.

Chapter 2

Reachability Analysis

REACHABILITY IS A FUNDAMENTAL BASIS FOR STUDYING THE

DYNAMIC PROPERTIES OF ANY SYSTEM

Tadao Murata 1

This chapter introduces the reachability problem for a restricted model of discrete event

systems, the impetus for solving this problem via Petri net unfolding, and the inspiration

for the theory of directed unfolding.

The chapter begins by motivating the need to construct models in order to reason about the

world, and narrows our scope from the widely applicable model of a system, to a discrete,

event-driven system (DES), and finally to a restricted DES which in particular can represent

a classical planning world. Here we also explain our specific focus on concurrent systems.

We then define the reachability problem for such systems, describe its relevance to auto-

mated planning, formal verification and diagnosis, and consider the benefit of identifying a

solution which is partially ordered and/ or optimal in some respect. We outline a straight

forward approach to reachability analysis: forward state space search. Whilst this method

has the quality of simplicity, and facilitates optimisation, it is impractical due to the state

explosion problem, the fact the state space can be exponential in the number of variables

used to describe it. This leads to an explanation of the “fictional” complexity which can

be introduced when modelling a problem, and the particular ramifications for concurrent

systems when the representation enumerates the state space and/ or does not have con-

currency semantics; and here lies the key impetus for modelling a concurrent system as a

Petri net and using the unfolding technique for reachability analysis. We then look at the

main techniques for alleviating the state explosion problem: symbolic algorithms, partial

order methods, abstraction techniques, symmetry reduction and decomposition methods,

1[126, p. 547]

13

14 CHAPTER 2. REACHABILITY ANALYSIS

and compare Petri net unfolding with a range of algorithms using these ideas. We then

look at the inspiration for the theory of directed unfolding: the development of informative

heuristic functions has significantly impacted the scalability of automated planning meth-

ods, to the extent state space search becomes viable when guided by heuristics. Whilst

Petri net unfolding differs from state space search in that it avoids enumerating the state

space and has concurrency semantics, there are critical similarities which make it equally

amenable to optimisation and state-based heuristic guidance. In this way directed unfolding

possesses some of the benefits of a state space search, whilst avoiding some of the com-

plexity it necessitates for highly concurrent systems. In addition, it naturally finds partially

ordered solutions to the reachability problem.

2.1 System Modelling

The size and complexity of the world raises problems for reasoning about it. To perform

analysis we need to restrict the information considered by identifying what is relevant. In

science we construct models to capture a particular perspective of the world appropriate

to our interest in it. The volume of information considered is reduced by restricting it to

pertinent components, properties and interactions. Faithfulness to reality is traded for a

reduction in complexity, to the extent that the desired analysis becomes computationally

feasible.

Two principle types of restriction are bounds on the situation of interest and limits on the

detail of its description. The later, referred to as abstraction, is further motivated by the

desire for domain-independent analysis. In order to avoid constructing an entirely new

modeling concept and analysis method for every different situation, scientists conform a

plethora of problems considered to have fundamental similarities, to a common formal

representation. In this way, similar problems can be mapped to models and analysed with

domain-independent methods. And, conversely, we can develop models and algorithms to

solve problems for which we only know the formal representation.

2.1.1 Restricted State-Transition System

A model which finds a place in all the sciences is the system. Rechtin describes a system

as “a collection of things working together to produce something greater”[142, p. 1]. This

could be something tangible, such as an airplane or the human body, or intangible, for ex-

ample a computer software program. Considering the range of possibilities there are clearly

2.1. SYSTEM MODELLING 15

numerous factors to consider when modelling and analysing a system. For example, does

it interact with the outside environment? Does the system maintain a memory of past expe-

rience? Does it change in a deterministic manner? Should we describe it using continuous

or discrete quantities?2 Scientists were historically interested in systems involving natural

phenomena and thus dealt with real-valued time-varying quantities such as velocity; hence

the original infrastructure for system analysis was based on the assumption of a continu-

ous state space with time-driven state transitions. However the emergence of man-made

technology gave rise to systems concerned with discrete quantities, such as Boolean logic

values, where changes in state depend on instantaneous events, like the clicking of a mouse

button [33].

This thesis is concerned with systems of the later nature. That is, systems in which:

(a) There are clear distinctions between different states; and

(b) State transitions correspond to occurrences of discrete, asynchronous events.

A system satisfying these properties can be modelled as a state-transition system, also

called a discrete event system (DES) [33]. We are interested in DES because many ap-

proaches to automated planning rely on modelling the world as a DES [67, p.5]. This is

discussed further in Part II. Other, more common examples of DES include computer,

communication, manufacturing, software and traffic systems. We take the following formal

definition of a state-transition system from Ghallab et al [67, p. 5]:

Definition 1. [State-transition system] A state-transition system is a 4-tuple Ω , 〈S,A,E, γ〉
where:

� S = {s1, s2, . . .} is a finite or recursively enumerable set of states;

� A = {a1, a2, . . .} is a finite or recursively enumerable set of actions;

� E = {e1, e2, . . .} is a finite or recursively enumerable set of events; and

� γ : S × A× E → 2S is a state-transition function.

Let s, s′ ∈ S, a ∈ A and e ∈ E. If s′ ∈ γ(s, a, e) then the pair (a, e) can cause a state

transition from s to s′. Let γ(s, a) denote a state transition from s due only to action

a, and similarly for events. Actions are transitions that are controlled by some external

agent. Action a ∈ A is applicable to state s ∈ S if γ(s, a) is not empty; applying a in s

2Cassandras and Lafortune [33] provide a detailed summary of system classification.

16 CHAPTER 2. REACHABILITY ANALYSIS

will take the system to a state s′ ∈ γ(s, a). Conversely events are contingent transitions

which correspond to the internal dynamics of the system. If γ(s, e) is not empty then e

could occur when the system is in state s, transitioning it to a state in γ(s, e) [67], but its

occurrence can not be controlled. Let us impose these following assumptions on the system

Ω = 〈S,A,E, γ〉:

1. The set of states S is finite.

2. The result of every action and event is deterministic, i.e. for every s ∈ S, a ∈ A and

e ∈ E, |γ(s, a, e)| ≤ 1.

3. The system remains static unless a controlled transition, i.e. an action, takes place. That

is, the set of events E is empty.

Definition 2. [Restricted state-transition system] A restricted state-transition system Γ ,

〈S,A, γ〉 is a state-transition system satisfying Assumptions 1, 2 and 3.

In Part II we show that a large proportion of research in automated planning makes assump-

tions about the world such that it can be modelled as a restricted state transition system [67].

This is referred to as classical planning, and is the focus of Part II.

Given that the system is deterministic, if action a is applicable to state s there will be only

one element s′ in γ(s, a): for simplicity we will denote this as γ(s, a) = s′. Assuming that

the event set is empty is a somewhat arbitrary decision with respect to the scope of Part

I of this thesis, as we are concerned with the question of whether a state transition could

take place, irrespective of whether it can be controlled or not. Generally speaking, the

system analysis techniques considered later in this chapter are applicable independent of

state transitions being actions and/ or events. Furthermore, the notion of directed unfolding

presented in Chapter 4 requires no assumption regarding the underlying state transitions

being controlled actions or contingent events. Given this, it is simpler to assume just one

type of transition because combining actions and events requires further refinement of the

model which assumes, for example, that no action takes place in states where events occur.

This adds unnecessary complication for the scope of this thesis. We choose to include

actions in the model, rather than events, as our application interest in automated planning

requires at least the notion of controlled state transitions.

Cassandras and Lafortune [33] identify three main levels of abstraction in the study of

DES: logical, timed and stochastic timed models. Logical models capture the set of all

possible orderings of actions that can occur in the system. Timed models offer the set of all

timed sequences of actions that a system could execute. Stochastic timed models combine

2.2. THE REACHABILITY PROBLEM 17

a timed model with a probability distribution function for the actions. As indicated by

our model, the work of this thesis is based primarily in the first level of abstraction - the

logical behaviour of the system. However in Chapter 6 we show that minor additions to

this representation make it possible to answer some basic questions otherwise confined to

timed models. Also, in this same chapter, we show how actions with probabilistic results

can be considered.

2.1.2 Concurrent System

“Interrelationships are both the strength and the weakness of a system. They

are responsible for its unique function on the one hand and its unavoidable

complexity on the other” Rechtin [142, p 7].

A system requires the interaction of different parts to perform its function, yet the more ele-

ments and interconnections there are the more complex a system becomes. The complexity

of today’s technology is in one way enabled by the ability to coordinate the interaction of

largely independent components which are themselves complex systems. We are interested

in systems consisting of components which operate independently for the most part, but re-

quire some interaction. Thus their internal operations are largely concurrent to each other,

but their interrelationships deny their analysis as separate entities. We broadly refer to such

systems as concurrent systems.

Many real-world planning problems require the co-ordination of agents which otherwise act

largely independently. Achieving the overall objective of a military operation, for exam-

ple, may depend on co-operation between various teams, acting otherwise independently

to achieve individual missions. In such situations, from the perspective of military plan-

ning staff, the world is a highly concurrent system. Other examples of concurrent systems

include computer networks, asynchronous circuits, operating systems, various forms of

plant-controller systems, e.g. a telephone system, flight-control system, manufacturing-

plant controllers, etc.

2.2 The Reachability Problem

A fundamental reason for analysing many forms of dynamical systems, is to to determine

whether a particular situation can occur [126]. Given the system is in a particular state,

could it possibly reach a state which satisfies certain given properties, some time in the

future?

18 CHAPTER 2. REACHABILITY ANALYSIS

2.2.1 Definition

We formally define the reachability problem for restricted state-transition systems as:

REACHABILITY(Γ, s0, SR) : Given a restricted state-transition system Γ =

〈S,A, γ〉, an initial state s0 ∈ S and a subset of goal states SR, determine

a sequence of actions in A,〈a1, a2, a3, ..an〉, corresponding to a sequence of

states in S, 〈s0, s1, . . . , sn〉, such that: s1 = γ(s0, a1), s2 = γ(s1, a2) . . . , sn =

γ(sn−1, an)3 and sn ∈ SR.

Note that when |SR| > 1 this is sometimes referred to as the coverability problem [126].

2.2.2 Relevance: Automated Planning, Formal Verification and Diag-

nosis

This thesis looks at modelling a concurrent system as a Petri net, and employing the unfold-

ing technique to solve REACHABILITY. More specifically, we present the theory of directed

unfolding, a technique oriented to reachability analysis. Petri net unfolding is a technique

developed for the verification of asynchronous circuits[119] and has since been formulated

for model checking [57, 96, 79, 78], and used for model-based diagnosis [22, 21, 62, 11].

In fact it was the application of unfolding to the diagnosis of concurrent systems which first

caught our attention [11]. Likewise, the theory of directed unfolding presented in this thesis

is applicable to both these areas.

This thesis focuses primarily on the reachability problem in the context of planning as

reachability analysis [67]. It will be shown in Part II that a classical planning problem

can be cast as a REACHABILITY problem. The reachability problem also arises in formal

verification and diagnosis.

Model Checking is an automatic technique for formally verifying finite state concurrent

systems [40]. Whilst a planner searches for a sequence of actions to satisfy a goal, a model

checker searches for a counterexample to falsify a given system specification. Reachabil-

ity analysis is a main component of model checking [40]. Most safety properties can be

checked directly using reachability analysis [9]; some other properties such as liveness can

be translated into state reachability problems [15].

3Or equivalently, (γ(γ(. . . γ(s0, e1), . . . , ek−1), ek) ∈ Sg , given the assumption of deterministic state
transitions (Assumption 2).

2.2. THE REACHABILITY PROBLEM 19

Automated diagnosis is concerned with identifying and isolating faulty behaviour in sys-

tems. Model Based Diagnosis [149] achieves this task by reasoning about system descrip-

tions. Some work has been done identifying the connection between Model Based Diag-

nosis and reachability analysis [140]. Diagnosis problems relevant to reachability analysis

relax some of the assumptions presented here, for example full observability and deter-

ministic state transitions, and impose further constraints on a solution to the reachability

problem (e.g. that a sequence of actions/events must coincide with certain observations of

an only partially-observable system [149]). However we believe that applying the contri-

butions of this thesis to diagnosis is a fruitful topic for future research. In particular, there

may be benefit in combining the theory of directed unfolding with Benveniste, Fabre, Jard

and Haar’s ideas for equipping Petri net unfolding with information about the probability

of an event [11, 1].

2.2.3 Optimal Solution

We have presented REACHABILITY as a function problem: what is a sequence of actions

that can transform the system from its initial state s0 to a state in SR? In many cases we may

be interested in the quality of this solution, seeking optimality with respect to some criteria.

In system verification, for example, identifying the shortest execution sequence leading to

a bad state can make for easier debugging. Alternatively, suppose there are no controllable

actions, only actions with a probability of occurrence: the most likely sequence of actions

leading to an error state is useful information for diagnosing a fault [11]. In automated

planning applications, we may want to synthesise solutions which have a minimal monetary

cost, and/ or minimise the total execution time (makespan) of a plan.

If there is a positive solution to REACHABILITY then, theoretically, an optimal solution

can be found by identifying all possible solutions and comparing them. More practically,

one attempts to find a solution without exhaustive search, e.g. on-the-fly, in a manner that

guarantees it to be at least as good as any other solution.

A primary contribution of this thesis is showing how the Petri net unfolding algorithm can

be used to solve REACHABILITY optimally, with respect to various cost functions. This

forms one half of the theory of directed unfolding, and is presented in Chapter 4.

20 CHAPTER 2. REACHABILITY ANALYSIS

2.2.4 Partially Ordered Solution

It is probable that a solution to the reachability problem for a concurrent system will consist

of actions which do not need to be executed sequentially to transform the system to a state

in SR. The solution could instead be a partially ordered set of actions, such that if the

actions are executed in any order satisfying the partial order the system will transition from

the initial state to a state in SR.

A partially ordered solution is particularly useful when the solution represents a plan, as it

provides the plan executor with more flexibility. Also, if we are interested in minimising the

execution time of a plan then it is necessary to execute actions concurrently where possible.

In Chapter 3 we show how the Petri net unfolding algorithm can be used to obtain partially

ordered solutions to REACHABILITY, such that actions are only ordered with respect to

each other when they are causally dependent.

2.2.5 Forward State Space Search

Forward state space search is perhaps the simplest approach to solving REACHABIL-

ITY(Γ, s0, SR). A reachability graph represents the state space of Γ: nodes map to states,

and there is an arc from node s ∈ S to node s′ ∈ S, labelled by a ∈ A iff γ(s, a) = s′.

A forward state space search begins at the node mapping to the initial state, and traverses

the reachability graph to find a path to a node representing a state in SR. A path from s0 to

s ∈ SR is a solution to REACHABILITY(Γ, s0, SR).

Algorithm 1 outlines the basic procedure for a forward search of the reachability graph of Γ.

This algorithm terminates once a positive solution to REACHABILITY(Γ, s0, SR) is found,

else exhaustively searches the entire reachability graph to conclude a negative solution.

Optimal Solution

A search strategy defines the way a search is executed; with respect to state space search, it

defines how the reachability graph is explored. In Algorithm 1 the search strategy depends

on the order in which elements are added to the queue. For example a breadth-first search

strategy begins at the root node, explores all the neighbouring nodes, then explores each

of their neighbouring nodes, and so on. In Algorithm 1 this is achieved by adding new

elements to the end of the queue. Conversely, a depth-first search begins at the root node

then explores one neighbour n, then explores one neighbour of n, and so on as far as

2.3. THE STATE EXPLOSION PROBLEM 21

Algorithm 1 Forward State Space Search (Γ, s0, SR)

input: Γ = 〈S,A, γ〉, initial state s0 and subset of goal states SR.

Initialise queue with the element (s0, ∅, ∅). Let nodes = ∅ and arcs = ∅)
until element containing goal state is found, or the queue is empty:

Remove the first element (s′, s, a) from the queue.

Add node s′ to nodes and add arc (s′, s), labelled by a, to arcs

For every action a ∈ A applicable to s′, consider s′′ = γ(s′, a′) :

if s′′ /∈ nodes

then add (s′′, s′, a′) to queue (i.e. reject all new paths with loops).

end
output: If a node s ∈ SR is found announce success and return the sequence

of actions labelling the path from s0 to s, else announce failure.

Note: if we only want to identify whether REACHABILITY(Γ, s0, SR) is positive or negative

(i.e. if a state in SR is reachable from s0 or not) then the arcs do not need to be stored.

possible before backtracking. Algorithm 1 performs a depth-first search if new elements

are added to the front of the queue.

Forward state-space search facilitates on-the-fly optimisation. Suppose we want to find a

solution that minimises an objective function f . By making the queue a priority queue

based on the f value of elements, this becomes a best-first search, i.e. it always extends

the most promising path with respect to f . If f is an increasing function, which means that

if there is a path from node a to node b in the reachability graph then f(a) < f(b), then

best-first search will return an optimal solution with respect to f [67].

Although technically simple, searching the state space is impractical even for relatively

small systems, due to the problem of state explosion.

2.3 The State Explosion Problem

The state explosion problem refers to the exponential explosion of the size of a state space,

in the number of variables used to describe a state of the system. For example, if each state

s ∈ S represents the truth or otherwise of a finite set of propositions X , then there could be

2X states in S.

For a concurrent system, this has two ramifications with respect to the reachability graph:

22 CHAPTER 2. REACHABILITY ANALYSIS

1. The total number of nodes is the product of the size of the state space of each component.

This may seem obvious and unavoidable, since it is equivalent to saying that the number

of states is exponential in the number of variables used to describe the system. However

if a system exhibits concurrency then it may be possible to address the state space of

each component separately, to some extent, so that complexity is instead in the order of

the sum of the of the size of the state space of each component.

2. The number of paths connecting nodes increases exponentially with the the level of con-

currency. If multiple transitions are concurrent, they can be executed in any order, and

the reachability graph will explicate all such orders. It has been recognised in literature

that the arbitrary interleaving of concurrent actions/events contributes significantly to

the state explosion problem, e.g. [10, 118, 56].

The first ramification suggests that a representation should make the variables defining a

state accessible. A factored state representation avoids specifying the state space explicitly.

It represents the state space implicitly through the state variables, i.e. variables = factors,

and a representation of the transition function which exploits the fact an action usually only

involves a small subset of variables. In classical planning, for example, it is common for

the world to be represented by a set of propositions and a set of actions, where each action

is specified by the propositions it depends upon and changes (see Chapter 5).

The enumeration of the set of states S is a one-to-one mapping from S onto an initial

segment of the natural numbers {1, 2, 3 . . . n} where n = |S|. A flat state representation

enumerates the set of states. Given the number of states can be exponential in the number

of variables, a factored state representation can be exponentially smaller than a flat state

space representation. In addition, a factored representation can can reveal structure in the

system, such as regularity in the assignment of variable values, which is hidden when the

state space is enumerated.

This fact has been recently observed in the study of Markov Decision Processes (MDPs),

and there has been consequent movement toward factored representations of MDPs, e.g.

[23, 24, 74]. A factored MDP represents the state space using state variables and the tran-

sition function using a dynamic Bayesian network4 [24].

The second consequence of the state explosion problem particular to concurrent systems,

suggests that a representation should support the partial order model of system execution.

4A Bayesian network is a directed acyclic graph where nodes map to variables and arcs specify the con-
ditional dependencies between the variables they connect. A dynamic Bayesian network (DBN) [43] models
sequences of variables by including a temporal dimension.

2.3. THE STATE EXPLOSION PROBLEM 23

That is, it should facilitate avoiding the arbitrary interleaving concurrent actions during

analysis.

A Petri net can be used to represent states in a factored manner, and reveal causal relations

between the factors with respect to actions. An analysis technique can then exploit this

information. The unfolding of a Petri net, for example, explicates all possible partially

ordered runs of the net; actions are only ordered with respect to each other when they are

causally dependent. In addition, the factored state representation is maintained.

The importance of a partial order model of system execution, and the benefit of Petri net un-

folding for this purpose, is reflected in the work of Benveniste and colleagues. Benveniste

et al [10, 11] have observed that the arbitrary interleaving of concurrent actions contributes

significantly to the state explosion problem in system diagnosis, and have made significant

attempts to alleviate this problem using the partial order semantics of Petri net unfolding.

In particular they propose a structure called Markov Nets [10], which gives concurrency

semantics to Markov Processes. A Markov net is generated by unfolding a Petri net, and

propagating probability information such that concurrency implies probabilistic indepen-

dence. Whilst intended for the analysis of non-controlled systems in which events have

non-deterministic outcomes, their decision to use Petri net unfolding to address the state

explosion problem in concurrent systems has been a strong motivation for our work.

It can thus be seen that in concurrent systems, the state explosion problem is particularly

prevalent, but that some of problems it causes are possibly avoidable. Although modelling

aims to reduce the complexity of a problem, it can actually introduce fictional complexity.

For example, searching the reachability graph requires considering the state of the entire

system, and imposes a total ordering on the transitions which is mandated by this represen-

tation, not by the problem itself.

2.3.1 Alleviating the Problem

If the information is not available in the initial model, it can not be exploited during analysis.

And, whilst the information may be present, an analysis technique may not use it. For

example, suppose a system Γ is modelled using a Petri net. Instead of unfolding the net, we

could solve a reachability problem for Γ by searching its reachability graph; this process,

described by Murata [126], essentially enumerates the state space. Furthermore, the causal

relations are lost and a total order on actions is enforced.

We now look at some of the main techniques employed to reduce the impact of the state

explosion problem when analysing a system: symbolic algorithms, partial order methods,

24 CHAPTER 2. REACHABILITY ANALYSIS

decomposition techniques, abstraction and symmetry reduction. These techniques are not

mutually exclusive, and often several techniques are employed by the same algorithm in

attempt to attack complexity from many angles. For instance [46] propose combining sym-

metry reduction with partial order reduction. We observe that depending on how these ideas

are applied, the result is to compress, reduce, and/or decrease the search space. Compres-

sion of the search space means to represent it concisely without modifying the reachability

graph. Conversely, reduction of the search space refers to generating a reduced reachability

graph which none-the-less preserves necessary properties for the particular problem. If we

limit the space in which a solution can possibly exist, this is called decreasing in the search

space. Orthogonal to this, on-the-fly methods attempt to eliminate part of the computation

process when state reachability is positive, by identifying a solution before an exhaustive

search is made.

Petri net unfolding can be considered a symbolic, partial order method which compresses

the state space. Using unfolding for on-the-fly reachability analysis, it also decreases the

possible solution space by ensuring the solution lies in an identifiable subset of its complete

(compressed) search space. Petri net unfolding can also be considered a decomposition

method because it uses the causal relations to decompose the problem into independent sub-

problems, and re-combine solutions to these problems as appropriate. This is a debatable

classification however since decomposition is generally considered a static technique and

in Petri net unfolding the decomposition occurs in a dynamic manner, re-partitioning the

search space as the causal dependencies between actions change.

Symbolic Algorithms

A symbolic algorithm is one which uses and exploits a factored state representation. Sym-

bolic algorithms avoid building the state space explicitly, but rather explore some implicit

representation of it. They generally maintain factored state composition, and use this to

exploit structure such as regularity in the values of state variables. Symbolic Model Check-

ing [30] is a classic example; we will discuss this shortly. As will be shown in Part II, the

classical planning problem is commonly specified using a factored representation, hence

most classical planning algorithms are symbolic.

McMillan presented the unfolding algorithm in his doctoral thesis [117]. The core of his

thesis however was another symbolic approach, called Symbolic Model Checking, which

had a revolutionary impact on the scalability of automatic verification [40]. Symbolic

Model Checking operates on sets of states instead of individual states, and represents sets

of states symbolically. It is based on the observation that systems with a large number

2.3. THE STATE EXPLOSION PROBLEM 25

of components often have a regular structure which is reflected in the reachability graph.

This regularity can be exposed by using propositional formulae to represent sets of states

and their relations, and then exploited by methods which can manipulate these sets [30].

McMillan proposed the use of Binary Decision Diagrams (BDDs) [26], a canonical form

for Boolean formulas, for this purpose. Each state is encoded as an assignment of Boolean

values to state variables; the transition relation is then expressed as a Boolean formula in

terms of two sets of variables - one for the old state and one for the new. BDD based search

algorithms can then be used to determine if certain properties are satisfied, and produce an

execution trace counter example where applicable [40].

A later approach to Symbolic Model Checking involves expressing a Boolean function

in conjunctive normal form (CNF) rather than using BDDs [16]. In this way, questions

such as state reachability can be solved using propositional satisfiability (SAT) algorithms.

SAT-based approaches to the reachability problem are particularly prevalent in the area of

automated planning, and so are discussed further in Chapter 5.

McMillan considered both Symbolic Model Checking and unfolding as a means to address

the state explosion problem, by not explicitly representing states of the system. Symbolic

Model Checking exploits regularity in the system, and thus works particularly well for

synchronous systems such as hardware[117]; conversely, unfolding exploits concurrency

and is thus more appropriate for asynchronous systems [119, 118].

Partial Order Methods

Partial Order Methods exploit concurrency by considering the partial order model of system

execution. The motivation behind such approaches is that is that concurrent actions should

be left unordered since their ordering is irrelevant (and imposing an order on them is in fact

fictional). Important examples include Partial Order Reduction (POR) [134, 135], to be

discussed shortly, and partial order planning algorithms, which are addressed in Chapter 5.

It appears William Overman [131] was the first to suggest that using the commutativity

between concurrent transitions can potentially change a state space from exponential to

polynomial in the number of processes. Overman considered a very restricted case and his

approach was soon superseded by the work of Valmari, Godefroid, Wolper and Peled, who

each made significant contribution to the family of algorithms which achieve POR. These

include Valmari’s stubborn sets [161], Godefroid and Wolper’s persistent sets [70, 172] and

Peled’s ample sets [133]. Although differing on the details, these approaches all contain

similar ideas, each seeking to identify a subset of the actions enabled at each state, which

26 CHAPTER 2. REACHABILITY ANALYSIS

can suffice to capture all relevant system behaviour. Like unfolding, POR methods are

effective only for asynchronous systems, and can be performed on-the-fly [133, 162]. This

is where the similarity ends however. As implied by the name, POR methods actually

reduce the reachability graph: they do not deal with direct representations of partial orders,

but rather limit the expansion of a partial order computation to just one of its interleaves

[39]. This is contrary to unfolding which represents all partial orders explored so far plus the

branching from one to another. Consequently, whilst it is a partial order method, POR leads

to totally ordered solutions to the reachability problem. Furthermore, POR methods use

global-state based analysis whereas unfolding avoids generating global-states altogether.

There has been recent work combining POR with symmetry reduction [46] and symbolic

model checking [101, 2], thus leading to further reduction or compression respectively,

when dealing with systems of identical components or systems exhibiting regularity in the

reachability graph.

Another approach to combating the exponential explosion of concurrent action sequences

is non-serial dynamic programming (NSDP) [129, 160]. NSDP includes constructs that

model concurrency. NSDP can optimise two concurrent processes X and Y separately,

requiring joint optimisation only over the states where the processes interact. In order to

use NSDP techniques for a given problem, we must first delineate the concurrent processes

and their synchronisation points. This in itself is a complicated operation, and the standard

approach is to generate a dependency graph (thus requiring enumeration of the state space)

[160].

Decomposition Techniques

Decomposition involves breaking a problem into several sub-problems which can be solved

independently; local solutions are combined to form a global solution. Decentralised al-

gorithms, compositional reasoning, and some types of abstraction (for example hierarchi-

cal abstraction) can be considered forms of decomposition. We now look at two popular

techniques employed to decompose the analysis of a system: hierarchical abstraction and

compositional reasoning.

Hierarchical abstraction is a form of vertical problem decomposition, which has been de-

veloped both in the context of AI planning, e.g [5, 99, 28], and more general systems

theory, e.g. [29]. When applied to the reachability problem, hierarchical abstraction in-

volves solving REACHABILITY for a relaxed version of the system; the solution to this

is a sequence of actions that transition the system though a series of states. These states

are then used to define a series of intermediate reachability problems. These new prob-

2.3. THE STATE EXPLOSION PROBLEM 27

lems are solved for a more detailed version of the system and combined in accordance with

the preceding abstract solution. The process continues in this way, until a solution for the

original system is obtained. Broadly speaking, detail is removed from the original system

using precondition-elimination: this entails the systematic removal of action preconditions

[67]. Depending on the problem instance, and particular choice of abstractions, hierarchical

abstraction can either be significantly more efficient than analysis without abstraction, or

be dominated by back-tracking when a particular abstract solution can not be refined and

consequently have a negative effect [68]. Hierarchical abstraction can generally be imple-

mented as a modification of other algorithms for solving REACHABILITY. Whilst beyond

the scope of this thesis, there appears no reason why hierarchical abstraction could not be

incorporated with on-the-fly unfolding. Furthermore, in Chapter 4 we use a notion similar

to precondition-elimination for relaxing the original system in order to find approximate

solutions to REACHABILITY which we use to better inform the unfolding process.

Compositional reasoning is a term commonly found in literature on formal verification,

meaning to infer properties of a global system from the local properties of its components

[40]. Early work on compositional reasoning exploited the parallel behaviour of a system,

requiring components to form a clear hierarchy of dependencies, e.g. [41]. Subsequent

approaches, e.g. [120], accommodate circular dependencies among components. Many

methods are based on the assume-guarantee paradigm, e.g. [138, 73, 87, 124], which

entails analysing each component separately, subject to assumptions regarding its environ-

ment. For instance if componentM depends on component M one may need to define a set

of assumptions that must be satisfied by component M ′, in order to guarantee some partic-

ular behaviour of component M . The range of compositional reasoning techniques capture

a trade-off between efficiency and automation: more powerful methods usually require an

expert user and significant manual effort; automatic techniques struggle with complex sys-

tems (and much intellectual work must still be done by the user) [12]. Whilst compositional

reasoning itself is not a partial order method, like unfolding it exploits the independence

of separate components. A major difference between the decomposition involved in com-

positional reasoning techniques and unfolding, is that unfolding identifies sub-problems

dynamically, thus accommodating any dependency structure, and automatically; this obvi-

ously has a computational cost however.

Abstraction and Symmetry Reduction

The final two common approaches to dealing with the state explosion problem are abstrac-

tion and symmetry reduction. Whilst some level of abstraction has already been obtained

28 CHAPTER 2. REACHABILITY ANALYSIS

by representing the real world situation with a model, it may be possible to remove further

detail to increase computability. For example abstraction can be used to hide internal state

information or simplify the behavior of the system [110]. This may be done in a manner

that maintains correctness with respect to the properties of interest, or that simply allows

an approximate solution to be obtained.

Symmetry reduction techniques exploit, for example, the replication of components, or sym-

metric use of data values, to obtain a reduced model of the system. Such techniques are

based on the observation that symmetry implies the existence of permutation groups that

can be used to define an equivalence relation on the state space [40]. Emerson and Sistla

[52] show how to exploit symmetry in model checking systems containing many identical

or isomorphic components.

Abstraction and symmetry reduction are not techniques employed by Petri net unfolding,

and future research may look at incorporating past successes in these areas to attack the

state explosion problem from other angles. For example abstraction is the foundation of

Hierarchical Task Networking, a popular technique in the planning community, which in-

volves synthesising a plan using high-level actions, and recursively expanding them until a

solution defined by the original low-level actions is obtained. This is similar to Suzuki and

Murata’s step-by-step refinement of the nodes in a Petri net [158]. This suggests that future

research could consider how HTN techniques can be incorporated with Petri net unfolding.

Future research may also consider the benefit of applying symmetry reduction techniques

for Petri nets, such as those described in [157] and [150], prior to unfolding the net.

Finally, heuristic functions (to be discussed later) are often defined for an abstraction of the

original problem which simplifies system behavior and allows computation of an approxi-

mate solution in polynomial time [147]. A contribution of this thesis is the use of heuristic

functions to increase the efficiency of the Petri net unfolding technique. We show such

functions can be calculated using an abstraction of the original Petri net.

2.3.2 Heuristic Search

Whilst an algorithm may be domain independent, in some cases it is possible to make

it more efficient by incorporating problem-specific information in the form of heuristics.

Pearl [132, p. vii] describes heuristics as “strategies using readily accessible though loosely

applicable information to control problem-solving processes in human beings and ma-

chines”. In Engineering this generally equates to rules-of-thumb for guiding learning, de-

sign and analysis [142]. In Computer Science, heuristic functions estimating the distance

2.3. THE STATE EXPLOSION PROBLEM 29

between nodes in a search space are central to search control techniques [132, 147]. That

is, a heuristic function may indicate which path is “cheaper”, “faster”, or has greater po-

tential for leading to a state in SR. The better this heuristic function, the more accurate and

discriminating the information it provides. A heuristically informed search is sometimes

referred to as heuristic search.

We are interested in heuristic search because solving REACHABILITY does not necessarily

require exhaustive exploration of the search space; if an on-the-fly approach is taken then

the search can cease as soon as a positive solution is found. The extent of the exploration

thus depends critically on the search strategy employed - depth-first, breadth-first, etc. A

heuristically informed strategy may identify a solution more quickly. Furthermore, heuris-

tics can be used not only to guide, but also to prune (i.e. reduce) the search space - even

when the solution is negative. In some instances a heuristic can identify that no state in SR

can be reached via a particular path. In such cases, the search can stop looking further in

that direction. Using heuristics to effectively guide the search and prune the search space

can make the crucial difference to solving REACHABILITY within the available time and

memory limits.

Techniques for automatically extracting effective heuristics from the representation of a

transition system have significantly impacted the scalability of automated planning [18, 86,

116]. This has inspired efforts to combine heuristic search with model checking algorithms,

resulting in what is now referred to as directed model checking [50]. For example BDD-

based symbolic model checking originally employed a breadth-first search. Edelkamp and

Reffel later proposed a BDD-version of the A* algorithm, replacing breadth-first search

with heuristic search, e.g. [143, 51]. Similarly, on-the-fly POR techniques have been guided

with heuristic information, e.g. [47, 109].

Heuristic State Space Search

A forward state space search is easily guided by heuristic information. Recall that Algo-

rithm 1 becomes a best-first search when new elements are added to a priority queue based

on their f value. In standard heuristic state space search the function f comprises of a cost

function g and a heuristic function h, such that f = g + h. Ideally the heuristic function is

an oracle that specifies the distance, or cost, of the path from the current state to a state in

SR. As the purpose of the heuristic function is to avoid the complexity of calculating this

exactly, in reality it is an estimate. Heuristic functions can be constructed which guarantee

never to overestimate the actual distance or cost, i.e. they provide a lower bound. Heuristic

functions that guarantee to provide a lower bound are called admissible. If Algorithm 1

30 CHAPTER 2. REACHABILITY ANALYSIS

is implemented as a best-first search with respect to f = g + h, and h is an admissible

heuristic, then it will find an optimal solution with respect to g [171].

This leads to another major contribution of this thesis: significantly improving the efficiency

of the Petri net unfolding algorithm, for the purpose of solving REACHABILITY, by making

it a heuristic search. In Chapter 4 we show how the unfolding process can be directed using

heuristic information, in a similar manner to heuristic state space search. Furthermore,

heuristic functions which have proved valuable in AI planning can be extracted from the

Petri net. This forms the second half of the theory of directed unfolding, complimentary to

the results on optimality.

2.4 Directed Unfolding: Facilitating Optimality and Im-

proving Efficiency

We have discussed the benefit of finding optimal solutions to REACHABILITY with respect

to different criteria, and observed the success of heuristic search.

We have shown that forward state space search facilitates finding optimal solutions to

REACHABILITY, and heuristic search. Whilst Petri net unfolding has some critical dif-

ferences with state space search, including the fact it uses a factored state representation

and considers the partial order model of system execution, there are similarities that make

it equally suitable for optimisation and state based heuristic guidance. In particular:

(a) A node has a unique history, which can be used to define its cost; and,

(b) A node can be associated with a state, which can be used to estimate its distance from

a state in SR.

The typical implementation of the Petri net unfolding algorithm enables it to find a min-

imum length solution to REACHABILITY on-the-fly. It is not clear whether, prior to the

research presented in this thesis, this guarantee of optimality was recognised nor whether

other criteria besides solution length could be considered for optimisation. In fact, the only

apparent attempt to use another strategy to guide the unfolding process proved unsuccessful

[58]. In addition, no-one had previously endeavoured, or even suggested, utilising heuristic

information to improve the efficiency of solving REACHABILITY on-the-fly via unfolding.

This thesis presents the theory of directed unfolding: controlling the unfolding process

with strategies that utilise heuristic information and facilitate finding optimal solutions to

2.5. CONCLUSION 31

REACHABILITY. This opens the door to a family of strategies for guiding the unfolding

process, where optimality can be traded for efficiency.

2.5 Conclusion

This chapter introduced the REACHABILITY problem for restricted state transition systems,

and motivated our interest in reachability analysis of concurrent systems. Namely, that

a classical planning world can be modelled as a restricted state transition system, and a

planning problem can be cast as a reachability problem. The contribution of this thesis is

not restricted to automated planning however, as the reachability problem is also prevalent

in the areas of system verification and diagnosis.

This thesis advocates modelling a concurrent system as a Petri net, and using unfolding as

a means to solve the reachability problem. In order to compare this with other approaches

to reachability analysis, we identified the main techniques employed to combat the state

explosion problem: symbolic algorithms, abstraction techniques, partial order methods,

symmetry reduction and decomposition methods. Petri net unfolding is symbolic, consid-

ers the partial order model of system execution, and decomposes the problem into inde-

pendent sub-problems; we subsequently summarised other approaches employing similar

techniques and contrasted them with the unfolding approach.

In this chapter we also described the benefit of finding optimal solutions to REACHABIL-

ITY with respect to various criteria, and considered how heuristics can be used to guide

algorithms more quickly towards a solution to REACHABILITY. In the next chapter we

present the syntax and semantics of Petri net unfolding. Then, in Chapter 4 we present the

theory of directed unfolding, which enables the unfolding process to find optimal solutions

to REACHABILITY with respect to various cost functions, and makes it a heuristic search.

The application of directed unfolding, to automated planning, forms Part II of this thesis.

This page left blank.

Chapter 3

Unfolding a Petri Net

CARL ADAM PETRI, WHO PIONEERED THE SCIENTIFIC MODELLING

OF DISCRETE CONCURRENT SYSTEMS.
Robin Milner 1

This chapter describes the syntax and semantics of Petri net unfolding. Following a brief

summary of the ideas underlying the development of Petri nets, we introduce a class of Petri

nets called place transition nets (PT-nets), and list the assumptions made in this thesis with

respect to these nets. We then describe the data structure and technique of PT-net unfolding,

which is a partial order semantics of PT-nets employed for their analysis. This leads to the

ERV unfolding algorithm, which generates a finite yet complete prefix of the unfolding

of a PT-net. Following this we define the reachability problem for PT-nets, outline the

main approaches to solving it, and state our interest in the unfolding approach. We then

formalise the connection between reachability analysis and PT-net unfolding, discuss the

implications in terms of complexity theory, and finally present the fundamental technique

this thesis builds on: on-the-fly reachability analysis via unfolding. The chapter concludes

with a summary of its content and contributions.

3.1 Petri net

Carl Adam Petri was the first person to develop models of interacting sequential processes,

in his thesis Kommunikation mit Automaten [137]. Petri deduced that to be practically

relevant and avoid enforcing unnecessary structure on a system, a general theory of infor-

mation processing should be founded on asynchronous, local operations. Petri worked to

1On the occasion of his acceptance speech for the Turing Award 1991 [25, p. 4]

33

34 CHAPTER 3. UNFOLDING A PETRI NET

develop a modeling technique for asynchronous distributed systems, that would avoid the

construction of “fictional” global states. Since, generally, a discrete action only affects a

subset of system components, Petri aimed to depict and exploit the locality of actions. He

also sought to make local causes and effects both evident and reversible, and support the

pragmatic manner in which people build systems. Brauer and Reisig [25] claim that these

three requirements were achieved by Petri in his development of the Petri nets language.

Petri nets is a formal and graphical language, which may be considered a generalisation

of automata theory with concurrency semantics. Both can be used to represent the be-

haviour of a DES by representing its transition structure. In an automaton this is achieved

by explicitly enumerating all states then connecting the possible transitions between them.

Conversely, in a Petri net, states are not enumerated, rather state information is distributed

among a set of nodes that capture key conditions governing the operation of the system

[33]. Consequently, whilst automata represent a system run as a totally ordered sequence

of action occurrences, Petri nets encourage a partial order on actions in accordance with the

cause and effect relation. Un-order, which we refer to as concurrency, is a result of causal

independence. Petri nets thus form a natural framework for decomposing or modularising

a potentially complex concurrent system.

Over the years different types of Petri nets have evolved in attempt to accommodate the need

for more expressive power. In this thesis we focus on the original low-level place transition

net (PT-net). This is motivated by our desire to construct a foundation-level connection

between the work on Petri nets and automated planning, and our particular interest in the

Petri net unfolding technique which was originally formulated as an analysis technique for

PT-nets. For those interested in exploring Petri nets further than achieved here, Petri Nets

World2 provides an expanse of Petri net resources including extensive bibliographies and

tool databases.

3.1.1 Place Transition Net

Murata [126] and Reisig [144] each provide a detailed overview of PT-nets and their prop-

erties. Here we present only those concepts relevant to this thesis.

A PT-net N , 〈P, T, F 〉 is a directed, bipartite graph with disjoint sets of place nodes P

and transition nodes T , where F ⊆ (P × T) ∪ (T × P) is a flow relation. We use the

standard graphical representation, with places shown as circles and transitions as boxes.

The preset •x of node x is the set {y ∈ P ∪ T : (y, x) ∈ F}; its postset x• is the set

2http://www.informatik.uni-hamburg.de/TGI/PetriNets/

3.1. PETRI NET 35

{y ∈ P ∪ T : (x, y) ∈ F}. The marking, i.e. state, of N maps each place to a non-negative

integer: M : P → {0, 1, 2...}. M(p) = k is shown pictorially by k black dots (tokens) in

p. We will often identify a marking M with a multi-set containing M(p) copies of p for

every p ∈ P . If a place p is in the multi-set of a marking M , then we say p is marked in

M . To simulate the dynamic behaviour of the modelled system, the marking of a Petri net

is changed by the occurrence of transitions. A transition can only occur when it is enabled.

Marking M enables a transition t if M(p) ≥ 1 for every p ∈ •t. The occurrence of an

enabled transition absorbs a token from each of its preset places and puts one token in each

postset place: this changes the marking from M to M ′ , M \ •t ∪ t•. This is denoted as

M
t→M ′.

The transitive closure of the flow relation F is the relation <, such that:

� < is transitive;

� F ⊆<; and

� For any other transitive relation R, if F ⊆ R then <⊆ R.

We will refer to < as the causal relation. The reflexive transitive closure of F , which we

denote by ≤, is the union of < with the equality relation on P ∪ T .

A PT-net system Σ , 〈N,M0〉 consists of a PT-net N and a marking M0 which is called

the initial marking. Figure 3.1 is an example of a small PT-net system with

P = {pa, pb, pc, pd, pe, pf , pg},

T = {tA, tB, tC , tD, tE, tF , tG, tH} and

M0 = {pa, pb}.

In this PT-net F contains the elements (pa, tB), (pa, tA) and (tB, pd) for example, but not

(tB, pc).

A sequence of transitions σ = (t1, t2 . . . tn) is an occurrence sequence in Σ if there exist

markings M1,M2 . . .Mn such that M0
t1→ M1

t2→ . . .Mn−1
tn→ Mn. This is denoted by

M0
σ→ Mn. A marking M is reachable in Σ if and only if there exists an occurrence

sequence σ such that M0
σ→Mn. In Figure 3.1 the sequence of transitions (tA, tC , tD) is an

occurrence sequence corresponding to the sequence of markings

{pa, pb}
t1→ {pb, pc}

t3→ {pe, pc}
t4→ {pf , pg}.

36 CHAPTER 3. UNFOLDING A PETRI NET

A PT-net system is described as 1-safe if for every reachable marking M , M(p) ≤ 1 for all

p ∈ P .

As inferred previously, a defining property of Petri nets is their representation of causality.

Specifically, in a PT-net N = 〈P, T, F 〉 two nodes x and x′ are:

� Causally related, if x < x′;

� In forward conflict, denoted by x#x′, if there are distinct transitions t, t′ ∈ T such

that •t ∩ •t′ 6= ∅ and t ≤ x and t′ ≤ x′; or

� Concurrent, denoted by x co x′, if neither x#x′ nor x < x′ nor x′ < x;

We wish to highlight another situation that may occur in a PT-net, termed backward conflict.

Backward conflict is the case where a place has more than one upstream transition. In

Figure 3.1, for example, pg is in backward conflict as it is fed by tE , tD and tH . Due to

this backward conflict, if pg contains a token we can not necessarily identify which of these

transitions occurred to produce it.

If transitions t1 and t2 are concurrent, and both enabled by marking M , then M
(t1,t2)→ M ′

andM
(t2,t1)→ M ′. That is, the ordering of t1 and t2 in an occurrence sequence is arbitrary; in

fact, it is not even necessary that they be interleaved as the sets of places each interacts with

are disjoint. The concurrency semantics of Petri nets motivates us to define the concept of

an occurrence poset. Occurrence posets are essentially occurrence sequences without any

fictional ordering imposed on them; ordering constraints are limited to the causal relation.

An occurrence poset σ. consists of a multi-set of transitions T ′ = {t1, t2, . . . tn} and a set

of ordering constraints . over the transitions, of the form ti . tj ⇒ ti must precede tj3,

such that ti . tj ⇒ ti < tj , and any sequence containing all elements in T ′ and satisfying

the ordering constraints is an occurrence sequence. Note that every occurrence sequence

captured by a particular occurrence poset σ. will transform the net to the same markingMn;

we denote this by M0
σ.→Mn. In Figure 3.1 the set of transitions {tA, tC , tD} together with

the constraints {tA, tC} . tD is an occurrence poset. It captures the previously mentioned

occurrence sequence (tA, tC , tD), and the occurrence sequence (tC , tA, tD). The execution

of either of these occurrence sequences will transform the PT-net to marking {pf , pg}.

3.1.2 General Assumptions

The scope of this thesis is restricted to PT-net systems with the following properties:

3Multiple instances of the same transition may be subject to different constraints.

3.2. UNFOLDING A PLACE TRANSITION NET 37

pa

pb

pd

pctA

tB tH

tE

tD

petC

pf

pg

tG

tF

Figure 3.1: Example PT-net system. Places=circles, transitions=boxes and tokens=dots.

(1) The number of places and transitions is finite;

(2) The PT-net system is 1-safe; and

(3) Every transition has a non-empty preset and a non-empty post-set.

A consequence of (2) is that the initial marking is restricted to: M0 → {0, 1}.

3.2 Unfolding a Place Transition Net

The partial order semantics of a Petri net was traditionally the set of its “processes”, e.g.

[71, 144], where a process models a run of the net from its initial marking. The work of

Nielsen, Plotkin and Winskel [125], continued over a decade later by Engelfriet [53], took

these partial order semantics to a higher level by considering the relationship between dif-

ferent processes. Rather than contemplating each run of the net separately, one looks at a

single branching run termed a branching process. This represents several runs of the net,

together with an explicit indication of choice between alternatives. Intuitively, in a branch-

ing process, whenever there is a forward or backward conflict the model branches into each

possible independent resolution of the conflict. Note that processes share a common rep-

resentation, where applicable, up to the conflict. The procedure for obtaining a branching

process from a PT-net system is called unfolding. McMillan consolidated the unfolding

theory for practical application, proposing an algorithm to obtain a part of the branching

process that could be used for the verification of asynchronous circuits [119]. Esparza,

38 CHAPTER 3. UNFOLDING A PETRI NET

pa

pd

pctA

tB

tD

tEpetC

pf

pg tG

tF pb

pa tB

tC

pd

pc pf

pg

pe pf

pg

tA tD

tE

pf

pg tG

tF pb

pa tB

tC

pd

pc pf

pg

pe pf

pg

tA tD

tE

pb

e1

e2

e3

e4

e5

e7

e6

e14

e13

e8

e9

e10

e11

e12

e17

e16

e15

e19

e18

Figure 3.2: Unfolding of the PT-net system in Figure 3.1. Conditions=circles,

events=boxes. Inside the condition and event nodes are references to the places and tran-

sitions they map to in the original PT-net. In addition, each event is given a unique label,

shown above its box.

Römer and Vogler developed a more general and transparent structure around McMillan’s

unfolding algorithm, to produce what we shall refer to as the ERV unfolding algorithm [56].

3.2.1 Unfolding: Representation and Method

Branching Process

Consider how a rooted graph can be unfolded into a labelled tree, with each branch cor-

responding to a different walk through the graph (from the root node). There is a homo-

morphism mapping nodes and arcs of the tree to nodes and arcs of the graph. Similarly

a PT-net can be unfolded into a labelled occurrence net, called a branching process. A

branching process of a net comprises of an occurrence net, and a mapping to the original

net. We now define the net, then the mapping, and finally combine them to form a branching

process.

An occurrence net is a PT-net ON , 〈B,E,G〉 where:

� There is no backward conflict;

3.2. UNFOLDING A PLACE TRANSITION NET 39

pa

pd

pctA

tB

tD

petC

pf

pg tG

tF pb

pa tB

tC

pd

pc

pe

tA

pb

e1

e2

e3

e4

e5

e7

e8

e8

e9

e10

e11

tD

tE

tE

e12

pf

pg

pf

pg

pf

pg

Figure 3.3: Finite prefix of the unfolding of the PT-net system in Figure 3.1. The events

drawn with broken lines are those identified as cut-offs.

� ON is finitely preceded, i.e. for every x ∈ B∪E the set of elements y ∈ B∪E such

that y < x is finite, which means there are no cycles; and

� No element is in forward conflict with itself (this is also called self-conflict).

As is standard in the literature, to differentiate this particular type of PT-net in discussion,

we refer to the set of places B as conditions, and the set of transitions E as events. G is the

causal relation. A causal chain of events is a finite or infinite sequence of events such that

if event e precedes event f in the chain then e < f .

When an occurrence net is obtained by unfolding a net, the conditions and events represent

particular occurrences of the places and transitions in the original net, respectively. The

represented places and transitions can necessarily be reached and enabled in the original

net, from the initial marking, via the distinct paths leading to them in the occurrence net.

That is, the occurrence net represents occurrence sequences in the original net. The un-

folding method achieves this by eliminating backward conflict4, cycles and self-conflict.

Whilst the reachability graph of a PT-net also represents occurrence sequences, a defining

characteristic of unfolding is that it does not represent these individually, nor impose order

on their elements unnecessarily: the unfolding of a PT-net system consists of occurrence

4In planning terms, the elimination of backward conflicts achieves the property of post-uniqueness of the
action set [6], which implies that we know the exact set of actions that causes a state variable to have a certain
value at some point in the plan.

40 CHAPTER 3. UNFOLDING A PETRI NET

posets.

We denote by Min(0N) the set of minimal elements of ON (with respect to <). In the

scope of this thesis, these elements are necessarily conditions since we only consider nets

in which every transition has an non-empty preset (Assumption 3).

A homomorphism ϕ, from an occurrence net ON to a PT-net system Σ, is a mapping such

that

� Conditions map to places and events to transitions: ϕ(B) ⊆ P and ϕ(E) ⊆ T ;

� Transition environments are preserved: for every e ∈ E, ϕ restricted to •e is a bijec-

tion onto •ϕ(e) and similarly for e•;

� Minimal conditions correspond to the initial marking: ϕ restricted to Min(ON) is a

bijection onto the multi-set M0; and

� There is no redundancy: for all e, e′ ∈ E if •e = •e′ and ϕ(e) = ϕ(e′) then e = e′.

A branching process of Σ is a pair βΣ , 〈ON,ϕ〉 where ϕ is a homomorphism from ON

to Σ. The nodes of the branching process are uniquely defined by the nodes they map to in

the original net and the particular partially ordered history of events that led to them (from

the initial marking).

As a PT-net can be unfolded to varying extents, there is a natural partial order on its branch-

ing processes. A branching process β′Σ = 〈ON ′, ϕ′〉 is a prefix of a branching process

βΣ = 〈ON,ϕ〉, denoted by β′Σ v βΣ, if ON ′ is a sub-net of ON satisfying:

� Min(ON’) = Min(ON);

� If a condition is in ON ′ then its preset event in ON is also in ON ′; and

� If an event is in ON ′ then its preset and postset conditions in ON are also in ON ′.

A PT-net system Σ has a unique maximal branching process with respect to the prefix

relation [53]; this is called the unfolding of Σ and is denoted here by UnfΣ. Specifically,

the process is unique up to isomorphism (renaming of the conditions and events). The

unfolding of the PT-net system in Figure 3.1 is infinite; we show part of it in Figure 3.2.

3.2. UNFOLDING A PLACE TRANSITION NET 41

Configuration

To understand the unfolding of a net (both the technique and representation), the most

important notions are those of configurations and their final markings. Intuitively, a con-

figuration is one process in the branching process: it represents, in the occurrence net, an

occurrence poset in the original PT-net system. The final marking of a configuration is

the state the original net would be in, if the process it represents were to occur. We now

formalise these concepts.

A configuration of an occurrence net is a set of events C which are:

� Conflict free, i.e. for all e, e′ ∈ C, e is not in forward conflict with e′; and

� Causally closed, i.e. if e′ ∈ C and e < e′ then e ∈ C.

A configuration in a branching process of Σ maps to an occurrence poset in Σ. The events

map to transitions, and the constraints are based on the causal relation over events. In the

unfolding shown in Figure 3.2, {e1, e3, e4, e6, e7} is a configuration, subject to the con-

straints e1 . {e1, e3} . {e6, e7}. This configuration captures four occurrence sequences in

the original net, each of which transform it to the marking {pa, pb, pe}.

C ⊕ E denotes that C ∪ E is a configuration, obtained by extending configuration C with

the finite set of events E disjoint from C. Two sets of events E1 and E2 are structurally

isomorphic, denoted by E1 v E2 if the directed graphs induced by each set of events and

their adjacent conditions are isomorphic up to a relabelling [35].

The local configuration of an event e, denoted [e], is the minimal configuration containing

e. For example, in Figure 3.2, [e14] = {e2, e3, e5, e14}.

A coset is a set of conditions which are all pairwise concurrent. A cut is a maximal coset,

with respect to set inclusion. Every configuration is associated with a cut. The cut of

configuration C is the set of conditions:

Cut(C) ,

(
Min(ON) ∪

⋃
e∈C

[e]•
)
\

(⋃
e∈C

•[e]

)
The cut of configuration C in branching process βΣ = 〈ON,ϕ〉 corresponds to a set of

places in Σ given by Mark(C) , ϕ(Cut(C)). This is called the final marking of C and

represents a reachable marking of Σ, i.e. if σ. is the occurrence poset captured by C,

then M0
σ.→ Mark(C). For instance, in Figure 3.1, the final marking of configuration

{e2, e3, e5, e13} is {pg, pb}. Every marking represented in a branching process of a PT-net

system Σ is reachable in Σ. Furthermore, every reachable marking of Σ is represented in

UnfΣ [56].

42 CHAPTER 3. UNFOLDING A PETRI NET

Algorithm 2 Unfolding(Σ)

input: PT-net system Σ = 〈P, T, F,M0〉.
Let UnfΣ = 〈ON,ϕ〉, where ON = 〈B,E,G〉.
Initialise B = {b|ϕ(b) = p and p ∈M0}.

Initialise a queue with the possible extensions of UnfΣ.

while queue is not empty:

Remove a possible extension (t,X) from the queue;

Add new event e to UnfΣ, such that ϕ(e) = t, •e = X;

For every p ∈ t• add a new condition c to UnfΣ, such that ϕ(c) = p and •c = e ;

Add all new possible extensions of UnfΣ to the queue.

endwhile
output: UnfΣ = 〈ON,ϕ〉 where ON = 〈B,E,G〉.

Possible Extensions

Finally, before presenting the algorithm for unfolding, we identify how to arbitrarily extend

a branching process. Let βΣ be a branching process of the PT-net system Σ. The possi-

ble extensions to βΣ are the pairs (t,X) where t is a transition of Σ and X is a coset of

conditions in βΣ satisfying:

� ϕ(X) = •t; and

� (t,X) is not already in βΣ, i.e. there does not exist e ∈ β such that ϕ(e) = t and
•e = X .

The Unfolding Algorithm

The Unfolding algorithm (see Algorithm 2) initialises the branching process UnfΣ with

conditions corresponding to the initial marking of Σ, and no events. The possible extensions

are identified, and a single event is added to UnfΣ together with its postset conditions.

New possible extensions are identified, and another event and its postset conditions added.

The algorithm continues in this way until no possible extensions remain. The Unfolding

algorithm is not guaranteed to terminate, because the unfolding of a net-system can be

infinite.

3.2. UNFOLDING A PLACE TRANSITION NET 43

3.2.2 A Complete Finite Prefix of the Unfolding

The maximal branching process of a PT-net system Σ, i.e. UnfΣ, is finite if and only if Σ

has no infinite occurrence sequences [56]. We seek a finite yet complete prefix of UnfΣ

which contains as much information as UnfΣ. Formally:

Definition 3. The prefix βΣ v UnfΣ is complete if and only if for every marking M reach-

able in Σ:

(a) There exists a configuration C ∈ βΣ such that Mark(C) = M ; and

(b) For every transition t enabled by M there exists a configuration C ∪ {e} such that

e /∈ C and ϕ(e) = t.

In his thesis, McMillan proposes an algorithm for generating a complete finite prefix of the

unfolding of a PT-net system [117]. His approach is founded on identifying those events at

which we can cease unfolding without loss of information. Such events are referred to as

cut-off events, and are defined in the context of constructing βΣ:

Definition 4. Let ≺ be a partial order on configurations. During the unfolding of a PT-

net system, an event e is identified as a cut-off with respect to ≺ if the branching process

constructed so far already contains some event e′ such that:

(a) Mark([e]) = Mark([e′]); and

(b) [e′] ≺ [e].

In his thesis, McMillan uses a partial order on configurations ≺m based on cardinality:

C ≺m C ′ ⇔ |C| < |C ′|.

He presents an algorithm similar in essence to Algorithm 2 with the addition that the queue

is ordered with respect to ≺m and every event taken from the queue is tested against the

definition of a cut-off event. The postset conditions of events identified as cut-offs are

not used in the generation of possible extensions. McMillan proves that unfolding in this

manner guarantees a finite and complete prefix is obtained [119]. The reasonning behind

this is that two events with the same marking will continue unfolding isomorphically to

each other. The continuation from either event may involve conflicting parts of the net

however so the cutting needs to be consistent. McMillan’s unfolding algorithm maintains

44 CHAPTER 3. UNFOLDING A PETRI NET

consistency by ensuring that for every reachable marking M , the smallest configuration C

such that Mark(C) = M will never contain a cut-off event.

Esparza, Römer and Vogler [56] later identified that any partial order on configurations

satisfying certain conditions, may be used to identify cut-offs. They refer to suitable orders

as adequate orders:

Definition 5. A partial order ≺ on finite configurations is adequate if

(a) ≺ is well founded;

(b) C1 ⊂ C2 ⇒ C1 ≺ C2; and

(c) ≺ is preserved by finite extensions: if C1 ≺ C2 and Mark(C1) = Mark(C2), then

for all finite extensions C1 ⊕ E1 and C2 ⊕ E2 such that E1 and E2 are structurally

isomorphic, we have C1 ⊕ E1 ≺ C2 ⊕ E2.

When used to identify cut-offs, condition (b) ensures the prefix will be finite. Conditions

(a) and (c) prevent the inconsistent cutting of events just mentioned.

The ERV Unfolding Algorithm

A finite complete prefix can be built using the ERV algorithm (see Algorithm 3). This

algorithm maintains a priority queue in which the events to be added to the unfolding are

sorted in increasing order of ≺ (with respect to their local configuration). At each iteration,

a minimal event is extracted from the queue and added to the unfolding together with all

the conditions in its postset. Additionally, all the events enabled by the new conditions are

inserted into the priority queue. The algorithm finishes when the queue becomes empty.

It is shown in [56] that if ≺ is an adequate order then the output of ERV(Σ,≺), i.e. βΣ, is a

complete and finite prefix of UnfΣ.

MOLE: An Implementation of The ERV Algorithm

MOLE5 is a freeware program which unfolds 1-safe PT-nets. It implements the ERV al-

gorithm using an adequate order ≺erv on configurations which refines McMillan’s order

≺m by comparisons based on Parikh-vectors and the Foata normal form. This makes ≺erv

5http://www.fmi.uni-stuttgart.de/szs/tools/mole/

3.3. THE REACHABILITY PROBLEM 45

Algorithm 3 ERV (Σ,≺)

input: Net system Σ = 〈P, T, F,M0〉; partial order on configurations ≺.

Let βΣ = 〈ON,ϕ〉, where ON = 〈B,E,G〉.
Initialise B = {b|ϕ(b) = p and p ∈M0}.

Initialise priority queue with the possible extensions of βΣ.

Note: The queue of possible extensions is sorted by the local configurations of the events

they define, in increasing order w.r.t. ≺.

while queue is not empty:

Remove the first possible extension (t,X) from the queue;

Consider the event e with ϕ(e) = t and •e = X:

Add e to βΣ, such that ϕ(e) = t and •e = X;

if e is not a cut-off w.r.t. ≺
For every p ∈ t• add a new condition c to βΣ, such that ϕ(c) = p and •c = e;

Insert new possible extensions into the queue.

endif
endwhile
For every cut-off event e, for every p ∈ ϕ(e)• add a new condition c to βΣ, such that

ϕ(c) = p and •c = e.

output: βΣ, a prefix of UnfΣ.

a total order, thus maximising the number of cut-off events identified, and consequently

minimising the size of the generated prefix [59].

The prefix in Figure 3.1 is the complete finite prefix that MOLE generates for our example.

The events e5, e11, and e12 are all cut-off events. This is because each of their local config-

urations, firstly, has the same marking as the local configuration of event e4, i.e. {pf , pg},

and, secondly, is greater than the local configuration of event e4 with respect to the adequate

partial order implemented by MOLE. Notice that the finite prefix of the unfolding ceases at

cut-off events.

3.3 The Reachability Problem

We define the reachability problem for 1-safe PT-nets as follows:

REACHABILITYΣ: Given a 1-safe PT-net system Σ = 〈P, T, F,M0〉 and a

46 CHAPTER 3. UNFOLDING A PETRI NET

subset P ′ ⊆ P , determine whether there is an occurrence sequence σ such that

M0
σ→M where M(p) = 1 for all p ∈ P ′.

Note that this is often referred to as the coverability problem in Petri net literature, e.g.

[126].

There are two main approaches to solving REACHABILITYΣ. The first is to search the

reachability tree of the Petri net [126], which is equivalent to performing a state space

search of the modelled system. This method can be used to identify a totally ordered

solution to REACHABILITYΣ. Searching the entire reachability tree will obviously suffer

greatly from the state explosion problem. Consequently there are numerous techniques

designed to reduce the reachability tree, including abstraction techniques for simplifying

a net whilst preserving some properties (this includes what are referred to as reduction

techniques [13, 104, 139] in Petri net literature) and methods to identify symmetry relations

[157, 150]. There are also decomposition methods to divide and conquer the building of the

reachability tree, including top-down synthesis [158, 111] which involves the substitution

of nodes with sub-nets, and bottom-up synthesis [36, 100] where sub-nets are combined in

an iterative manner.

The second common approach to Petri net analysis is based on methods of linear algebra,

using a matrix representation of a Petri net [126]. A major drawback of this method, for

our purposes, is that whilst it can be used to identify the transitions which solve REACHA-

BILITYΣ it does not provide any information about their ordering.

Unfolding6 is a less common method of Petri net analysis. The fact that unfolding is the

partial order semantics of a Petri net means we can identify solutions to REACHABILITYΣ

which are constrained only by causal relations; in addition, as this thesis shows, unfolding

can be employed to solve REACHABILITYΣ optimally with respect to criteria which must

necessarily consider concurrency semantics, such as makespan.

3.3.1 Connection with Unfolding

We have discussed the fact that a configuration in a branching process of Σ represents an

occurrence poset in Σ, which in turn captures a set of occurrences sequences, each of which

transform Σ to the same marking. So, considering the problem of REACHABILITYΣ for Σ

and P ′, a configuration C ∈ βΣ with final marking M such that P ′ ⊆ M represents at

6Whilst not within the scope of this thesis, it appears that various techniques used to reduce the reachability
tree could in fact be applied prior to unfolding, as they statically reduce the Petri net model.

3.3. THE REACHABILITY PROBLEM 47

least one occurrence sequence which is a solution to the reachability problem. It may in

fact represent multiple solutions. Consequently, in this thesis we will commonly refer to

configurations as solutions to REACHABILITYΣ, without referring to the homomorphism

that maps them onto occurrence sequences in the original net. We hope that this does not

confuse, but rather is sufficiently intuitive to simplify discussion.

We now formalise the connection between the solution to REACHABILITYΣ for a PT-net

system Σ, and a complete prefix of the unfolding of Σ. As mentioned previously, every

marking represented in a branching process of Σ is reachable in Σ [56]. Furthermore, for

every reachable marking M of Σ, a complete prefix of the unfolding of Σ contains at least

one configuration C such that Mark(C) = M (by part (a) of Definition 3). We can thus

conclude the following:

Proposition 3.3.1 (Reachable marking). Let βΣ be a complete prefix of UnfΣ. A marking

M is reachable in Σ iff βΣ contains a configuration C such that Mark(C) = M .

From this we can make the connection between a reachability problem for a PT-net system,

and a complete prefix of its unfolding:

Corollary 3.3.2 (REACHABILITYΣ via βΣ). Consider the problem of REACHABILITYΣ

defined by PT-net system Σ = 〈P, T, F,M0〉, and subset P ′ ⊆ P . Let βΣ be a complete

prefix of UnfΣ. Then:

(a) There is a positive solution to REACHABILITYΣ iff βΣ contains a configuration C

such that Mark(C) = M where P ′ ⊆M ; and

(b) C represents a solution to REACHABILITYΣ.

Proof. Part (a) follows directly from Proposition 3.3.1 and the definition of REACHABIL-

ITYΣ. Part (b) follows from part (a), and the fact a configuration represents an occurrence

sequence in the original net (by construction of a branching process of Σ, and the definition

of configuration).

3.3.2 Complexity

In terms of complexity theory the REACHABILITYΣ problem for a 1-safe net Σ is PSPACE-

complete [38]. This means it can be solved by a deterministic Turing machine using a

length of work tape which is polynomial in the size of the input.

48 CHAPTER 3. UNFOLDING A PETRI NET

From another perspective, REACHABILITYΣ is NP-complete in the size of the finite prefix

of Σ [60]. That is, a Turing machine can check in polynomial time whether a given solu-

tion of polynomial length is correct. And thus, a non-deterministic Turing machine which

always guesses the correct answer, can solve the problem in polynomial time. Note that NP

⊆ PSPACE.

But, whilst the reachability problem is PSPACE-complete, a finite complete prefix of the

unfolding of Σ can require space which is exponential in the size of the original Petri net.

This suggests the unfolding is not optimal for solving reachability. The picture is not so

grim however, as this is the worst case scenario for unfolding and we can generally iden-

tify which problems will be much easier in practice. In some cases a complete prefix of the

unfolding of Σ is exponentially smaller than the state space of Σ. Everything in between de-

pends on a range of factors that have yet to be precisely analysed. What is clear intuitively,

and supported by empirical results (see the Artificial Problems presented in Chapter 6), is

that as the level of concurrency in the system increases the size of the unfolding prefix can

decrease exponentially with respect to the number of reachable states. This is due to the

fact unfolding exploits concurrency by essentially breaking the problem into independent

sub-problems. So given our interest in concurrent systems, the unfolding of a PT-net is an

enticing approach to reachability analysis despite its theoretical complexity.

There are several algorithms that solve REACHABILITYΣ for a PT-net system Σ and subset

of places P ′, via a complete prefix of the unfolding of Σ. These are based on:

� Linear programming. Melzer’s [121] linear programming approach is based on an

algebraic equation representation of the set of reachable markings of an acyclic net.

The complete finite prefix is an acyclic net that can be employed to represent Σ for

this purpose. This approach has exponential complexity in the size of the complete

prefix (which is itself exponential in the size of the Petri net) [60].

� SAT. Heljanko [79] translates a complete finite prefix of the unfolding of Σ into a rule

based logic program, and then checks if a model exists. This reduces a reachability

problem for Σ to SAT. The algorithm has exponential complexity in the size of the

complete prefix [60].

� Graph theory. Shröter and Esparza [60] propose a graph-theoretic approach based

on whether conditions mapping to P ′, in the finite prefix of the unfolding of Σ, are

concurrent. This extends the concurrency relation defined earlier over pairs of nodes

to sets of conditions. This approach is polynomial in the size of the prefix and expo-

nential in the cardinality of P ′.

3.3. THE REACHABILITY PROBLEM 49

� Local reachability / On-the-fly. A local reachability problem for a Petri net Σ involves

determining whether a particular transition can be enabled; this can be achieved by

identifying whether it is represented by an event in the finite prefix of the unfolding

of Σ. This local reachability problem is polynomial in the size of the complete prefix

[60]. McMillan [119] proposes an algorithm for solving REACHABILITYΣ on-the-

fly by mapping the reachability problem for Σ to a local reachability problem for an

extended net ΣR. The apparent reduction in complexity (from NP-complete in the

size of Σ to polynomial in the size of ΣR) suggests that it may take exponentially

more time to generate a complete prefix for ΣR than for Σ.

Esparza and Schröter [60] empirically compare the above approaches and conclude that

algorithms which map the problem to SAT and local reachability are the most efficient. The

SAT approach is often more efficient than that of local reachability when the solution to the

problem is negative. For the case of a positive solution, suppose n reachability problems

are to be solved for the same PT-net system. If n = 1 then solving the local reachability

problem on-the-fly appears consistently and significantly more efficient than solving the

SAT problem [60]. If n > 1, then there is a break point for n, dependent on the particular

problem, at which the SAT approach is more efficient.

The on-the-fly approach is attractive for our purposes, as we are interested in solving single

reachability problems (i.e. n = 1). This thesis improves the efficiency of on-the-fly reach-

ability analysis, using the concept of directed unfolding, by reducing the size of the prefix

which must be generated to solve both positive and negative reachability problems. Further-

more, the concept of directed unfolding enables us to find optimal solutions to reachability,

with respect to various criteria.

3.3.3 On-the-fly Reachability Analysis via Unfolding

Unfolding a Petri net to solve REACHABILITYΣ on-the-fly was first suggested by McMil-

lan [119]. The original net is extended by a single transition, tR, such that •tR = P ′ and

tR
• = P ′, i.e. this transition can only be enabled by a marking that satisfies REACHA-

BILITYΣ
7. The extended net is then unfolded, as described previously, but stops when an

event eR is retrieved from the queue, where ϕ(eR) = tR. Throughout this thesis we will

use eR to denote an event which satisfies this homomorphism. If such an event is found

we conclude the set of places P ′ is reachable, and a solution to REACHABILITYΣ is the

local configuration of eR, without eR itself. If no such event is identified, the algorithm will

7Setting the post-places of tR is arbitrary; we do it here as it simplifies the reasoning for correctness.

50 CHAPTER 3. UNFOLDING A PETRI NET

continue to generate the prefix of the unfolding until there are no more possible extensions.

If we know the prefix generated is complete, with respect to Definition 3, then at this point

we can conclude P ′ is not reachable.

In the literature, the process of reachability analysis via on-the-fly unfolding is generally

presented in the manner of the previous paragraph; to our knowledge it has not been for-

malised to the extent which follows. In particular, we formally define the PT-net system

extended by transition tR, present an algorithm called ERV-Fly which takes this as input,

and subsequently identify and prove the conditions under which the later solves REACHA-

BILITYΣ.

Let us first define a PT-net system ΣR, which captures a reachability problem defined by Σ

and P ′ by including tR appropriately:

Definition 6. Given a problem of REACHABILITYΣ defined by PT-net system Σ = 〈P, T, F,
M0〉 and subset P ′ ⊆ P , define a new PT-net system ΣR , 〈P, T ∪ tR, F

⋃
p∈P ′(p, tR) ∪

(tR, p),M0〉. We say that ΣR defines the REACHABILITYΣ problem for Σ and P ′.

Extending Σ by transition tR is arbitrary in that it does not alter the set of reachable mark-

ings. The only effect of tR is that any occurrence sequence leading to some marking M

such that M(p) = 1∀p ∈ P ′ can be extended by tR; as tR does not change the marking,

the possible continuation of such sequences does not change. Thus we can propose a new

version of Proposition 3.3.1:

Proposition 3.3.3 (Reachable marking II). Let ΣR be an extension of PT-net system Σ, as

given in Definition 6. Let βΣR
be a complete prefix of UnfΣR

. A marking M is reachable

in Σ iff βΣR
contains a configuration C such that Mark(C) = M .

From this follows a new version of Corollary 3.3.4:

Corollary 3.3.4 (REACHABILITYΣ via βΣR
). Consider the problem of REACHABILITYΣ

for PT-net system Σ = 〈P, T, F,M0〉, and subset P ′ ⊆ P . Let ΣR define REACHABILITYΣ,

and let βΣR
be a complete prefix of UnfΣR

. Then:

(a) There is a positive solution to REACHABILITYΣ iff βΣR
contains a configuration C

such that Mark(C) = M where M(p) = 1 for all p ∈ P ′; and

(b) C represents a solution to REACHABILITYΣ.

Proof. Follows from Corollary 3.3.2, Proposition 3.3.1 and Proposition 3.3.3.

3.3. THE REACHABILITY PROBLEM 51

The ERV-Fly Algorithm

We can now present an algorithm ERV-Fly, see Algorithm 4, which uses ΣR to solve the

associated reachability problem. The difference between the original ERV algorithm and

ERV-Fly is highlighted in italics. If implemented with an appropriate order on configura-

tions, ≺, then ERV-Fly(ΣR,≺) will solve the problem of REACHABILITYΣ defined by the

PT-net system ΣR:

Theorem 3.3.5 (ERV-Fly solves REACHABILITYΣ). If ERV(ΣR,≺) generates a finite and

complete prefix of the unfolding of ΣR, then ERV-Fly(ΣR,≺) solves REACHABILITYΣ (as

defined by ΣR).

Proof. Let βΣR
be the prefix of UnfΣR

generated by ERV-Fly(ΣR,≺). Let β′ΣR
be the prefix

ofUnfΣR
generated by ERV(ΣR,≺). By inspection of Algorithm 3 and Algorithm 4, we see

βΣR
v β′ΣR

, with equality occurring when there is no event eR in βΣR
, where ϕ(eR) = tR.

In the following we say ERV-Fly is generating a finite and complete prefix if β′ΣR
is finite

and complete.

If ERV-Fly is generating a finite prefix then the existence or not of eR will be determined in

finite time. If ERV-Fly is generating a complete prefix, then by part (b) of Definition 3 and

construction of tR, it will find an event eR if and only if there exists C,C ′ ∈ β′ΣR
such that

C ′ = C ∪ {eR} and Mark(C) = M where M(p) = 1 for all p ∈ P ′. By Corollary 3.3.4

this will be true if and only if REACHABILITYΣ is positive, in which case C is a solution.

The minimal such C ′, with respect to <, is C ′ = [eR], in which case C = [eR] \ {eR}.

Thus if ERV(ΣR,≺) generates a finite and complete prefix of the unfolding of ΣR, then

ERV-Fly(ΣR,≺) finds an event eR if and only if REACHABILITYΣ is positive, in which

case [eR] \ {eR} is a solution.

MOLE: An Implementation of the ERV-Fly Algorithm

MOLE provides the option to cease generating a branching process when an event mapping

to a user-specified transition is removed from the queue of possible extensions. That is, we

can request MOLE to stop executing the ERV algorithm when an event eR is found such that

ϕ(eR) = tR. In addition to this, we made minor amendments to enable MOLE to identify

the local configuration of such an event, and return the associated occurrence poset. In this

way MOLE can be used to implement ERV-Fly.

52 CHAPTER 3. UNFOLDING A PETRI NET

Algorithm 4 ERV-Fly(ΣR,≺)

input: PT-net system ΣR = 〈P, T, F,M0〉; partial order on configurations ≺
Let βΣ = 〈ON,ϕ〉, where ON = 〈B,E,G〉.
Initialise B = {b|ϕ(b) = p and p ∈M0}.

Initialise priority queue with the possible extensions of βΣ.

Note: The queue of possible extensions is sorted by the local configurations of the events

they define, in increasing order w.r.t. ≺.

while queue is not empty:

Remove the first possible extension (t,X) from the queue;

Consider the event e with ϕ(e) = t and •e = X:

if t ∈ tR let σ = [e] \ e, and exit loop.

Add e to βΣ, such that ϕ(e) = t and •e = X;

if e is not a cut-off w.r.t. ≺
For every p ∈ t• add a new condition c to βΣ, such that ϕ(c) = p and •c = e;

Insert new possible extensions into the queue.

endif
endwhile
For every cut-off event e, for every p ∈ ϕ(e)• add a new condition c to βΣ, such that

ϕ(c) = p and •c = e.

output: If tR is found announce success and return σ else announce failure.

Note: Depending on the data structure used, when defining the preset of a node one may

also want to define the associated postset relation, e.g. ∀c ∈ X c• = e.

3.4 Conclusion

This chapter presented and motivated the application of PT-net unfolding to solving the

reachability problem for concurrent systems on-the-fly. In particular, we formalised the

ERV-Fly Algorithm and identified and proved the conditions under which it would solve

the reachability problem for 1-safe nets.

PT-nets are a model for concurrent systems which, in particular,

(a) Avoid the construction of “fictional” global states by providing a factored represen-

tation of the state space; and,

(b) Depict the causal, conflict and concurrency relations between actions by making their

causes and effects explicit. This provides a framework for:

3.4. CONCLUSION 53

� Considering the partial order model of system execution, and

� Decomposing a potentially complex concurrent system.

Unfolding is a PT-net analysis technique which exploits the above qualities. Noting that

unfolding can generate an infinite structure, referred to as the unfolding of the PT-net, we

presented the ERV Algorithm, which generates a finite and complete prefix of the unfolding

of a PT-net when implemented with an appropriate strategy.

Whilst there are various ways to use the prefix of the unfolding of a net to answer reacha-

bility problems, the on-the-fly approach is most appropriate for our interest in planning as

reachability analysis. We formulated the ERV-Fly Algorithm which, to our knowledge, has

not been presented to this level of detail previously. In addition we proved the conditions

which ensure it is sound and complete with respect to solving REACHABILITYΣ; again, this

formalisation has not appeared previously in the literature.

In the next section, we present the theory of directed unfolding, which makes ERV-Fly

a principled method for reachability analysis. It considers problem-specific information

when deciding which configuration to next extend, in attempt to direct the building of a

branching process toward an event eR, such that ϕ(eR) = tR, and to provide the possibility

of finding optimal solutions to REACHABILITYΣ with respect to various criteria.

3.4.1 Personal Contribution

The particular formalisation of ΣR and the ERV-Fly Algorithm shown here is my own

work. This provided the structure for me to identify and prove the conditions under which

the later is sound and complete with respect to solving REACHABILITYΣ. The notion of an

occurrence poset is also my own contribution.

This page left blank.

Chapter 4

Directed Unfolding

The Petri net unfolding technique has gained the interest of researchers in verification [57],

diagnosis [11] and, motivated by the research presented in this thesis, automated planning

[84]. All have reason to analyse state reachability in concurrent transition systems, looking

to unfolding for some relief of the state explosion problem. Unfolding a Petri net reveals all

possible partially ordered runs of the net, without necessitating the arbitrary combinatorial

interleaving of independent events. Whilst the full unfolding of a Petri net can be infinite,

McMillan identified the possibility of a finite prefix containing all reachable states [119].

Esparza, Römer and Vogler generalised his approach, to produce the now commonly used

ERV algorithm [59]. This algorithm provides the framework to control the building of

the prefix using different strategies. Typically, it is implemented to generate a prefix in a

breadth-first manner, using the number of events in a configuration to select the next node

to add (and determine terminating nodes). The MOLE unfolding tool follows this strategy.

Of the various unfolding based reachability techniques, experimental results indicate on-

the-fly analysis (see Algorithm 4: ERV-Fly) is most efficient for solving a single REACHA-

BILITYΣ problem [60]. Nevertheless, generating a prefix in a breadth-first manner quickly

becomes impractical when it is wide or the shortest path to a marking satisfying REACH-

ABILITYΣ is deep. Furthermore, the only guarantee regarding the quality of the solution is

that it has a minimal number of events. It has not been obvious what other strategies can

be used to control building the prefix; recent results have shown a depth-first strategy is

incorrect [58].

Perhaps the reason why more informed strategies have not yet eventuated is that unfolding

was traditionally used to prove the absence of deadlocks: this set the focus on making the

entire complete prefix smaller rather than on reducing the search space explored to find a

particular marking. In the context of the REACHABILITYΣ problem, there are two unique

55

56 CHAPTER 4. DIRECTED UNFOLDING

factors to consider:

(1) Particular applications are concerned with the quality of a positive solution, seeking

optimality with respect to some criteria.

(2) For on-the-fly analysis via unfolding, REACHABILITYΣ is translated to the problem of

checking whether transition tR can be enabled. Using the ERV-Fly algorithm, a positive

solution to REACHABILITYΣ is identified as soon as an event eR, such that ϕ(eR) = tR,

is selected for addition to the branching process being generated. It is then unnecessary

to build the remainder of the prefix of the unfolding.

An unfolding algorithm for reachability analysis that does not consider (1) and exploit (2)

is probably not achieving its full potential. The basic idea behind our work is: when solving

a REACHABILITYΣ problem defined by ΣR, ERV-Fly(ΣR,≺) can be considered a “search

process” in quest of a configuration that includes eR, where the order ≺ defines the “search

strategy” by selecting which configuration to extend next. Thus, for the purpose of optimal-

ity ≺ should favor those configurations which “cost less”, and for the purpose of efficiency

≺ should favor configurations with final markings that appear “closer” to a marking that

enables tR. We use this reasonning to turn unfolding into an informed algorithm oriented

at solving the reachability task. We define sound search strategies that incorporate a cost

function and a heuristic function, to achieve the desires of point (1), and to exploit point

(2). The heuristic function is used to estimate the minimum cost, or shortest distance, from

a given state to one which satisfies REACHABILITYΣ. The resulting approach is called

directed unfolding as opposed to the standard “blind unfolding” approach. The term “di-

rected” has been used elsewhere to emphasise the informed nature of other model-checking

algorithms [50].

Techniques for automatically extracting suitable heuristics from the representation of a tran-

sition system and using them to guide search have significantly impacted the scalability of

automated planning [18, 86, 116]. We show that heuristic values can be similarly calculated

from a Petri net. If the chosen heuristic is admissible (it never overestimates the actual min-

imum cost), then directed unfolding identifies an optimal solution with respect to the cost

function. Provided REACHABILITYΣ is positive, directed unfolding can solve much larger

problems than the original breadth-first ERV-Fly algorithm. Moreover, its implementation

requires only minor additions to the latter.

In this chapter, we first consider the role of an order on configurations ≺ in ERV(Σ,≺) and

ERV-Fly(Σ,≺); this provides grounding for the subsequent discussion in Section 4.2 and

Section 4.3 regarding directing the unfolding process via more informative implementations

57

of this order. We also inspect the fact that if ≺ is adequate then the ERV algorithm will

generate a finite and complete prefix of the unfolding of Σ; this leads to the observation that

condition (b) of an adequate order (Definition 5) is a sufficient but not necessary condition

to guarantee the prefix is finite. We consequently define a weaker order, which we call

semi-adequate, that also ensures finiteness and completeness. The result of semi-adequate

orders opens the door to a new family of strategies for directing the unfolding.

Section 4.2 looks at directing the unfolding method to solve optimisation problems. We

formally define the concept of an optimal solution to REACHABILITYΣ and identify condi-

tions which ensure ERV-Fly(ΣR,≺) will find an optimal solution, if one exists, with respect

to ≺. These conditions are satisfied by transitive adequate orders on configurations, but

not necessarily by semi-adequate orders. We then extend the net system model to include

a cost function for transitions, and subsequently define additive and parallel cost functions

for configurations. Finally we propose an adequate order that can be used to optimise the

additive cost function, and a semi-adequate order for optimising the parallel cost function.

Section 4.3 formulates the idea of using a heuristic function to direct ERV-Fly to extend

configurations which appear most likely to be solutions to the reachability problem. We

present the general framework for a semi-adequate order incorporating a cost function and

a heuristic function. It is based on three inputs: (1) a cost function for configurations, (2) a

semi-adequate order that prefers minimal configurations with respect to this cost function,

and (3) a heuristic function. The conditions for optimality are satisfied by this strategy

when the heuristic function is admissible. In this case, the resulting semi-adequate order

is guaranteed to direct ERV-Fly to an optimal solution relative to the cost function (if one

exists).

Section 4.4 discusses the size of the prefix that may be generated using directed unfolding.

Section 4.5 describes some of the reasoning used to develop heuristic functions in the area

of automated planning. We show how heuristic values can be extracted directly from a

Petri net, presenting functions that consider the distance between configurations in terms of

additive and parallel cost.

Section 4.6 presents experimental results comparing “blind” and directed unfolding. More

experimental results are presented in Part II.

We finally conclude this chapter by summarising the main contributions made here, in the

context of directed unfolding.

58 CHAPTER 4. DIRECTED UNFOLDING

4.1 Reconsidering Adequate Orders

Here we contemplate the role of an order on configurations ≺ in generating a prefix of

the unfolding of a net system Σ via ERV(Σ,≺). One use of this order is to select the

next event, from the list of possibilities, to add to the current branching process. An event

is selected when its local configuration is minimal, with respect to ≺, among the local

configurations of other events that could be added. The order in which events are added

to the branching process determines the manner in which the branching process grows.

For example, a breadth-first strategy involves building all local configurations of just one

event, then building all local configurations of two events, then three, etc. A breadth-first

strategy is achieved by employing an order based on the cardinality of a configuration, i.e.

C ≺ C ′ ⇔ |C| < |C ′|, as advocated by [119, 59].

The second use of ≺ in the the ERV algorithm is to determine whether a particular event

selected for addition to the branching process is a cut-off (see Definition 4). An event e

is identified as a cut-off if the prefix already contains an event e′ such that Mark(e) =

Mark(e′) and e′ ≺ e. If e is identified as a cut-off then no subsequent event e′′, is added

to the branching process, such that e < e′′. For our purposes, the decision to cut-off at

particular events should ensure the prefix is finite, whilst maintaining completeness as given

by Definition 3. Esparza, Römer and Vogler [56] identified that if ≺ is an adequate order,

then ERV(Σ,≺) will generate a finite and complete prefix of UnfΣ. We have recognised

that a weaker condition on this order can still guarantee finiteness and completeness.

4.1.1 A Semi-Adequate Order on Configurations

Upon revising the role of an adequate order ≺ in ERV(Σ,≺), we found that condition (b)

of adequacy, i.e. C ⊂ C ′ ⇒ C ≺ C ′ (see Definition 5), is only required to guarantee

the generated prefix is finite. Indeed, let n be the number of reachable markings of the

PT-net system Σ and consider an infinite sequence of events e1 < e2 < e3 < · · · in the

unfolding of Σ. Then, there exists i < j ≤ n + 1 such that Mark([ei]) = Mark([ej]), and

since [ei] ⊂ [ej], condition (b) implies [ei] ≺ [ej]. Thus when ERV(Σ,≺) takes [ej] from the

queue it will identify it as a cut-off event due to the existence of ei (Definition 4). Hence the

generated prefix is finite [59]. A similar result can be achieved if condition (b) is replaced

by the weaker condition that in every infinite chain e1 < e2 < e3 < · · · of events there are

i < j such that [ei] ≺ [ej]. We thus define:

Definition 7. A partial order ≺ on finite configurations is semi-adequate if

4.1. RECONSIDERING ADEQUATE ORDERS 59

(a) ≺ is well founded, i.e. it has no infinite descending chains;

(b) In every infinite chain C1 ⊂ C2 ⊂ C3 ⊂ · · · , there are i < j such that Ci ≺ Cj; and

(c) ≺ is preserved by finite extensions: if C1 ≺ C2 and Mark(C1) = Mark(C2), then for

all finite extensions C1 ⊕ E1 and C2 ⊕ E2 such that E1 and E2 are isomorphic, we have

C1 ⊕ E1 ≺ C2 ⊕ E2.

Condition (b) of an adequate order (Definition 5) implies condition (b) of a semi-adequate

order. Thus an adequate order is semi-adequate, but the reverse is not necessarily true.

Many orders presented in this chapter are semi-adequate, but not adequate.

Theorem 4.1.1 (Finiteness and Completeness). If ≺ is a semi-adequate order on configu-

rations, then ERV(Σ,≺) generates a finite and complete prefix of the unfolding of Σ.

Proof.

� Finiteness. Khomenko, Koutny and Vogler extend König’s Lemma to branching pro-

cesses, proposing that a branching process is infinite if and only if it contains an

infinite causal chain of events [97, p. 9]. Let ≺ be a semi-adequate order on configu-

rations and suppose that ERV(Σ,≺) generates a branching process with an an infinite

causal chain of events e1 < e2 < e3 < · · · . Each event ei defines a configuration [ei]

with marking Mark([ei]), and since the number of markings is finite, there is at least

one marking that appears infinitely often in the chain. Let e′1 < e′2 < e′3 < · · · be an

infinite subchain such that Mark([e1]) = Mark([ej]) for all j > 0. It follows from the

definition of a configuration that if e′1 < e′2 < e′3 < · · · then [e′1] ⊂ [e′2] ⊂ [e′3] ⊂ · · · .
Thus by condition (b) of a semi-adequate order, there are i < j such that [ei] ≺ [ej].

This, in conjunction with the fact Mark([ei]) = Mark([ej]), implies that when ej was

taken from the queue it would have been identified as a cut-off event and thus the

chain cannot be infinite. Thus the prefix generated by ERV(Σ,≺) is finite.

� Completeness. Let UnfΣ be the maximal branching process of Σ. Let βΣ v UnfΣ

be the branching process generated by ERV(Σ,≺) where ≺ is a semi-adequate order

on configurations. Recall that every reachable marking of Σ is represented in UnfΣ.

Furthermore, because a semi-adequate order ≺ is well-founded (condition (a)) for

every reachable marking M in Σ there must be a minimal configuration C ∈ UnfΣ

such that Mark(C) = M . We want to show that there can be no event e ∈ C which

is a cut-off in βΣ. For a proof by contradiction let C = [e]⊕E for some set of events

E and suppose e is a cut-off event in βΣ. This means there must be some other event

60 CHAPTER 4. DIRECTED UNFOLDING

e′ such that Mark(e′) = Mark(e) and [e′] ≺ [e]. Because ≺ is preserved by finite

extensions (condition (c) of a semi-adequate order) this impliesC ′ = [e′]⊕E ′ ≺ [e]⊕
E = C for some set of eventsE ′ such thatE ′ v E. This contradicts the minimality of

C. Hence C must contain no cut-off events. Thus for every reachable marking M in

Σ there is a configuration C ∈ βΣ such that Mark(C) = M . This satisfies condition

(a) of the definition of a complete prefix of UnfΣ (see Definition 3). Furthermore,

for every transition t enabled by M , it must be that C ⊕ e ∈ βΣ, where ϕ(e) = t,

because C contains no cut-off event and thus all possible extensions are included in

the prefix. This satisfies condition (b) of the definition of a complete prefix. Thus

ERV(Σ,≺) generates a complete prefix of the unfolding of Σ.

Comment: Proposition 4.9 in [59, p. 14] states that the prefix computed by ERV(Σ,≺)

is complete when ≺ is an adequate order on configurations. The proof provided for

this suffices for the case when ≺ is a semi-adequate order, since it is based only on

conditions (a) and (c) of an adequate order (see Definition 5), which are common to

the definition of a semi-adequate order. That is, the proof of completeness does not

rely on condition (b) at all. We chose to include a (slightly different) proof here to

encourage understanding and increase the self-containment of this work.

4.2 Directing the Unfolding for Optimality

In this section we consider how to use ERV-Fly to obtain an optimal solution to REACH-

ABILITYΣ with respect to a function g : C → R+, where C is a configuration. Recall

that through the formulation of ΣR, REACHABILITYΣ is cast to the problem of finding an

occurrence sequence including tR. The ERV-Fly algorithm returns the first such sequence

found, if one exists, and stops. If the process continued, it would not necessarily find an op-

timal occurrence sequence including tR as the selection of cut-off events may prematurely

terminate optimal paths to tR. Thus, to find an optimal solution on-the-fly we must ensure

it exists in the finite prefix and corresponds to the first event pulled from the queue such

that ϕ(eR) = tR.

4.2.1 A Notion of Optimality

Let UnfΣR
be the maximal branching process of net system ΣR. We denote by eR the

set of all local configurations [eR], such that ϕ(eR) = tR and eR ∈ UnfΣR
. Thus for

4.2. DIRECTING THE UNFOLDING FOR OPTIMALITY 61

every [eR] ∈eR, the configuration C = [eR] \ {eR} represents a solution to the reachability

problem defined by ΣR. We say that a configuration C∗ = [e∗R]\{e∗R} is an optimal solution

to REACHABILITYΣ if [e∗R] ∈ eR and [e∗R] is optimal among the members of eR, with respect

to some criterion.

We first identify the conditions on ≺ which guarantee ERV-Fly(ΣR,≺) to find an optimal

solution to REACHABILITYΣ with respect to ≺. As is the case with optimal search in the

state space, to perform an optimal search on-the-fly via unfolding we need to ensure that

every event e in an optimal solution [e∗R] is processed before the last event of a non-optimal

solution is found. Since events are queued with respect to ≺, we require that

e ∈ [e∗R] ⇒ [e] ≺ [eR]

where [e∗R] ∈ eR is minimal and [eR] ∈ eR is a non-minimal with respect to ≺, i.e. [e∗R] ≺
[eR].

Theorem 4.2.1 (Optimal REACHABILITYΣ with respect to ≺). Let ΣR define an instance

of REACHABILITYΣ. Let ≺ be a semi-adequate order on configurations. ERV-Fly(ΣR,≺)

solves REACHABILITYΣ. Furthermore, if positive, it will identify a minimal solution with

respect to≺ if≺ is transitive and e ∈ [e∗R] ⇒ [e] ≺ [eR], where e∗R, eR ∈ eR & [e∗R] ≺ [eR].

Proof. We need to show that all events in an optimal solution will be processed before a

sub-optimal solution is found.

First, observe that if the solution to the reachability problem is positive, then for every

[e∗R] which is a minimal member of eR with respect to ≺, the queue will contain an event

e ∈ [e∗R]. If no such event is in the queue then one of the events in [e∗R] must have been

identified as a cut-off. If e ∈ [e∗R] is a cut-off event then there exists some e′, already in the

built prefix, such that Mark(e′) = Mark(e) and [e′] ≺ [e]. But this implies [e′]⊕ E ′ ⊕ eR =

[eR] ≺ [e] ⊕ E ⊕ e∗R = [e∗R] for some structurally isomorphic finite extensions E ′ and E
(since ≺ is semi-adequate and thus preserved by finite extensions), which contradicts the

minimality of [e∗R]. So the queue always contains some event e ∈ [e∗R].

Now, by Theorem 3.3.5 and Theorem 4.1.1 we know if ≺ is a semi-adequate order then

ERV(ΣR,≺) returns a solution to REACHABILITYΣ. By inspection of Algorithm 4, we see

if REACHABILITYΣ is positive then the solution returned corresponds to the local configu-

ration of the first event eR taken from the queue such that ϕ(eR) = tR (i.e. [eR] ∈ eR). We

need to prove that configuration [eR] is minimal with respect to ≺ among members of eR.

For a proof by contradiction, assume that the configuration [eR] of the first event eR found

by ERV-Fly is not minimal.

62 CHAPTER 4. DIRECTED UNFOLDING

Since [eR] is non-minimal and ≺ is transitive, there must be at least one [e∗R] ∈ eR such that

[e∗R] is minimal with respect to ≺ and [e∗R] ≺ [eR]1. Let e ∈ [e∗R] be an event in the queue

when [eR] is dequeued. But, by the condition in this theorem, this means [e] ≺ [eR] and

consequently eR could not have been dequeued before e. Thus, by contradiction, [eR] must

be minimal with respect to ≺ among members of eR, and so C = [eR] \ {eR} is a minimal

solution to REACHABILITYΣ with respect to ≺.

Evidently, this captures the reason why the original cardinality based order can be used to

find a solution with minimal cardinality. If≺ is a transitive adequate order on configurations

then ERV-Fly(ΣR,≺) will solve the reachability problem optimally with respect to ≺. To

see this recall that property b of an adequate order states [e] ⊆ [e′] ⇒ e ≺ e′. Considering

the above theorem, e ∈ [e∗R] thus implies [e] ≺ [e∗R], or e = e∗R; furthermore since [e∗R] ≺
[eR], if ≺ is transitive then [e] ≺ [eR]. Thus, ERV-Fly implemented with the transitive,

adequate order C ≺ C ′ ⇔ |C| < |C ′| will find a solution to the reachability problem

with minimal cardinality. Note that a transitive semi-adequate order does not necessarily

guarantee the condition in Theorem 4.2.1 holds, since property (b) is weaker for semi-

adequacy than adequacy.

If≺ is not a total order then for the purpose of optimisation we may wish to further discrim-

inate between pairs of configurations which are not comparable with respect to≺. However

this extra discrimination may not be appropriate for the selection of cut-offs. So rather than

ordering the queue of possible events by ≺, we could instead employ an order ≺q that re-

fines≺, i.e. C ≺ C ′ ⇒ C ≺q C
′, but still use≺ for the determination of cut-off events. We

must furthermore require that the order ≺q is asymmetric, i.e. C ≺q C
′ ⇒ ¬(C ′ ≺q C), to

ensure C ≺q C
′ ⇒ ¬(C ′ ≺ C). This order can thus provide further discrimination, without

affecting the completeness of the generated prefix. ERV(Σ,≺,≺q) and ERV-Fly(Σ,≺,≺q)

will denote the ERV and ERV-Fly algorithms implemented with a priority queue ordered by

≺q, where Σ and ≺ refer to the input PT-net and the order on configurations used to deter-

mine cut-off events. Providing ≺q is asymmetric and refines ≺, the use of ≺q to order the

queue simply allows control of previously arbitrary decisions. Thus, theorems involving

ERV and ERV-Fly remain applicable.

Now, we want to find an optimal solution with respect to the function g : C → R+. Again,

we want to ensure that every event e in some optimal solution [e∗R] is processed before the

last event of a non-optimal solution is found. Since events are now queued with respect to

≺q, and we seek a minimal solution with respect to g, we require that:

1There could be other minimal members which are not comparable with [eR] with respect to ≺.

4.2. DIRECTING THE UNFOLDING FOR OPTIMALITY 63

e ∈ [e∗R] ⇒ [e] ≺q [eR]

where [e∗R] ∈ eR is minimal and [eR] ∈ eR is a non-minimal with respect to g, i.e. g([e∗R]) <

g([eR]). Furthermore, we need to make sure there exists at least one optimal solution con-

taining no cut-off events. We can do this by requiring that an event in a solution can only

be cut off by an event which leads to a solution of equal or lesser cost. That is, if e ∈ [eR],

where [e]⊕ E ⊕ eR = [eR], then

[e′] ≺ [e] & Mark(e′) = Mark(e) ⇒ g([e′]⊕ E ′ ⊕ e′R) ≤ g([e]⊕ E ⊕ eR)

for E ′ ∼ E .

More generally, we could require that the semi-adequate cut-off order implies the natural

order defined by the cost function g, i.e. [e′] ≺ [e] ⇒ g([e′]) ≤ g([e]). Then, since a

semi-adequate order is preserved by finite extensions, it follows that e′ ≺ e & Mark([e′]) =

Mark([e]) ⇒ [e′] ⊕ E ′ ≺ [e] ⊕ E ⇒ g([e′] ⊕ E ′) ≤ g([e] ⊕ E) for any E ′ ∼ E . Observe

that when seeking minimality with respect to a semi-adequate order ≺ this requirement is

superfluous. Later, in the construction of a semi-adequate order for use in the optimisation

of a particular cost function g, we will seek to meet this more general requirement as it is

more intuitive.

Theorem 4.2.2 (Optimal REACHABILITYΣ wrt g). Let ΣR define an instance of REACHAB-

ILITYΣ. Let≺ be a semi-adequate partial order on configurations. Let≺q be an asymmetric

partial order on configurations such that C ≺ C ′ ⇒ C ≺q C
′. ERV-Fly(ΣR,≺,≺q) solves

REACHABILITYΣ. Furthermore, if REACHABILITYΣ is positive, it will identify an optimal

solution with respect to g : C → R+ if

(a) e ∈ [e∗R] ⇒ [e] ≺q [eR], where e∗R, eR ∈ eR & g([e∗R]) < g([eR]); and

(b) [e′] ≺ [e] & Mark(e′) = Mark(e) & [e]⊕ E ⊕ eR = [eR] ∈ eR ⇒ g([e′]⊕ E ′ ⊕ e′R) ≤
g([e]⊕ E ⊕ eR) for E ′ ∼ E .

Proof. In the proof for minimality with respect to ≺ we first showed that for every [e∗R]

which is a minimal member of eR with respect to ≺, the queue will contain an event e ∈
[e∗R]. Whilst this is still true, we are now interested in members of eR which are minimal

with respect to g. We show that for at least one [e∗R] which is a minimal member of eR with

respect to g, the queue will contain an event e ∈ [e∗R]. If the queue does not contain such an

event, then one of the events in [e∗R] was identified as a cut-off. If e ∈ e∗R was a cut-off event

64 CHAPTER 4. DIRECTED UNFOLDING

then there exists some e′, in the built prefix, such that Mark(e′) = Mark(e) and [e′] ≺ [e].

But by condition b of this theorem, this implies g([e′] ⊕ E ′ ⊕ e′R) ≤ g([e] ⊕ E ⊕ e∗R) for

some structurally isomorphic finite extensions E ′ and E . So [e′]⊕E ′⊕ e′R = [e′R] must be a

minimal member of eR with respect to g, and the queue must contain an event e′′ ∈ [e′R] in

the extension of [e′], i.e. [e′] ⊂ [e′′] ⊆ [e′R]. If not, then we apply the same reasoning again.

Since ≺ is semi-adequate and thus well-founded, eventually we end with an event e ∈ [e∗R]

in the queue, where [e∗R] is minimal with respect to g.

We now follow the same reasoning as in the previous proof to show that all events in an op-

timal solution must be processed before a non-optimal solution is found. We need to prove

that the local configuration of the first event eR found by ERV-Fly is minimal with respect

to g among members of eR. For a proof by contradiction, assume that the configuration [eR]

for the first event eR found by ERV-Fly is not minimal with respect to g.

Let e ∈ [e∗R] be an event in the queue when [eR] is dequeued, where [e∗R] is minimal among

eR with respect to g. So e ∈ [e∗R] and g([e∗R]) < g([eR]). But, by condition a of this theorem,

this means [e] ≺q [eR] and consequently eR could not have been dequeued before e. Thus,

by contradiction, [eR] must be minimal with respect to g among members of eR, and so

C = [eR] \ {eR} is a minimal solution to REACHABILITYΣ with respect to g.

4.2.2 Notions of Cost

We now extend the unfolding algorithm to consider positive cost functions for transitions

and events, and then combine them in additive and parallel manners to define different cost

functions for configurations.

An extended net is a tuple 〈P, T, F, c′〉 where 〈P, T, F 〉 is a PT-net and c′ : T → R+ is

a cost function defined on transitions. To unfold an extended net system, we need to deal

with extended prefixes β = 〈ON,ϕ〉 where ON = 〈B,E,G, c〉 is an extended occurrence

net with the cost function c(e) = c′(t) if ϕ(e) = t, where ϕ is the usual homomorphism

that maps conditions/events in ON onto places/transitions in the PT-net.

This cost function can be extended over a configurationC under additive criteria as follows:

Definition 8 (Additive Cost).
c+(C) =

∑
e∈C

c(e)

In other words, the additive cost of a configuration is the sum of the costs of all events in the

configuration. Clearly, if c(e) = 1 then the additive cost of a configuration is the number of

events in the configuration, i.e. c+(C) = |C|.

4.2. DIRECTING THE UNFOLDING FOR OPTIMALITY 65

Alternatively, the cost function can be extended over a configuration C under parallel crite-

ria:

Definition 9 (Parallel Cost).

c||(C) = max
σ∈C

∑
e∈σ

c(e)

where σ is a causal chain of events in C, and the maximum is over all such chains.

Consider all the causal chains in C and assign each a value equal to the sum of the costs of

the events it contains: the parallel cost of C is the maximum over all these values. For a

more intuitive understanding of parallel cost, consider that the cost of an event is equal to

its time duration. Then, the parallel cost of a configuration is the minimum possible time it

can take to execute, and the causal chain defining this minimum time is the critical path.

4.2.3 Optimal Cost Reachability Analysis

In order to use the ERV-Fly algorithm to find optimal configurations with respect to our

notion of cost, we need to define appropriate orderings to direct the search and select cut-

off events. We consider the cases of additive and parallel costs separately.

Additive Cost

The case for optimal additive cost reachability analysis is quite simple. We define an ade-

quate partial order on configurations ≺+ which implies and is implied by the natural order

defined by the additive cost function c+. This order ≺+ is used both for queueing and

identifying cut-offs.

Here we first define an order on configurations based on their additive cost, then show it is

an adequate order, and from this finally prove it can be used to make ERV-Fly find optimal

additive cost solutions to REACHABILITYΣ.

Definition 10 (≺+).
C ≺+ C ′ ⇔ c+(C) < c+(C ′)

Proposition 4.2.3 (Adequacy of ≺+). The order on configurations defined by ≺+ is ade-

quate.

Proof.

66 CHAPTER 4. DIRECTED UNFOLDING

(a) Well-founded. For a proof by contradiction, let C1 �+ C2 �+ · · · be an infi-

nite descending chain of finite configurations. Since the cost of each event is fi-

nite and positive, and the number of events in a configuration is finite, therefore

∞ > c+(C1) > c+(C2) > · · · ≥ 0. Which is not possibly infinite.

(b) Refines the subset operator. C1 ⊂ C2 ⇒ C2 = C1 ∪ E for some set of events

E . Consequently, c+(C2) =
∑

e∈C1∪E c(e) = c+(C1) + c+(E). Since each c(e) is

positive, c+(C1) < c+(C2).

(c) Preserved by finite extensions. Let C1 ≺+ C2 and Mark(C1) = Mark(C2). Consider

the configurations. C1 ⊕ E1 and C2 ⊕ E2where E1 and E2 are finite sets of events

such that E1 v E2. By the definition of structural isomorphism, for every event in E1

there is an event in E2 ϕ-labelled by the same transition (and vice versa). Therefore

c+(E1) = c+(E2). We can thus make the succession of implications: C1 ≺+ C2 ⇒
c+(C1) < c+(C ′

2) ⇒ c+(C1) + c(E1) < c+(C ′
2) + c(E2) ⇒ c+(C1 ⊕ E1) < c+(C2 ⊕

E2) ⇒ C1 ⊕ E1 ≺+ C2 ⊕ E2.

Corollary 4.2.4 (Optimal Additive Cost). Let ΣR define an instance of REACHABILITYΣ.

ERV-Fly(ΣR,≺+) solves REACHABILITYΣ, and if positive identifies a minimum additive

cost solution.

Proof. Theorem 4.2.3 states≺+ is an adequate order. Thus by Theorem 4.2.1 ERV(ΣR,≺+)

solves REACHABILITYΣ. Furthermore, it satisfies the condition which guarantees a positive

solution will be optimal with respect to ≺+. To see this recall that property (b) of an

adequate order states [e] ⊂ [e′] ⇒ e ≺ e′. Considering Theorem 4.2.1, e ∈ [e∗R] thus implies

[e] ≺+ [e∗R], or e = e∗R; furthermore since [e∗R] ≺+ [eR], and ≺+ is clearly transitive, then

[e] ≺+ [eR]. Thus ERV-Fly(ΣR,≺+) finds a minimal solution to REACHABILITYΣ with

respect to ≺+. By definition of ≺+, this solution has minimum additive cost.

We have now shown how unfolding can be directed on-the-fly to obtain a minimal additive

cost solution to REACHABILITYΣ.

Parallel Cost

The case of optimal parallel cost reachability analysis is not so forthright. We will step

through the ideas and challenges that led to its development.

4.2. DIRECTING THE UNFOLDING FOR OPTIMALITY 67

pb pd pb

pd

e1 e2

e3

c(e2) = 15c(e1) = 5

c(e3) = 15

pa

pc pb pd pb

pdpe pe

e1 e2

e4 e3 e5

c(e2) = 15c(e1) = 5

c(e3) = 15c(e4) = 15 c(e6) = 15

pa

pc

Figure 4.1: The branching process on the left has configurations C1 = {e1, e3} and C2 =

{e2}, where Mark(C1) = {a, b} = Mark(C2), c||(C1) = 20 and c||(C2) = 15. Thus

C1 �1 C2. It is then extended by events e4 and e5, each mapping to transition t such that
•t = b, t• = c and c(t) = 15, to become the branching process on the right. Consequently

c||(C1 ⊕ e4) = 20 ≺1 c||(C2 ⊕ e5) = 30. Clearly ≺1 is not preserved by finite extensions

We want to construct a semi-adequate order on configurations which implies the natural

order defined by the parallel cost function (but not necessarily the reverse). We naturally

begin with an order based solely on c||:

C ≺1 C
′ ⇔ c||(C) < c||(C

′)

Unfortunately this order is not adequate, nor is it semi-adequate, as it violates condition

(c) of Definition 7: ≺1 is not preserved by finite extensions, thus does not guarantee a

prefix generated by ERV (Σ,≺1) will be complete. We show this by example. On the left

of Figure 4.1 is a branching process for some PT-net system Σ. Let C1 = {e1, e3} and

C2 = {e2}. Thus Mark(C1) = {pb, pd} = Mark(C2). Furthermore, c||(C1) = 20 and

c||(C2) = 15 so C1 �1 C2. Now suppose there is a transition t ∈ Σ such that •t = pb,

t• = pe and c(t) = 15. In the branching process on the right, C1 and C2 are extended

by events e4 and e5 respectively, each corresponding to an instance of t (hence e4 v e5).

Consequently c||(C1 ⊕ e4) = 20 ≺1 c||(C2 ⊕ e5) = 30. Thus the order is not preserved by

finite extensions.

The nature of the inconsistency prompts us to reckon with the fact each place p in the final

marking of C has its own parallel cost, corresponding to the maximal-cost chain leading to

its assertion in the configuration C. In symbols:

c(C, p) = max
σp∈C

∑
e∈σp

c(e)

where the max is over all chains σp that support p. For example in Figure 4.1, considering

68 CHAPTER 4. DIRECTED UNFOLDING

pb pc

pa

tA

tB

c(tA) = 1

c(tB) = 1

pb pc

pa

e1tA

pc

e2

e3

pc

e4

tB

tB

tB

Figure 4.2: A PT-net system Σ (left) and the branching process generated by ERV(Σ,≺1).

C1 and C2 as defined previously, c(C1, pb) = 5, c(C1, pd) = 20, c(C2, pb) = 15, c(C2, pd) =

15. Observe that c||(C) = max{c(C, p) : p ∈ Mark(C)}.

We subsequently consider a strict order on the costs of corresponding places in two config-

urations with the same final marking:

C ≺2 C ′ iff

{
c(C, p) < c(C ′, p)) ∀p ∈ Mark(C) when Mark(C) = Mark(C ′)

c||(C) < c||(C
′) otherwise.

This order now satisfies condition (c), but can not ensure that in an infinite chain of con-

figurations, C1 ⊂ C2 ⊂ · · · there will be two configurations such that Ci ≺2 Cj for some

i < j (condition (b) of Definition 7). Thus ERV(Σ,≺2) may attempt to build an infinite

prefix. To see this consider Figure 4.2, which shows a PT-net system Σ and the branching

process that would be generated by ERV(Σ,≺2). Let C1 = {e1}, C2 = {e1, e2}, C3 =

{e1, e2, e3}, C4 = {e1, e2, e3, e4}, etc. Thus C1 ⊂ C3 ⊂ C3 ⊂ C4 ⊂ · · · is an infinite chain

of configurations with the same final marking of {pb, pc}. Now c(C1, pb) = c(C2, pb) =

c(C3, pb) = c(C4, pb) = · · · so it will never be the case that c(Ci, pb) < c(Cj, pb), for some

i < j, and thus it can not be that Ci ≺2 Cj .

This new problem suggests we require a non-strict order, i.e. c(C, p) ≤ c(C ′, p) ∀p ∈
Mark(C) when Mark(C) = Mark(C ′). However a non-strict order is not well-founded and

thus violates condition (a) of Definition 7. This means a prefix generated by ERV may not

be complete. This problem can be amended however, by imposing a further comparison

4.2. DIRECTING THE UNFOLDING FOR OPTIMALITY 69

on conditions that is strict. It appears the ideal solution would be to require that at least

one single strict comparison on the cost of two corresponding places must hold, i.e. when

Mark(C) = Mark(C ′) then c(C, p) ≤ c(C ′, p)) ∀p ∈ Mark(C) and ∃p′ ∈ Mark(C) such

that c(C, p′) < c(C ′, p′). While now satisfying (a), the existence of a single strict compari-

son is not preserved by finite extensions (condition (c) of Definition 7), suffering the same

inconsistency identified previously for ≺1. After much consideration we find ourselves

forced to look to unrelated comparisons on configurations, to refine the non-strict order to

one which is well-founded. We could use the Parikh vector or Foata normal form described

in [59] for example. For simplicity, we use here the cardinality comparison.

The order is now:

C ≺3 C ′ iff

c(C, p) ≤ c(C ′, p)) ∀p ∈ Mark(C)

and |C| < |C ′| when Mark(C) = Mark(C ′)

c||(C) < c||(C
′) otherwise.

This is an adequate order on configurations. The downfall of this solution is that cardinality

does not imply parallel cost; this means there may be instances when two configurations

have the same marking but one has greater parallel cost and the other has greater cardinality

- so neither can be cut-off. To reduce the impact of this, we can enable a further comparison

to be made when a strict ordering between place costs does in fact hold. The violation made

by the strict comparison alone (i.e. as identified for ≺2) is remedied by the non-strict case.

We finally propose the following semi-adequate order on configurations:

Definition 11 (≺||).

C ≺|| C
′ iff

c(C, p) < c(C ′, p) ∀p ∈ Mark(C) or

c(C, p) ≤ c(C ′, p) ∀p ∈ Mark(C)

and |C| < |C ′| when Mark(C) = Mark(C ′)

c||(C) < c||(C
′) otherwise.

Proposition 4.2.5 (Semi-adequacy of ≺||). The order on configurations defined by ≺|| is

semi-adequate.

Proof.

70 CHAPTER 4. DIRECTED UNFOLDING

(a) Well-founded. For a proof by contradiction, let C1 �|| C2 �|| · · · be an infinite

descending chain of finite configurations. Since the number of markings is finite,

there are only a finite number of subchains C ′
1 �|| C

′
2 �|| · · · such that Mark(C ′

1) =

Mark(C ′
j) for all j > 0. Each of these will consist of at least one of two possible

subchains. The first possible chain contains configurations which are not strictly

comparable based on individual place costs, i.e. c(C ′′
1 , p) ≥ c(C ′′

2 , p) ≥ · · · . This

implies |C ′′
1 | > |C ′′

2 | > · · · > 0, which can not be an infinite chain because the

configurations are finite. The second possible chain contains configurations which

are strictly comparable based on individual place costs, i.e. c(C ′′′
1 , p) > c(C ′′′

2 , p) >

· · · . Since the cost of each event is finite and positive, and a configuration is finite,

this implies ∞ > c||(C
′′′
1) > c||(C

′′′
2) > · · · ≥ 0, which also can not be infinite.

(b) Causal chains. Let C1 ⊂ C2 ⊂ · · · be an infinite chain of finite configurations. Since

the number of markings is finite, there is a subchain of configurations with the same

final markings; let this be C ′
1 ⊂ C ′

2 ⊂ · · · . Clearly |C ′
1| < |C ′

2| < · · · . Furthermore,

all chains in C ′
1 must also be in C ′

2, and all chains in C ′
2 must also be in C ′

3; thus

c(C ′
1, p) ≤ c(C ′

2, p) ≤ c(C ′
3, p) for all p ∈ Mark(C ′

1). Therefore C ′
1 ≺|| C

′
2 ≺|| · · · .

(c) Preserved by finite extensions. We examine the case whenC1 ≺|| C2 and Mark(C1) =

Mark(C2). It follows from the definition of ≺|| that either (1) c(C1, p) ≤ c(C2, p) for

all p ∈ Mark(C1) and |C1| < |C2|; or (2) c(C1, p) < c(C2, p) for all p ∈ Mark(C1).

Consider the configurations C ′
1 = C1 ⊕ E1 and C ′

2 = C2 ⊕ E2 where E1 and E2 are

structurally isomorphic extensions of unit length, which map to the transition t. With

respect to C ′
1, the cost of any place p′ in the postset of t, i.e. p′ ∈ t•, will be

c(C ′
1, p

′) = max
p′′∈•t

c(C1, p
′′) + c(E1)

Similarly for the same place in C ′
2. Considering case (1), since c(C1, p

′′) ≤ c(C2, p
′′)

for all p′′ ∈ Mark(C1), and c(E1) = c′(t) = c(E2), then c(C ′
1, p

′) ≤ c(C ′
2, p

′) for all

p′ ∈ t•. Places in Mark(C1⊕E1), but not in the postset of t, will have the same chains

supporting them as in the original configurations, hence c(C ′
1, p) = c(C1, p) for all

p ∈ Mark(C ′
1) \ t• (and likewise for C ′

2 and C2). Thus c(C ′
1, p) ≤ c(C ′

2, p) for all

p ∈ Mark(C ′
1). Clearly the difference between the cardinality of each configuration

is preserved by these finite extensions. Hence C ′
1 ≺|| C

′
2.

In case (2), the cost of places in the postset of t is calculated as above. Then, since

c(C1, p) < c(C2, p) for all p ∈ Mark(C1), and c(E1) = c′(t) = c(E2), it follows that

c(C ′
1, p

′) < c(C ′
2, p

′) for all p′ ∈ t•. Places not in the postset of t are unaffected.

Hence C ′
1 ≺|| C

′
2. We could extend these configurations again by another single

4.2. DIRECTING THE UNFOLDING FOR OPTIMALITY 71

transition and follow the same reasoning, thus showing the order defined by ≺|| is

preserved by finite extensions.

Whilst this order prefers configurations with lower parallel cost, i.e. C ≺|| C
′ ⇒ c||(C) ≤

c||(C
′), it does not guarantee that if c||(C) < c||(C

′) then C ≺|| C
′. For example it could

be that [e∗R] has a lower parallel cost than [eR] but the configurations are incomparable with

respect to ≺|| because they have the same final marking M and c([e∗R], p) > c([eR], p) for

some place p ∈ M which does not contribute to the overall parallel cost of e∗R. They will

thus be ordered arbitrarily in the queue and we can not guarantee to remove [e∗R] before [eR].

Furthermore, the comparisons made by this order are quite expensive, and we can make

some simpler calculations for the purpose of ordering events in the queue. For example,

if Mark(C) = Mark(C ′) then determining that C ′ could never be smaller than C with

respect to ≺||, by observing that c||(C) < c||(C
′), is easier than determining that C is

definitely smaller than C ′ via place-wise comparison. With this in mind, in conjunction

with Theorem 4.2.2, we propose a simple asymmetric order on configurations ≺q||, where

C ≺|| C
′ ⇒ C ≺q|| C

′ and c||(C) < c||(C
′) ⇒ C ≺q|| C

′.

Definition 12 (≺q||).

C ≺q|| C
′ iff

c||(C) < c||(C) or,

c||(C) = c||(C
′) and |C| < |C ′|.

Corollary 4.2.6 (Optimal Parallel Cost). Let ΣR define an instance of REACHABILITYΣ.

ERV-Fly(ΣR,≺||,≺q||) solves REACHABILITYΣ, and if positive identifies a minimum par-

allel cost solution.

Proof. Theorem 4.2.5 states ≺|| is a semi-adequate partial order on configurations. That

≺q|| is an asymmetric partial order on configurations satisfying C ≺|| C
′ ⇒ C ≺q|| C

′, is

obvious from the definitions of≺|| and≺q||. Thus, by Theorem 4.2.2 ERV-Fly(ΣR,≺||,≺q||)

solves REACHABILITYΣ. Furthermore it satisfies those conditions which ensure it finds a

minimal solution with respect to c||:

(a) e ∈ [e∗R] ⇒ [e] ≺q|| [eR], where c||([e∗R]) < c||([eR]). First observe that [e] ⊆ [e∗R] ⇒
c||([e]) ≤ c||([e

∗
R]). This follows from the definition of c||: all chains in [e] must be in

72 CHAPTER 4. DIRECTED UNFOLDING

[e∗R] since [e] ⊆ [e∗R], thus the maximum cost of any chain in [e∗R] must be at least the

maximum cost of any chain in [e]. Since c|| is clearly transitive, it thus follows that

c||[e] < c||([eR]). By definition of ≺q|| this implies [e] ≺q|| [eR].

(b) [e′] ≺|| [e] & Mark(e′) = Mark(e) & [e]⊕E⊕eR = [eR] ∈ eR ⇒ c||([e
′]⊕E ′⊕e′R) ≤

c||([e] ⊕ E ⊕ eR) for E ′ ∼ E . Since ≺|| is a semi-adequate order, it is preserved by

finite extensions. Thus [e′] ≺|| [e] & Mark(e′) = Mark(e) ⇒ [e′]⊕E ′⊕e′R = [e′R] ≺||

[e]⊕ E ⊕ eR = [eR] for E ′ ∼ E . By definition of ≺|| this implies c||([e′R]) ≤ c||([eR]).

Thus ERV-Fly(ΣR,≺||,≺q||) solves REACHABILITYΣ, and if positive identifies a minimum

parallel cost solution.

Our solution for an order on configurations which enables ERV-Fly to optimise parallel cost

is perhaps unnecessarily inefficient; as just mentioned, cardinality does not imply parallel

cost. To make the best of the situation, one should try to use a refining order (i.e. here we

have used cardinality) which often implies parallel cost for the given domain - if not always.

4.3 Directing the Unfolding with Heuristics

In the previous section, we sought sound strategies for directing ERV-Fly to build minimum-

cost configurations first; this ensures that the first configuration to contain an event eR is cost

optimal. Further to this, we can favor those configurations which appear “closer” to includ-

ing an event eR, as their systematic exploration should result in a more efficient strategy for

reachability analysis. Inspired by heuristic search in artificial intelligence, we incorporate

problem specific information, in the form of a heuristic function, into strategies for direct-

ing the unfolding process. We are particularly interested in state based heuristics, which as

mentioned have significantly impacted the scalability of automated planning. A heuristic is

an estimate of the minimum cost, or shortest distance, from one particular state to another.

For now, let us simply assume that a heuristic function h applied to a configuration C will

approximate the minimum cost of extending C to include some event eR.

As is standard in state based heuristic search, we seek strategies informed by the value of a

function f that is composed of a cost function g and a heuristic function h:

f(C) = g(C) + h(C) where C is a finite configuration.

As before, let CR denote a configuration containing an event eR, such that ϕ(eR) = tR. The

idea is that function f , applied to configurationC, estimates the total cost of a configuration

4.3. DIRECTING THE UNFOLDING WITH HEURISTICS 73

CR where CR ⊇ C, i.e. f(C) ≈ g(CR). Technically, g and h are non-negative functions

on configurations, such that h(C) = 0 if tR ∈ C. Conceptually, the function g maps a

configuration C to its cost and and the function h estimates the cost of extending C to

some CR, i.e. h(C) ≈ g(CR) − g(C). We define the optimal heuristic function h∗(C) =

g(CR) − g(C), where CR is the minimal configuration with respect to g such that CR ⊇
C. If no such configuration CR ⊇ C exists, then h∗(C) = ∞. We say that h is an

admissible heuristic function if h(C) ≤ h∗(C) for all finite configurations C. That is,

an admissible heuristic never over-estimates the cost of a solution to REACHABILITYΣ.

Admissible heuristics are required to guarantee optimality; when optimality is superfluous a

non-admissible heuristic is more appropriate. Non-admissible heuristics generally provide

better guidance than admissible heuristics, as will be shown by empirical results presented

later in the chapter.

4.3.1 Direct Translation

A direct translation from standard heuristic search suggests the following order on config-

urations be used to direct the unfolding:

C ≺4 C ′ iff

{
f(C) < f(C ′) or

g(C) < g(C ′) if f(C) = f(C ′).

Notice that taking g(C) = |C| and h ≡ 0 makes ≺4 the adequate order used by the typical

breadth-first implementation of the ERV algorithm. Furthermore, by breaking ties appro-

priately, ≺4 becomes the total order defined in [59]. In addition, we could let g ≡ c+ and

require Mark(C) = Mark(C ′) ⇒ h(C) = h(C ′). The result would be a semi-adequate

order on configurations which can be used to solve reachability and, when the heuristic

function h is admissible, find an optimal solution with respect to c+. Unfortunately how-

ever this framework is limited in the range of cost functions that can be soundly entailed.

If we let g ≡ c||, for example, the resulting order does not guarantee completeness. The

reasoning follows easily from that given in Section 4.2.3, with respect to why the parallel

cost function can not be used directly to define a semi-adequate order. We keep in mind

however, that this order may be appropriate for queueing events.

4.3.2 Generic Framework for Heuristic Guidance

We prefer to construct a generic framework that can be instantiated with

74 CHAPTER 4. DIRECTED UNFOLDING

(a) A cost function g : C → R+;

(b) A semi-adequate order ≺g such that C ≺g C ⇒ g(C) ≤ g(C ′); and

(c) A heuristic function h : C → {0} ∪ R+.

Then, providing g,≺g and h satisfy certain conditions, can be used to solve the reachability

problem optimally with respect to g.

With this in mind, in conjunction with Theorem 4.2.2, we propose a simple asymmetric

order on configurations ≺f , then identify specific conditions on the instantiation of g, h

and≺g, which ensure ERV-Fly(ΣR,≺g,≺f) solves the reachability problem optimally with

respect to g.

Definition 13 (≺f). Let f(C) = g(C)+h(C) where g : C → R+ and h : C → {0}∪R+.

C ≺f C ′ iff

f(C) < f(C ′) when Mark(C) 6= Mark(C ′);

g(C) < g(C ′) when Mark(C) 6= Mark(C ′) and f(C) = f(C ′),

or Mark(C) = Mark(C ′);

|C| < |C ′| when Mark(C) 6= Mark(C ′) and f(C) = f(C ′)

and g(C) = g(C ′), or

Mark(C) = Mark(C ′) and g(C) = g(C ′).

Theorem 4.3.1 (Optimal REACHABILITYΣ wrt g, with heuristic guidance). Let ΣR define

an instance of REACHABILITYΣ. Let ≺g be a semi-adequate partial order on configura-

tions such that C ≺g C
′ ⇒ C ≺f C

′. ERV-Fly(ΣR,≺g,≺f) will solve REACHABILITYΣ.

Furthermore, it will find a minimal solution with respect to g if

(a) The heuristic function h is admissible2, and h(C) = 0 if eR ∈ C;

(b) e ∈ [e∗R] ⇒ g([e]) ≤ g([e∗R]), where [e∗R] is minimal among members of eR, with

respect to g; and

(c) [e] ≺g [e′] ⇒ g([e]) ≤ g([e′]).

Proof. That ≺f is asymmetric is clear from its definition. Thus if ≺g is a semi-adequate

partial order on configurations such thatC ≺g C
′ ⇒ C ≺f C

′, as supposed by this theorem,

2In order for h to be non-negative and admissible the cost function g must be increasing, i.e. C ⊆ C ′ ⇒
g(C) ≤ g(C ′).

4.3. DIRECTING THE UNFOLDING WITH HEURISTICS 75

then by Theorem 4.2.2, ERV-Fly(ΣR,≺g,≺f) solves REACHABILITYΣ. Furthermore if g

and hmeet the conditions for optimality outlined above then ERV-Fly(ΣR,≺g,≺f) satisfies

the conditions of Theorem 4.2.2 which ensure it finds a minimal solution with respect to g:

(a) e ∈ [e∗R] ⇒ [e] ≺f [eR], where e∗R, eR ∈ eR and g([e∗R]) < g([eR]). By condition (b)

of this theorem, e ∈ [e∗R] ⇒ g([e]) ≤ g([e∗R]). Thus g([e]) < g([eR]). Furthermore,

since h is admissible (by condition (a)), g([e]) + h([e]) = f([e]) ≤ g([e∗R]). Also by

condition (a), since h(C) = 0 when eR ∈ C, so g([e∗R]) = f([e∗R]) and g([eR]) =

f([eR]). Thus f([e]) ≤ f([eR]). Hence by definition of ≺f , [e] ≺f [eR] as required.

(b) [e′] ≺g [e] & Mark(e′) = Mark(e) & e⊕ E ⊕ eR = [eR] ∈ eR ⇒ g([e′]⊕ E ′ ⊕ e′R) ≤
g([e] ⊕ E ⊕ eR) for E ′ ∼ E . Since ≺g is semi-adequate and thus preserved by finite

extensions, [e′] ≺g [e] & Mark(e′) = Mark(e) ⇒ [e′]⊕ E ′ ⊕ e′R = [e′R] ≺g [e]⊕ E ⊕
eR = [eR]. By condition c this implies g([eR]) ≤ g([e′R]), as required.

Thus ERV-Fly(ΣR,≺g,≺f) finds a minimal solution with respect to g, subject to the condi-

tions of this theorem.

4.3.3 Specific Instantiations

We can now define heuristically informed strategies that direct the ERV-Fly algorithm to

solve REACHABILITYΣ optimally with respect to a particular cost function. Applying this

framework to additive and parallel cost problems is straight forward.

We relax the orders ≺+ and ≺|| so that they are only defined for configurations with equal

markings. These orders are semi-adequate, as a closer look at the conditions for semi-

adequacy reveals they need only to be met by configurations with equal markings. The

relaxation enables more freedom in the ordering of configurations with non-equal mark-

ings; in particular we can consider their heuristic value, even if the heuristic function is not

admissible, and thus solve reachability problems more efficiently. If the heuristic is admis-

sible, we can solve reachability problems optimally with respect to the additive or parallel

cost of a solution.

Heuristic Guidance with Additive Cost Function

We first define a semi-adequate order on configurations ≺f+ such that C ≺f+ C ′ ⇒ C ≺f

C ′ when g is instantiated with the the additive cost function, i.e. g ≡ c+. It then follows

76 CHAPTER 4. DIRECTED UNFOLDING

that ERV-Fly(ΣR,≺f+,≺f) solves the reachability problem defined by ΣR and furthermore

finds an optimal solution with respect to additive cost subject to certain conditions on the

heuristic function.

Definition 14 (≺f+).

C ≺f+ C ′ ⇔ c+(C) < c+(C ′) & Mark(C) = Mark(C ′)

Proposition 4.3.2 (Semi-adequacy of≺f+). The partial order on configurations defined by

≺f+ is semi-adequate.

Proof. The proof that ≺+ is well founded and preserved by finite extensions holds also

for ≺f+ (see parts a and c of the proof for Proposition 4.2.3). It remains to show that in

any infinite causal chain C1 ⊂ C2 ⊂ · · · there exists i < j such that Ci ≺f+ Ck. Let

C1 ⊂ C2 ⊂ · · · be an infinite chain of finite configurations. Since the number of markings

is finite, there is a subchain of configurations with the same final markings; let this be

C ′
1 ⊂ C ′

2 ⊂ · · · . C ′
2 contains all the events in C ′

1, and at least one more. Thus, since the

cost of each event is positive, c+(C ′
1) < c+C2. Therefore, since the markings are equal,

C ′
1 ≺f+ C ′

2. Thus ≺f+ is semi-adequate.

Corollary 4.3.3. Considering the definition of≺f , let g ≡ c+. Let ΣR define an instance of

REACHABILITYΣ. ERV-Fly(ΣR,≺f+,≺f) solves REACHABILITYΣ and furthermore finds

an optimal solution with respect to c+ if the heuristic function h is admissible and h(C) = 0

if eR ∈ C.

Proof. Proposition 4.3.2 states that ≺f+ is semi-adequate. Let g ≡ c+ in the definition of

≺f . That C ≺f+ C ′ ⇒ C ≺f C
′ is clear from the definitions of ≺f+ and ≺f . Thus by

Theorem 4.3.1 ERV-Fly(ΣR,≺f+,≺f) solves REACHABILITYΣ. Furthermore, it satisfies

the conditions (b) and (c) of Theorem 4.3.1:

(b) e ∈ [e∗R] ⇒ c+([e]) ≤ c+([e∗R]), where [e∗R] is minimal among members of eR, with

respect to c+. This follows from the definition of the additive cost function and the

fact every event in [e] must also be in [e∗R] (in fact the inequality will be strict except

when e is e∗R).

(c) [e] ≺f+ [e′] ⇒ c+([e]) ≤ c+([e′]). This is a direct consequence of the definition of

≺f+ (in fact the inequality will be strict in this case).

Thus, if h is admissible and h(C) = 0 when eR ∈ C (condition a of Theorem 4.3.1)

then ERV-Fly(ΣR,≺f+,≺f) (with g ≡ c+) will find a minimal solution with respect to the

additive cost function.

4.3. DIRECTING THE UNFOLDING WITH HEURISTICS 77

This strategy is particularly useful when optimality is superfluous and the priority is to

solve a reachability problem as quickly as possible. In this case, one should simply set the

cost of every transition to 1 (i.e. c+(C) = |C|) and use and an informative non-admissible

heuristic.

Heuristic Guidance with Parallel Cost Function

We now define a semi-adequate order on configurations ≺f || such that C ≺f || C
′ ⇒ C ≺f

C ′ when g is instantiated with the the parallel cost function, i.e. g ≡ c||. It then follows

that ERV-Fly(ΣR,≺f ||,≺f) solves the reachability problem defined by ΣR and furthermore

finds an optimal solution with respect to parallel cost if the heuristic function is admissible.

Definition 15 (≺f ||).

C ≺f || C
′ iff

c(C, p) < c(C ′, p) ∀p ∈ Mark(C) or

c(C, p) ≤ c(C ′, p) ∀p ∈ Mark(C)

and |C| < |C ′| when Mark(C) = Mark(C ′)

Proposition 4.3.4 (Semi-adequacy of ≺f ||). The partial order on configurations defined by

≺|| is semi-adequate.

Proof. The proof that≺|| is semi-adequate holds also for≺f || (see that parts (a), (b) and (c)

of the proof for Proposition 4.2.5 depend only on the case when markings are equal).

Corollary 4.3.5. Considering the definition of ≺f , let g ≡ c||. Let ΣR define an instance of

REACHABILITYΣ. ERV-Fly(ΣR,≺f ||,≺f) solves REACHABILITYΣ and furthermore finds

an optimal solution with respect to c|| if the heuristic function h is admissible and h(C) = 0

if eR ∈ C.

Proof. Proposition 4.3.4 states that ≺f || is semi-adequate. Let g ≡ c|| in the definition of

≺f . That C ≺f || C
′ ⇒ C ≺f C ′ is clear from the definitions of ≺f || and ≺f . Thus by

Theorem 4.3.1 ERV-Fly(ΣR,≺f ||,≺f) solves REACHABILITYΣ. Furthermore, it satisfies

conditions (b) and (c) of this same theorem:

(b) e ∈ [e∗R] ⇒ c||([e]) ≤ c||([e
∗
R]), where [e∗R] is minimal among members of eR, with

respect to c||. This follows from the definition of the parallel cost function and the

fact every chain in [e] must also be in [e∗R] (in fact the inequality will be strict, except

when e = e∗R, as all chains can otherwise be extended by e∗R).

78 CHAPTER 4. DIRECTED UNFOLDING

(c) [e] ≺f || [e′] ⇒ c||([e]) ≤ c||([e
′]). This is a direct consequence of the definition of

≺f ||

Thus, if h is admissible and h(C) = 0 when eR ∈ C (condition (a) of Theorem 4.3.1) then

ERV-Fly(ΣR,≺f ||,≺f) with g ≡ c|| will find a minimal solution with respect to the parallel

cost function.

The conditions on h allow it to depend on a configuration C, rather than just is marking

Mark(C). It will be shown that this is particularly useful when crafting a heuristic function

based on the parallel cost of a configuration.

Summary

Whilst focusing on additive and parallel cost criteria, we sought a general formulation for a

heuristically informed semi-adequate order on configurations that is amenable to use with

other cost functions one may deem useful. We emphasise that directed unfolding can:

(a) Be used to find an optimal solution to REACHABILITYΣ;

(b) Be incorporated with an admissible heuristic function to find an optimal solution

more quickly; and

(c) Employ non-admissible heuristics, when optimality is superfluous, to solve positive

reachability problems more efficiently.

Clearly the benefits of these applications are concentrated on positive solutions to the reach-

ability problem. This then brings us to consider the effect of using directed unfolding when

the solution to REACHABILITYΣ is negative.

4.4 Size of the Finite Prefix

When the solution to REACHABILITYΣ is positive, then the efficiency of a heuristically

guided strategy depends on how informative the heuristic function is. When the solution is

negative, then efficiency depends on the size of the finite prefix that must be generated to

conclude no reachable marking can enable tR.

The breadth-first order on configurations proposed by Esparza et al [59], based on McMil-

lan’s partial order comparing cardinality and refined to a total order using Parikh-vector

4.4. SIZE OF THE FINITE PREFIX 79

and Foata normal form comparisons, is considered to produce a minimal complete finite

prefix when applied with the ERV algorithm. Whilst no formal definition of minimality

is provided, it appears to suggest that the prefix is as small as possible whilst maintaining

completeness.

The heuristically guided strategies presented here are not total orders, and furthermore do

not necessarily refine the subset operator. When a total order on configurations is used

to implement the ERV algorithm, then the number of non cut-off events, in the generated

prefix, is bounded by the number of reachable markings. Alternatively, a partial order

implies there may be instances in which two configurations have the same final marking but

neither can be identified as minimal and subsequently serve as a cut-off. In these situations,

i.e. a partial order on configurations, if the order refines the subset operator then we can

at least bound the length of a causal chain to the number of reachable markings. Thus,

the absence of a total order and further failure to refine the subset operator suggests the

heuristically guided strategies presented in this thesis will be less efficient than the original

breadth-first approach, when applied to reachability problems for which the solution is

negative. However experimental results, presented in Section 4.6, show this is not the case.

The reason for this comes back to the unique considerations we can make when generating

a prefix for the purpose of reachability analysis. Namely, in the same way it is not necessary

to generate a complete prefix in order to identify a positive solution, it is also not necessary

for the conclusion of a negative solution. If we take an event e from the queue, and can

conclude that there is no configurationCR such thatCR ⊇ [e] (where eR ∈ CR and ϕ(eR) =

tR), then it is unnecessary to extend [e] any further. That is, for the purposes of reachability

analysis e can be a cut-off event. In the context of a heuristically guided strategy, this is

implied by h([e]) = ∞ (and thus f([e]) = ∞), when h is a safely pruning heuristic. A

heuristic function is safely pruning [67] if and only if h(C) = ∞ implies that there is

no configuration CR ⊇ C with eR ∈ CR (i.e. h∗(C) = ∞). Pruning safety is a weaker

property than admissibility as it pertains only to a subset of configurations (namely the

“dead-end” configurations). All the heuristic functions considered in this thesis are safely

pruning. Furthermore, the ordering of the queue in these strategies tells us that all other

events in the queue must also have a heuristic value of infinity: thus we can cease unfolding

completely when an event e with f([e]) = ∞ is dequeued, and conclude that the solution

to REACHABILITYΣ is negative.

We illustrate the behaviour of a safely pruning heuristic on the small example in Figure 4.3.

A heuristic such as hmax (see next section) estimates that from the initial marking {pa}, a

marking which includes the places in •tR = {pd, pe} is reachable in 2 steps (the maximum

80 CHAPTER 4. DIRECTED UNFOLDING

pa

pdpbtA

tB

tC

tR

pepc tD

Figure 4.3: PT-net system where transition tR can not be enabled.

cost of the two paths, assuming all transitions have unit cost). An event mapping to transi-

tion tA (or tB) is then added to the branching process, leading to a configuration with final

marking pb (or pc). The hmax value of the marking pb (or pc) is ∞, since there is then no way

to reach one of the places in •tR, namely pe (or pd).

To summarise, when solving REACHABILITYΣ on-the-fly via unfolding, the size of the

prefix generated by directed unfolding is generally related to the informativeness of the

guiding heuristic. However, in the particular case when REACHABILITYΣ is negative the

size of the prefix is determined by the pruning power of the heuristic, i.e. its ability to

quickly recognise dead-end configurations. As mentioned in Chapter 7 future work may

involve a more informed, quantitative complexity analysis of unfolding in general and the

size of prefixes required for on-the-fly reachability analysis in particular.

4.5 Heuristic Functions

A common approach to constructing heuristic functions, both admissible and inadmissible,

is to define a relaxation of the problem, such that the relaxed problem can be solved (at

least approximately) efficiently [132]. That is, a less complex problem is obtained from

the original one by making simplifying assumptions and relaxing constraints. The cost of a

solution to the relaxed problem can be used as an estimate of the cost of the solution to the

real problem, i.e. as the heuristic value [132].

To implement ≺f+ or ≺f|| in the ERV-Fly algorithm, we need heuristic functions that es-

timate the minimum cost, with respect to c+ and c||, of extending a configuration C to a

configuration CR ⊇ C, such that eR ∈ CR and ϕ(eR) = tR. In the context of the original

Petri net, this is equivalent to the problem of determining the the minimum cost of an occur-

rence poset σ. satisfying Mark(C)
σ.→MR where •tR ⊆MR. The additive and parallel cost

functions defined previously over configurations can be applied equivalently to occurrence

posets. The additive cost of an occurrence poset σ. = 〈T ′, .〉 is the sum of the costs of

the transitions in T ′. A transition t occurring in T ′ n times will contribute n × c(t) to the

4.5. HEURISTIC FUNCTIONS 81

additive cost. The parallel cost of σ. is the maximum sum of the costs of transitions in a

chain defined by the ordering constraints, e.g c(tj)+c(tk)+. . .+c(tm) where tj .tktm.

This thesis looks at relaxing the problem in the context of the original Petri net, to construct

heuristic functions. To simplify discussion we will avoid reference to the occurrence poset

and speak of a heuristic estimating the cost from one marking to another. We now present

heuristic functions which consider additive and parallel cost functions (respectively).

4.5.1 Heuristic Functions For Additive Cost

We have experimented with heuristic functions derived from two different relaxations, both

developed in the area of AI planning. The first relaxation is to consider each place in the

preset of a transition independently of the others. For a transition t to be enabled, each

place in •t must be marked. Thus, the cost from a given marking M to a marking that

enables t is at least the cost from M to mark a single place in •t. So, a lower bound on

the cost from marking M to a marking enabling t is dmax(M, •t) = maxp∈•t d
max(M, {p}),

where dmax(M, {p}) denotes the cost from M to any marking that includes {p}. For a place

p to be included in the target marking M – if it is not already – at least one transition in
•p must occur. Thus, dmax(M, {p}) = mint∈•p d

max(M, •t) + c′(t). Whilst this defines the

exact cost fromM to a marking including {p}, it is an under-estimate since our valuation of

dmax(M, •t) is a lower bound. Combining these two facts we obtain an equation dmax(M,M ′)

which specifies a lower bound on the additive cost from a marking M to M ′. The solution

to this equation can be computed in polynomial time using dynamic programming [67].

We use this to define a heuristic function, denoted by hmax, which is equivalent to the hmax

heuristic considered in [18, 19]:

Definition 16.

hmax(C) = dmax(Mark(C), •tR)

where

dmax(M,M ′) =

0 if M ′ ⊆M

mint∈•p c
′(t) + dmax(M, •t) if M ′ = {p}

maxp∈M ′ dmax(M, {p}) otherwise.

(4.1)

Note that hmax is also equivalent to the hm heuristic, defined in [76], when m = 1 .

82 CHAPTER 4. DIRECTED UNFOLDING

Since dmax(Mark(C), •tR) is a lower bound on the minimum additive cost of extending a

configuration C to a configuration CR ⊇ C, such that eR ∈ CR, the hmax heuristic is admis-

sible.

In many cases, however, hmax is too weak to effectively guide the unfolding process. To

avoid over-estimating costs, admissible heuristics tend to be conservative and consequently

less discriminating between different states. Conversely inadmissible heuristics have greater

freedom in assigning values are are thus more informative with respect to the relative val-

ues being a stronger indicator of how “promising” a path is. An inadmissible, but often

more informative version of the hmax heuristic, can be obtained by estimating the cost from

marking M to a marking enabling t as the sum (as opposed to the maximum) of the costs

to mark each place in •t independently. The resulting heuristic, which we will refer to as

hsum, is based on the hadd heuristic defined in [18, 19]:

Definition 17.

hsum(C) = dsum(Mark(C), •tR)

where

dsum(M,M ′) =

0 if M ′ ⊆M

mint∈•p c
′(t) + dsum(M, •t) if M ′ = {p}∑

p∈M ′ dsum(M, {p}) otherwise.

(4.2)

The second relaxation condered in this thesis is known as the delete relaxation. In the

context of Petri nets, the simplifying assumption made in this relaxation is that a transi-

tion requires the presence of a token in each place in its preset to be enabled, but does not

consume any of these tokens when it occurs. This means that once a place is marked it

will remain so. Every marking that is reachable in the original net is a subset of a marking

that is reachable in the relaxed problem. The delete-relaxed problem has the property that

a solution (if one exists) can be found in polynomial time [86]. The heuristic function hFF

(named after FF [86], the first planning system to employ this heuristic) maps a configu-

ration C to the cost of extending it to contain eR when the delete relaxation is employed.

The relaxed problem is solved via its relaxed planning graph representation, which is es-

sentially a complete prefix of the unfolding of the relaxed problem, seeded by conditions

mapping to the final marking of the configuration in question without considering forward

4.5. HEURISTIC FUNCTIONS 83

pa

pb

pd

pctA

tB tH

tE

tD

petC

pf

pg

tG

tF

tR

pa

pd

pctA

tB

tD

petC

pf

pg

tR

pb tE

tH

Figure 4.4: Marked PT-net (above) and corresponding relaxed planning graph.

conflict3. A description of the construction of a planning graph is given in Chapter 5; the

delete-relaxation version of this is obtained by simply ignoring all the negative effects of

actions (to be defined in the same chapter). The cost of a path to tR can be easily extracted

from the relaxed planning graph; in the case there are multiple transitions feeding a place,

one is chosen arbitrarily. Figure 4.4 shows a marked PT-net and the relaxed planning graph

corresponding to this marking: assuming all actions have unit cost a minimum cost solution

for the relaxed problem is the sequence tA, tC , tD; another solution is tA, tB, tH , tC .

The hFF heuristic satisfies the requirement that hFF(C) = 0 when eR ∈ C, but because an

arbitrary solution is extracted it is not admissible. The heuristic defined by the cost of the

minimal solution to the delete-relaxed problem, known as h+, is admissible, but solving the

relaxed problem optimally is NP-hard [31].

3As a consequence the delete relaxation can technically destroy the 1-safeness of the net. However, since
tokens are never consumed the exact number of tokens in a place does not matter, but only whether the place
is marked or not.

84 CHAPTER 4. DIRECTED UNFOLDING

4.5.2 Heuristic Function For Parallel Cost

A heuristic h(C) that reflects the parallel cost function, must estimate the cost of reach-

ing tR from Mark(C) while considering the relative cost to mark each of the places p ∈
Mark(C) via configuration C. We thus define the relative cost of place p with respect to

configuration C as t(C, p):

t(C, p) = c(C, p)− c||(C)

Observe that these quantities are always less than or equal to zero.

We consider a temporal version of the hmax heuristic, based on the temporal hm
T heuristic

described by Haslum and Geffner in [77] with m = 1:

Definition 18.
hpar(C) = max{0, dpar(C, tR

•)}

where

dpar(C,M ′) =

maxp∈M ′ t(C, p) ifM ′ ⊆ Mark(C)

mint∈•p c
′(t) + dpar(M, •t) M ′ = {p}, p 6∈M

maxp∈M ′ dpar(M, {p}) otherwise.

(4.3)

hpar is solved by means of dynamic programming seeded at the relative place times.

4.6 Experimental Results

We extended MOLE to implement:

� ERV-Fly(ΣR,≺f+,≺f), with g ≡ c+ and admissible heuristics h ≡ 0 and hmax, and

inadmissible heuristics hFF and hsum;

� ERV-Fly(ΣR,≺f ||,≺f), with g ≡ c|| and admissible heuristics h ≡ 0 and hpar.

Here we compare directed unfolding and “blind” unfolding, in the context of solving REACH-

ABILITYΣ using the ERV-Fly algorithm. Clearly directed unfolding provides an additional

guarantee on the quality of a positive solution, when considering the additive and parallel

cost functions for configurations. Conversely, what we wish to illustrate here is the benefit

of applying heuristically informed strategies to problems that can (theoretically) be solved

4.6. EXPERIMENTAL RESULTS 85

using a breadth-first strategy. Consequently we limit the scope to additive cost problems,

where the cost of every transition is 1. The results demonstrate that directed unfolding

clearly solves reachability problems more quickly.

For the purpose of on-the-fly reachability analysis, we found that the additional tie-breaking

comparisons used by MOLE to achieve a total order on configurations inhibited all versions

(including the original). We consequently disabled the Parikh vector and Foata normal form

based comparisons [59] to obtain the results which follow4. All experiments in this chapter

were conducted on a Pentium M 1.7 GHz with 1GB of memory.

4.6.1 Petri Net Benchmarks

The developers of MOLE provided a set of standard Petri net benchmarks representative

of Corbett’s examples [42]. Recall that for on-the-fly reachability analysis via unfolding,

REACHABILITYΣ is cast as the problem of identifying an occurrence sequence that enables

tR. Thus to assess the performance of directed unfolding we systematically considered each

transition in each benchmark to be tR. DARTES, a PT-net system modelling the communica-

tion skeleton of an Ada program, was the only benchmark which proved to be challenging.

MOLE is unable to decide, in reasonable time, whether certain transitions in DARTES can

be enabled. For the other benchmarks, MOLE can generate a complete finite prefix of the

unfolding of the Petri net model in a matter of seconds.

Figure 4.5 compares the performance of the original version of MOLE with directed ver-

sions employing each of the heuristic functions hmax, hsum, and hFF. For each version, and

for each of the 253 DARTES transitions, we recorded the time taken to decide whether

this transition could be enabled. The graph shows the percentage of problems solved by

each version, within computation time limits ranging from 0.01 to 300 seconds. The orig-

inal breadth-first version of MOLE performs well on the simplest problems - 50% of the

problems are solved within 0.1 seconds. In particular, within a 0.01 second time limit the

original MOLE solves slightly more problems than the versions employing the hmax and hsum

heuristics - here the overhead in computing the heuristic values outweighs the benefit -

however is clearly less efficient than the version employing the hFF heuristic. Within the

0.03 to 300 second time limits, the breadth-first strategy is systematically outperformed by

all of the directed versions. The benefit of the heuristically informed strategies become

exceptionally clear for larger problems: given a 300 second time limit the blind version

4This means the original version of MOLE implements McMillan’s cardinality order on configurations
only [119].

86 CHAPTER 4. DIRECTED UNFOLDING

0.01 0.03 0.05 0.1 0.5 5 100 300
0

0.2

0.4

0.6

0.8

Time limit (seconds)

%
 p

ro
bl

em
s

so
lv

ed

DARTES

original
hFF

hsum

hmax

Figure 4.5: Results for DARTES

solve just under 75% of the problems whilst the directed versions solve just over 95% of

them. DARTES contains transitions which can only be enabled by occurence sequences of

over 90 transitions. Within the given time-limit, the breadth-first strategy could only solve

problems where a positive solution contains less than 60 transitions. Specifically, within

the time limitations, the original version solves 185 of the 253 problem instances (73%),

whereas the version using hsum solves 245 (97%). The instances solved by each of the di-

rected versions is a strict superset of those solved by the original. Unsurprisingly, all solved

problems were positive solutions (the transitions could be enabled).

4.6.2 Random Problems

To investigate the scalability of directed unfolding, we first turned to the problem generators

provided with the PEP distribution5 (bufgen, pargen, philgen, phillgen, slotgen). Unfortu-

nately, these failed to provide challenging benchmarks for unfolding based reachability

analysis, and rather appeared to be designed to illustrate its strength over state space anal-

ysis. MOLE can construct the finite prefix for very large instances due to a massive degree

of concurrency. More importantly, the length of paths to any transition is very short (2 for

philgen to 12 for slotgen) and does not increase with problem size.

5http://parsys.informatik.uni-oldenburg.de/ pep/PEP2.0/

4.6. EXPERIMENTAL RESULTS 87

10
2

10
4

10
6

States per component

S
iz

e
of

 p
re

fix
 (

ev
en

ts
 d

eq
ue

ue
d)

Number of components

hsum

original
10 20 50

1 5 10 1 1 5 5 10 10

10
−2

10
0

10
2

States per component

R
un

tim
e

(s
ec

on
ds

)

Number of components

hsum

original
10 20 50

1 1 1 5 10 5 5 10 10

Figure 4.6: Results for Random PT-nets

88 CHAPTER 4. DIRECTED UNFOLDING

10 100 1,000 10,000 100,0001,000,000
0

50

100

118/82

50

0

Size of Prefix (events dequeued)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

0.01 0.1 1 10 100 1000
0

50

100

118/82

50

0

Runtime (seconds)

P
ro

bl
em

s
(r

ea
ch

ab
le

 −
 u

nr
ea

ch
ab

le
)

original
hmax

hsum

Figure 4.7: Results for Random PT-nets: reachable versus unreachable problems

4.6. EXPERIMENTAL RESULTS 89

We consequently decided to implement our own generator of random Petri nets. Concep-

tually, the generator creates a set of component automata, and connects them in an acyclic

dependency network. The transition graph of each component automaton is a sparse, but

strongly connected, random directed graph. Synchronisations between pairs of component

automata are such that only one (the dependent) automaton involved in the synchronisation

changes state, but can only do so when the other component automaton is in a particular

state. Synchronisations are chosen randomly, in such a way that dependencies between

components form a tree. Reachability problems are defined by the random and independent

choice of states for the various automata. The construction of the component automata and

their synchronisations ensures that every choice of states is reachable. We generated ran-

dom problems featuring 1 . . . 15 component automata of 10, 20, and 50 states each. The

resulting Petri nets range from 10 places and 30 transitions to 750 places and over 4000

transitions.

The bottom graph in Figure 4.6 shows the runtime for each experiment; the top graph shows

the number of events taken from the queue of possible extensions. To avoid cluttering these

graphs, we only show the performance of the worst and best strategies, namely breadth-first

(i.e. original), and ERV-Fly(ΣR,≺f+,≺f), implemented with g ≡ c+ and h ≡ hsum. Evi-

dently, directed unfolding can solve much larger problems than the original blind unfolding.

For the largest problem instances considered, the difference in performance reached over

two orders of magnitude in speed and three in size. The original version could merely

solve the easier half of the problems, while directed unfolding only failed on the six larger

instances (with 50 states per component).

In this experiment, optimal solutions reach lengths of several hundred events. For the prob-

lems which could be solved optimally using the hmax implementation, hFF produced solutions

within a couple transitions of the optimal. In all the problems considered, solutions obtained

with hsum were slightly longer than those obtained with hFF.

We then changed the transition graph of each component automaton into a (directed) tree-

like structure instead of a strongly connected graph, thus enabling the random generator to

produce problems in which randomly chosen states have a fair chance of being unreachable.

To explore the effect of directing the unfolding in this case, we generated 200 such instances

(each with 10 components of 10 states per component), of which 118 turned out to be

reachable and 82 unreachable. Figure 4.7 shows the results, in the form of distribution

curves (prefix size on the top and runtime on the bottom; note that scales are logarithmic).

The lower curve is for solvable problems, while the upper, “inverse” curve, is for problems

where REACHABILITYΣ is negative. Thus, the point on the horizontal axis where the two

90 CHAPTER 4. DIRECTED UNFOLDING

curves meet on the vertical is where, for the hardest problem instance, the reachability

question has been answered.

As expected, the version using hsum solves the problems with a positive solution much faster

than that using hmax, which is in turn much faster than blind unfolding. However, also

in those instances where REACHABILITYΣ is negative, the prefix generated by directed

unfolding is significantly smaller than that generated by the original algorithm. In this case,

the results from the hsum and hmax versions are nearly indistinguishable. This is due to the

fact that their pruning power (ability to detect dead end configurations) is the same.

4.6.3 Planning Benchmarks

To assess the performance of directed unfolding on a wider range of problems with realis-

tic structure, we now consider benchmarks from the two last editions of the International

Planning Competition (IPC-4 and IPC-5). These benchmarks are described in PDDL (the

Planning Domain Definition Language), which we translate into 1-safe PT-nets as explained

in Chapter 6.

In Figure 4.8, we present results for the first 26 IPC-4 instances of AIRPORT, a ground air-

traffic control problem. Both the optimal and non-optimal AIRPORT planning problems are

known to be PSPACE-complete [80]. The corresponding Petri nets range from 78 places

and 18 transitions (instance 1) to 4611 places and 1711 transitions (instance 26). Optimal

solution lengths (with respect to additive unit cost) range from 8 to over 200.

As before, the top graph shows the number of events pulled out of the queue, and the bottom

graph shows the runtime. To avoid cluttering the graphs, we do not show the performance

of hsum. Its results comprise of those for hFF and hmax. For small instances, the relatively

small gain (1 order of magnitude fewer nodes) in unfolding size does not compensate for

the overhead incurred in computing the heuristic function. However, for larger instances,

directed unfolding reduces both size and runtime by over two orders of magnitude. The

original version of MOLE is unable to solve six of the instances within a 600 second time

limit. These instances describe ground traffic control problems over the topology of half of

Munich airport. hmax fails to solve the two larger instances, but hFF solves them easily.

In Figure 4.9 we present results for OPENSTACKS, a production scheduling problem. Op-

timal OPENSTACKS is NP-complete [106], while the problem becomes polynomial if op-

timality is not required. We consider the instances Warwick 91-120, which feature 10

products, 10 orders and an increasing ratio of three to five products per order. The IPC-5

“propositional” version of OPENSTACKS disables concurrency. In contrast, while still re-

4.6. EXPERIMENTAL RESULTS 91

5 10 15 20 25
10

1

10
2

10
3

10
4

IPC−4 Instance ID

S
iz

e
of

 p
re

fix
 (

ev
en

ts
 d

eq
ue

ue
d)

Airport

hFF

hmax

original

5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Airport

hFF

hmax

original

Figure 4.8: Results for AIRPORT planning problems.

92 CHAPTER 4. DIRECTED UNFOLDING

5 10 15 20 25 30
10

2

10
3

10
4

10
5

Warwick Instance ID

S
iz

e
of

 p
re

fix
 (

ev
en

ts
 d

eq
ue

ue
d)

Openstacks

hsum

hFF

hmax

original

5 10 15 20 25 30

10
−1

10
0

10
1

10
2

Warwick Instance ID

R
un

tim
e

(s
ec

on
ds

)

Openstacks

hsum

hFF
hmax

original

Figure 4.9: Results for OPENSTACKS planning problems.

4.7. CONCLUSION 93

taining the IPC-5 optimality criterion, we use the natural encoding of OPENSTACKS which

allows several products to be produced in parallel. The corresponding Petri nets all have

65 places and 222 transitions, but differ in their initial markings. The optimal solution

length varies between 35 and 40 action instances. In OPENSTACKS, the gap between di-

rected and breadth-first unfolding is spectacular. The version guided by the hsum heuristic

consistently spends around 0.1 sec solving the problem: that is over 3 orders of magnitude

less than the breadth-first version. The version directed by hFF has runtimes ranging from

0.3 sec (instance 91) to 2.8 sec (instance 120). This shows that directed unfolding, which

unlike breadth-first search is not confined to optimal solutions, is able to exploit the fact

that non-optimal OPENSTACKS is an easy problem.

4.7 Conclusion

This chapter presented the theory of directed unfolding: controlling the unfolding process

with informative strategies, for the purpose of optimality and increased efficiency.

The original contributions in this chapter are:

(1) Recognising and developing the potential of unfolding Petri nets to solve optimisation

problems by:

� Identifying conditions which guarantee the ERV-Fly algorithm will identify an

optimal solution to REACHABILITYΣ with respect to a particular cost function;

and

� Developing partial orders on configurations which consider transition costs, in

both additive and parallel formulations, and can be used to direct ERV-Fly to an

optimal solution to REACHABILITYΣ.

(2) Evolving the unfolding to be a principled method for solving the reachability problem,

by enabling the process to be directed with problem specific information in the form of

heuristics. This includes:

� Developing a framework for combining an arbitrary cost function with a heuristic

function, such that the cost function can be optimised if the heuristic function is

admissible;

� Implementing this framework for the case of additive and parallel cost functions,

using results from (1);

94 CHAPTER 4. DIRECTED UNFOLDING

� Providing the option, within this framework, to prioritise efficiency or solution

optimality by using non-admissible or admissible heuristics respectively; and

� Demonstrating that suitable heuristic functions can be automatically extracted

from the original Petri net.

We have extended the MOLE software to perform the following implementations of directed

unfolding:

� ERV-Fly(ΣR,≺f+,≺f), with g ≡ c+ and admissible heuristics h ≡ 0 and hmax, and

inadmissible heuristics hFF and hsum;

� ERV-Fly(ΣR,≺f ||,≺f), with g ≡ c|| and admissible heuristics h ≡ 0 and hpar.

Furthermore, this work has impacted members of the Petri net community by inspiring

(re-)consideration regarding:

� The formative assumptions underlying the ERV algorithm (e.g. semi-adequate or-

ders); and

� The potential of unfolding, both in its capabilities (e.g. optimisation, fast reachability

analysis) , and possible areas of application (e.g. planning).

In Part II of this thesis, we apply directed unfolding to the problem of automated planning;

it will be shown that this work has also influenced the AI planning community.

4.7.1 Personal Contribution and Collaboration

The theory of directed unfolding and its application to automated planning has been pre-

viously published, to some extent, in [83], [84], and [20]. It is the result of both my own

independent work, and collaboration with other researchers.

Langford White first suggested applying PT-net unfolding to solve planning problems with

concurrent actions. This led me to investigate how the unfolding could be directed to find

a minimal cost solution to the reachability problem, if transitions have arbitrary costs and

their costs accumulate in an additive manner, i.e. optimal reachability analysis with respect

to the additive cost function via on-the-fly unfolding. I motivated and presented this work

at a DPOLP meeting, along with the challenges in translating a planning problem to a Petri

net (see Chapter 6), and ideas for modelling and analysing actions with probabilistic effects.

4.7. CONCLUSION 95

This sparked the interest of Sylvie Thiébaux and Jussi Rintanen, both from the AI planning

community, and we began collaborating.

Thiébaux suggested associating the cost function with an admissible heuristic function, and

using the original Petri net to calculate the heuristic. This proved to be the crucial differ-

ence between directed unfolding being an interesting theory and a useful application, as it

significantly increased efficiency. Furthermore, Thiébaux, Rintanen and myself were able

to overcome the translation challenges I had identified (namely logical consistency via 1-

safety and modelling negative preconditions and effects) and propose the translation from a

classical planning problem to a Petri net, as presented in Chapter 6. Thiébaux implemented

the translation in PETRIFY, a PDDL to PT-net translator written in Standard ML (SML).

I extended the MOLE software to perform directed unfolding with respect to additive cost

and admissible heuristic guidance. During this process I was in communication with Ste-

fan Schwoon, one of the creators of MOLE who was able to provide valuable insight into

the implementation, direct us to suitable test suites, and eliminate the “bugs” we encoun-

tered through our particular usage of the software (acknowledgement can be found on their

website6). Rintanen, Thiébaux, White and I consolidated the translation, directed unfold-

ing with respect to additive cost and admissible heuristic functions, and some preliminary

experimental results, and submitted a paper to Mochart-06 [82] and the 2007 International

Joint Conference on Artificial Intelligence (IJCAI-07) [84]. Rintanen subsequently pre-

sented our work at the Mochart workshop. I presented at IJCAI-07, where we had been

nominated for a best paper award.

In the meantime I also presented my original work on directing the unfolding for optimal

additive cost, and possible probabilistic extensions, at the Doctoral Consortium of the 2006

International Conference on Automated Planning and Scheduling (ICAPS-06) [83]. This

caught the attention of Blai Bonet, and we decided to collaborate further.

Bonet believed it could be possible to use inadmissible heuristics. They clearly did not

lead to adequate orders on configurations, which led to further investigation as to whether

adequacy was in fact necessary. Bonet and Thiébaux recognised that the property of an

adequate order refining the subset operator is stronger than required, thus leading to semi-

adequate orders. This opened the door to a new family of strategies that can be used to

direct the unfolding. Bonet revived the entire MOLE code, including parts of the original

software, our extensions, and the heuristic functions. His choice of data structures sig-

nificantly improved the efficiency of the program with respect to both time and memory

usage. Patrik Haslum, who had contributed to discussions and experiments with respect

6http://www.fmi.uni-stuttgart.de/szs/tools/mole/Readme

96 CHAPTER 4. DIRECTED UNFOLDING

to the IJCAI paper, became more heavily involved at this time; in particular he designed

and implemented the random problem generator discussed earlier in this chapter. Bonet,

Haslum, Thiébaux and I consolidated the work on directed unfolding with admissible and

non-admissible heuristics, and unit cost actions, for UFO-07, the unfolding workshop held

in conjunction with the 28th International Conference on Application and Theory of Petri

Nets and Other Models of Concurrency. Haslum presented at this workshop. We are aware

that in response to the paper [20], presentation and subsequent discussions some members

of the Petri net community are further investigating the implications of this research, having

found it challenged their previous understanding of unfolding.

Concurrent to this, wanting to broaden the application scope to temporal planning, I was

considering whether makespan (i.e. parallel cost) could be optimised rather than addi-

tive cost. I came to many dead ends, some of which have been discussed in this chapter.

Thiébaux rose to the challenge with new ideas, and together we formulated an order on

configurations very similar to that presented here as ≺||. Our original formulation was not

well-founded however, a problem remedied by the cardinality comparison included here.

The h|| heuristic presented in Chapter 4, and its implementation, is the result of collabora-

tion between Haslum, Bonet and myself.

The particular formulation of directed unfolding found this chapter is my own work. The

framework is more general and transparent than in preceding publications. Identification of

the conditions which ensure optimality with respect to various criteria, and the formulation

of ERV-Fly with two different orders on configurations (the queueing order and the cut-

off order) is my own work, though this later idea has definitely been a topic of discussion

amongst Bonet, Haslum, Thiébaux and myself. The framework combining a generic cost

function g, semi-adequate order ≺g and heuristic function h is my own work, but was

inspired by the high ideals of Bonet. The presentation of directed unfolding with respect

to parallel cost, both with and without heuristic guidance, has not appeared previously;

it has developed passed initial expectations to the extent presented here through valuable

discussions with Haslum.

Part II

Planning Via Directed Unfolding

97

This page left blank.

Chapter 5

Automated Planning

PLANNING IS FOREMOST AN EXERCISE IN CONTROLLING

COMBINATORIAL EXPLOSION

Russel and Norvig1

Part I of this thesis presented the theory of directed unfolding, a technique oriented for

reachability analysis of concurrent systems which furthermore enables optimisation with

respect to various cost criteria. In Part II we present the second contribution of this thesis:

the application of directed unfolding to automated planning.

This chapter serves as an introduction to automated planning: what, why and how? The first

section establishes the concept of automated planning, and consolidates its connection with

reachability analysis. It begins with some first intuitions on the notion of planning, then

outlines the theoretical and practical motivations for automated planning in general and do-

main independent planning in particular. It then presents a conceptual model for a planning

problem which, subject to various assumptions, is equivalent to the REACHABILITY prob-

lem discussed in Chapter 2 and, importantly, demarcates the classical planning problem.

This leads to the second section: classical planning. Here we explain our interest in what is

probably the oldest and most restricted domain-independent planning problem. We formu-

late the classical planning problem, and summarise the main approaches to analysis: state

space search, plan space search, planning as satisfiability and Graphplan. The discussion of

analysis techniques includes comment on the development and impact of suitable heuristic

functions for searching the state and plan spaces. The third section examines extensions to

the classical planning problem, such that actions may be associated with an arbitrary cost or

duration; we also briefly consider the possibility of actions with probabilistic effects. The

chapter concludes with a summary.

1[147, p.407]

99

100 CHAPTER 5. AUTOMATED PLANNING

5.1 Automated Planning

Planning is central to the achievement of goals through intelligent behaviour. It is, gener-

ally speaking, a process of deliberation which considers how one can actively influence the

world to achieve a particular result. Whilst the comprehensive notion of planning encom-

passes a wide range of problems, we can identify two defining requisites:

(a) A world model: planning requires a model of the world as a dynamic system with

transformation rules capturing the anticipated changes caused by possible actions;

and,

(b) A goal: planning requires some concept of what one desires to achieve in this world.

Automated planning is the act of formalising the planning process computationally. It is a

key component of Artificial Intelligence (AI), arising in the mid-1960s - around one decade

after the term AI was first coined by John McCarthy [113]; automated planning is also

referred to as AI planning. The terms planning system and planner will be used to refer to

technology which performs automated planning of some form.

5.1.1 Practical and Theoretical Motivation

One motivation for automated planning is purely practical: there is need for information

processing tools to support humans in solving planning problems. The initial stimulant for

this thesis - the Australian Defence Science and Technology Organisation’s investment in

the development of automated planning tools, via the DPOL Project2 - is one example of

the current demand for such technology, in the context of military operation planning. An-

other domain with critical safety and efficiency requirements, where interested parties are

seeking automated planning support, is that of air traffic control. In 2004 various European

stakeholders including Air France and the Dutch National Aerospace Laboratory sponsored

the LEONARDO project3, which investigated the feasibility of assimilating various plan-

ning support systems to increase the efficiency of air traffic control. The results indicated a

clear benefit could be obtained through the proposed integration of planning tools.

To think more laterally on the practical applications of automated planning, consider that a

planning problem is captured by a set of rules defining how the world can be manipulated

2http://nicta.com.au/research/projects/dynamic planning, optimisation
and learning

3ec.europa.eu/transport/air portal/research/doc/rtd 5 leonardo.pdf

5.1. AUTOMATED PLANNING 101

and a goal which may be defined by an objective state: automated planning technology is

relevant to a plethora of problems from playing bridge [156] to designing a manufactur-

ing process, e.g. [128], to determining the shortest possible sequence of rearrangements

between genome pairs [54].

A second motivation for automated planning is theoretical: if we qualify intelligence by the

ability to act rationally [147], then planning - “the reasoning side of acting”[67, p.1] - is a

critical component. Whilst research in automated planning is concerned primarily with the

use of the computer as a tool for solving planning problems, it is arguable that advances in

applied AI contribute to our understanding of the nature of intelligence. This is of particular

interest to researchers in the interdisciplinary field of Cognitive Science and proponents of

Searle’s notion of strong AI [151]. For example, a 2001 Cognitive Science study on the

planning abilities of humans found that “adults and older children exhibited performance

on planning tasks of varying complexity which matched that of artificial partial order plan-

ners” [141, p. 941].

Ghallab et al, [67, p.2], identify that an important combination of these practical and the-

oretical motivations is the development of autonomous intelligent machines. Autonomy

ultimately depends on continually answering the question of what to do next; the ability to

compute effective plans is thus a key component of autonomous machines. Consequently

NASA, for example, has been a strong force behind the development of AI planning, with

complex artifacts such as the Deep Space One space probe [127], and space-based ob-

servatories like the Hubble Space Telescope [122] successfully equipped with automated

planning technology. Furthermore, in accordance with the aforementioned theoretical per-

spective, the study of autonomous intelligent machines contributes to our understanding of

intelligent behaviour.

5.1.2 Domain Independent Planning

Despite the variety of problems in planning, the balance of research in AI planning weighs

heavily toward domain independent approaches. That is, where the planning system is

separate from the world model, with the later given as input in conjunction with the goal,

in a suitable formalism. Whilst there is benefit in addressing each application domain

with representations and techniques focused specifically on its unique qualities, the general

motivation for AI planning establishes firm ground for domain independent planning.

Firstly from a practical perspective, as mentioned at the outset of Chapter 2, it is desir-

able to avoid constructing a new modelling concept and analysis method for every different

102 CHAPTER 5. AUTOMATED PLANNING

situation because addressing each planning problem anew is more costly. In addition, the

impact footprint is larger when research outcomes are are broadly applicable to a variety of

domains. Secondly, from a theoretical perspective, studying the commonalities between all

forms of planning helps to understand the process of planning as an aspect of intelligence.

Finally, the study and design of autonomous intelligent machines necessitates domain in-

dependent planning .

Domain independence must come at a cost: the problem representation and analysis tech-

niques are “expected to work for a reasonably large variety of application domains”[81,

p 61] - the variation in problems is a real and practical difficulty. For this reason, in most

cases where AI planning technology has been applied to real-world problems, the planning

system has been enhanced with domain-specific knowledge. There are however examples

of applications where this has not been required, e.g. [146] apply domain independent

planning techniques to solve a real manufacturing problem.

Whilst this thesis stems from a project with a clear application domain - military opera-

tions planning - we chose to adopt a domain independent approach. The reason is that,

as mentioned in Chapter 1, this thesis aims to develop and exploit the connection between

AI planning and systems engineering: a domain independent approach is thus appropriate.

Other project members have focused on the development of planning support specific to the

application domain, e.g. [175]

5.1.3 Conceptual Model of the Planning Problem

Planning requires a model of the world as a dynamic system with transformation rules

capturing the anticipated changes caused by possible actions, i.e. a world model. Thus

a general world model for planning is the state transition system (see Definition 1), also

known as the discrete event system (DES).

This is a very high-level abstraction however and encompasses a range of planning prob-

lems too large for automated computation within our current means. Recall the restrictive

assumptions we made, in Chapter 2, about the state transition system Ω = 〈S,A,E, γ〉. We

make these same assumptions with respect to the world model of a planning problem, and

impose further assumptions regarding the goal of a planning problem and the knowledge

available to an automated planning system:

1. The set of states S is finite.

2. The result of every action and event is deterministic, i.e. for every s ∈ S, a ∈ A and

5.2. CLASSICAL PLANNING 103

e ∈ E, |γ(s, a, e)| ≤ 1.

3. The system remains static unless a controlled transition, i.e. an action, takes place. That

is, the set of events E is empty.

4. Actions and events are instantaneous state transitions.

5. The system is fully observable: this means the planning system has complete knowledge

about the state

6. A goal can be specified as a set of states Sg ⊆ S.

7. Planning occurs offline: this means the planning system is not concerned with any

change that may occur in the system while it is planning.

Conceptually, a world model for a planning problem satisfying Assumptions 1, 2 and 3

is a restricted state transition system Γ = 〈S,A, γ〉 (see Definition 2. Assumptions 4 - 7

then reduce planning to the problem of REACHABILITY (see Chapter 2, Section 2.2), with

SR ≡ Sg. That is, given these assumptions, a planning problem P is defined by a restricted

state transition system Γ = 〈S,A, γ〉, an initial state s0 ∈ S and set of goal states Sg. A

solution plan for P is a sequence of action instances 〈a1, a2, a3, ..an〉 corresponding to a se-

quence of state transitions 〈s0, s1, . . . , sn〉 such that s1 = γ(s0, a1), s2 = γ(s1, a2) . . . , sn =

γ(sn−1, an) and sn ∈ Sg. The task of a planning system is to synthesise a solution plan for

a given problem P= 〈Γ, s0, Sg〉.

5.2 Classical Planning

The real life success of a plan that has been synthesised by an automated planner is con-

strained by computational power: modelling and exhaustively considering all information

is not feasible. It is necessary to make limiting assumptions about the planning problem.

One generally aims for restrictions which:

(a) Depart from reality so infrequently that they are relatively negligible; and/ or

(b) Facilitate the development of technology which may subsequently be extended to

incorporate more real-world considerations.

A significant proportion of work in AI planning addresses what is loosely referred to as

classical planning, so called because it arose through the earliest efforts toward automated

104 CHAPTER 5. AUTOMATED PLANNING

planning, by Green in 1969 [72] and Fikes and Nilsson in 1971 [63], for example. Classical

planning is also referred to as STRIPS planning, in reference to the STanford Research

Institute Problem Solver (STRIPS), one of the first planners to operate in this environment

[63].

The boundaries of classical planning are somewhat imprecise, and we look here to Ghal-

lab, Nau and Traverso’s statement that “Classical planning refers generically to planning

for restricted state transition systems”[67, p.17], which they substantiate with the set of

assumptions just listed [67, p.9-10].

Whilst classical planning is very restrictive with respect to exspressivity, and consequently

largely unrealistic, it has proved to be an effective baseline for the development of algo-

rithms and techniques from which more expressive models can be developed. Furthermore,

despite its limitations, many real-world planning problems have been modelled and solved

in the classical environment. Note also that even with its restrictive assumptions classical

planning is still a hard problem. In terms of complexity the problem specified shortly is

PSPACE complete [67].

Since classical planning is the baseline for AI planning, and an objective of this thesis is

to build on the connection between systems science and automated planning at a founda-

tion level, this thesis addresses the classical planning paradigm. It is practical to develop

the means to analyse a restricted world before considering more realistic (and thus increas-

ingly complex) problems. We do take some small steps outside of the classical planning

environment, relaxing some of the restrictive assumptions, and in this way consider the po-

tential for directed unfolding to be extended to more expressive problems. As discussed in

Chapter 7 however, future work must push the boundaries much further into reality.

The central components of classical planning are:

(a) Representation: how to represent states, actions and the state-transition function sym-

bolically (i.e. without explicitly enumerating S, A and γ).

(b) Analysis: how to efficiently search for a solution. This involves identifying a search

space and determining how nodes within it will be transformed (i.e. the search algo-

rithm and control techniques).

We now address each of these in turn.

5.2. CLASSICAL PLANNING 105

5.2.1 Representation

It is impractical to explicitly represent the states in a world model for planning: we would

immediately become victim to the state explosion problem (as explained in Chapter 2 Sec-

tion 2.3). Scientists of AI planning seek an implicit representation of planning problems;

this is why automated planning algorithms are generally symbolic (as defined in Chapter 2).

STRIPS Representation

In this thesis we employ a representation of the classical planning problem based on propo-

sitional logic. It is semantically equivalent to what Ghallab et al refer to as set theoretic

representation [67, Chapter 2.2], and what is widely referred to in planning literature as the

grounded STRIPS representation (in this case extended with negative preconditions) [63].

Let V = {v1, v2, . . . , vN} denote a set of propositions. The set of literals over V is the

disjoint union L = V ∪ {¬v|v ∈ V }. The complement l of a literal l ∈ L is defined by

v = ¬v and ¬v = v for v ∈ V . For a subset of literals X ⊆ L, we define its complement

to be the set X = {x|x ∈ X}. A subset X of L is consistent if and only if X ∩ X = ∅4.

We denote by 2L
C the set of all consistent subsets of L. A subset X of L is a state (over

V) if and only if X ∈ 2L
C and |X| = |V |. We denote the set of states over V as SV . A

grounded planning operator over V is a pair 〈Pre, Eff〉 where Pre, Eff ∈ 2L
C . An operator

represents an action; Pre and Eff capture its preconditions and effects respectively. An

operator o = 〈Pre, Eff〉 is applicable to a state φ ∈ SV if Pre ⊆ φ (i.e. the preconditions

hold). The state transition function is defined as γo(φ, o) = Eff∪(φ\Eff), if o is applicable

to φ, and is otherwise undefined. Let us demonstrate that γo indeed maps to a state:

Lemma 5.2.1. Let the operator o = 〈Pre, Eff〉 (over V) be applicable to state φ ∈ SV .

Then γo(φ, o) = Eff ∪ (φ \ Eff) = ψ is an element of SV .

The following proof has been adapted from personal correspondence with White [105].

Proof. We first prove that ψ is consistent, and then show it contains |V | literals.

(a) ψ ∩ ψ = (Eff ∪ (φ \ Eff)) ∩ (Eff ∪ (φ \ Eff))

= (Eff ∪ (φ \ Eff)) ∩ Eff ∪ (φ \ Eff)

= (Eff ∩ Eff ∩ (φ \ Eff)) ∪ ((φ \ Eff) ∩ Eff ∩ (φ \ Eff))

= ∅, because (Eff ∩ Eff = ∅ since Eff is consistent,

4We use upper case letters to denote subsets of L and lower case letters to denote elements of L.

106 CHAPTER 5. AUTOMATED PLANNING

and (φ \ Eff) ∩ Eff = ∅.

Thus ψ is consistent.

(b) The literals in Eff and their complements Eff are the only elements added to and

subtracted from the state φ when o is applied. For every literal e ∈ Eff , either e ⊆ φ

or e ⊆ φ. In the first case e will remain a member of the state after the application

of o; since Eff is consistent e is not in φ and can thus not be subtracted from it

when the operator is applied. In the second case e will be added to the state and e

will be removed. Thus the total number of literals in the state does not change, i.e.

|ψ| = |φ| = |V |.

Note that the semantics of planning operators include the condition that Pre ∪Eff = ∅, i.e.

the same literal does not appear both in the preconditions and effects of the same operator.

This is because we assume that any literal in the preconditions of an operator remains true

when the operator is applied, unless its complement appears explicitly in the set of effects.

We now give formal definitions of a world model for classical planning, the grounded clas-

sical planning problem, the statement of a classical planning problem, and a solution plan.

Definition 19 (World Model for Classical Planning). Let V be a finite set of propositions.

The world model for classical planning is a restricted state transition system Γ = 〈S,A, γo〉
such that:

(a) S = SV ;

(b) A is a set of grounded planning operators over V ; and

(c) For o = 〈Pre, Eff〉 ∈ A and φ ∈ S, γo(φ, a) = Eff ∪ (φ \ Eff) if o is applicable to

φ and is undefined otherwise.

This is also commonly referred to as a classical planning domain.

Definition 20 (Classical Planning Problem and Statement). A grounded classical planning

problem is a triple P = 〈Γ, I, G〉 where:

� Γ = 〈SV , A, γo〉 is a world model.

� I ⊆ V is the set propositions which are true in the initial state. The initial state is

given by the set of literals φ0 = I ∪ {¬v|v ∈ V \ I}.

5.2. CLASSICAL PLANNING 107

� G ∈ 2L
C is a consistent set of literals over V , i.e. the goal literals.

The statement of a grounded classical planning problem is a four-tuple Ps = 〈V, I, A,G〉.
Ps is a syntactic specification of P; in particular the world model is specified by V and A.

Observe that the statement of a classical planning problem avoids enumerating the set S,

and the state transition function is implicit in the representation of actions as planning

operators. In some literature the set of variables V is not included in the statement of

the planning problem as it may be inferred from the initial state (providing this is fully

specified, i.e. I = s0 ∈ SV). We have instead included V , and specified the initial state

by I ⊆ V for ease of translation from a planning problem to a PT-net reachability problem

(see Chapter 6).

Definition 21 (Solution Plan). A plan π for a classical planning problem P = 〈Γ, I, G〉
is a sequence of actions in A, i.e. π = 〈a1, a2, a3, ..an〉. A plan is applicable to P if it

corresponds to a sequence of state transitions 〈φ0, φ1, . . . , φn〉 such that:

� φ0 = I ∪ {¬v|v ∈ V \ I}; and

� φ1 = γo(φ0, a1), φ2 = γo(φ1, a2) . . . , φn = γo(φn−1, an).

Furthermore, this plan is a solution to P if:

� G ⊆ φn.

It follows from these definitions that finding a solution plan π for a planning problem P =

〈Γ, I, G〉 is equivalent to solving REACHABILITY for restricted state transition system Γ =

〈SV , A, γo〉, with initial state s0 ≡ φ0 = I ∪ {¬v|v ∈ V \ I} and SR ≡ {φ ∈ SV |G ∈ φ}.

Whilst the statement of a classical planning problem is somewhat ambiguous, in that more

than one classical planning problem can map to the same statement, it is sufficient for

the specification of a problem because if two planning problems have the same statement

then they also have the same set of reachable states and the same set of solution plans.

Ghallab, Nau and Traverso [67, Sections 2.2.3 and 2.3.4] provide a thorough discussion

of the relationship between a classical planning problem and its statement, including proof

that the statement is sufficiently unambiguous to be used as the problem specification.

Given this, we can solve a classical planning problem P via its statement Ps = 〈V, I, A,G〉.
Note that the requirements of an applicable plan, and furthermore a solution plan, for P =

〈Γ, I, G〉 can be checked using only the statement of P. We will generally speak of a

108 CHAPTER 5. AUTOMATED PLANNING

planning statement as the actual planning problem. In particular we refer to a plan being a

solution for a statement; technically this means it is a solution plan for the planning problem

specified by the statement.

5.2.2 Analysis

The first steps of AI planning were taken by Newell, Shaw and Simon’s General Problem

Solver (GPS) [55], in 1957. GPS was an attempt to simulate the problem solving abilities of

humans; it was (theoretically) able to solve formalised problems, such as puzzles and chess

playing, via state space search guided by estimated differences between the current state and

goal propositions. The late 1960’s saw the emergence of technology intended specifically

for planning, with Green casting planning as a theorem proving problem [72]. However

the inefficiency of theorem-proving techniques at that time left this approach wanting, and

research re-focused on planning as a search problem.

State Space Planning

Synthesising a plan through search involves defining a search space, then exploring this

space to find a node/point or path that defines a solution plan. The early search based

planners followed the lead of STRIPS [63], the first planner to directly formulate planning

as search, and defined points in the search space as states in the planning world. This is

commonly referred to as state space planning. The simplest way to explore the state space is

to perform a forward search from the initial state. At a given state, applying any applicable

operator leads to a different point in the search space. A solution plan is defined as any

sequence of operators that can be applied to traverse the state space from the initial state to

a state satisfying the goal propositions. Note that this is equivalent to the forward state space

search described in Chapter 2. Alternatively, a backward exploration begins from the states

satisfying the goal propositions, applies the inverses of operators to traverse to different

points, and stops when a point is the initial state. Forward and backward exploration of the

state space is often referred to as progressive and regressive search respectively.

There is argument for exploring the state space in either direction. On the one hand, the

backward search concentrates only on those paths which lead to the goal, which can reduce

the number of points traversed to from a given point (i.e. a lower branching factor). On the

other hand, a forward search considers fully specified states (since the initial state is fully

specified) whilst a backward search considers partial state descriptions (since the goal not

necessarily a fully specified state); Bacchus and Kabanza [4] argue that effective strategies

5.2. CLASSICAL PLANNING 109

for search control depend on the ability to evaluate the state of a plan, and view this in favor

of forward search.

Obviously state space planning can suffer greatly from the state explosion problem (see

Chapter 2); to reduce the number of states explored, heuristic functions are employed to

estimate how far a given point is from a solution in order to explore “better” points first.

The most common heuristic at this time was that of means-end analysis which, introduced

by GPS, focuses on operators that appear likely to achieve the goal propositions. Other

early planners using this technique include STRIPS [63] and Prodigy [32]. This was still

insufficient in the face of the state explosion problem however; in addition it was difficult to

extend to consider causal and temporal relationships between actions [103]. Consequently

researchers were driven to look at the search space from another perspective.

Plan Space Planning

In the mid 1970’s the dominant approach to classical planning changed to searching the

space of partially constructed plans, commonly referred to as the plan space. This facil-

itates reasoning directly about the relationships between actions rather than states. Each

point in the plan space is a partially constructed plan, which includes a set of actions (rep-

resented by operators) and ordering constraints on the actions. Furthermore, if the original

operators are not grounded as presented here, i.e. the operators are specified using variables

not literals, then a partially constructed plan may contain constraints on the binding of an

action’s variables. One point in the plan space is transformed to another by the inclusion

of an operator or an ordering constraint between operators. An exploration of the plan

space generally begins with a skeleton plan, where the first operator in the plan produces

the initial state and the last operator in the plan has the goal propositions as preconditions.

Plan transformations continue to be made until a solution is found. A solution is a set of

actions and a set of constraints, such that any linearisation of the actions consistent with the

constraints corresponds to a path in the state space from s0 to some state s ∈ Sg.

NOAH, developed by Sacerdoti in 1974 [148], pioneered the technique of plan space plan-

ning; the transformation operations were somewhat ad hoc however, and in 1997 Tate in-

troduced the notion of causal links in Nonlin [159]5. A causal link connects a precondition

of one operator with an effect of another operator, where the effect asserts the precondition.

5In addition to founding plan space planning as we know it today, NOAH and Nonlin are also considered
the first planners to perform Hierarchical Task Network (HTN) planning, as they allow a partial plan to contain
abstract operators which can be incrementally reduced to ground planning operators. This is outside the scope
of classical planning however and not discussed further here.

110 CHAPTER 5. AUTOMATED PLANNING

Subsequently, for book-keeping purposes, a partial plan may also include a set of causal

links. An open goal in a partial plan is a precondition, for an operator in the plan, which is

not asserted via a causal link. An action is a threat if one of its effects may be inconsistent

with a causal link. Ordering constraints must eliminate threats, ensuring that preconditions

are not undone before the action requiring them takes place. For the purpose of plan syn-

thesis, the transformation of a partial plan should achieve an open goal or remove a threat.

This approach is often referred to as partial order causal link (POCL) planning. Various

other strategies have been developed to ensure unordered actions do not interfere with each

other, for example in TWEAK [34] Chapman employs what he calls the Modal Truth Crite-

rion to check the truth of each precondition in the partial plan6. However most strategies are

based on the POCL approach which (although introduced by Tate in 1977 [159]) was made

popular by McAllester and Rosenblitt [112] in 1991 through their formulation of systematic

nonlinear planning (SNLP). One of the most well known POCL planners is UCPOP [136],

a descendant of Nonlin via SNLP.

Partial Order Planning and The Least Commitment Principle

Plan space planning facilitates partial order planning: searching through the space of par-

tially ordered plans. Conversely, state space planning is more suited to total order planning,

which is defined analogously. Note that despite this fact, the distinction between total and

partial order planning is separate to the distinction between plan space and state space plan-

ning. There are some total order plan space planners, e.g. Waldinger’s regression planner

[167] and Warplan [168], and state space planning can be employed to synthesise a partially

ordered plan [69].

Partial order planning is a partial order method, as defined in Chapter 2. In his original

paper on partial order/ plan space planning [148] (referred to in some literature as nonlin-

ear planning) Sacerdotti states “But plans themselves are not constrained by limitations of

linearity”. Recall that in Chapter 2 we considered how modelling can introduce “fictional”

complexity to the analysis of a problem. In particular we noted that the arbitrary inter-

leaving of concurrent actions contributes significantly to the state explosion problem, and

that partial order methods attempt to alleviate this problem by considering the partial order

model of system execution.

In fact, avoiding the interleaving of concurrent events is just one application of the least

commitment principle. A key idea behind plan space planning is the principle of con-

6The Modal Truth Criterion has since been shown to be sufficient but unnecessary [64].

5.2. CLASSICAL PLANNING 111

straining a plan as little as possible during its construction [169], i.e. least commitment.

A forward or backward traversal of the state space, for example, requires making a com-

mitment to an action’s relevance (whether it will be part of a solution plan) and position

(when, during execution of the solution plan, this action will be executed) [89]. Conversely,

algorithms which traverse the plan space reason about the relevance of an action without

necessarily fixing its position in the plan. Postponing commitment can reduce the need

to backtrack over past decisions. This in itself can make planning more efficient; it also

increases the chance of goals being trivially serialisable, which makes plan synthesis easy

[89, 7]. A set of goals are trivially serialisable, with respect to a particular planning algo-

rithm, if each goal can be solved sequentially in any order without violating past progress

[7, 88].

The downfall is that reducing the level of commitment made during plan synthesis increases

the difficulty of traversing from one point to another in the search space [89]. For instance it

is easier to identify which actions are applicable in a given state (as in state space planning)

than to determine how inconsistencies in a partial plan can be resolved. Furthermore, the

level of commitment made by current plan space planners is such that a partial plan does not

correspond to a state of the world. The consequence of this is highlighted by the revival of

state space planning due to the development of powerful state based heuristic functions (to

be discussed shortly). So, again, we see the compromise which must be made when mod-

elling: restricting the information considered can both complicate and simplify analysis.

Of course, the right balance depends on the particular problem. Thus it is beneficial to have

another option; in the next chapter we explain why planning via directed unfolding may

provide a compromise that lies somewhere between state space and plan space planning

with respect to commitment.

Narrowing our scope back to commitment with respect to action ordering, let us note that

even this appears to have implications beyond our current understanding. Barrett and Weld

[7] contend that partial order planning is superior to total order planning because a planning

problem is more likely to be trivially serialisable with respect to a partial order planning al-

gorithm than a total order planning algorithm. Indeed, experimental results in [7] find no

domain in which a total order planner performs better than a partial order planner, but sev-

eral domains for which the partial order planner is exponentially more efficient. Minton,

Bresina and Drummond [123] argue that the issue is more complicated than this. They com-

pare a total order planner TO and partial order planner UA which are similar in all manner

except their commitment to actions added during plan synthesis. TO orders a new action

with respect to all other actions, whereas UA orders a new action only with respect to other

interacting actions. Hence, for any plan produced by TO, UA produces a corresponding

112 CHAPTER 5. AUTOMATED PLANNING

plan that is less constrained with respect to ordering, or equivalent. Minton et al observe

that the search space of the partial order planner is exponentially smaller than that of the

total order planner. But, whilst UA can outperform TO, the difference in efficiency is highly

dependent on the particular control strategy employed, and the density and distribution of

solutions in each search space. For example, consider an extreme case where the space

of partial order plans consists of unordered solution plans and totally ordered plans which

are not solutions. Each unordered solution will correspond to an exponential number of

solutions in the totally ordered space, and there is a one to one mapping between plans that

are not solutions in the partial and total order spaces. Thus there will be a higher density of

solutions in the space of totally ordered plans. The converse could also occur, where there

are totally ordered solution plans combined with a large number of unordered plans which

are not solutions, resulting in the space of partially ordered plans having a higher solution

density. Minton et al also find that distribution sensitive search strategies like depth first

search enable the partial order planner to outperform the total order planner when solutions

are not distributed uniformly throughout the search space.

Soon after Minton et al published these results, the partial order versus total order planning

appears to have temporarily subsided. The twenty year focus on plan space planning, and

in particular its role in partial order planning, was ended by two developments: Kautz and

Selman’s impressive results casting planning as a propositional satisfiability (SAT) problem

[93] and Blum and Furst’s Graphplan algorithm [17].

Planning As Propositional Satisfiability

Improvements in the performance of SAT methods, e.g. [152], encouraged reconsideration

of planning as theorem proving. Experimental results from Kautz and Selman in 1996 [93]

suggested planning as SAT might yield the fastest classical planner to date [169].

Given a set of discrete variables, legal domains for each variable and a set of constraints on

values groups of variables can take, the constraint satisfaction problem (CSP) is to find an

assignment of values to all the variables such that none of the constraints are violated, or

determine that no such assignment exists. A satisfying assignment is called a model. If the

variables are Boolean, then a CSP is a SAT problem.

Planning as SAT involves guessing the length of a plan, translating the problem to a proposi-

tional formula, and trying to find a model. If no model is found then the length is increased

and the process is repeated. Suppose we restrict the planning problem to the problem

of finding a plan of length n; this is referred to as a bounded planning problem. Each

5.2. CLASSICAL PLANNING 113

i, 0 ≤ i ≤ n is a step of the planning problem. Many encodings have been proposed for

the translation, but most introduce a propositional variable for every action at every step,

and every proposition at every step. The bounded planning problem is then encoded as a

conjunction of clauses, where a clause is a disjunction of literals. For the purpose of mod-

eling a planning problem, a clause captures constraints such as: propositions true in the

initial state are true at step 0; the goal propositions are true at step n; an action occurring at

step k implies its preconditions are true at step k and its effects are true at step k + 1, etc.

Fast simplification algorithms, such as unit propagation and literal elimination (e.g. [164]),

are used to shrink the formula. A model can then be sought via a systematic or stochastic

search of the space of partial assignments to the variables in the formula.

Planning as SAT synthesises a parallel plan. A parallel plan is a sequence of sets of ac-

tions. For example 〈{a1, a6} , {a3, a2, a5}〉 represents all sequences beginning with a1 and

a6 in any order followed by a3, a2 and a5 in any order. A parallel plan is obviously less

constrained than a totally ordered plan but more constrained than a partially ordered plan.

The most serious disadvantages of planning as SAT are the size of the encoding and the

restriction to discrete time. Since all possible actions and propositions are represented

explicitly for each step, the number of variables and clauses can be very large. As the

encoding described is limited to steps representing discrete points in time, it can not handle

actions with varying durations. In attempt to rectify this shortcoming, a causal encoding

has been proposed [92], based on the causal link representation employed in plan space

planning. There has yet to be an efficient implementation of this idea however. In addition,

recall that the encoding requires the original planning problem to be bounded to the problem

of finding a plan of known length n. If no model exists for the bounded problem, it does

not mean that no solution plan exists for the original unbounded problem.

Graphplan

Parallel to the growing enthusiasm for planning as SAT, the Graphplan algorithm, unveiled

by Blum and Furst [17] in 1995, attracted considerable attention. Graphplan first constructs

a planning graph, to a certain depth, then attempts to extract a solution plan from it. A

planning graph is a layered graph where arcs are only permitted from one layer to the next.

The layers correspond to steps, similar to those defined above, which represent discrete

points in time when actions may be executed. There are two types of layers: propositional

layers and action layers. The nodes in a particular propositional layer map to propositions

which could be true at that time point, and similarly the nodes in an action layer map to

actions which could be executed at that time point.

114 CHAPTER 5. AUTOMATED PLANNING

The initial layer P0 consists of the set of propositions describing the initial state s0. The

next layer is the first action layer, A0. It consists of all actions whose preconditions appear

in P0. Arcs connect the propositions in P0 to the actions they support in A0. The following

layer, P1, is the set of all propositions in P0 together with all the effects of the actions in A0.

There are two types of arcs between an action layer and the following proposition layer:

positive arcs go from an action to its positive effects, and delete arcs go from an action to

its negative effects.

During this construction, pairwise mutual exclusion (mutex) links are recorded. A mutex

relation exists between two actions at a given level if any of the following conditions hold:

(a) Inconsistent effects: the effect of one action negates a positive effect of the other;

(b) Interference: the effect of one action negates a precondition of the other; or

(c) Competing needs: a precondition for one action is mutually exclusive with a precon-

dition for the other.

A mutex relation exists between two propositions if every possible pair of actions that can

achieve them are mutually exclusive.

Mutex propagation is a form of reachability analysis: the existence of all goal propositions

in a layer is a necessary (but not sufficient) condition for the existence of actions in the

preceding layers which can transform the system to a state satisfying the goal. Once a layer

containing the goal propositions has been identified, Graphplan uses the planning graph to

guide the search for a solution plan. Graphplan, like planning as SAT, synthesises a parallel

solution plan.

Whilst the original Graphplan algorithm employs a search procedure for solution extraction

tailored specifically for the planning graph structure, it is also possible to cast the problem

of solution extraction to a propositional satisfiability problem. In fact by viewing the plan-

ning graph for a given problem as a SAT problem, the expansion phase corresponds to

construction of the conjunctive formula and the graph extraction phase is the search for a

model to satisfy it. The specific details of this process were originally described by Do and

Kambhampati [44]. It was Kautz and Selman however who first observed that the simpli-

fication performed in the construction of a planning graph, via the propagation of pairwise

mutexes, is more powerful than the unit propagation used in their previous SAT system

[93]. Their BLACKBOX planner [94], released in 1998, generates a planning graph, then

extracts a solution using SAT techniques.

5.2. CLASSICAL PLANNING 115

Heuristic State Space Planning

In the 1998 International Conference on AI Planning and Scheduling (AIPS-98) Planning

Competition [114], three out of four planners in the STRIPS track were based on the ideas

of Graphplan and planning as SAT. The fourth, HSP [18], was a heuristic search planner

that proved competitive with the other entrants, and can be accredited with the subsequent

revival of state space planning. HSP performs a state space search guided by heuristics

extracted automatically from the problem encoding. The significant advancement in state

based heuristic functions since the first era of state space planning enabled state space plan-

ners to outperform the plan space planners which had claimed superiority decades earlier.

One of the most successful classical planners today, FF (Fast Forward) [86], performs a

forward state space search using the heuristic hFF described in Chapter 4.

A Revival of Partial Order Planning?

In the paper “Reviving Partial Order Planning” [130] Nguyen and Kambhampati argue that

considering heuristic state space planning and CSP-based planning (such as planning as

SAT and Graphplan) superior to partial order planning is a misinterpretation of the advances

in these areas. They contend that the flexible nature of partial order planning has benefits

beyond the realm of these other approaches. Indeed, Smith et al’s [154] assessment of

the current and ideal capabilities of planning systems concludes that a POCL framework

is more easily extended to handle durative actions and temporal and resource constraints

than other planning approaches. They speculate that the difficulty with POCL approaches

lies in controlling the search. Nguyen and Kambhampati attempt to address this issue via

REPOP, a descendant of UCPOP equipped with heuristics for ranking partial plans, and an

improved ability to detect and resolve conflicts.

Vidal and Geffner [165] identify similar motivation for the development of CPT (Con-

straint Programming Temporal planner). Temporal planning is a variant of classical plan-

ning where actions have time durations. Vidal and Geffner recognise that POCL planning is

particularly suited for temporal planning, but is limited by its weak ability to reduce (prune)

the search space. They rectify this by combining a plan space search with powerful pruning

rules which are implemented as constraints. The result, CPT, is probably the best optimal

temporal planner today.

Whilst CPT is a partial order planner which uses constraint propagation for pruning, plan-

ning via directed unfolding is a forward partial order planning algorithm which employs the

powerful heuristic functions used in state space search to guide and prune the search space.

116 CHAPTER 5. AUTOMATED PLANNING

5.3 Extending the Classical Planning Problem

As mentioned previously, the classical planning problem is very restrictive with respect to

expressivity. We now look at two separate extensions to the classical planning world model:

operators with arbitrary positive costs, which may represent the economic penalty or time

duration of an action, and operators with probabilistic effects. We highlight current state of

the art planners which address these extensions.

5.3.1 Action Costs

If more than one solution plan exists, as will most often be the case, it is desirable to be able

to select the best plan with respect to some criteria. Here we consider a plan as optimal if it

minimises a specified cost function.

We extend the classical planning model with a cost function cost that maps operators to

positive rational numbers. This may capture the economic cost or penalty incurred when

applying an action, or the duration of an action, for example. For a given planning problem,

we can talk about a solution plan with minimum overall cost as an optimal plan, and its cost

as the optimal cost.

Additive Cost of a Plan

In the presence of costs, a plan π has an additive cost of:

cost+(π) =
∑
o∈π

cost(o)

Clearly, if all operator costs are equal to one, then an optimal solution is a plan with a

minimal number of operator instances. In the literature on AI planning, the total number of

operator instances in a plan is often referred to as the length of the plan.

It is necessary to distinguish between planners that attempt to optimise plan length (i.e. all

operators have unit cost) and those which can consider operators with arbitrary, positive

costs. Since it is unrealistic to think all actions in a plan will be equally demanding, the

sum of the (arbitrary) costs of actions in a plan seems a more appropriate measure than its

length. Despite this, most planners which consider additive cost, do so with respect to plan

length. The only planner we are aware of that can find an optimal additive cost plan when

5.3. EXTENDING THE CLASSICAL PLANNING PROBLEM 117

operators have arbitrary costs is HSP∗0
7. HSP∗ is a family of heuristic search planners, each

utilising a different heuristic function. HSP∗0 performs a backward state space search using

an admissible heuristic function.

The new partial order planning algorithm presented in this thesis can be applied to syn-

thesise optimal and suboptimal plans, with respect to the additive cost of operators with

arbitrary positive costs.

Parallel Cost of a Plan

In the presence of costs, a plan π has a parallel cost of:

cost||(π) = max
σ∈π

∑
o∈σ

cost(o)

where σ is a causal chain within π, and the maximum is taken over all such chains.

Clearly, if π is a totally ordered plan, then cost||(π) = cost+(π).

The most common usage of parallel cost arises when the cost of an operator is its duration.

Then cost||(π) corresponds to the makespan of π in automated planning literature. If all

operators have the same duration then minimising cost||(π) minimises the number of time

steps in the plan.

It is necessary to distinguish between planners that optimise makespan under the assump-

tion all operators have equal duration and those which can consider arbitrary durations.

Planners using Graphplan and/or SAT-based approaches reason about parallel plans, where

time steps are defined at equal intervals arbitrarily set as one. Consequently these planners

usually optimise the number of steps in a plan. SATPLAN06 [91], a SAT-based planner,

represents current state-of-the art in this area. Conversely CPT8 [165] and TP49 [77] can

optimise makespan when operators have arbitrary durations. TP4 is from the HSP* family.

The new partial order planning algorithm presented in this thesis can be applied to synthe-

sise a solution plan with optimal makespan, where operators have arbitrary durations.

5.3.2 Probabilistic Action Effects

We previously made the assumption that actions have deterministic effects. Determinism

assumes that the world evolves in a fully predictable manner. In reality an action may have

7http://www.ida.liu.se/∼pahas/hsps/
8http://www.cril.univ-artois.fr/∼vidal/#cpt
9http://www.ida.liu.se/∼pahas/hsps/

118 CHAPTER 5. AUTOMATED PLANNING

several different possible outcomes, none of which are certain, and an action may fail be-

fore completing. This can be modeled by a simple extension to the current representation.

Instead of a single possible set of effects, a probabilistic operator has multiple sets of pos-

sible effects. We will refer to each of these sets as an outcome. Each outcome has a certain

probability of occurrence, with the probabilities of all outcomes for a given action summing

to one.

We shall refer to planning with probabilistic operators as probabilistic planning. Probabilis-

tic planning aims to generate a conditional plan with an optimal or satisfactory probability

of achieving the goal propositions, called the probability of success. A conditional plan is

one that says “in this state, do this”, i.e. it accounts for the fact the world state can not be

predicted. The main approaches to probabilistic planning include:

� Casting the problem as a Markov Decision Process (MDP) and employing MDP anal-

ysis techniques to synthesise a plan;

� Planning based on model checking, using probabilistic extensions of some of the

techniques described in Chapter 2; and

� Extending techniques for classical planning to deal with uncertainty. For example

the Buridan planner [102] uses UCPOP techniques to put candidate plans together

and assess them; Paragraph, a planner developed by Little and Thiébaux, addresses

concurrent probabilistic planning problems in the Graphplan framework [108].

Probabilistic planning leads to more robust solution plans, but this comes at a great cost.

Algorithms need to efficiently analyse all possible action outcomes, and generate a condi-

tional plan. In attempt to avoid this, replanning has recently arisen as a seemingly effective

way to deal with a non-deterministic planning world. Replanning involves generating a

plan using a deterministic variant of the probabilistic problem, executing the plan until an

unexpected outcome is observed, and then planning again from this state. There are two

common approaches to making a deterministic variant of the probabilistic problem:

1. For each probabilistic action, ignore all but the most probable outcome. The drawback

with this approach is that a the goal may become unreachable.

2. For each probabilistic action, create one deterministic action per outcome. This pre-

serves all possible paths in the search space. The downfall is an increase in the number

of actions.

5.4. CONCLUSION 119

In the Probabilistic Track of the 2004 International Probabilistic Planing Competition (IPC-

04)10 the winner was FF-REPLAN-411 [173], a replanner which compiles the problem to a

deterministic variant using the first approach above, and employs the deterministic FF plan-

ner to plan and replan as necessary. FF-REPLAN-5, which uses the second approach above,

then (unofficially) outperformed all the “real” probabilistic planners in the Probabilistic

track of the following International Planning Competition, IPC-0612.

The new partial order planning algorithm presented in this thesis can be applied to respond

to probabilistic action effects using the second deterministic translation described above

and planning/ replanning for the most likely path.

5.4 Conclusion

This chapter introduced the problem of automated planning in general, and the classical

planning problem in particular. It was shown that the reachability problem for a restricted

state transition system is equivalent to the classical planning problem, thus consolidating

the connection between Part I and Part II of this thesis. After formalising the grounded

classical planning problem, we surveyed the main approaches to plan synthesis and the

issues that have driven the focus of planning research. We examined these techniques from

the perspective of the search space, the level of commitment made when traversing the

search space, and the structure of solution plans (e.g. totally ordered, partially ordered or

parallel). Finally we looked at extensions to the classical planning problem which consider

the cost of actions and probabilistic effects.

For more information on classical planning, Hendler et al [81] provide an overview of

the first thirty years of research in AI planning. This includes a formulation of the planning

problem similar to what is now considered the classical planning problem, and a chronology

of the development of planning systems during this period. As mentioned, the dominant

methods of analysis were means-end analysis (i.e. a form of state space search) and partial

order planning; further to this, Weld [169] gives a dedicated introduction to partial order

planning. Weld [170] describes the subsequent advances in AI planning: the planning graph

and planning as a propositional satisfiability problem. There is a wide range of literature

on CSPs. One concise summary of CSPs, including formulation and search techniques, can

be found in [147]. The relevance of CSPs to planning is described in particular in [67] and

10http://ls5-web.cs.uni-dortmund.de/∼edelkamp/ipc-4/
11http://www.public.asu.edu/∼syoon10/ffreplan.html
12http://www.plg.inf.uc3m.es/icaps06/competition.htm

120 CHAPTER 5. AUTOMATED PLANNING

[163]. Bonet and Geffner et al [19, 18] describe the advancement of planning as heuristic

search. Finally, Ghallab, Nau and Traverso [67] provide a comprehensive summary of AI

planning - the problems, techniques and applications - including a detailed and up-to-date

expose of approaches to the classical planning problem.

In the next chapter we illustrate how a solution plan can be synthesised via unfolding using

the ERV-Fly algorithm. In particular, we apply the theory of directed unfolding to find

partially ordered solution plans that are optimal with respect to their additive or parallel

cost, trade optimality for efficiency to synthesise plans which are suboptimal with respect

to additive cost, and address probabilistic planning via replanning for the most likely path.

Chapter 6

Planning Via Directed Unfolding

Petri nets are traditionally used for modelling and analysing distributed systems. As pointed

out by Drummond [45], there is a close connection between Petri nets and classical planning

models. Furthermore, the type of reasoning performed when analysing a Petri net is closely

related to planning. This was exploited, for example, by Godefroid and Kabanza [69]

to avoid considering all possible interleaves of actions in reactive planning, by Fabiani and

Meiller [61] to avoid the explicit consideration of certain type of mutexes when constructing

planning graphs, and by Silva, Castilho and Künzle [153] to recast plan extraction as a Petri

net reachability problem.

Nevertheless, the connections between Petri nets and planning have not been developed far

yet. Godefroid and Kabanza [69] perform a forward state space search which utilises the

concurrency semantics of Petri nets to implement a form of Partial Order Reduction, thus

limiting exploration to just one interleaving of concurrent actions. Meiller and Fabiani [61]

use coloured Petri nets to implement a multi-valued version of the planning graph, merely

obviating the need to explicitly consider certain types of permanent mutexes. Silva et al

[153] translate a planning graph [17] into a Petri net, then apply integer programming (IP)

methods to find a solution plan via reachability analysis.

Complementing a recent effort by Edelkamp and Jabbar to apply planning algorithms based

on heuristic search to the analysis of Petri nets (the deadlock detection problem) [49], we

contribute to bridging this gap by applying Petri net analysis techniques to planning.

This chapter applies the theory of directed unfolding to classical planning. The first two

sections describe how to cast a classical planning problem as a PT-net REACHABILITYΣ

problem. This involves translating the statement of a grounded classical planning problem

to a PT-net system, by working through the challenges of maintaining logical consistency

and representing operators’ negative preconditions and effects. It is a small step from here

121

122 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

to formulate a classical planning problem as a Petri net REACHABILITYΣ problem. The

ERV-Fly algorithm can then be used to synthesise a solution plan. In particular the theory

of directed unfolding can be applied to find an optimal plan with respect to various cost

criteria. We also consider the limitations of this translation and characterise the extent to

which the notion of concurrency in the PT-net we obtain matches the independence based

notion of concurrency commonly used in planning.

In the third section we compare and contrast planning via unfolding with the planning

methods presented in the previous chapter. Of particular interest is the difference in the

level of commitment made during state space planning, plan space planning and planning

via unfolding.

Finally we present empirical results for the PUP SUITE a collection of planners which

implement our approach to planning via directed unfolding.

6.1 Translating a Planning Problem to a PT-Net System

In this section we propose a translation from the statement of a classical planning prob-

lem Ps = 〈V, I, A,G〉, to a PT-net system pnet(Ps) = 〈N,M0〉 with N = 〈P, T, F 〉,
such that the problem of finding a solution plan for Ps can then be cast to a problem of

REACHABILITYΣ for pnet(Ps).

We first informally depict the dynamics of a classical planning world defined by V and A,

using the PT-net construct N . The set of places is P = V , i.e. each place p ∈ P maps

one-to-one to a proposition in the set V . For our purposes, the presence of a token in a place

indicates the associated proposition is true. There set of transitions is T = A. That is, each

transition t ∈ T maps to an operator o = 〈Pre, Eff〉 ∈ A; the sets of places Pre ∩ V and

Eff ∩ V form the preset and postset of t respectively. Observe that we have not included

the negated propositions in Pre and Eff . In this way, t is enabled when the positive precon-

ditions of o hold, i.e. M(v) ≥ 1 ∀v ∈ Pre∩V . Furthermore, executing t causes the positive

effects of o to become true and the positive preconditions to become false, by inserting and

removing tokens in the postset and preset places respectively. Recall that the semantics of

planning operators is such that a literal in the set of preconditions, which does not appear

in the set of effects, is assumed to remain true. So let the postset of t also include the set of

places (Pre \ Eff) ∩ V .

This model raises the following questions:

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 123

1. How to maintain logical consistency?

In this model, the presence of one or more tokens in a place represents the truth of

the associated proposition, and exactly no tokens represents its falsity. Consider an op-

erator o = 〈Pre, Eff〉, such that v ∈ Eff ∩ V and ¬v /∈ Pre. That is, v is a positive

effect, but not a negative precondition. When the transition t = o is executed, it will put

a token in the place v regardless of whether it contains one already. Multiple tokens can

thus accumulate in a single place. Consequently, we must ensure that either:

(a) A transition t can be enabled by at least one token in each of its preset places, and

the execution of t causes all tokens in the set of preset places to be absorbed; or

(b) A place never contains more than one token.

The semantics required for (a) are not provided by PT-nets. Whilst it is possible to

extend a PT-net to include a weight function that associates an arc from place p to a

transition t with an integer weight w (see [144, 126]), the value w jointly indicates the

number of tokens which must exist in p to enable t and the number of tokens that must be

removed from p upon execution of t respectively1. Furthermore w can not be a variable.

So, we must instead ensure condition (b). To do this we must look at the PT-net system,

not simply the PT-net; for now we will just assume that the initial marking has no more

than one token in a place. Essentially we want to ensure the PT-net system is 1-safe.

This could be achieved using Boolean arithmetic, which is supported by a class of more

expressive Petri nets called Boolean nets (see Kawamoto et al [95] for an introduction

to Boolean nets). However the unfolding process, which we wish to use for analysis of

our Petri net translation of a planning problem, has not yet been extended to such nets.

As discussed in Chapter 7, extending the unfolding process and the notion of directed

unfolding to higher level nets could be a subject of future work. Here, we choose instead

to ensure 1-safety of the PT-net by making the original planning operators 1-safe. A

planning operator o = 〈Pre, Eff〉 is 1-safe if and only if Eff ⊆ Pre. This means a

proposition can only be made true if it was previously false (and can only be made false

if originally true). Note, this solution assumes that we can model or eliminate negative

preconditions and negative effects.

2. How to model the negative preconditions of an operator?

Currently, if the net has marking M then M(v) = 0 indicates proposition v is false.

1The definition of a PT-net given in Chapter 3 assumes every arc has a weight of one.

124 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

Consider an operator o = 〈Pre, Eff〉 such that ¬v ∈ Pre. Enabling the transition t = o

depends on the presence, not the lack of, a token in each place in its preset: how can we

ensure the precondition ¬v holds in a marking that enables t? We identify two possibil-

ities:

(a) Introduce the construct of inhibitor arcs. If a place v feeds into transition t via an

inhibitor arc, then t can not be enabled when v contains a token. In this way we can

model the requirement of a proposition being false for an operator to be enabled; or

(b) Eliminate negative preconditions from all planning operators in A.

Inhibitor arcs complicate the unfolding procedure, because an occurrence net does not

explicitly represent local information regarding the absence of tokens in a place. Kleijn

and Koutny [98] propose a modification of the standard unfolding algorithm which pro-

vides causality semantics for PT-nets with inhibitor arcs. In doing so they claim the

partial order semantics based on causality are not adequate for this case and a notion

of step sequences must instead be employed. A step sequence is comparable with the

sequence of sets of actions generated by planning as SAT techniques, i.e. parallel plans.

We have yet to deduce if/how directed unfolding can be applied in this context; further-

more we wish to avoid the notion of step sequences, as we are interested in using causal

partial order semantics for planning.

Consequently we decide to instead remove negative preconditions from the planning

operators. This is achieved simply by introducing a set of propositional variables V̂ in

a one-to-one correspondence with the set V . A given v̂ ∈ V̂ is true if and only if the

corresponding v ∈ V is false. Thus the falsity of proposition v can be indicated by the

presence of a token in a place mapping to v̂ (rather than just the absence of a token in

the place mapping to v).

3. How to model the negative effects of an operator?

Consider operator o = 〈Pre, Eff〉. The occurrence of transition t = o puts a token

in each of its postset places. Currently, the postset of t is {Eff ∪{Pre \Eff}}∩V . That

is, when o is executed all propositions in the set of positive effects are asserted as true,

as are all positive preconditions which do no appear negated in the set of effects. Further

to this we need to remove tokens from the set of places Eff ∩ V , i.e. model the fact that

all propositions which appear negated in the set of effects become false when t occurs.

PT-net semantics are such that the only way to remove a token from place p through

the occurrence of transition t is to include p in the preset of t. If we do this however,

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 125

then p must necessarily contain a token for t to be enabled. A solution to this prob-

lem is provided by our solution to issue (1), i.e. making the planning operators 1-safe.

Consider an operator o = 〈Pre, Eff〉 with ¬v ∈ Eff . From this we will derive at least

one 1-safe operator o1 = 〈P 1
re, E

1
ff〉 such that ¬v ∈ E1

ff and (by definition of 1-safety)

v ∈ P 1
re. Thus, upon execution of the transition mapping to this operator, the token will

be appropriately removed from the place mapping to v. Obviously this solution also

depends on our ability to model (or in our case remove) negative preconditions, as we

will also derive from o at least one 1-safe operator o2 = 〈P 2
re, E

2
ff〉 such that ¬v ∈ P 2

re

(and ¬v /∈ E2
ff).

Considering our solutions to the aforementioned issues, our translation operates in three

steps. The first two steps involve mapping the planning problem to an equivalent one where

every operator is (1) 1-safe and (2) has no negative preconditions. In the third step, the

resulting problem is mapped to a PT-net system. We now formalise the translation via these

three steps, and prove equivalence with the original problem.

6.1.1 Establishing 1-safe Planning Operators

An operator o = 〈Pre, Eff〉 is 1-safe if and only if Eff ⊆ Pre. This means that every

literal in the operator’s effects is necessarily false in any state satisfying the operator’s

preconditions. This can be achieved by including in the preconditions the complement

of every literal appearing in the effects. An “unsafe” operator can thus be converted into

a collection of safe ones, by creating a new instance of the operator per combination of

literals missing from the preconditions, and removing, in this new operator, any effect literal

contained in the extended precondition. Formally, each operator o = 〈Pre, Eff〉 is replaced

with a set of operators χ1(o) of cardinality |2(Eff\Pre)|. Let ξ = 2(Eff\Pre) denote the class

of all subsets of Eff \ Pre. If ξ = ∅ then we set χ1(o) = {o}. Otherwise, for each D ∈ ξ

we define a new element of χ1(o) by o′ = 〈P ′
re, E

′
ff〉, where

P ′
re = Pre ∪D ∪

(
(Eff \ Pre) \D

)
and

E ′
ff = D ∪ (Eff ∩ Pre).

D is the set of actual effects, per case.

126 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

Example

Consider, for example, the operator o = 〈Pre, Eff〉 where Pre =={a,¬b, c} and Eff =

{¬a, b, d,¬e}. This operator is replaced with the four 1-safe operators oi =〈P i
re, E

i
ff〉 given

below along with the respective values for Di.

Pre = {a,¬b, c} Eff = {¬a, b, d,¬e}
P 1

re = {a,¬b, c, d,¬e} E1
ff = {¬a, b} D1 = {}

P 2
re = {a,¬b, c,¬d,¬e} E2

ff = {¬a, b, d} D2 = {d}
P 3

re = {a,¬b, c, d, e} E3
ff = {¬a, b,¬e} D3 = {¬e}

P 4
re = {a,¬b, c,¬d, e} E4

ff = {¬a, b, d,¬e} D4 = {d,¬e}

Equivalence

Each new operator is clearly 1-safe since E ′
ff = D ∪ (Eff ∩ Pre) ⊆ P ′

re. We now

need to ascertain that the planning problems specified by Ps = {V,A, I,G} and P′
s =

{V,
⋃

o∈A χ
1(o), I, G} have the same set of solution plans. First, we propose that operator

o is applicable in state φ if and only if there exists exactly one operator in χ1(o) which is

applicable in φ, and the application of either operator will result in the same world state.

Proposition 6.1.1 (Equivalence of o and χ1(o)). Let o be a grounded planning operator

over V . Then

(1) o is applicable to state φ ∈ SV if and only if there exists exactly one operator o′ ∈ χ1(o)

which is applicable to φ.

(2) If o′ ∈ χ1(o) and o are applicable to φ, then γo(φ, o
′) = γo(φ, o). That is, the same

state will result if either o or o′ is applied in φ.

Proof.

(1) Consider the operator o = 〈Pre, Eff〉 over V . We show that Pre ⊆ φ ⇔ there exists

exactly one o′ = 〈P ′
re, E

′
ff〉 ∈ χ1(o) such that P ′

re ⊆ φ.

(⇒) Let D be the maximal set in ξ = 2(Eff\Pre) such that D ∩ φ = ∅. Thus D ⊆ φ.

As D is maximal, all other literals in Eff \ Pre must be in φ, i.e. (Eff \ Pre) \D ⊆ φ.

Thus Pre ⊆ φ implies P ′
re = Pre ∪ D ∪

(
(Eff \ Pre) \D

)
⊆ φ. Note this reasoning

still holds if D = ∅. Furthermore, no other operator in χ1(o) is applicable to φ. To see

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 127

this, consider operator o′′ = 〈P ′′
re, E

′′
ff〉 ∈ χ1(o) defined by some D′′ ∈ ξ which is not

the maximal set. Then, there must be at least one literal in (E ′′
ff \ P ′′

re) \ D′′ which is

not in φ. In which case P ′′
re * φ.

(⇐) The reverse implication is trivial since Pre ⊆ P ′
re.

Thus, o is applicable to state φ if and only if there exists exactly one operator o′ ∈ χ1(o)

which is applicable to φ.

(2) Suppose the current state is φ and the only operator in χ1(o) to be enabled is o′ =

〈P ′
re, E

′
ff〉, where P ′

re = Pre ∪ D ∪
(
(Eff \ Pre) \D

)
and E ′

ff = D ∪ (Eff ∩ Pre).

We now show that state ψ = γo(φ, o) is equal to state ψ′ = γo(φ, o
′). The following

proof is based on correspondence with White [105], with some minor ammendements

for clarity.

ψ = Eff ∪ (φ \ Eff)

= (Eff \ φ) ∪ (φ \ Eff) (since Eff is consistent)

= (E ′
ff \ φ) ∪

(
(Eff \ φ) \ (E ′

ff \ φ)
)
∪ (φ \ Eff) (since E ′

ff ⊆ Eff)

= (E ′
ff \ φ) ∪

(
(Eff \ E ′

ff) \ φ)
)
∪ (φ \ Eff);

ψ′= (E ′
ff ∪ (φ \ E ′

ff)

= (E ′
ff \ φ) ∪ (φ \ E ′

ff) (since E ′
ff ⊆ Eff ⇒ E ′

ff is consistent)

= (E ′
ff \ φ) ∪

(
(φ \ E ′

ff) \ (φ \ Eff

)
∪ (φ \ Eff) (since (φ \ Eff ⊆ (φ \ E ′

ff)).

Thus we see that

ψ = ψ′ ⇐
(
(Eff \ E ′

ff) \ φ
)

=
(
(φ \ E ′

ff) \ (φ \ Eff)
)
.

We now prove the latter assertion. Indeed we prove more; we show that

(
(Eff \ E ′

ff) \ φ
)

=
(
(φ \ E ′

ff \ (φ \ Eff

)
= ∅ ,

and thus ii follows that

ψ = ψ′ = (E ′
ff \ φ) ∪ (φ \ Eff).

Firstly, since P ′
re ⊆ φ,

128 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

(
(Eff \ E ′

ff) \ φ
)
⊆
(
(Eff \ E ′

ff) \ P ′
re

)
⊆ (Eff \ E ′

ff) \
(
(Eff \ Pre) \D

)
=
(
Eff \

(
D ∪ (Eff ∩ Pre)

))
\
(
(Eff \ Pre) \D

)
=
((
Eff \ (Eff ∩ Pre) \D

))
\
(
(Eff \ Pre) \D

)
=
(
(Eff \ Pre) \D

)
\
(
(Eff \ Pre) \D

)
= ∅.

Now consider

(
(φ \ E ′

ff) \ (φ \ Eff)
)

= (φ ∩ Eff) \ E ′
ff

= ∅ ⇔ E ′
ff = (φ ∩ Eff) (since E ′

ff ⊆ Eff).

Now, noting

Eff =
(
(Eff \ Pre) \D

)
∪D ∪ (Eff ∩ Pre)

=
(
(Eff \ Pre) \D

)
∪ E ′

ff ,

we have

φ ∩ Eff = φ ∩
((

(Eff \ Pre) \D
)
∪ E ′

ff

)
=
(
φ ∩

(
(Eff \ Pre) \B

))
∪ (φ ∩ E ′

ff)

= ∅ ∪ E ′
ff (since

(
(Eff \ Pre) \B

)
⊆ P ′

re ⊆ φ and E ′
ff ⊆ P ′

re ⊆ φ)

= E ′
ff

as required.

This entails that in any sequence of operators, any o′ ∈ χ1(o) can be replaced by o, and o

can be replaced by exactly one operator in χ1(o). It thus follows that the planning problems

specified by Ps = {V,A, I,G} and P′
s = {V,

⋃
o∈A χ

1(o), I, G} have the same set of

solution plans.

Corollary 6.1.2 (Equivalent solution plans under 1-safety mapping). Let Ps = 〈V,A, I,G〉
be the statement of a classical planning problem, and let P′

s = 〈V,
⋃

o∈A χ
1(o), I, G〉.

Then, π = (o1, o2, . . . on) is a solution plan for Ps corresponding to the sequence of states

(φ0, φ1, . . . φn) if and only if π′ = (o′1, o
′
2, . . . o

′
n) is a solution plan for P′

s, where o′i is the

single member of χ1(oi) applicable to state φi−1.

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 129

6.1.2 Eliminating Negative Preconditions

In the second step of the translation, a negative precondition ¬v is eliminated in the usual

way [65]: by replacing it with a corresponding positive precondition v̂ and forcing v̂ to be

true if and only if v is false. For a given set V of state propositions, we introduce the set

V̂ = {v̂|v ∈ V } of new state propositions. The idea is that v̂ is true exactly when v is

false. Let χ+ be the function which maps an operator o = 〈Pre, Eff〉 over V to the operator

χ+(o) = 〈P ′
re, E

′
ff〉 over V ∪ V̂ , where

P ′
re = (Pre ∩ V) ∪ {v ∈ V̂ |¬v ∈ Pre}

E ′
ff = Eff ∪ {¬v̂|v ∈ Eff ∩ V } ∪ {v̂ ∈ V̂ |¬v ∈ Eff}.

Example

For example, if operator o1 = 〈{a,¬b, c, d,¬e}, {¬a, b}〉 then operator χ+(o) = 〈{a, b̂, c, d,
ê}, {¬a, b, â,¬b̂}〉.

Equivalence

Clearly an operator defined by P ′
re and E ′

ff has no negative preconditions, since P ′
re ⊆

V ∪ V̂ . We now need to ascertain that there is a one-to-one mapping between solution plans

for Ps = {V,A, I,G} and P′
s = {V ∪ V̂ , {χ1(o)|p ∈ A}, I, G}.

Since we are extending the original set of world propositions V to include the set V̂ , we

need to define the notion of a state over V ∪V̂ . Let φ be a subset of literals in V ∪V̂ ∪{¬v|v ∈
V ∪ V̂ }. Then φ is a state over V ∪ V̂ if and only if:

(a) It is consistent with respect to the complement function: φ ∩ φ = ∅.

(b) It is fully specified: |φ| = |V ∪ V̂ |.

(c) It is consistent with respect to the semantics of V and V̂ : v ∈ φ⇔ v̂ /∈ φ.

The first two conditions follow from the definition of a state over V . The third condition

follows from the semantics we have associated with V̂ and V . Observe that there is a one-

to-one mapping between states in the set SV and states in the set SV ∪bV . The state φ ∈ SV

is equivalent to the state φ′ ∈ SV ∪bV , denoted by φ ≡ φ′, if and only if φ = φ′ ∩ (V ∪ V).

130 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

We can now show that the planning problems specified by Ps = {V,A, I,G} and P′
s =

{V ∪ V̂ , {χ+(o)|o ∈ A}, I, G} have the same set of solution plans. We first propose that

operator o ∈ A is applicable in state φ ∈ SV , if and only if operator o′ = χ+(o) is applicable

in state φ′ ∈ SV ∪bV , where φ ≡ φ′. Furthermore, the state resulting from the application of

o in φ is equivalent to the state resulting from the application of o′ in φ′.

Proposition 6.1.3 (Equivalence of o and χ+(o)). Let φ be a state over V and let φ′ be a

state over V ∪ V̂ such that φ ≡ φ′. Let o = 〈Pre, Eff〉 be a planning operator over V , with

χ+(o) = o′ = 〈P ′
re, E

′
ff〉. Then

(1) Pre ⊆ φ⇔ P ′
re ⊆ φ′; and

(2) γo(φ, o) ≡ γo(φ
′, o′).

Proof.

(1) We first prove that Pre ⊆ φ⇔ P ′
re ⊆ φ′.

(⇒) φ ≡ φ′ if and only if φ = φ′ ∩ (V ∪ V), therefore φ ≡ φ′ ⇒ φ ⊆ φ′. Thus

Pre ⊆ φ ⇒ Pre ⊆ φ′ ⇒ Pre ∩ V ⊆ φ′. Furthermore, ¬v ∈ Pre ⇒ ¬v ∈ φ′. From

the definition of a state over V ∪ V̂ it can be deduced that ¬v ∈ φ′ ⇔ v̂ ∈ φ′. Thus

{v̂ ∈ V̂ |¬v ∈ Pre} ⊆ φ′, and subsequently Pre ⊆ φ⇒ P ′
re ⊆ φ′.

(⇐) From the definition of a state over V ∪ V̂ , ¬v ∈ φ′ ⇔ v̂ ∈ φ′. This, in conjunction

with the definition of P ′
re tells us P ′

re ⊆ φ′ ⇒ Pre ∩ V ⊆ φ′. Also by definition of P ′
re,

Pre∩V ⊆ φ′. Therefore Pre∩ (V ∪V) ⊆ φ′, hence Pre∩ (V ∪V) ⊆ φ′∩ (V ∪V) = φ.

So Pre ⊆ φ.

(2) We now show that state ψ = γo(φ, o) is equivalent to state ψ′ = γo(φ
′, o′).

ψ = Eff ∪ (φ \ Eff)

= Eff ∪
(
φ′ ∩

(
V ∪ V

)
\ Eff

)
= E ′

ff ∩ (V ∪ V) ∪
(
φ′ ∩

(
V ∪ V

)
\ E ′

ff ∩ (V ∪ V)
)

= E ′
ff ∩ (V ∪ V) ∪

(
φ′ ∩ (V ∪ V) \ E ′

ff ∩ (V ∪ V)
)

= (E ′
ff ∪ (φ′ \ E ′

ff)) ∩ (V ∪ V)

≡ ψ′

This result leads to the following corollary:

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 131

Corollary 6.1.4 (Equivalent solution plans under elimination of negative preconditions).
Let Ps = 〈V,A, I,G〉 be the statement of a classical planning problem, and let P′

s =

{V ∪ V̂ , {χ+(o)|o ∈ A}, I, G}. Then, π = (o1, o2, . . . on) is a solution plan for Ps if and

only if π′ = (χ+(o1), χ
+(o2), . . . χ

+(on)) is a solution plan for P′
s.

6.1.3 Mapping to PT-Net System

We define χ(o) , {χ+(o′)|o′ ∈ χ1(o)} as the set of operators obtained from the grounded

planning operator o by performing the above two steps. Instead of executing the operator

o, we can always execute exactly one of the operators in χ(o) with the same result.

The third step in the translation involves mapping a planning problem to a PT-net system as

follows. Let Ps = 〈V,A, I,G〉 be the statement of a planning problem. We define a PT-net

system pnet(Ps) = 〈P, T, F,M0〉 such that

� the places are P = V ∪ V̂ ;

� the transitions are T =
⋃

o∈A χ(o);

� the set F of arcs is obtained from t = 〈Pre, Eff〉 ∈ T as

{(v, t) | v ∈ Pre} ∪ {(t, v) | v ∈ Eff or v ∈ Pre and ¬v 6∈ Eff};

� for all v ∈ V , M0(v) = 1 iff v ∈ I and M0(v̂) = 1 iff v /∈ I , and

for all v ∈ V ∪ V̂ , M0(v) = 0 or M0(v) = 1.

If Ps is an extension of the classical planning problem such that each operator o ∈ A has

cost cost(o) then pnet(Ps) is extended to include the cost function c′ : T → R+ such that

c′ ≡ cost.

Example

Figure 6.1 illustrates this mapping for a single operator, x = 〈{a,¬b}, {¬a, d}〉. Note

that x is first cast as two 1-safe operators with no negative preconditions, namely x′1 =

〈{a, b̂, d}, {¬a, â}〉 and x′2 = 〈{a, b̂, d̂}, {¬a, â,¬d̂, d}〉.

Correctness

Let us first show that the translation does in fact result in a 1-safe PT-net system which is

logically consistent with respect to the semantics of V and V , i.e. for every marking M

reachable from the initial state, M(v) +M(v̂) = 1 ∀v ∈ V .

132 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

a d

â d̂b̂

x′
1 x′

2

b

Figure 6.1: The translation of operator x = 〈{a,¬b}, {¬a, d}〉 after transformation into

two 1-safe operators with positive preconditions: x′1 = 〈{a, b̂, d}, {¬a, â}〉 and x′2 =

〈{a, b̂, d̂}, {¬a â,¬d̂, d}〉.

Theorem 6.1.5 (Logical consistency of V and V̂). Let Ps be the statement of a planning

problem. If M is a reachable marking of the PT-net system pnet(Ps) then M(v)+M(v̂) =

1 ∀v ∈ V .

The following proof includes ideas taken from correspondence with Rintanen [145].

Proof. The proof is by induction in the length i of occurrence sequences leading to M .

Base case i = 0: By construction M(v) +M(v̂) = 1 for every v ∈ V .

Inductive case i ≥ 1: LetM ′ be any marking that is reached by a sequence of i transitions in

which the last transition is t and the second last marking is M . By the induction hypothesis

M(v) +M(v̂) = 1 ∀v ∈ V .

Let v ∈ V be any place such that M(v) = 1. By the definition of t, if v ∈ t• then either

v̂ ∈ •t or v ∈ •t. In the first case there could not have been a token in v (by the induction

hypothesis). Firing the transition puts one token into v where there previously was no

token, thus M ′(v) + M ′(v̂) = 1. In the second case, there could not have been a token in

v̂ (by the induction hypothesis); firing the transition takes a token from v and then puts it

back. Again, M ′(v) +M ′(v̂) = 1. Similar reasoning can be applied to the situation where

M(v̂) = 1 and v̂ ∈ t•.

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 133

Therefore, for every marking M reachable from the initial state, M(v) + M(v̂) = 1 for

every v ∈ V . It follows from this that M(p) ≤ 1 for every place in V ∪ V̂ .

It follows from this result that M(p) ≤ 1 for every place in V ∪ V̂ . That is, the PT-net

system pnet(Ps) is 1-safe.

Now consider the statement of a planning problem Ps = 〈V,A, I,G〉. By construction

of pnet(Ps), the plan σ is applicable to P′
s = 〈V ∪ V̂ ,∪o∈Aχ(o), I, G〉 and results in the

world state φ if and only if σ is an occurrence sequence in pnet(Ps) which leads to marking

M , where M(v) = 1 if v ∈ φ ∩ (V ∪ V̂) and M(v) = 0 otherwise. Then, considering

the equivalence between the solutions of Ps and P′
s (established in Corollaries 6.1.2 and

6.1.4), we can identify the following relationship between a solution plan for Ps and an

occurrence sequence in pnet(Ps):

Corollary 6.1.6 (Equivalence of solution plan and occurence sequence). Consider the state-

ment of a classical planning problem Ps = 〈V,A, I,G〉 and its translation to PT-net system

pnet(Ps). π = (o1, o2, . . . on) is a solution plan for Ps, corresponding to the sequence

of states (φ0, φ1, . . . φn), if and only if π′ = (o′1, o
′
2, . . . o

′
n) is an occurrence sequence in

pnet(Ps), corresponding to the markings (M0,M1, . . .Mn), whereMi(v) = 1 if v ∈ φi∩V
and Mi(v̂) = 1 if v ∈ φi ∩ V , and o′i is the single member of χ(oi) enabled by marking

Mi−1.

6.1.4 Limitations of Translation

This translation from a grounded classical planning problem to a PT-net system has two

main limitations: the number of operators and propositions defining the problem can in-

crease significantly, and the notion of concurrency is different to the standard notion of

concurrency in AI planning.

Size of Translation

An unsafe operator is converted into a collection of safe ones, by creating one “copy” of the

operator per combination of values for missing preconditions, and removing, in this new

operator, any effect literal contained in the extended precondition. The number of copies

thus created is exponential in the number of missing preconditions. After the problem has

been made 1-safe, negations are removed following the standard procedure of replacing

each negative literal ¬a with a new proposition â and modifying all operators so those that

make a true make â false, and vice versa, thus ensuring that exactly one of a and â will hold

134 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

in every reachable state. This doubles the number of propositions representing the problem.

Note that this does not contribute to the state explosion problem however, since the number

of states remains the same.

Future work may consider reducing these increases by reasoning about their necessity in

individual problems. For example it may be the case that an operator is safe even though

for some of its effects no explicit negation appears in the preconditions. For example a

precondition p may be mutually exclusive with effect e, i.e. there is no state in which p and

e are both true. Thus it is unnecessary to reason about the truth of e in the preconditions.

Also, there may be propositions which are implicitly each others negation, such as “the

door is open” and “the door is shut”. In such cases it is not necessary to introduce new

propositions to represent their negations explicitly.

Notion of Concurrency

We are interested in the notion of concurrency that allows the simultaneous execution of

several operators. The question arises as to whether the notion of concurrency inherent in

the PT-net obtained by our translation coincides with the standard notion of concurrency in

AI planning (as defined by Smith & Weld [155]). It turns out that this is not the case.

The standard notion of concurrency in planning is independence: two operators 〈Pre1, Eff1〉
and 〈Pre2, Eff2〉 are independent if and only if Prei ∩ Effj = ∅ and Effi ∩ Effj = ∅ for

i, j ∈ {1, 2} and i 6= j. This captures the intuition that they can be executed in any order,

yielding the same result in both cases.

Independence does not in general imply concurrency in the PT-net sense. For instance, con-

sider the two independent planning operators 〈{a}, {b}〉 and 〈{a}, {c}〉. The corresponding

Petri net transitions both take a token from a and therefore cannot occur concurrently.

For PT-nets in general, the converse implication does not hold either, i.e.. in some cases,

transitions that could not occur simultaneously in the planning context can be simultaneous.

For instance, consider two Petri net transitions t and t′ such that •t = {a}, t• = {b},
•t′ = {c}, and t′• = {a}. In markings in which places a and c contain a token these two

transitions can occur in any order and concurrently. If these transitions are interpreted as

planning operators 〈{a}, {¬a, b}〉 and 〈{c}, {¬c, a}〉, no concurrency is possible because

the operators are dependent. However, unlike in the general case, the concurrency relation

arising out of our translation is strictly stronger than independence:

Theorem 6.1.7 (Concurrency). Consider the statement of a classical planning problem

Ps = 〈V,A, I,G〉 and its translation to PT-net system pnet(Ps). Let o1 and o2 be operators

6.1. TRANSLATING A PLANNING PROBLEM TO A PT-NET SYSTEM 135

in A. If there are transitions t1, t2 ∈ pnet(Ps) such that t1 ∈ χ(o1), t2 ∈ χ(o2) and

t1 and t2 can occur simultaneously, then o1 and o2 are independent (and can be executed

simultaneously).

The following proof is taken from correspondence with Rintanen [145], with some minor

additions for clarity.

Proof. We prove the result contra-positively, assuming that o1 and o2 are not independent

and showing that this implies t1 and t2 cannot fire simultaneously.

Let t1 = 〈P1, E1〉 and t2 = 〈P2, E2〉. Assume o1 = 〈Pre1, Eff1〉 and o2 = 〈Pre2, Eff2〉 are

not independent. We analyse the possible reasons for this:

1. There is a ∈ Eff1 and ¬a ∈ Pre2. This implies â ∈ P2 and either a ∈ P1 or â ∈ P1:

(a) If a ∈ P1 then a ∈ •t1 and â ∈ •t2. By Theorem 6.1.5 M(â)+M(a) = 1 so t1 and

t2 can not be enabled (nor occur) simultaneously;

(b) If â ∈ P1 then â ∈ •t1 and â ∈ •t2. The transitions can both be enabled, but can

not occur simultaneously because M(â) ≤ 1 by 1-safety (1-safety is entailed by

Theorem 6.1.5).

The case for ¬a ∈ Eff1 and a ∈ Pre2 as well as the symmetric case with o1 and o2

interchanged are analogous.

2. There is a ∈ Eff1 and ¬a ∈ Eff2. Thus either â ∈ P1 or a ∈ P1, and either a ∈ P2 or

â ∈ P2. Exactly one of the places a and â can have a token, so either only one of the

transitions is enabled, or they are both enabled but at most one of them can occur.

The case for ¬a ∈ Eff1 and a ∈ Eff2 is analogous.

This models the semantics of the planning problem faithfully, in the sense that a plan is

valid for the planning problem exactly when the corresponding occurrence sequence is a

configuration of the Petri net, and the additive cost of the plan is the same. However, the

parallel cost will not necessarily be the same, because there are cases where two operators

are allowed to execute concurrently according to the planning semantics (as defined by

Smith & Weld [155]), but the corresponding transitions in the Petri net are not concurrent.

Consequently the causal chains may be different. This happens only when operators share a

136 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

precondition which is not negated in either of their sets of effects. An alternative translation

which can overcome this problem uses additional places to enable such operators to occur

simultaneously, thus preserving the planning semantics [166]. This is beyond the scope of

this thesis and may be the subject of future work.

6.2 Planning as Reachability Analysis

We have translated the statement of a planning problem Ps = 〈V,A, I,G〉 to a PT-net

system pnet(Ps). The problem of finding a solution plan for Ps can now be cast as a

REACHABILITYΣ problem for pnet(Ps) where the set of places we seek to mark is given

by:

G′ = (G ∩ V) ∪ {v̂|v ∈ G ∩ V }

We can now employ any of a number of approaches to solving REACHABILITYΣ. For

the reasons discussed in Chapter 3, our interest lies in on-the-fly reachability analysis via

unfolding.

6.2.1 Planning via Directed Unfolding

Having cast a planning problem as a Petri net REACHABILITYΣ problem, we can synthesise

a solution plan on-the-fly via unfolding. In particular we can use the theory of directed un-

folding to increase efficiency and/or find optimal plans with respect to different criteria. Let

pnet(Ps) = 〈P, T, F,M0〉. To employ ERV-Fly (Algorithm 4) to solve REACHABILITYΣ

for the PT-net pnet(Ps) and set of places G′ we need to define a new PT-net system:

ΣPs , 〈P, T ∪ tR, F ∪p∈G′ (p, tR) ∪ (tR, p),M0〉

This new net defines the REACHABILITYΣ problem for pnet(Ps) and G′ (see Definition 6).

To synthesise an optimal solution plan with respect to additive cost, we can employ ERV-

Fly(ΣPs ,≺f+,≺f), with g ≡ c+ and an admissible heuristic function h ≡ 0 or hmax. If

efficiency is more important than optimality, then an inadmissible heuristic function such

as hFF or hsum can instead be used.

To synthesise an solution plan with optimal parallel cost, i.e. minimal makespan, we can

employ ERV-Fly(ΣPs ,≺f ||,≺f), with g ≡ c|| and an admissible heuristic function h ≡ 0 or

6.2. PLANNING AS REACHABILITY ANALYSIS 137

hpar.

In all cases, a partially ordered plan will be synthesised, as opposed to a totally ordered

or parallel plan. In the next chapter we present empirical results for planning via directed

unfolding, in each of these contexts.

6.2.2 Probabilistic Action Effects

We want to extend planning via directed unfolding, to problems where actions have prob-

abilistic effects. However the benefits of Petri net unfolding, which are utilised in the

deterministic case, can not necessarily be reaped in the probabilistic case. The main prop-

erties of Petri net unfolding which are exploited in planning via directed unfolding, are its

concurrency semantics and factored state representation.

The concurrency semantics of Petri net unfolding allow us to avoid the arbitrary interleav-

ing of concurrent actions. However when actions have probabilistic effects, the ordering of

concurrent actions is not necessarily arbitrary. Whilst action a and action b may be inde-

pendent, executing one before the other may increase our probability of achieving the goal.

Consider the simple situation of two people, with two separate cars, in Alice Springs. The

goal is for each person to drive their car along the Stuart Highway to Adelaide. It is realistic

to assume the action of driving car a is independent of the action of driving car b, i.e. these

are concurrent actions. Now, in a deterministic world we might assume that the action of

driving will necessarily move a car (and driver) from one destination to another. Thus the

order in which the cars leave Alice Springs is indeed arbitrary. Now, suppose that car a has

a notable probability of getting a flat tire, and car b has a spare tire. Whilst the action of

car a driving out of Alice Springs is independent of the action of car b driving out of Alice

Springs, the order of these actions is definitely not arbitrary. If car a leaves first then there

is a higher probability that both cars will reach Adelaide: if car a suffers a flat tire, then

car b can provide a spare tire. Consequently, ignoring the ordering of apparently concurrent

actions can decrease the probability that our plan with achieve the goal.

Another property of Petri net unfolding which is exploited by planning via directed un-

folding, is its factored state representation. The factored state representation enables us

to only ever consider the subset of states which are reachable via causally related actions,

i.e. the final markings of local configurations. That is, in the deterministic case, we see

the world form the perspective of driver a and from the perspective of driver b; it is not

necessary to consider the different combinations of their world view. However we have just

observed that in probabilistic case, considering the global state (i.e. having both cars in our

138 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

viewpoint) can enable us to increase the probability of achieving the goal. Consequently,

limiting our consideration to “local” states can decrease the probability that our plan with

achieve the goal.

This is just one angle of the complex problem of probabilistic planning with concurrent

actions. Haar’s work on probabilistic cluster unfolding [75] reflects the fundamental diffi-

culties in consistently defining probabilities on concurrent systems. Indeed, we may decide

that there is no omniscient being overseeing car a and car b, and we have no knowledge nor

control over the order in which they leave. In this case a lack of information means we are

in fact limited to “local” states and this leads to an arbitrary ordering decision where the

concurrency semantics of unfolding may perhaps be utilised. The work of Benveniste et al

[10] is relevant to this later problem. As mentioned in Chapter 2, they propose a structure

called Markov Nets , which gives concurrency semantics to Markov Processes. A Markov

net is generated by unfolding a Petri net, and propagating probability information such that

concurrency implies probabilistic independence. Using their model is similar to having no

global state information, i.e. driving car a and driving car b are indeed probabilistically

independent.

Due to these complications, real probabilistic planning via directed unfolding is beyond the

scope of this thesis. However it is still possible to consider operators with probabilistic

effects by casting the problem to a deterministic one and replanning as necessary. The

process is as follows:

(1) Split each probabilistic operator into one deterministic operator per possible outcome.

(2) Set the cost of an operator corresponding to outcome x to −log(pr(x)), where pr(x) is

the probability of outcome x.

(3) Synthesise an optimal or sub-optimal additive cost plan via ERV-Fly(ΣPs ,≺f+,≺f),

with g ≡ c+ and admissible heuristic function h ≡ 0 or hmax, or an inadmissible heuris-

tic function hFF or hsum. Minimising the additive cost function consequently maximises

the product of the probabilities of action outcomes. That is, a plan which is optimal

with respect to additive cost corresponds to the most likely sequence of outcomes.

(4) Replan when an unexpected outcome occurs.

Whilst this solution is not ideal, replanning can in fact be the only option for large problems

where analysing all possible outcomes and synthesising a contingency plan, i.e. “real”

probabilistic planning, is too computationally demanding.

6.3. COMPARISON WITH CLASSICAL PLANNING METHODS 139

6.3 Comparison with Classical Planning Methods

Weld comments that “the nature of the space being searched by an algorithm is (somewhat)

in the eye of the beholder”[169, p. 33]. He supports this with the example of forward state

space search, which could be viewed as searching the plan space by considering a node as

the current path. Traversing to a neighbouring node involves appending a new applicable

action to the end of the path. So let us begin by comparing the classical approaches to

state space planning and plan space planning, with planning via directed unfolding, from

the perspective of the plan space. The idea here is similar in spirit to Kambhampati’s

unifying framework of refinement planning [89, 88, 90], however we avoid the level of

detail, formality and manipulation required to properly cast planning via directed unfolding

as refinement planning.

Nodes in the search space are partial plans, consisting of a set of actions and a set of

ordering constraints. Traversing from one node to another involves adding a new action or

ordering constraint to the partial plan. As with refinement planning, there are two types of

constraints between pairs of actions:

(a) A precedence constraint specifies that one action must be applied after another with-

out precluding other actions to come between the two.

(b) A contiguity constraint specifies that one action must be applied immediately after

the other.

In forward state space planning, a refinement involves adding an action a and a contiguity

constraint specifying that a must come immediately after the last action added to the plan.

In other words, the space of totally ordered plans is being traversed in a forward manner.

We could explain backward state space planning analogously.

In both traditional plan space planning and planning via directed unfolding, a refinement

involves adding an action a and possibly (but not necessarily) precedence constraints be-

tween a and other actions in the plan. In traditional plan space planning, a constraint may

require a to come before or after an existing action. In planning via unfolding, a constraint

will only ever require a to come after an existing action. Furthermore, when unfolding,

a will necessarily be ordered with respect to all other interacting actions. In plan space

planning such ordering is generally postponed until it is absolutely necessary. That is, the

preset and postset conditions of an event in the unfolding can be considered to play the role

of causal links in POCL planners, and an event (which maps to an action) is always included

in a manner that does not threaten these causal links. As an aside, following this analogy

140 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

further, the complete unfolding reveals all possible ways in which a threat can be resolved.

From a purely pragmatic perspective, planning via unfolding provides valuable insight to

the planning process. From another perspective, the level of commitment is related to the

fact planning via directed unfolding performs a forward traversal of the space of partially

ordered plans whilst traditional partial order planning algorithms perform a non directional

search.

We can conclude that planning via directed unfolding makes less commitments than state

space planning, and more commitments that traditional plan space planning. Thus it is

more likely that the goals in a problem will be trivially serialisable when planning via un-

folding than state space planning, but less likely than for traditional plan space planning.

Conversely, the commitments made when planning via unfolding make it easier to iden-

tify when a solution is found than in plan space planning. It is arguably on par with state

space planning in this respect. However it is more difficult to perform a plan refinement

operation when planning via unfolding than state space planning; the difference with re-

finement in plan space planning is less apparent and requires more detailed complexity

analysis. Kambhampati [90] recommends selecting a planner “with the highest commit-

ment, and with respect to whose class of (sub) plans, most goals in the domain are trivially

serialisable”. Thus, planning via unfolding provides a different balance on the scales of

commitment and trivial serialisability.

In addition, the previous chapter highlighted the significant improvement in the scalability

of state space planning, accredited to the power of state based heuristic functions. Tra-

ditional plan space planning algorithms can not utilise these heuristics, as their level of

commitment and non-directional manner preclude associating a partial plan with a state of

the world. Meanwhile, planning via unfolding makes sufficient commitments to map a node

in the search space state to a state of the world, and thus can utilise the recent development

in state based heuristics.

To further understand the spirit of planning via unfolding, one might find it useful to view

the PT-net unfolding as a powerful planning graph, where conditions and events play the

role of the graph’s proposition and action nodes, respectively. There are a number of im-

portant differences, however. Firstly, whilst the planning graph performs an approximate

reachability analysis, the unfolding computes reachability exactly: a by-product of the Petri

net semantics is that all mutexes (not just binary ones) are propagated and accounted for

when determining sets of possible events. Secondly, the unfolding duplicates nodes as

needed to guarantee post-uniqueness, i.e. that conditions (proposition nodes) have a unique

event (action node) as predecessor. A consequence of these differences is that plans can

6.4. THE PUP SUITE 141

be extracted from the unfolding in time linear in their length, while plan extraction from

the planning graph requires search. Finally, there is no global notion of level in the un-

folding. Instead, there is an asynchronous vision of time which confers on independent

sub-problems their own local levels. Consequently, the unfolding lends itself more easily

to the generation of partially-ordered plans with optimal additive cost, or optimal makespan,

while the planning graph is better suited to producing step-optimal parallel plans.

6.4 The PUP SUITE

The PUP SUITE is a collection of planners which translate a classical planning problem Ps

into a Petri net reachability problem defined by ΣPs and employ the ERV-Fly Algorithm

to synthesise a solution plan, using the theory of directed unfolding for the purpose of

optimisation and/ or efficiency. PUP is an acronym for Petri net Unfolding Planning. The

term is similar to POP (Partial Order Planning) in reflection of the fact PUP is a form of

partial order planning.

The Planning Domain Definition Language (PDDL, see [115] and [3]) unifies the STRIPS

representation of classical planning, and a growing range of extensions such as durative

actions and actions with probabilistic effects. It was developed primarily to facilitate the

International Planning Competitions to be discussed shortly. The continuing extensions to

PDDL have a secondary effect of directing the focus of automated planning research.

The first PDDL to PT-net translator, based on the theory presented in this chapter, was writ-

ten by Sylvie Thiébaux. Thiébaux’s translator, called PETRIFY, parses a PDDL domain file

and PDDL problem file, and writes an ll net (lower level net) file. The PDDL domain and

problem files together describe the statement of a classical planning problem Ps. The ll net

file describes the PT-net representation of Ps, i.e. ΣPs , in the format required by MOLE.

The ll net format [14] was originally proposed by the creators of PEP tool2 (Programming

Environment based on Petri nets), and adopted by the creators of MOLE to facilitate inter-

action between the two tools. It was necessary for us to extend the original ll net syntax to

include a rational cost value in the the attributes of each transition. PETRIFY also parses

Probabilistic PDDL (PPDDL, see [174]), which is an extension to PDDL that describes

operators with probabilistic effects. In this case, PETRIFY splits each operator into several

deterministic ones and maps their cost to the negative log of their probability (as described

earlier in this chapter).

2http://theoretica.infomatik.uni-oldenburg.de/∼pep/

142 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

Following the development of PETRIFY, Patrik Haslum wrote another PDDL to PT-net

translator, also based on the theory in presented in this chapter. Haslum’s translator is ad-

ditionally able to parse the PDDL description of a planning problem with durative actions,

mapping the cost of a transition to the duration of the action it represents. With respect to

the planning problems considered in this thesis, the choice of translator is arbitrary, except

that only PETRIFY processes probabilistic operators and only Haslum’s translator handles

durative actions.

As mentioned previously, we have extended MOLE to implement the various versions of

ERV-Fly described in Chapter 4 (and referred to earlier in this chapter with respect to their

application to plan synthesis). The PUP SUITE PDDL to PT-net TRANSLATOR incorporates

both Thiébaux and Haslum’s translators (with only one being applied for a given problem)

and our extended version of MOLE, as shown in Figure 6.2. The user must specify whether

to direct the unfolding using the additive or parallel cost function, and which heuristic

function to employ. We will refer to the options as follows:

� PUP+ h0: PUP SUITE synthesises a solution plan for Ps via ERV-Fly(ΣPs ,≺f+,≺f),

with g ≡ c+ and h ≡ 0;

� PUP+ hmax: PUP SUITE synthesises a solution plan for Ps via ERV-Fly(ΣPs ,≺f+

,≺f), with g ≡ c+ and h ≡ hmax;

� PUP+ hsum: PUP SUITE synthesises a solution plan for Ps via ERV-Fly(ΣPs ,≺f+

,≺f), with g ≡ c+ and h ≡ hsum;

� PUP+ hFF: PUP SUITE synthesises a solution plan for Ps via ERV-Fly(ΣPs ,≺f+,≺f),

with g ≡ c+ and h ≡ hFF;

� PUP|| h0: PUP SUITE synthesises a solution plan for Ps via ERV-Fly(ΣPs ,≺f ||,≺f),

with g ≡ c|| and h ≡ 0; and,

� PUP|| hpar: PUP SUITE synthesises a solution plan for Ps via ERV-Fly(ΣPs ,≺f ||,≺f),

with g ≡ c|| and h ≡ hpar.

The output of the PUP SUITE is a partially ordered plan π represented by a set of operators

and their ordering constraints. Following this is a mapping start: o → {0} ∪ R+, for all

o ∈ π, where start(o) is the time (with the origin at 0) at which operator o must be executed

in order to minimise the total execution time of this particular plan. In addition, the length,

6.4. THE PUP SUITE 143

Ps

(PDDL domain and

problem files) Translator

ΣPs

(ll net file)

Partially

ordered

solution

plan for

Ps

g ∈ {c+, c||} and h ∈ {h0, hmax, hsum, hFF , hpar}

Mole

Pup+h0

Pup+hmax

Pup+hsum

Pup+hFF

Pup||h0

Pup||hpar

Figure 6.2: The PUP SUITE. User input is displayed inside dashed boxes. The user must

provide PDDL domain and problem files describing the statement of a planning problem

Ps, and select which cost function g and heuristic function h to use to direct the unfolding.

The TRANSLATOR casts Ps to a PT-net reachability problem defined by ΣPs , and writes an

ll net file describing ΣPs . The ll net file is read by MOLE. In accordance with the user’s

specification of g and h, MOLE calls one of the PUP planners to solve the reachability

problem defined by ΣPs , and subsequently prints a partially ordered a solution plan forPs.

144 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

unit-makespan, additive and parallel costs of the plan are all displayed regardless of how

the unfolding was directed. Obviously, if actions have unit cost then the length is equal to

the additive cost and the unit-makespan is equal to the parallel cost. The plan flexibility (a

concept to be defined shortly) is also given.

REPUP is a version of the PUP SUITE that addresses probabilistic operator effects via re-

planning. REPUP is a patch over MDPSIM3, a client/ server style simulator used to evaluate

planning systems in the Probabilistic Track of the International Planning Competitions.

REPUP calls the translator and MOLE software as appropriate. To begin, REPUP invokes

the translator to map the PPDDL description of the planning problem to a PT-net ΣPs . It

then calls on MOLE to run ERV-Fly(ΣPs ,≺f+,≺f), with g ≡ c+ and h as specified by

the user (i.e. h ≡ 0, hsum, hmax or hFF). The probabilistic operator o corresponding to the

first deterministic operator o′ in the plan synthesised by MOLE is sent to the MDPSIM

server to simulate execution. MDPSIM then indicates the new state s of the world; if s

corresponds to the state resulting from execution of o′ then the current plan continues to

be applied. Otherwise, it must be that the execution of o resulted in a different outcome

than expected. REPUP then changes the initial marking of ΣPs to s and re-calls MOLE to

run ERV-Fly(ΣPs ,≺f+,≺f) in order to synthesise a new plan where the first action will

necessarily be applicable to s.

We now present empirical results which illustrate the performance of the PUP SUITE across

a range of planning problems.

6.4.1 Artificial Problems

Our first experiment supports the claim that planning via unfolding can be exponentially

more efficient than planning via state space search, and that the difference lies in the level

of concurrency. Consider an artificially constructed planning problem in which the goal is

a conjunction of n sub-goals. The ith sub-goal is achievable by a sequence Ai of length i.

TheAis are disjoint. Each action ai,j inAi has a unique precondition ei,j−1 which it negates,

and one positive effect ei,j , which acts as precondition of the next action ai,j+1 and so on.

Proposition ei,0 is true in the initial state, ei,i is the ith sub-goal, and the ei,j are all different

propositions. The degree c of concurrency in the problem varies from 1 (sequential) to n

(fully concurrent) by making the ith sub-goal a precondition to the execution of the i+ 1th

sequence (i.e., ei,i is a precondition of ai+1,1), for i = c . . . n− 1.

The graph of Figure 6.3 shows the number of nodes expanded by forward state space search

3http://www.ldc.usb.ve/∼bonet/ipc5/

6.4. THE PUP SUITE 145

3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

n (c=1..n)

N
um

be
r

of
 e

xp
an

si
on

s
Artificial

sps h0

sps hmax

PUP+ h0

PUP+ hmax

Figure 6.3: Artificial Problem

(sps) and unfolding (PUP+), each using the 0 and hmax heuristics, for n = 3 . . . 10 and c

varying from 1 to n in each case. To ensure fairness, we report the number of nodes ex-

panded to prove optimality (to prove that there is no solution of cost less than the optimal)

rather than to find the optimal solution. The figure clearly shows that, as c increases, the

performance of state space search degrades exponentially, while the number of nodes ex-

panded by the unfolding is constant (it equals n(n + 1)/2, the number of actions in the

plan). The hmax heuristic makes no significant difference except in the purely sequential

case where it enables both techniques to prove optimality without search. State space search

fails to solve some of the problems as early as n = 9, while unfolding solves all problems

of size n = 100 (not shown in the figure) in a couple of minutes each, producing plans over

5000 actions long.

6.4.2 IPC Benchmarks

The International Planning Competition (IPC) 4 is a biannual event aimed to assist in bench-

marking the latest planners. This empirical evaluation assists in identifying the strengths

and weaknesses of various techniques. This comparison is limited however by the particu-

4http://ipc.icaps-conference.org

146 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

lar selection of benchmark problems. Furthermore, in general, it is difficult to decouple the

different causes of complexity in the IPC benchmarks.

We ran STRIPS formulated experiments from IPC-1 (also known as the AIPS-98 planning

competition), IPC-2 (the AIPS-00 planning competition), IPC-3, IPC-4 and IPC-5. In do-

mains that fully disallow concurrency, such as the POWER SUPPLY RESTORATION (PSR)

domain from IPC-4, and OPENSTACKS from IPC-5, the number of nodes expanded by

unfolding and state space search is identical for a given heuristic and so unfolding gives

no advantage. In domains that have some degree of concurrency, unfolding scales better

than state space search however the later can often be faster since it is more expensive to

process a node in the unfolding than in the state space. Unfortunately, in nearly all do-

mains the level of concurrency is insufficient to exploit the benefits of unfolding, and we

witnessed the unfolding growing exponentially in the size of the PT-net representation (i.e.

the worst case complexity). This problem was often aggravated by the translation of oper-

ators to equivalent one-safe ones causing a significant explosion in the size of the PT-net

representation. Consequently the PUP SUITE could generally tackle only small IPC prob-

lem instances and plan synthesis commonly failed for larger problems due to insufficient

memory. Fortunately however there are two benchmark domains with a relatively high

level of concurrency, which we can use to illustrate the benefits of planning via unfolding:

AIRPORT and PIPESWORLD, both from IPC-4.

The AIRPORT [85] world model captures the topology of an airport relevant to ground traf-

fic; the AIRPORT planning problem is to control the ground traffic such that inbound and

outbound planes are sent to appropriate parking and runway positions respectively without

endangering each other. Five scaling airport topologies appear in the IPC-4 benchmarks,

with the second largest of these corresponding to one half the Munich airport MUC. As

would be the case in real airport ground traffic control problems, planes can (and for effi-

ciency should) be moved concurrently. Thus this is an appropriate domain for PUP.

PIPESWORLD [85] models a pipeline network for transporting oil derivative products. The

planning problem is to transport products through the pipelines to their appropriate loca-

tion. Logistical challenges include the fact that pipelines must always be filled with liquid;

inserting one product at one end can cause another to come out at the other end, and certain

products can not come into contact in the pipe. The IPC-4 benchmarks cover five scaling

pipeline topologies. This is an appropriate domain for PUP because products can be put

into different pipelines concurrently.

The nature of the operators in both the AIRPORT and PIPESWORLD domains is such that

the notion of concurrency in the PT-net generated by our translation is guaranteed to co-

6.4. THE PUP SUITE 147

incide with that allowed in the original planning problem. That is, no operators share a

precondition which is not negated in either of their sets of effects.

What is clear from the results which follow, is that given a domain with a sufficient level of

concurrency, the PUP SUITE is consistently competitive with current state of the art planners

with respect to suboptimal and optimal classical planning and optimal temporal planning.

That is, it is irrelevant whether the cost function is additive or parallel and whether action

costs are unitary or arbitrary positive numbers. This is quite uncommon if we consider

other current state of the art planners, and is reflective of the fact the PUP approach sits

somewhere between state space and plan space planning thus offering some of the benefits

of each.

Translation Time

In the results which follow the runtime is the CPU time required for plan synthesis only; it

does not include the time taken to translate a PDDL description of a planning problem to a

PT-net.

For AIRPORT the translation time increases from 0.02 seconds to 24 seconds, for problems

1 -20. For problems 21 and above, which correspond to half the Munich Airport, the

translation time increases from 3 minutes to nearly 1.5 hours. Translating the temporal

version of problems 21 and above takes significantly more time, ranging from 1 hour to 50

hours.

For PIPESWORLD the translation time increases from 0.14 seconds to 69 seconds across

the problem instances. There is only a slight increase for the temporal version, for which

the longest translation time is 89 seconds.

Interestingly, whilst the PT-net representations of AIRPORT are significantly larger than

those for PIPESWORLD, PUP’s runtimes are generally faster for AIRPORT. We conjecture

that the level of concurrency is much higher in AIRPORT, making it more amenable to plan-

ning via unfolding. This reflects of the scalability of PUP for highly concurrent domains.

Suboptimal Classical Planning

We first present experimental results for PUP guided by the additive cost function and an

inadmissible heuristic (hFF or hsum), to evaluate its qualities as a suboptimal planner.

148 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

5 10 15 20 25 30
10

−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Airport − Suboptimal

FF
LPG−Td
SGPlan
PUP+ hsum

5 10 15 20 25 30

10
−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld − Suboptimal

FF
LPG−Td
SGPlan
PUP+ hFF

Figure 6.4: Results for AIRPORT and PIPESWORLD - Suboptimal Classical Planning

For comparison, we ran three of the best suboptimal classical planners today: FF5 [86],

5http://members.deri.at/∼joergh/ff.html

6.4. THE PUP SUITE 149

LPG-TD6[66] and SGPLAN7 [37]. FF is basically a variant of HSP, performing a forward

state space search guided by the FF heuristic described in Chapter 4. FF was awarded

for Outstanding Performance in IPC-2 and Top Performer in the STRIPS track of IPC-

3. LPG-TD (Local Planning Graphs) can handle domains with arbitrary action costs and

durative actions. Each point in its search space is an action graph, which is a sub-graph

of the planning graph representing a partial plan. The search traverses from one point to

another via graph modifications. LPG-TDś predecessor, LPG, was awarded Distinguished

Performance of the first order in IPC-3. SGPLAN partitions the planning problem into sub-

problems, each with their own sub-goal. Each sub-problem is hierarchically decomposed

and irrelevant actions are eliminated. A modified version of FF is called to solve each

bottom level sub-problem. If FF is deemed inappropriate then LPG-TD is called.

The results presented here are for the STRIPS formulations of AIRPORT non temporal and

PIPESWORLD notankage-nontemporal domains. All planners were run on a Pentium M

1.7GHz with a 2GB memory limit and 1 hour time limit. LPG-TD was implemented with

the quality option; this means it finds a plan then spends a certain amount of CPU time

trying to improve it. It would likely be more efficient with the speed option, however we

wish to also consider plan length.

In the AIRPORT domain, all tested planners synthesised plans of the same length, which

also equal the best (i.e. shortest) plan length reported by any suboptimal planner in IPC-4.

We conjecture that these problems have a single, obvious solution that all planners find.

For clarity we only show the results for PUP+ hsum which performed slightly better than

PUP+ hFF on many problem instances. For most problems, PUP is faster than LPG-TD and

comparable with SGPLAN, but on larger problems SGPLAN is faster. FF is faster than all

three other planners for approximately half the problems, and equally slower for the other

half.

Results in PIPESWORLD are more interesting. Again, for clarity, we show the results

for just one of the PUP planners. In this case, PUP+ hFF, which slightly outperformed

PUP+ hsum. PUP’s runtimes are very competitive with LPG-TD and fall short of SGPLAN

and FF’s (which are quite similar). However PUP finds plans of superior quality, not only to

the other planners in this comparison but in many cases shorter than the best result reported

by any planner in IPC-4. See Table 6.1.

6http://zeus.ing.unibs.it/lpg/
7http://www.cs.washington.edu/ai/sgp.html

150 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

id 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

pup 14 13 18 20 24 16 30 26 42 22 30 26 32 14 31 18 24 35 39 28 35 33 40
best 10 14 20 20 24 20 30 26 70 22 30 28 38 14 35 18 37 42 55 30 47 40 51

Table 6.1: Plan length reported by PUP with hFF vs best length reported by any suboptimal

IPC-4 planner (PIPESWORLD)

Optimal Classical Planning

We now consider the PUP SUITE’s potential for optimal classical planning. Again we

used the STRIPS formulations of AIRPORT non temporal and PIPESWORLD notankage-

nontemporal domains, and all planners were run on a Pentium M 1.7GHz with a 2GB

memory limit and 1 hour time limit.

With the exception of HSP∗0 we are not aware of any IPC planners currently capable of

optimising the sum of arbitrary action costs. Thus, for fair comparison, we compare the

performance of PUP+ h0 and PUP+ hmax with HSP∗0.

The AIRPORT and PIPESWORLD domains do not differentiate between actions costs. So,

we first look at synthesising an optimal plan with respect to length (i.e. the additive plan

cost when every action has unit cost). Figure 6.5 shows the runtimes for AIRPORT and

PIPESWORLD. In AIRPORT, PUP clearly outperforms HSP∗0. This is not unexpected, since

PUP outperformed the heuristic search planner FF in the suboptimal domain. Note that

PUP+ hmax consistently outperforms PUP+ h0 in this domain, so for clarity we do not in-

clude the later. In PIPESWORLD the results are more mixed, with PUP+ hmax and HSP∗0

alternately outperforming each other. However both PUP+hmax and PUP+h0 are able to

solve some of the larger problem instances beyond the capability of HSP∗0. These results

confer with the suboptimal case, where suboptimal PUP was slightly slower than the heuris-

tic state space planner FF in PIPESWORLD.

Since the PUP SUITE can consider actions with arbitrary costs, we decided to modify

PIPESWORLD to differentiate between the cost of operators. We reasoned that it may be

more expensive, difficult and/ or dangerous to handle one product compared to another.

So, all oil derivative products in a particular problem instance were randomly assigned a

rational number between 0.001 and 10. This number represents the cost of pushing a batch

of this product into a pipeline. The goal is to transport products to the specified location

with minimal additive cost. We ran PUP+ hmax, PUP+ hsum, LPG-TD and HSP∗0. Figure 6.6

shows the runtimes (top graph) and additive costs (bottom graph) of the solution plans. We

do not include HSP∗0 in the later, since it generates plans with the same cost as those found

by PUP+ hsum.

6.4. THE PUP SUITE 151

5 10 15 20 25
10

−2

10
−1

10
0

10
1

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Airport − Optimal length

HSP*
0

PUP+ hmax

2 4 6 8 10 12 14 16

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld − Optimal Length

HSP*
0

PUP+ hmax

PUP+ h0

Figure 6.5: Results for AIRPORT and PIPESWORLD - Optimal Classical Planning with

respect to Length

152 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

5 10 15 20 25

10
−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld − Additive Cost

HSP*
0

LPG−Td
PUP+ hsum

PUP+ hmax

5 10 15 20 25

10
1

10
2

IPC−4 Instance ID

C
os

t

Pipesworld − Additive Cost

LPG−Td
PUP+ hsum

PUP+ hmax

Figure 6.6: PIPESWORLD - Optimising Additive Cost

6.4. THE PUP SUITE 153

The two optimal planners, HSP∗0 and PUP+ hmax, are able to solve approximately the same

subset of problems as for the unit cost case. PUP+ hmax is faster than HSP∗0 for most prob-

lems, and able to solve some larger problems beyond the reach of HSP∗0. For the first half

of the problems PUP+ hsum is faster than LPG-TD however LPG-TD finds plans with lower

cost; in a couple of cases LPG-TDś plan cost is optimal. Results for the second half of the

problems are more mixed, but the slower planner generally finds the better solution.

Assigning arbitrary costs did not seem appropriate for AIRPORT since the suboptimal re-

sults indicate there is a single obvious solution to each of these problems.

We now look at synthesising an optimal plan with respect to its number of parallel plan

steps (i.e. the parallel cost of a plan when every action has unit cost). As mentioned previ-

ously, by nature CSP based planning techniques are amenable to optimal parallel planning.

Thus it is not surprising that the leading planner for such problems is SATPLAN06 [91].

SATPLAN06 ranked joint first for Optimal Planning (Propositional Domains) in IPC-5. Its

predecessor SATPLAN04 ranked first in IPC-4. We also ran TP4, an optimal planner from

the HSP∗ family, to provide comparison with state space heuristic search.

The graphs in Figure 6.7 show the run-times of PUP|| hpar, SATPLAN06 and TP4 for AIR-

PORT and PIPESWORLD. As mentioned, in both domains, the concurrency in the net gen-

erated by our translation is guaranteed to coincide with that allowed in the original planning

problem. Thus, for a given problem, PUP|| hpar synthesises a solution plan with the same

number of time steps as the plans identified by SATPLAN06 and TP4.

PUP clearly outperforms both SATPLAN06 and TP4 on AIRPORT, solving more problems

faster, but is equally clearly outperformed by SATPLAN06 on PIPESWORLD. These results

are not surprising: SATPLAN06 is well known to excel on problems with short optimal

parallel plans, as is the case for PIPESWORLD, whilst the PUP SUITE can handle longer

optimal plans, provided there is a significant level of concurrency in the world model (as

appears to be the case for AIRPORT).

We have combined the preceding PUP results for PIPESWORLD to compare its performance

for different cost functions. The top graph in Figure 6.8 shows the runtimes for PUP+ hmax

optimising length and arbitrary additive costs, and PUP|| hpar optimising the number of

steps. Recall that hpar is a temporal adaption of the hmax heuristic, so this is a reasonable

comparison. Interestingly, the problems solved and the runtimes are very similar. There are

some discrepancies in the larger problems, but nothing consistent to indicate PUP optimises

one cost function more easily than another. The bottom graph in Figure 6.8 shows the

runtimes for PUP+ hsum considering the length and arbitrary additive costs. Up to problem

23 the results are quite similar with just a few outliers. In the larger problems it appears

154 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

5 10 15 20 25 30
10

−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Airport − Optimal number of steps

SATPLAN06
TP4
PUP|| hpar

5 10 15 20

10
−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld − Optimal number of steps

SATPLAN06
TP4
PUP|| hpar

Figure 6.7: Results for AIRPORT and PIPESWORLD - Optimal Classical Planning with

respect to number of time steps

6.4. THE PUP SUITE 155

5 10 15 20

10
−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld

PUP+ hmax (additive cost)
PUP+ hmax (length)
PUP|| hpar (step cost)

5 10 15 20 25 30

10
−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld

PUP+ hsum (additive cost)
PUP+ hsum (length)

Figure 6.8: PIPESWORLD - Optimising Length vs Additive cost vs Number of steps

156 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

easier for PUP to consider plan length rather than arbitrary additive cost. Unfortunately

these problems were beyond the reach of the optimal PUP planners so we do not know if a

similar pattern would have followed.

Optimal Temporal Planning

We now look at optimal temporal planning, i.e. minimising makespan. We used the

STRIPS formulations of AIRPORT temporal and PIPESWORLD notankage-temporal do-

mains. Again all planners were run on a Pentium M 1.7GHz with a 2GB memory limit and

1 hour time limit.

We compared the temporal version of PUP, employing the hpar heuristic, with CPT2, the

most recent version of CPT[165]. Like PUP|| hpar and PUP|| h0, CPT2 is optimal with

respect to makespan, and is likely the best optimal temporal planner, overall, at the moment.

CPT2 was awarded Distinguished Performance in Temporal Domains in IPC-5. CPT2 uses

POCL planning together with constraint propagation techniques for pruning in search. For

comparison with heuristic guided state space search we again ran TP4, which is also able

to consider arbitrary action durations.

The semantics of the plans synthesised by PUP is the same as that of CPT2 and TP4: in-

terfering actions are not allowed to overlap in time (as described in [155]). Also, for the

considered domains, the notion of concurrency in the PT-net generated by our translation is

equivalent to that allowed in the original planning problem. Thus, PUP|| hpar and PUP|| h0

synthesise plans with the same minimal makespan as those synthesised by CPT2 and TP4.

As shown in the graphs of Figure 6.9, PUP is generally faster than CPT2 and always faster

than TP4 in the AIRPORT domain. However CPT2 is able to solve some of the larger

problems where the available memory is insufficient for PUP. TP4 is only able to solve half

the problem instances.

In PIPESWORLD the results of PUP and CPT2 are mixed, with both solving some problems

not solved by the other, and both being sometimes faster. TP4 solves less than half the

problems; in these cases the runtimes are comparable with PUP’s.

Replanning

We ran REPUP on two benchmarks from the Probabilistic Track of IPC-5, TIREWORLD

and ZENOTRAVEL, to see its potential for considering actions with probabilistic effects via

6.4. THE PUP SUITE 157

5 10 15 20 25

10
−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Airport Temporal − Optimal Makespan

CPT2
TP4
PUP|| hpar

5 10 15 20
10

−2

10
0

10
2

IPC−4 Instance ID

R
un

tim
e

(s
ec

on
ds

)

Pipesworld Temporal − Optimal Makespan

CPT2
TP4
PUP|| hpar

Figure 6.9: Results for AIRPORT and PIPESWORLD - Optimal Temporal Planning

158 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

replanning. We ran each problem 30 times, on a Satellite M70 with a 1GB memory limit,

and 1 hour time limit (for all 30 runs).

Figure 6.10 shows the percentage of problems solved for TIREWORLD and ZENOTRAVEL.

We ran REPUP with h = hmax, hsum and hFF, but for clarity have only shown the best result

here. Also, in these graphs, we have included the published results8 for FF-REPLAN [173]

and FPG [27]. As mentioned previously, for each probabilistic action, FF-REPLAN cre-

ates one deterministic action per possible outcome and uses a version of FF to synthesise a

plan. Conversely FPG is a “real” probabilistic planner that attempts to build a contingency

plan with maximum probability of achieving the goal. FPG [27] (Factored Policy Gradient

planner) performs a stochastic local search in the policy space using Policy Gradient rein-

forcement learning [8]. A policy is a state-action assignment, i.e. in state s execute action a.

Rather than estimating state-action values, FPG learns the gradient of the long-term value

of the initial state, based on parameters summarising the policy (i.e. the plan). Changing

the parameters in the direction of the gradient increases the value of the initial state with

respect to the plan. FPG ranked first in the Probabilistic Track of IPC-5.

In TIREWORLD the goal is to drive to a particular destination. This involves deciding

what route to take, with the implication that a tire may go flat and some (longer) routes

pass through locations where a spare tire can be obtained. TIREWORLD does not have any

concurrent actions however the problems are sufficiently small for PUP to identify a plan,

where possible. However PUP never chooses to pick up a spare tire, because the probability

of not getting a flat tire is higher than getting one (0.6 vs 0.4). Consequently, there is a

40% possibility that the car becomes stranded, with no action possible. This is reflected

by the fact the average success rate of REPUP over all 15 problems is 65%. FF-REPLAN

appears to have a similar problem. In the case when the car gets a flat tire, PUP immediately

identifies the goal propositions are not reachable and ends the problem. This is an example

of a probabilistic problem where replanning is not appropriate, because achieving a higher

success rate requires constructing a contingency plan. This said, FPG performs no better

and, as the problem size increases, it may not be possible to use real probabilistic planning

and replanning may be the only viable option.

ZENOTRAVEL involves flying people to specified cities. There are multiple planes that can

be boarded, disembarked and flown concurrently. This suggests there may be benefit in

planning via unfolding. However the level of concurrency gradually decreases across the

problem instances because the number of locations, and the number of people to board and

disembark, increases more rapidly than the number of aircraft. Consequently PUP does

8www.ldc.usb.ve/∼bonet/ipc5/docs/results-probabilistic.pdf

6.4. THE PUP SUITE 159

not scale well, and we see an immediate drop in the success rate from 100%, in problems

1-10, to 0% thereafter, when the number of events in the unfolding causes the accumulative

node processing time to meet the time limit. The perfect success rate in problems 1-10

can be accredited firstly to the fact there are no “dead ends” in this planning world (unlike

TIREWORLD), i.e. it is possible to reach the goal from any state, and secondly to the suffi-

ciently small size and/ or sufficiently high level of concurrency. REPUP’s success rate for

ZENOTRAVEL exceeds that of any of the probabilistic planners entered in IPC-5. However,

we contend that this reflects the “probabilistic uninterestingness”[107] of ZENOTRAVEL,

rather than the effectiveness of REPUP which is itself outperformed by FF-REPLAN.

None of the probabilistic planning benchmarks have a sufficient level of concurrency to

exploit the benefits of unfolding. We conjecture that REPUP is appropriate for planning

worlds with a high level of concurrency (as for the deterministic case), and where replan-

ning is a satisfactory alternative to “real” probabilistic planning. With respect to the later,

Thiébaux and Little [107] summarise the circumstances in which replanning is appropriate;

the main result relevant to us here, is that either there exist no dead ends, or contingency

planning can not reduce the probability of reaching a dead end.

Plan Flexibility

In [130] Nguyen and Kambhampati present the case of partial order planning versus Graph-

plan and state space planning. One of their main arguments in favour of partial order plan-

ning algorithms is the execution flexibility of partially ordered plans. Nguyen and Kamb-

hampati define a plan’s flexibility as the average number of actions in the plan that do not

have any precedence relations among them. For each action a in plan π, flex(a) is the

number of actions in π that do not have any direct or indirect ordering constraint with a.

Flex(π) is the average value of flex over all the actions in π. The higher this value, the

higher the number of orders in which a plan can be executed. We observe that this measure

is biased towards plan length. So, we define the unbiased flexibility as

flexibility

plan length− 1
.

This value will be between 0 and 1. If a plan has an unbiased flexibility of 0 then it must

necessarily be totally ordered. A value of 1 means every action is independent of every

other action. If a plan has an unbiased flexibility of 0.5 then, on average, every action is

independent of half the other actions in the plan.

So far, we have looked at how quickly PUP can solve a planning problem, and assessed

160 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100
TireWorld − success rate

%
 p

ro
bl

em
s

so
lv

ed

IPC−5 Instance ID

FF−Replan
FPG
REPUP+ hsum

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100
ZenoTravel − success rate

%
 p

ro
bl

em
s

so
lv

ed

IPC−5 Instance ID

FF−Replan
FPG
REPUP+ hFF

Figure 6.10: Results for BLOCKSWORLD, TIREWORLD and ZENOTRAVEL.

6.4. THE PUP SUITE 161

the quality of a solution plan by its length, parallel cost, additive cost and/or makespan.

Obviously, each of these qualities depend on the heuristic function used to direct PUP. We

now wish consider the unbiased execution flexibility of plans synthesised by PUP. Again,

but perhaps less obviously, it is evident that this quality depends on the heuristic function

employed. As mentioned previously, we applied PUP to all IPC benchmarks with a STRIPS

formulation. We observed that for a given problem, PUP+ hsum often generates a plan with

less flexibility than the plan synthesised by PUP+ hFF. This suggests that, for the IPC

benchmarks at least, the hsum heuristic tends to direct the unfolding in a depth-first manner,

preferring to extend the same local configuration. Alternatively, we conjecture that the

hFF heuristic tends to direct the unfolding in a breadth-first manner, preferring to build

independent local configurations and join them together.

Nguyen and Kambhampati [130] present empirical results for REPOP and Graphplan on a

range of problems based on IPC benchmarks. As mentioned in the previous chapter, REPOP

is a variant of UCPOP, developed by Nguyen and Kambhampati. In particular, the length,

parallel cost and flexibility of solution plans are given, with aim to display the superior

quality of partial order planning solutions. Since PUP also performs partial order planning,

we decided to compare the flexibility of plans synthesised via unfolding, versus those built

using REPOP and Graphplan. We ran PUP on a subset of the planning problems used in

[130] 9. We avoided those domains which fully disallow concurrency (referred to as serial

domains in [130]), since any solution plan will necessarily have a flexibility of 0.

Table 6.2 presents the results of PUP+ hFF, which had the best performance overall amongst

planners in the PUP SUITE. The table includes results for REPOP and Graphplan, as pub-

lished in [130]; note we have unbiased the flexibility value using the number of actions in a

plan. These results are mixed and inconclusive. In the rocket domain PUP finds solutions of

significantly better quality than REPOP, not only with respect to flexibility but also length

and makespan, and similar quality to Graphplan. In the BlocksWorld (bw) domain PUP

generates plans which are much less flexible than those of REPOP and Graphplan, but com-

parable with respect to length and makespan. In the gripper domain all three planners find

plans of equal quality, suggesting there may be a single obvious solution to each of these

problems. In the logistics domain, PUP and REPOP find plans with four times the flexibility,

half the length, and approximately equal makespan, to those found by Graphplan.

With respect to PUP at least, more research is required to understand the relationship be-

tween properties of the planning world, the heuristic, and the unbiased execution flexibility

of a plan. We can not say, from these results, whether planning via unfolding generates

9http://rakaposhi.eas.asu.edu/repop.html

162 CHAPTER 6. PLANNING VIA DIRECTED UNFOLDING

Problem RePop Graphplan PUP+ hFF

Length Makespan Unbiased Flexibility Length Makespan Unbiased Flexibility Length Makespan Unbiased flexibility

gripper-8 21 15 0.03 23 15 0.03 21 15 0.03

gripper-10 27 19 0.03 29 19 0.03 27 19 0.03

gripper-12 33 23 0.02 - - - 33 23 0.02

rocket-a 35 16 0.07 40 7 0.18 27 9 0.15

rocket-b 34 15 0.22 30 7 0.17 30 7 0.57

logistics-a 52 13 0.4 80 11 0.08 51 13 0.32

logistics-b 42 13 0.49 79 13 0.07 42 13 0.49

logistics-c 50 15 0.35 - - - 51 13 0.49

bw-large-a(9) 8 5 0.39 11 4 0.2 6 6 0

bw-large-b(11) 11 8 0.33 18 5 0.16 10 9 0.04

bw-large-c(15) 17 10 0.32 - - - 4 13 0.10

Table 6.2: Plan length, makespan and unbiased execution flexibility, for REPOP, Graphplan

and PUP+ hFF.

more or less flexible plans than POCL planning. We conjecture that, in the same way we

can not guarantee a short makespan when optimising length, there will probably be no clear

answer without orienting each of these techniques to specifically create flexible plans.

6.5 Conclusion

This chapter cast the classical planning problem presented in Chapter 5 to the PT-net

REACHABILITYΣ problem presented in Chapter 3. Considering a classical planning prob-

lem, we proposed a translation from the planning world to a 1-safe PT-net. This involved

mapping the original planning operators to an equivalent set of 1-safe operators with no

negative preconditions. The resulting net can then be extended to define a reachability

problem that is equivalent to the planning problem. It is then possible to employ the ERV-

Fly algorithm to solve the reachability problem and thus find a solution plan. Furthermore,

we can use the theory of directed unfolding to:

� Consider the additive or parallel plan cost;

� Guide the search with an admissible or inadmissible state based heuristic function.

If an admissible heuristic is used we can guarantee optimality with respect to the

considered cost function.

In this way we can minimise the total additive cost of a plan, which may be its economic cost

or simply its length. Alternatively we can minimise the makespan, or simply the number

of steps, of a plan. We also outline one way of considering probabilistic actions effects by

planning and replanning for the most likely sequence of outcomes. In all cases, a partially

ordered plan is generated.

6.5. CONCLUSION 163

In this chapter we also compared planning via unfolding with the main approaches to clas-

sical planning. We recognised that planning via unfolding makes more commitments than

traditional plan space planning approaches, but less than state space approaches. It thus

offers a different compromise between the possibility of trivially serialisable plans, and the

cost of plan refinement. Furthermore, like plan space planning it directly facilitates partial

order planning, and can “easily” be extended to consider action duration. Unlike plan space

planning, it can also utilise the informative state based heuristics which have significantly

impacted the scalability of state space planning approaches. We also made some compar-

ison between the unfolding and a planning graph, where the former performs reachability

analysis exactly.

Finally, in this chapter, we presented empirical results for planning via directed unfolding,

using benchmark problems from various International Planning Competitions. Addition-

ally, results from a broad selection of distinguished classical planners were provided for

comparison. What is clear from the results, is that given a domain with a sufficient level

of concurrency, the PUP SUITE is consistently competitive with current state of the art

planners with respect to suboptimal and optimal classical planning and optimal temporal

planning.

6.5.1 Personal Contribution and Collaboration

The translation from a classical planning world to a PT-net is an original contribution, which

resulted from collaboration with Thiébaux and Rintanen. The preliminary translation and

systematic breakdown of the challenges of maintaining logical consistency and modelling

negative preconditions and effects is my own work, and guided discussions which led to

the final translation. In the case any proof presented in this chapter is not my own, it has

been stated as such. Ideas for improvements to the translation come from discussions with

Haslum. The comparative analysis between planning via unfolding, state space planning

and plan space planning is my own work. Extensions to MOLE were made by Bonet,

Haslum, Thiébaux and myself. At the ICAPS-06 Doctoral Consortium David Smith sug-

gested applying directed unfolding to replanning, following poor experimental results when

extended to optimal probabilistic planning (this later work is beyond the scope of this the-

sis). The design of REPUP is the result of discussions between Thiébaux and myself. The

implementation of REPUP is my own work, but would not have been possible without de-

bugging assistance from Owen Thomas and Olivier Buffet. A more detailed synopsis of

the collaborative development of the theory of directed unfolding, and its application to

automated planning, can be found at the conclusion of Chapter 4.

This page left blank.

Chapter 7

Conclusions

By focusing on the relationship between classical planning with concurrent actions, and the

reachability problem for concurrent restricted DES, this thesis has exploited the connection

between AI planning and Petri net analysis to the advantage of both fields. Firstly, inspired

by the success of heuristic search in AI planning, we showed how problem specific informa-

tion can be employed to guide the unfolding process, resulting in a Petri net analysis tool

oriented specifically to solving the formal problem of reachability on-the-fly. Secondly,

based on unfolding, this thesis presented a new forward search method for partial order

planning which can optimise additive or parallel plan cost and utilise state based heuristic

functions for guidance. In this final chapter, we recall the two primary contributions of this

thesis separately, and consider the limitations of our work to date and possible directions

for future work.

In Part I we presented the theory of directed unfolding. This involves controlling the un-

folding process with informative strategies, for the purpose of optimality and increased

efficiency. We observed that unfolding can be considered a search process when used for

on-the-fly reachability analysis, and that its traditional implementation employs a breadth-

first search strategy. We identified conditions that ensure the reachability problem is solved

optimally with respect to a particular cost function, and crafted strategies to optimise ad-

ditive and parallel cost functions. Then, motivated by heuristic state space search in AI

planning, we showed that the cost function can incorporate a heuristic function to increase

efficiency. Furthermore, optimality can be traded for efficiency by using an inadmissible

heuristic function, rather than an admissible one. Finally, we demonstrated that a range of

heuristic functions can be adapted from AI planning and extracted directly from the Petri

net. As part of this work we also identified that the accepted requirements for a correct un-

folding strategy are stronger than necessary, opening the door to a new family of strategies

165

166 CHAPTER 7. CONCLUSIONS

for directing the unfolding.

In the context of PT-net unfolding, the theory of directed unfolding is a useful contribution

for three distinct reasons. Firstly, it broadens the function and thus application of unfolding,

due to its guarantee of optimality with respect to various cost functions. Secondly, exper-

imental results indicate a significant increase in performance, with respect to reachability

analysis, compared to the original “blind” unfolding approach. Finally, directed unfolding

enhances our understanding of the nature of unfolding, not only by challenging the require-

ments on correct strategies (e.g. semi-adequate orders), but by providing a new perspective

on unfolding. Our presentation of unfolding as search, drawing parallels and identifying

critical differences with state space search, makes directed unfolding accessible to a wider

range of researchers who are familiar with the notion of search in general, and heuristic

state space search in particular.

There are, however, obvious limitations of the work to date. Whilst empirical results il-

lustrate that directed unfolding provides a significant performance improvement over the

original breadth-first implementation featured in MOLE, the actual difference depends on

the particular problem and the heuristic function employed. For example, experimental

results for the Petri net benchmark DARTES (see Chapter 4) suggest that the overhead in

computing heuristic functions can outweigh their benefit for smaller problems. This is

a problem inherent in forward search, see [19]. Possible solutions include switching to

heuristics which only need to be computed once, such as pattern databases heuristics [48].

Alternatively, we could investigate whether an analogue of regression search would make

sense in the unfolding space. In addition, looking at the translated classical planning bench-

marks considered in the same chapter, we see that directing the unfolding with hFF is more

efficient than with hsum, in AIRPORT, and vice versa for OPENSTACKS. Further investiga-

tion is needed to identify properties particular to a problem and search strategy (including

the heuristic function employed), which are linked to the efficiency of on-the-fly reacha-

bility analysis via directed unfolding. Along the same lines, it would be useful to identify

theoretical bounds on the size of the unfolding generated in the case when the reachability

problem is negative. This will probably require consideration of what fraction of local con-

figurations may have the same final marking but be incomparable, as this leads to multiple

non cut-off events corresponding to the same state, and the pruning power of a heuristic

function. Previous complexity results [59] are dependent on the order on configurations

being total (which restricts the number of non cut-off events to the number of reachable

markings), and only repeated parts of the search space being pruned (i.e. a complete prefix

must be generated to conclude a negative solution).

167

Another drawback of this work is that it is so far restricted to PT-nets: most applications

utilising Petri net models use more expressive nets such as coloured Petri nets. Future

research may extend Khomenko and Koutny’s work on defining branching processes for

high order nets [96], and consider how the notion of directed unfolding could be applied

accordingly. Well developed tools such as PUNF1 could be adapted for experiments in this

area.

In Part II of this thesis we showed how directed unfolding can be applied to classical plan-

ning. We are not aware of any work that explores the potential of Petri net analysis tech-

niques for planning, to the depth achieved here. We translated a classical planning world

to a PT-net, and subsequently cast the classical planning problem as a PT-net reachability

problem. It is then possible to apply directed unfolding for plan synthesis, which we re-

ferred to as PUP (Petri net Unfolding Planning). We considered how PUP may fit within

the larger picture of automated planning algorithms, and observed that this new approach

lies between current state space and plan space planning methods, with respect to the level

of commitment it makes during plan refinement. In fact, PUP performs a forward search

through the space of partially ordered plans, but unlike traditional partial order planing

methods, it makes enough commitment to reason about the state of the world and thus

employ state based heuristic functions to make more informed search choices. We also

presented the PUP SUITE, a collection of planners that perform optimal and suboptimal

classical planning with respect to the additive cost of actions, optimal temporal planning

with respect to the plan execution time, and address probabilistic planning problems via

replanning.

Planning via directed unfolding contributes to both the practical and theoretical aspects

of AI planning. As discussed, it provides a compromise between the ideas of state space

and plan space planning. The practical benefit of this is clear from experimental results,

which reveal PUP is competitive with current state of the art planning systems on a range

of criteria, for problems with a high level of concurrency. Planning via directed unfolding

also has theoretical benefit as it provides another perspective on the notion of planning, by

combining the state based and action based perspectives of a situation. Also, its graphical

representation of both the planning problem, and the process of plan synthesis, is arguably

more pragmatic and insightful than any other planning approach as is reveals the correla-

tions between variables in the sensed world and actions in the world of process.

Unfortunately however this thesis lacks conclusive results regarding the complexity of PUP

and its applicability to particular planning problems. As discussed in Chapter 3 the worst

1http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/tools.html

168 CHAPTER 7. CONCLUSIONS

case complexity of unfolding is worse than the theoretical complexity of the reachability

problem for PT-nets, i.e. REACHABILITYΣ. At the same time, we have shown that PUP

can be exponentially more efficient than state space planning. To really utilise this new

approach to planning we need to better understand what factors contribute to the complexity

of PUP. As mentioned earlier, it is desirable to identify bounds on the size of a complete and

finite prefix, which are dependent on particular properties of the planning problem and the

search strategy employed. Such an investigation may also consider the connections between

unfolding and structural and complexity analysis for planning. This includes for example

determining whether a precise relationship holds between the size of the unfolding and

the width of the causal graph. This will assist in the identification of appropriate domains

for PUP. Along the same lines, we need to better understand the trade offs in different

approaches to planning. A study to identify and analyse problems which are tractable for

traditional partial order planning but intractable for PUP, would be useful for recognising

when and how the particular level of commitment made by PUP is beneficial. This should

consider the work of Barrett and Weld [7], which identifies a range of problems which vary

in tractability with respect to total and partial order planning algorithms.

Another issue of concern is the limited expressivity of the current representation. For exam-

ple, in the current model, an action’s effects are deemed true upon completion of the action;

if trying to minimise the execution time of a plan then ideally we want to consider the possi-

bility of an effect becoming true as soon as an action begins. The difference in concurrency

semantics is also a concern, but not a major one since we believe this can be remedied by in-

cluding additional places in the PT-net, as explained in [166]. Also, limiting our expression

to propositional logic severely restricts the way in which we can perceive a situation. As

discussed in Chapter 6, the translation of planning operators into Petri nets is another area

where improvements are likely. Indeed, the problems of limited expressivity and transla-

tion size could be addressed concurrently with more ambitious developments. For instance,

future research should consider the translation of a planning problem into a higher level

Petri net, making use of first-order and multi-valued variables for example. This coincides

with our earlier comment that future research should consider how the notion of directed

unfolding could be applied to higher level nets. Even if the level of expression remains the

same, the current bottleneck in memory usage suggests a more complex reasoning process

is a reasonable trade for a more compact representation. Another possibility, since the Petri

net and planning world are closely related, is to look at unfolding the PDDL description of

a planning problem directly, without translating it to a Petri net representation first. Since

an increase in expressivity will mean dealing with new semantics, whatever approach is

taken the reasoning process involved in unfolding will need to be extended accordingly.

169

Before concluding this thesis, let us now outline some more questions for future research:

� Directed unfolding employs state based heuristic functions, however there is more in-

formation contained in the unfolding structure than an enumerated state space: what

additional information could be utilised by heuristic functions? Do particular heuris-

tic functions lead to more flexible plans?

� We have observed the connection between Petri net analysis and planning, but ap-

plied just one AI planning technique to PT-net analysis. Can ideas from plan space

planning, for example heuristic functions for threat selection, be applied to unfold-

ing? Considering Suzuki and Murata’s step-by-step refinement of the nodes in a Petri

net [158], how could directed unfolding be used for HTN planning? Would it be use-

ful to use the planning graph to reduce the actions considered when generating new

possible events? For example, by identifying a correspondence between an event in

the unfolding and an action at a particular level in the planning graph, we can con-

clude that only the actions in the following level of the planning graph can descend

from this event in the unfolding.

� The complete finite prefix will contain all partially ordered plans from the initial state.

Is this useful in some way, perhaps combined with reachability methods designed

specifically for the complete prefix? Could the complete prefix be used to synthesise

a plan that avoids undesirable states? Can parts of the unfolding be reused, perhaps

for replanning but more interestingly for planning in the loop?

� The requirements on a correct strategy for directed unfolding, i.e semi-adequacy, and

the conditions for optimality presented in this thesis, are proved to be sufficient but

may not actually be necessary. Identifying the necessary conditions in both these

respects may open the door to even more possibilities for directing the unfolding.

This thesis has laid solid foundations for the theory of directed unfolding and its applica-

tion to AI planning, illustrated the value and potential of both these contributions, and in the

process formed new connections between the fields of Petri net analysis and AI planning.

This is just the beginning however: a deeper understanding of the relationship between

the complexity of on-the-fly reachability analysis via directed unfolding and the structural

properties of a particular problem, including a measure of the level of concurrency, is re-

quired to fully utilise directed unfolding. In addition, it is necessary to move beyond place

transition Petri nets and classical planning for this work to be of real practical use in our

complex world.

This page left blank.

Bibliography

[1] A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard. A Petri net ap-

proach to fault detection and diagnosis in distributed systems. Technical Report

Publication Interne 1117, IRISA, France, 1997.

[2] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order

reduction in symbolic state-space exploration. Formal Methods in System Design,

18(2):97–116, 2001.

[3] F Bacchus. Subset of PDDL for the AIPS 2000 planning competition, 2000.

http://www.cs.toronto.edu/ aips2000/pddl-subset.ps.

[4] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control search in a

forward chaining planner. New directions in AI planning, pages 141–153, 1996.

[5] Fahiem Bacchus and Qiang Yang. Downward refinement and the efficiency of hier-

archical problem solving. Artificial Intelligence, 71(1):43–100, 1994.

[6] Christer Backstrom and Bernhard Nebel. Complexity results for SAS+ planning.

Technical Report LiTH-IDA-R-93-34, Linkoping, Sweden, 1993.

[7] Anthony Barrett and Daniel S. Weld. Partial-order planning: evaluating possible

efficiency gains. Artificial Intelligence, 67(1):71–112, 1994.

[8] J. Baxter, P. Bartlett, and L. Weaver. Experiments with infinite-horizon policy-

gradient estimation. Journal of AI Research, 15, 2001.

[9] Ilan Beer, Shoham Ben-David, and Avner Landver. On-the-fly model checking of

RCTL formulas. In Computer Aided Verification, pages 184–194, 1998.

[10] A. Benveniste, E. Fabre, and S. Haar. Markov Nets: probabilistic models for dis-

tributed and concurrent systems. Rapport de Recherche INRIA RR-4253, September

2001.

171

172 BIBLIOGRAPHY

[11] A. Benveniste, E. Fabre, C. Jard, and S. Diagnosis of asynchronous discrete event

systems, a net unfolding approach. IEEE Transactions on Automatic Control,

48(5):714–727, May 2003.

[12] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional reasoning

in model checking. Lecture Notes in Computer Science, 1536:81–102, 1998.

[13] G. Berthelot. Checking properties of nets using transformations. In Advances in

Petri Nets 1985, volume 222 of Lecture Notes in Computer Science, pages 19–40.

Springer-Verlag, Berlin, 1985.

[14] E. Best and B. Grahlmann. PEP tool documentation and user guide. Technical report,

1995.

[15] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Elec-

tronic Notes in Theoretical Computer Science (ENTCS’02), 6(2), 2002.

[16] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model check-

ing using SAT procedures instead of BDDs. In Proceedings of Design Automation

Conference (DAC’99), 1999.

[17] Avrim Blum and Merrick L. Furst. Fast planning through planning graph analysis. In

International Joint Conference on Aritificial Intelligence IJCAI, pages 1636–1642,

1995.

[18] Blai Bonet and Héctor Geffner. Planning as heuristic search: New results. In Pro-

ceedings of the Ninth International Conference on Automated Planning and Schedul-

ing (ICAPS/ECP-99), pages 360–372, 1999.

[19] Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,

129(1-2):5–33, 2001.

[20] Blai Bonet, Patrik Haslum, Sarah Hickmott, and Sylvie Thiébaux. Directed un-

folding of Petri nets. Presented at the Workshop on Unfolding and Partial-Order

Techniques (UFO-07), 2007.

[21] R. Boubour, C. Jard, E. Fabre, A. Aghasaryan, and A. Benveniste. A Petri net ap-

proach to fault detection and diagnosis in distributed systems. Part I: application

to telecommunication networks, motivations, and modeling. In Proceedings of the

annual IEEE Control and Decision Conference (CDC’97), December 1997.

BIBLIOGRAPHY 173

[22] Renee Boubour and Claude Jard. Fault detection in telecommunication networks

based on a Petri net representation of alarm propagation. In Proceedings of the

18th International Conference on Application and Theory of Petri Nets (ICATPN),

Toulouse, volume 1248 of Lecture Notes in Computer Science, pages 367–386, 1997.

[23] C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting structure in policy con-

structions. In Proceedings of the Fourteenth International Joint Conference on Arti-

ficial Intelligence, pages 1104–1111, 1995.

[24] Craig Boutilier, Richard Dearden, and Moises Goldszmidt. Stochastic dynamic pro-

gramming with factored representations. Artificial Intelligence, 121(1-2):49–107,

2000.

[25] Wilifried Brauer and Wolfgang Reisig. Zur person Carl Adam Petri und den

“Petrinetzen” (Carl Adam Petri and Petri nets). Informatik-Spektrum, 29(5):369–

374, 2006.

[26] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677–691, 1986.

[27] O. Buffet and D. Aberdeen. The factored policy gradient planner. In Proceedings of

the 5th International Planning Competition (IPC-5), 2006.

[28] Alan Bundy, Fausto Giunchiglia, Roberto Sebastiani, and Toby Walsh. Computing

abstraction hierarchies by numerical simulation. In AAAI/IAAI, volume 1, pages

523–529, 1996.

[29] Alan Bundy, Fausto Giunchiglia, and Toby Walsh. Building abstractions, 1990. DAI

Research Paper no. 506, University of Edinburgh. Also IRST-Technical Report 9007-

02.

[30] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic

model checking: 1020 states and beyond. In Proceedings of the Fifth Annual IEEE

Symposium on Logic in Computer Science, pages 1–33, Washington, D.C., 1990.

IEEE Computer Society Press.

[31] Tom Bylander. The computational complexity of propositional strips planning. Ar-

tificial Intelligence, 69(1-2):165–204, 1994.

[32] Jaime Carbonell, Oren Etzioni, Yolanda Gil, Robert Joseph, Craig Knoblock, Steve

Minton, and Manuela Veloso. Prodigy: an integrated architecture for planning and

learning. SIGART Bulletin, 2(4):51–55, 1991.

174 BIBLIOGRAPHY

[33] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Springer

Science and Business Media, Inc., 1999.

[34] D. Chapman. Planning or conjunctive goals. Artificial Intelligence, 32:333–377,

1987.

[35] T. Chatain and V. Khomenko. A note on the well-foundedness of adequate orders

used for truncating unfoldings. Technical Report 998, Newcastle University, School

of Computing Science, Jan 2007.

[36] Y. Chen, W. T. Tsai, and D. Chao. Dependency analysis-a Petri-net-based tech-

nique for synthesizing large concurrent systems. IEEE Transactions on Parallel

Distributed Systems, 4(4):414–426, 1993.

[37] Y. Chen, B.W. Wah, and C. Hsu. Temporal planning using subgoal partitioning and

resolution in SGPlan. Journal of AI Research, 26:323–369, 2006.

[38] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for 1-safe nets.

In Proceedings of the Thirteenth Conference on the Foundations of Software Technol-

ogy and Theoretical Computer Science (FSTTCS-93), pages 326–337, 1993. LNCS

761.

[39] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction us-

ing partial order techniques. Software Tools for Technology Transfer, 4(3):279–287,

1998.

[40] Edmund M. Clarke, Orna Grumbers, and Doron A. Peled. Model Checking. MIT

Press, 2000.

[41] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional Model Checking. In

Proceedings of Fourth Annual Symposium on Logic in Computer Science, pages 353–

361, Washington D.C., 1989. IEEE Computer Society Press.

[42] J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE

Transactions on Software Engineering, 22(3), 1996.

[43] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and

causation. Computer Intelligence, 5(3):142–150, 1990.

[44] M. B. Do and S. Kambhampati. Solving planning graph by compiling it into CSP. In

Proceedings of the European Conference on Planning (AIPS), pages 82–91, 2000.

BIBLIOGRAPHY 175

[45] Mark Drummond. Situated control rules. In Knowledge Representation, pages 103–

113, 1989.

[46] E.A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry reduc-

tions. In E. Brinksma, editor, Tools and Algorithms for the Construction and Analysis

of Systems, pages 19–34, Enschede, The Netherlands, 1997. Springer Verlag, LNCS

1217.

[47] S. Edelkamp, S. Leue, and A. Lafuente. Partial-order reduction and trail improve-

ment in directed model checking. International Journal on Software Tools for Tech-

nology Transfer, 6(4):277–301, 2004.

[48] Stefan Edelkamp. Symbolic pattern databases in heuristic search planning. In Arti-

ficial Intelligence Planning Systems (AIPS), pages 274–283, 2002.

[49] Stefan Edelkamp and Shahid Jabbar. Action planning for directed model checking

of Petri nets. Electronic Notes Theoretical Computer Science, 149(2):3–18, 2006.

[50] Stefan Edelkamp, Alberto Lluch-Lafuente, and Stefan Leue. Directed explicit model

checking with hsf-spin. In Proceedings of the Eighth International SPIN Workshop,

pages 57–79, 2001.

[51] Stefan Edelkamp and Frank Reffel. OBDDs in heuristic search. In KI - Kunstliche

Intelligenz, pages 81–92, 1998.

[52] F. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal

Methods in System Design: An International Journal, 9(1/2):105–131, August 1996.

[53] Joost Engelfriet. Branching processes of Petri nets. Acta Inf., 28(6):575–591, 1991.

[54] Esra Erdem and Elisabeth R. M. Tillier. Genome rearrangement and planning. In

Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages 1139–1144.

AAAI Press / The MIT Press, 2005.

[55] G. Ernst, A. Newell, and H. Simon. GPS: A case study in generality and problem

solving. ACM Monograph Series, 1969.

[56] J. Esparza, S. Römer, and W. Vogler. An improvement of McMillan’s unfolding

algorithm. In Proceedings of the Second International Workshop on Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS-06), volume 1055 of

Lecture Notes in Computer Science, pages 87–106. Springer-Verlag, 1996.

176 BIBLIOGRAPHY

[57] Javier Esparza. Model checking using net unfoldings. Science of Compututer Pro-

gramming, 23(2-3):151–195, 1994.

[58] Javier Esparza, Pradeep Kanade, and Stefan Schwoon. A negative result on depth

first unfolding. Software Tools for Technology Transfer, To appear.

[59] Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s

unfolding algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

[60] Javier Esparza and Claus Schröter. Unfolding based algorithms for the reachability

problem. Fundamentia Informatica, 46:1–17, 2001.

[61] Patrick Fabiani and Yannick Meiller. Planning with tokens: an approach between

satisfaction and optimisation. In PuK, 2000.

[62] E. Fabre, A. Aghasaryan, A. Benveniste, R. Boubour, and C. Jard. Petri net approach

to fault detection and diagnosis in distributed systems. Part II: extending Viterbi

algorithm and HMM techniques to Petri nets. In Proceedings of the Annual IEEE

Control and Decision Conference (CDC’97), San-Diego, December 1997.

[63] Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3/4):189–208, 1971.

[64] Maria Fox and Derek Long. A note on Chapman‘s modal truth criterion. In EPIA

’93: Proceedings of the 6th Portuguese Conference on Artificial Intelligence, pages

307–310, London, UK, 1993. Springer-Verlag.

[65] B. Cenk Gazen and Craig Knoblock. Combining the expressiveness of UCPOP with

the efficiency of graphplan. In Sam Steel and Rachid Alami, editors, Recent Ad-

vances in AI Planning: 4th European Conference on Planning, ECP’97, New York,

1997. Springer-Verlag.

[66] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. LPG-Td: a fully automated

planner for PDDL2.2 domains. In Proceedings of the 3rd International Planning

Competition (IPC-3), 2004.

[67] M. Ghallab, D. Nau, and P.Traverso. Automated Planning: Theory and Practice.

Morgan Kaufmann Publishers, 2004.

[68] Fausto Giunchiglia. Using abstrips abstractions – where do we stand? Artificial

Intelligence Review, 13(3):201–213, 1999.

BIBLIOGRAPHY 177

[69] Patrice Godefroid and Froduald Kabanza. An efficient reactive planner for synthe-

sizing reactive plans. In AAAI, pages 640–645, 1991.

[70] Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verification

of deadlock freedom and safety properties. In CAV ’91: Proceedings of the 3rd

International Workshop on Computer Aided Verification, pages 332–342, London,

UK, 1992. Springer-Verlag.

[71] Ursula Goltz and Wolfgang Reisig. The non-sequential behavior of Petri nets. Infor-

mation and Control, 57(2/3):125–147, 1983.

[72] C. Green. Application of theorem-proving to problem solving. In D. E. Walker

and L. M. Norton, editors, Proceedings of the 1st International Joint Conference on

Artificial Intelligence, page 219239. William Kaufmann, 1969.

[73] Orna Grumberg and David E. Long. Model checking and modular verification. ACM

Transactions of Programning Languages and Systems, 16(3):843–871, 1994.

[74] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms

for factored MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003.

[75] Stefan Haar. Probabilistic cluster unfoldings. Fundamenta Informaticae,

53(3,4):281–314, 2002.

[76] Patrik Haslum and Hector Geffner. Admissible heuristics for optimal planning. In

Artificial Intelligence Planning Systems (AIPS), pages 140–149, 2000.

[77] Patrik Haslum and Hector Geffner. Heuristic planning with time and resources. In

Proceedings of 6th European Conf. on Planning, pages 121–132, 2001.

[78] K. Heljanko. Deadlock and reachability checking with finite complete prefixes. Re-

search Report A56, Helsinki University of Technology, Laboratory for Theoretical

Computer Science, Espoo, Finland. Licentiate’s Thesis. December 1999.

[79] Keijo Heljanko. Using logic programs with stable model semantics to solve deadlock

and reachability problems for 1-safe Petri nets. Fundamenta Informaticae, 37:247–

268, 1999.

[80] Malte Helmert. New complexity results for classical planning benchmarks. In

Proceedings of the Sixteenth International Conference on Automated Planning and

Scheduling (ICAPS 2006), pages 52–61, 2006.

178 BIBLIOGRAPHY

[81] James Hendler, Austin Tate, and Mark Drummond. AI planning: systems and tech-

niques. AI Magazine, 11(2):61–77, 1990.

[82] S. Hickmott, J. Rintanen, S. Thiébaux, and L. White. Planning via Petri net un-

folding. Presented at the Workshop on Model Checking and Artificial Intelligence

(MoChArt) in European Conf. on Artificial Intelligence (ECAI-06), 2006.

[83] Sarah Hickmott. Concurrent planning using Petri net unfoldings. In Proc. of 16th

International Conference on Automated Planning and Scheduling (ICAPS-06) Doc-

toral Consortium, pages 54–57, 2006.

[84] Sarah Hickmott, Jussi Rintanen, Sylvie Thiébaux, and Langford White. Planning

via Petri net unfolding. In Twentieth International Joint Conference on Artificial

Intelligence (IJCAI-07), pages 1904–1911, 2007.

[85] Jöerg Hoffmann, Stefan Edelkamp, Roman Englert, Frederico Liporace, Sylvie

Thiébaux, and Sebastian Trüg. Towards realistic benchmarks for planning: the do-

mains used in the classical part of IPC-4. In Proceedings of the 4th International

Planning Competition (IPC-4), 2004.

[86] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,

2001.

[87] Bernhard Josko. Verifying the correctness of AADL modules using model checking.

In Stepwise Refinement of Distributed Systems, Models, Formalisms, Correctness,

REX Workshop, pages 386–400, London, UK, 1990. Springer-Verlag.

[88] S. Kambhampati and B. Srivastava. Unifying classical planning approaches. Tech-

nical report, Arizona State University, Temple, AZ, 1996.

[89] Subbarao Kambhampati. Refinement search as a unifying framework for analyzing

planning algorithms. In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors,

KR’94: Principles of Knowledge Representation and Reasoning, pages 329–340.

Morgan Kaufmann, San Francisco, California, 1994.

[90] Subbarao Kambhampati. Refinement planning as a unifying framework for plan

synthesis. AI Magazine, 18:67–97, 1997.

[91] H. Kautz, B. Selman, and J. Hoffmann. SATPLAN: Planning as satisfiability. In

Proceedings of the 5th International Planning Competition, 2006. Available at

http://zeus.ing.unibs.it/ipc-5/.

BIBLIOGRAPHY 179

[92] Henry A. Kautz, David McAllester, and Bart Selman. Encoding plans in proposi-

tional logic. In Proceedings of the Fifth International Conference on the Principle

of Knowledge Representation and Reasoning (KR’96), pages 374–384, 1996.

[93] Henry A. Kautz and Bart Selman. Pushing the envelope: Planning, propositional

logic and stochastic search. In AAAI, pages 1194–1201, 1996.

[94] Henry A. Kautz and Bart Selman. Blackbox: A new approach to the application of

theorem proving to problem solving. In AIPS-98 Workshop on Planning as Combi-

natorial Search, pages 58–60, 1998.

[95] Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic concepts for

Petri nets with boolean markings. Formalized Mathematics, 4:87–90, 1993.

[96] Victor Khomenko and Maciej Koutny. Branching processes of high-level Petri nets.

In Proceedings of the Ninth International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS-03), pages 458–472, 2003.

[97] Victor Khomenko, Maciej Koutny, and Walter Vogler. Canonical prefixes of Petri

net unfoldings. In CAV ’02: Proceedings of the 14th International Conference on

Computer Aided Verification, pages 582–595, London, UK, 2002. Springer-Verlag.

[98] H. C. M. Kleijn and Maciej Koutny. Causality semantics of Petri nets with weighted

inhibitor arcs. In Proceedings of the 13th International Conference on Concurrency

Theory (CONCUR ’02), pages 531–546, London, UK, 2002. Springer-Verlag.

[99] Craig A. Knoblock. Automatically generating abstractions for planning. Artificial

Intelligence, 68(2):243–302, 1994.

[100] I. Koh and F. Dicesare. Modular transformation methods for generalized Petri nets

and their application to automated manufacturing systems. In IEEE Transactions on

Systems, Man and Cybernetics, volume 21, 1991.

[101] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün. Verifying hardware

in its software context. In ICCAD ’97: Proceedings of the 1997 IEEE/ACM Inter-

national Conference on Computer-Aided Design, pages 742–749, Washington, DC,

USA, 1997. IEEE Computer Society.

[102] Nicholas Kushmerik, Steve Hanks, and Daniel S. Weld. An algorithm for probabilis-

tic planning. Artificial Intelligence, 76(1-2):238–286, 1995.

180 BIBLIOGRAPHY

[103] A.L. Lansky. A representation of parallel activity based on events, structure, and

causality. In Reasonning about Actions and Plans: Proceedings of the 1986 Work-

shop. Morgan Kaufmann, 1987.

[104] H. Lee-Kwang, J. Favrel, and P. Baptiste. Generalized Petri net reduction method.

IEEE Transactions on Systems, Man and Cybernetics, 17(2):297–303, 1987.

[105] Melissa Liew, Lang White, and Sarah Hickmott. Mapping a concurrent temporal

plan to a 1-safe timed Petri net. Distribution restricted to DPOLP members, October

2006.

[106] A. Linhares and H.H. Yanasse. Connection between cutting-pattern sequencing,

VLSI design and flexible machines. Computers & Operations Research, 29:1759

– 1772, 2002.

[107] Iain Little and Sylvie Thiébaux. Probabilistic planning vs replanning. Presented at

the Workshop on the International Planning Competition: Past, Present and Future,

at the Seventeenth International Conference on Automated Planning and Scheduling

(ICAPS 2007).

[108] Iain Little and Sylvie Thiébaux. Concurrent probabilistic planning in the graphplan

framework. In Proceedings of the Sixteenth International Conference on Automated

Planning and Scheduling (ICAPS 2006), pages 263–273, 2006.

[109] Alberto Lluch-Lafuente, Leue Edelkamp, and Stefan Leue. Partial Order Reduction

in Directed Model Checking. 2001.

[110] D.E. Long. Model Checking, Abstraction, and Compositional Verification. PhD

thesis, 1993.

[111] A.A. Desrochers M.C. Zhou, F. Dicesare. A top-down modular approach to synthesis

of Petri net models for manufacturing systems. In Proceedings of the IEEE Robotics

and Automation Conference (Scottsdale, Ariz., May), pages 534–539. IEEE, 1989.

[112] David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceed-

ings of the Ninth National Conference on Artificial Intelligence (AAAI-91), volume 2,

pages 634–639, Anaheim, California, USA, 1991. AAAI Press/MIT Press.

[113] J. McCarthy, M.L. Minsky, N. Rochester, and C.E. Shannon. A proposal for the

dartmouth summer research project on artificial intelligence. dartmouth college.

[114] D. McDermott. AIPS-98 planning competition results, 1998.

BIBLIOGRAPHY 181

[115] D. McDermott, A. Ghallab, M.and Howe, C. A. Knoblock, A. Ram, D. M.,

V.and Weld, and D. Wikins. PDDL the planning domain denition language. Tech-

nical Report CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision

and Control., 1999. ftp://ftp.cs.yale.edu/pub/mcdermott/software/ pddl.tar.gz.

[116] Drew V. McDermott. Using regression-match graphs to control search in planning.

Artificial Intelligence, 109(1-2):111–159, 1999.

[117] K. L. McMillan. Symbolic Model Checking. PhD thesis, 1993.

[118] K. L. McMillan. A technique of state space search based on unfolding. Formal

Methods in System Design, 6:45–65, 1995.

[119] Kenneth L. McMillan. Using unfoldings to avoid the state explosion problem in the

verification of asynchronous circuits. In CAV, pages 164–177, 1992.

[120] Kenneth L. McMillan. Circular compositional reasoning about liveness. In

CHARME ’99: Proceedings of the 10th IFIP WG 10.5 Advanced Research Working

Conference on Correct Hardware Design and Verification Methods, pages 342–345,

London, UK, 1999. Springer-Verlag.

[121] Stephan Melzer. Verifikation verteilter Systeme mittels linearer- und Constraint-

Programmierung. PhD thesis, Technische Universität München, 1998.

[122] Glenn Miller. Planning and scheduling for the hubble space telescope. In J. A. Eaton

G. W. Henry, editor, ASP Conference Series, volume 79, pages 173–183, 1995.

[123] Steven Minton, John L. Bresina, and Mark Drummond. Total-order and partial-

order planning: A comparative analysis. Journal of Artificial Intelligence Research,

2:227–262, 1994.

[124] J. Misra and K.M. Chandy. Proofs of networks of processes. IEEE Transactions of

Software Engineering, 7:417–426, 1981.

[125] M.Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains.

Journal of Theoretical Computer Science, 13(1):85–108, January 1980.

[126] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.

[127] Nicola Muscettola, Ben Smith, Charles Fry, Steve Chien, Kanna Rajan, Gregg Ra-

bideau, and David Yan. On-board planning for new millennium deep space one

182 BIBLIOGRAPHY

autonomy. In Proceedings of the IEEE Aerospace Conference, volume 1, pages

303–318, 1997.

[128] D. S. Nau, J. Meyer, M. Ball, J. Baras, A. Chowdhury, R. Rajamani E. Lin, and

V. Trichur. Integrating ai planning and integer programming for use in integrated

product and process design. In AAAI-2000 Workshop on Integration of AI and OR

Techniques for Combinatorial Optimization. AAAI Press, 2000.

[129] G. L. Nemhauser. Introduction to Dynamic Programming. New York: Wiley, 1966.

[130] XuanLong Nguyen and Subbarao Kambhampati. Reviving partial order planning.

In International Joint Conference on Aritificial Intelligence (IJCAI), pages 459–466,

2001.

[131] William T. Overman. Verification of concurrent systems: function and timing. PhD

thesis, 1981.

[132] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, 1984.

[133] Doron Peled. Combining partial order reduction with on-the-fly model-checking.

In CAV ’94: Proceedings of the 6th International Conference on Computer Aided

Verification, pages 377–390. Springer-Verlag, 1994.

[134] Doron Peled. Ten years of partial order reduction. In CAV ’98: Proceedings of

the 10th International Conference on Computer Aided Verification, pages 17–28,

London, UK, 1998. Springer-Verlag.

[135] Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors. POMIV ’96:

Proceedings of the DIMACS workshop on Partial order methods in verification.

AMS Press, Inc., New York, NY, USA, 1997.

[136] J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order

planner for ADL. In Bernhard Nebel, Charles Rich, and William Swartout, edi-

tors, KR’92. Principles of Knowledge Representation and Reasoning: Proceedings

of the Third International Conference, pages 103–114. Morgan Kaufmann, San Ma-

teo, California, 1992.

[137] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für

Instrumentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition, New

York: Griffiss Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966,

Pages: Suppl. 1, English translation.

BIBLIOGRAPHY 183

[138] A. Pnueli. In transition from global to modular temporal reasoning about programs.

Logics and models of concurrent systems, pages 123–144, 1985.

[139] Lucia Pomello. Some equivalence notions for concurrent systems. an overview. In

Advances in Petri Nets 1985, covers the 6th European Workshop on Applications and

Theory in Petri Nets-selected papers, pages 381–400, London, UK, 1986. Springer-

Verlag.

[140] L. Portinale. Petri net reachability analysis meets model-based diagnosticproblem

solving. In Proceedings of IEEE International Conference on Systems, Man and

Cybernetics, 1995, volume 3, pages 2712–2717, 1995.

[141] M. J. Rattermann, L. Spector, J. Grafman, H. Levin, and H. Harward. Partial and

total-order planning: evidence from normal and prefrontally damaged populations.

Cognitive Science, 25:941–975, November 2001.

[142] Eberhardt Rechtin. Systems Architecting: Creating and Building Complex Systems.

Prentice Hall PTR, 1991.

[143] Frank Reffel and Stefan Edelkamp. Error detection with directed symbolic model

checking. In World Congress on Formal Methods, pages 195–211, 1999.

[144] W. Reisig. Petri Nets An Introduction. Springer-Verlag, 1985.

[145] Jussi Rintanen. Translation. Personal Correspondence, February 2006.

[146] W. Ruml, M.B. Do, and M.P.J. Fromherz. Online planning and scheduling for high

speed manufacturing. In Proceedings of the Fifteenth International Conference on

Automated Planning and Scheduling (ICAPS 2005), 2005.

[147] Stuart Russel and Peter Norvig. Artificial Intelligence, A Modern Approach. Prentice

Hall, 2003.

[148] Earl D. Sacerdoti. The nonlinear nature of plans. In 4th International Joint Confer-

ence on Artificial Intelligence (IJCAI), pages 206–214, 1975.

[149] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Di-

agnosability of discrete event systems. IEEE Transactions on Automatic Control,

40(9):1555–1575, sep 1995.

[150] Karsten Schmidt. How to calculate symmetries of Petri nets. Acta Informatica,

36(7):545–590, 2000.

184 BIBLIOGRAPHY

[151] John R. Searle. Minds, brains, and programs. Mind design, pages 282–307, 1985.

[152] Bart Selman, Hector J. Levesque, and D. Mitchell. A new method for solving hard

satisfiability problems. In Paul Rosenbloom and Peter Szolovits, editors, Proceed-

ings of the Tenth National Conference on Artificial Intelligence, pages 440–446,

Menlo Park, California, 1992. AAAI Press.

[153] Fabiano Silva, Marcos A. Castilho, and Luis Allan Künzle. Petriplan: A new algo-

rithm for plan generation (preliminary report). In IBERAMIA-SBIA, pages 86–95,

2000.

[154] David E. Smith, Jeremy Frank, and Ari K. Jónsson. Bridging the gap between plan-

ning and scheduling. Knowledge Engineering Review, 15(1), 2000.

[155] D.E. Smith and D.S. Weld. Temporal planning with mutual exclusion reasoning. In

16th International Joint Conference on Artificial Intelligence IJCAI’99, pages 326–

333, 1999.

[156] Stephen J. J. Smith, Dana S. Nau, and Thomas A. Throop. Computer bridge - a big

win for AI planning. AI Magazine, 19(2):93–106, 1998.

[157] P. H. Starke. Reachability analysis of Petri nets using symmetries. Systems Analysis

- Modeling - Simulation, 8(4-5):293–303, 1991.

[158] I. Suzuki and T. Murata. A method for stepwise refinement and abstraction of Petri

nets. Journal of Computer Systems Science, 27:51–76, 1986.

[159] Austin Tate. Generating project networks. In Proceedings of the Fifth International

Joint Conference on Artificial Intelligence IJCAI, pages 888–900, Cambridge, MA,

1977.

[160] F. Brioschi U. Bertelè. Nonserial Dynamic Programming. New York: Academic,

1972.

[161] Antti Valmari. A stubborn attack on state explosion. Formal Methods in System

Design, 1(4):297–322, 1992.

[162] Antti Valmari. On-the-fly verification with stubborn sets. In CAV ’93: Proceedings

of the 5th International Conference on Computer Aided Verification, pages 397–408,

London, UK, 1993. Springer-Verlag.

[163] P. van Beek and X. Chen. Cplan: A constraint programming approach to planning.

In AAAI/ IAAI Proceedings, 1999.

BIBLIOGRAPHY 185

[164] Allen VanGelder and Yumi K. Tsuji. Satisfiability testing with more reasoning and

less guessing. Technical report, University of California at Santa Cruz, Santa Cruz,

CA, USA, 1995.

[165] Vincent Vidal and Hector Geffner. Branching and pruning: An optimal temporal

POCL planner based on constraint programming. Artificial Intelligence, 170(3):298–

335, 2006.

[166] Walter Vogler, Alexei L. Semenov, and Alexandre Yakovlev. Unfolding and finite

prefix for nets with read arcs. In Proceedings of the ninth International Conference

on Concurrency Theory (CONCUR-98), pages 501–516, 1998.

[167] Richard Waldinger. Achieving several goals simultaneously. Machine Intelligence,

8:94–136, 1977.

[168] D. H. D. Warren. Warplan: A system for generating plans. Technical report, Univer-

sity of Edinburgh. Edinburgh, United Kingdom, 1974.

[169] Daniel S. Weld. An introduction to least commitment planning. AI Magazine,

15(4):27–61, 1994.

[170] Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123, 1999.

[171] Patrick Henry Winston. Artificial Intelligence. Addison Wesley, 1992.

[172] Pierre Wolper and Patrice Godefroid. Partial-order methods for temporal verification.

In CONCUR ’93: Proceedings of the 4th International Conference on Concurrency

Theory, pages 233–246, London, UK, 1993. Springer-Verlag.

[173] S. Yoon, A. Fern, and B. Givan. FF-Replan: a baseline for probabilistic planning.

In Proceedings of the Seventeenth International Conference on Automated Planning

and Scheduling (ICAPS 2007), pages 52–61, 2007.

[174] H. L. S. Younes and M. L. Littman. PDDL1.1: An extension to PDDL for expressing

planning domains with probabilistic effects. Technical Report CMU-CS-04-167,

Carnegie Melon University, 2004.

[175] L. Zhang, L.M. Kristensen, C. Janczura, G. Gallasch, and J. Billington. A coloured

Petri net based tool for course of action development and analysis. In Conferences in

Research and Practice in Information Technology, volume 12. Australian Computer

Society, 2002.

	TITLE PAGE: DIRECTED UNFOLDING Reachability Analysis of Concurrent Systems & Applications to Automated Planning
	Abstract
	Declaration
	Acknowledgements
	Contents

	Chapter 1 Introduction
	Chapter 2 Reachability Analysis
	Chapter 3 Unfolding a Petri Net
	Chapter 4 Directed Unfolding
	Chapter 5 Automated Planning
	Chapter 6 Planning Via Directed Unfolding
	Chapter 7 Conclusions
	Bibliography

