EFFECT OF A POLYUNSATURATED FATTY ACID MIMETIC ON THE DEVELOPMENT OF ATHEROSCLEROSIS IN THE APOE DEFICIENT MOUSE

Fatemeh Moheimani

Pharm-D

Thesis submitted for the degree of Master of Medical Sciences (M Med Sc)

Department of Immunopathology

Women's and Children's Hospital

Faculty of Health Sciences

Department of Paediatrics

The University of Adelaide

May 2005

Summary

Atheroma, heart attacks and strokes continue to be a major cause of morbidity and mortality in our community. Atherosclerosis is a chronic inflammatory vascular disease, characterised by thickening of the vascular wall due to lipid accumulation, infiltration by circulating monocytes and T cells and proliferation of smooth muscle cells. Leukocyte adherence to the blood vessel wall is promoted by the up-regulation of cell adhesion molecules (CAM) by atherogenic substances such as tumour necrosis factor (TNF- α) and oxidised low density lipoprotein (oxidised-LDL). Recently our group has synthesised a novel polyunsaturated fatty acid, β -oxa 23:4*n*-6 which inhibits CAM up-regulation in blood vessel walls. It was therefore the objective of this thesis to determine whether this fatty acid protects against atherosclerosis. Advantage was taken of an experimental model of this disease, the apoE deficient mouse (apoE^{-/-}) which spontaneously develop atherosclerosis.

To assist our studies on MP3, we established an appropriate classification of different stages of atherosclerotic lesions and defined the kinetics of development of the disease in this model. By examining of the sections at the level of aortic roots the atherosclerotic lesions were classified into six categories. This classification was based on the histological characteristics of the plaque component including the degree of macrophage infiltration and foam cells formation, the presence of cholesterol clefts and confluent lipid cores, calcification and ossification, the composition of the fibrous cap, the media involvement and the incipient/actual aneurysm formation and inflammation, including neutrophils.

Kinetics of plaque development under the influence of a high fat and high cholesterol diet followed an exponential relationship of $y=-e^{-x}$. The asymptotic characteristic of this lesion development was however a function of compensatory aortic enlargement which accompanied the increase in lesion development and size. Thus it is concluded that the level of atherosclerosis needs to be gauged by the size of the lesion *per se*. This may be particularly important for the assessment of anti-atherogenic effects of drugs. Therefore attempts to develop a quantitative system to assess plaques revealed that expression of plaque size as % of occupation of blood vessel had limitations.

Using this model we were able to demonstrate that injections of the novel polyunsaturated fatty acid, MP3 led to a significant reduction/inhibition (70%) of plaque area and a corresponding 60% inhibition of aortic size. As expected this inhibition was not as evident when results were expressed as % of aortic lumen size. The results also suggested that protection by MP3 was dependent on conditions which promoted increased uptake into tissues by, for example, preloading animals with MP3 prior to commencing the high fat high cholesterol diet. The protective effects of MP3 are consistent with a role for the activation of the transcriptional factor, NF κ B and upregulation of cell adhesion molecules in this disease, and the ability of MP3 to inhibit these targets. Thus the objective of this research has been achieved and the hypothesis proven.

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university, and to the best of my knowledge contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

I contest to the thesis being made available for photocopying and loan in accepted for the award of the degree.

Fatemeh Moheimani

ACKNOWLEDGEMENTS

This research was carried out in the Department of Immunopathology, Women's and Children's Hospital, Adelaide. It was supported by a grant from Heart Foundation. Salary support was from Divisional Postgraduate Research Scholarship, Department of Paediatrics, University of Adelaide.

I would like to thank the Department of Immunopathology for their assistance and friendship during this project. In particular, I would like to thank my supervisor Professor Antonio Ferrante and my co-supervisor Associate Professor Charles Hii for their guidance and support on this project. I greatly appreciate the assistance of Dr Yong Qin Li in animal handling and Judy Ferrante for great help. Thank you Dr Neil Trout for synthesis of MP3.

I would like to thank the Department of Histopathology for their friendship, support and encouragement. I thank my co-supervisor Dr Lynette Moore for her continual guidance, enthusiasm, support and encouragement throughout my research. Thankyou Kellie Madigan for tissue sectioning and Mary Carli for special staining. Thankyou also to Alvis Jaunzems for assistance in electron microscopy and Ronald Hermanis for great help.

I would like to thank Craig Hirte for his help in mathematics and statistics. Special thanks to Rosemary Bailey for her help in some of the statistical analysis.

I would like to thank Drs King and Mower Laboratory for tissue sectioning and staining.

Warmest thanks to my parents, my brothers Reza and Navid, my sister in law Niloofar and my friends Megan, Si Wei and Priya for their support, encouragement and friendship throughout the good and not so good time.

Thank you to everyone who has made this work possible.

TABLE OF CONTENTS

Page number

Summary	ii
Declaration	iv
Acknowledgments	v
Table of contents	vii
Abbreviations	xii

1	Introduction	1
1.1	General introduction	2
1.2	Structure of arteries	4
1.3	Atherosclerosis	5
1.3.1	Definition of atherosclerosis	5
1.3.2	Main hypotheses for development of atherosclerosis	5
1.3.3	Definition of adaptive intimal thickening	7
1.3.4	Classification of atherosclerosis	14
1.3.4.1	AHA classification	14
1.3.4.2	Modifications of AHA classification	21
1.3.5	The development of calcium deposits in atherosclerotic	24
	lesions	
1.3.6	Role of neutrophils in atherosclerosis	24
1.4	Risk factors for atherosclerosis	26
1.5	Treatment and prevention of atherosclerosis	26

1.5.1	Dietary modification	27
1.5.2	Treatment guidelines	27
1.6	Apolipoprotein E	30
1.6.1	ApoE in lipoprotein metabolism	31
1.6.2	Clinical importance of apoE as a factor for atherosclerosis	32
1.6.3	ApoE knock out mice	33
1.7	Polyunsaturated fatty acids (PUFA)	34
1.8	Structure of fatty acids	34
1.9	Sources of fatty acids	35
1.10	Metabolism of fatty acids	38
1.11	Importance of $n-3$ fatty acids in health and disease	39
1.11.1	Fish oils and Atherosclerosis	39
1.12	Polyunsaturated fatty acids mimetics	41
1.13	Concluding remarks	44
1.14	Aim	44
1.15	Hypothesis	44
2	Materials and Methods	45
2.1	Materials	46
2.1.1	Materials used for polyunsaturated fatty acid	46
	preparation/analysis	
2.1.2	Materials used for animal and histopathological studies	46
2.2	Methods	47
2.2.1	Polyunsaturated fatty acid	47
2.2.1.1	Synthesis of engineered polyunsaturated fatty acid	47

2.2.1.2	Preparation of fatty acid	49
2.2.2	ApoE deficient mice	50
2.2.2.1	Feeding with high fat diet and normal diet	50
2.2.2.2	Collection of organs and blood samples	51
2.2.3	Light microscopy	52
2.2.3.1	Tissue sectioning and staining	52
2.2.3.2	Slides and tissue quality control	56
2.2.3.3	Quantification of atherosclerotic plaque in apoE ^{-/-} mice	56
2.2.3.4	Consistency in measurement	58
2.2.4	Electron microscopy	58
2.2.4.1	Tissue processing	58
2.2.4.2	Preparation and examination of sections	59
2.3	Statistics and data analysis	59
3	Criteria for grading atherosclerosis in the apoE deficient	60
	mouse model	
3.1	Introduction	61
3.2	Characterisation of atherosclerotic lesions	61
3.2.1	Region of the aortic root selected for measurement of plaque	61
	area	
3.2.2	Histological criteria for grading atherosclerotic lesions in	62
	apoE ^{-/-} mice	
3.2.3	Presence of calcification and ossification in atherosclerotic	77

3.2.4	The presence of neutrophils in atherosclerotic lesions of	80
	apoE ^{-/-} mice	
3.3	Summary	83
4	Kinetics of development of atherosclerotic lesions in the	84
	apoE deficient mouse model	
4.1	Introduction	85
4.2	Kinetics of development of atherosclerotic lesions	85
4.2.1	Selection of the most appropriate site of proximal aorta for	85
	measurement of plaque area	
4.2.2	Measurement variability	86
4.2.3	Time related development of atherosclerotic plaque in	88
	apoE ^{-/-} mice subjected to a Western diet	
4.2.4	Development of atherosclerotic lesions in apoE ^{-/-} mice on a	95
	normal diet	
4.2.5	Comparison between high fat diet and normal diet on size	101
	and type of atherosclerotic lesions in $apoE^{-/-}$ mice	
4.2.6	Relationship between the size of the atherosclerotic lesion	105
	and the type of lesion	
4.3	Summary	107
5	Effect of β -oxa 23: 4 <i>n</i> -6 on the development of	109
	atherosclerosis	
5.1	Introduction	110
5.2	Effect of MP3 on the development of atherosclerosis	111

The ability of MP3 to reverse atherosclerosis	121
Effect of treatment with MP3 prior to initiation	131
atherosclerosis development with high fat diet	
Summary	135
Discussion	136
Criteria for grading atherosclerosis in apoE ^{-/-} mice	137
Kinetics of development of atherosclerosis in $apoE^{-/-}$ mice	145
MP3 protects against atherosclerosis	149
Concluding remarks	154
Future research	155
	The ability of MP3 to reverse atherosclerosis Effect of treatment with MP3 prior to initiation atherosclerosis development with high fat diet Summary Discussion Criteria for grading atherosclerosis in apoE ^{-/-} mice Kinetics of development of atherosclerosis in apoE ^{-/-} mice MP3 protects against atherosclerosis Concluding remarks Future research

Bibliography

157

ABREVIATIONS

AA	arachidonic acid
AGE	Advanced glycation end products
АНА	American heart association
Akt (PKB)	activating protein kinase B
ALA	α-linoleic acid
АроЕ	Apolipoprotein E
ApoE ^{-/-}	homozygous apoE deficient
BP	blood pressure
CAM	cell adhesion molecule
CHD	Coronary heart disease
COX	cyclooxygenases
DHA	docosahexaenoic acid
EPA	eicosapentaenoic acid
ES	embryonic stem cell
FA	Fatty acid
HBSS	hannks balanced salt solution

HDL	high density lipoprotein
HUVEC	human umbilical vein endothelial cell
ICAM-1	intercellular adhesion molecule 1
IDL	intermediate density lipoprotein
IEL	internal elastic lamina
IL-1	interleukin 1
IP	intraperitoneal injection
LA	linoleic acid
LDL	low density lipoprotein
Li ₂ CO ₃	Lithium Carbonate
LOX	lipoxygenases
LPS	lipopolysaccharide
MCP-1	monocyte chemotactic protein 1
M-CSF	macrophage colony-stimulating factor
MMP	matrix metalloproteinase
NE	neutrophil elastase
NO	nitric oxide
Oxidised-LDL	oxidised low density lipoprotein

PDK	phosphoinositide-dependent kinase
PI3K	phosphatidylinositol 3 kinase
PIP2	phosphatidylinositol 4, 5 bisphosphate
РМА	phorbol 12-myristate 13-acetate
ΡΡΑRα	peroxisome proliferator-activated receptor α
PUFA	polyunsaturated fatty acid
SEM	standard error of the sample mean
TBS	Tris buffered saline
TNF-α	tumour necrosis factor α
VCAM-1	vascular-cell adhesion molecule 1
VLDL	very low density lipoprotein