

THE DEVELOPMENT OF A GENETIC LINKAGE MAP FOR Almond Based on Molecular and Agronomic Markers

A THESIS SUBMITTED BY

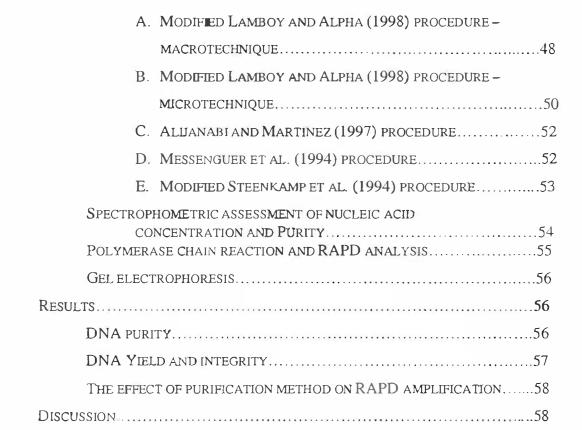
DAVINA GREGORY, B.Sc. (HONS.)

CANDIDATE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHD)

THE UNIVERSITY OF ADELAIDE SCHOOL OF AGRICULTURE AND WINE ADELAIDE

JUNE 2004

Table of Contents


Thesis Summary	I
DECLARATION	
Acknowledgements	VI
LIST OF FIGURES	
LIST OF TABLES	XII
LIST OF ABBREVIATIONS	XV

GENERAL INTRODUCTION AND LITERATURE REVIEW	.1
BOTANICAL CLASSIFICATION, ORIGIN AND DOMESTICATION OF ALMOND	.1
ALMOND EVOLUTION UNDER DOMESTICATION	.3
CULTIVATED ALMOND PRODUCTION IN AUSTRALIA	.5
AUSTRALIAN ALMOND BREEDING PROGRAM	.8
SELF-INCOMPATIBILITY OF ALMOND.	.9
BIOLOGICAL CONTROL OF SELF-INCOMPATIBILITY	0
GAMETOPHYTIC SELF-INCOMPATIBILITY	0
S-allele system in <i>Prunus</i> and the role of S-RNases in self incompatibility Genetic analysis of morphological traits of almond	
Kernel taste	13
Shell Hardness	14
BLOOM TIME	15

15
16 17
18
19
20
22
23
25
26
27
27
28
28
29
30
31
32
33
35

GENERATION OF THE F_1 Hybrid Population
INTRODUCTION
Hybrid production

COMPARISON OF TECHNIQUES FOR ISOLATION AND PURIFICATION OF GENOMI	
FROM ALMOND LEAVES INTRODUCTION	
IN IRODUCTION.	
MATERIALS AND METHODS.	48
Plant material	48
GENOMIC DNA EXTRACTION PROTOCOLS	48

METHOD 2 – PAGE WITH ETHIDIUM BROMIDE

DETECTION	78
METHOD 3 – FLUORESCENT DETECTION	
CALCULATION OF MULTIPLEX RATIO	80
RESULTS	80
DISCUSSION	

CHAPTER 5

CONFIRMATION OF 'NONPAREIL' X 'LAURANNE' F1 POPULATION HYBRIDITY BY S- ALLELE IDENTIFICATION AND MOLECULAR FINGERPRINTING
INTRODUCTION
MATERIALS AND METHODS
PLANT MATERIAL AND DNA EXTRACTION
S-ALLELE IDENTIFICATION
PCR PRIMERS AND CONDITIONS
RAPD and ISSR cluster analysis
POLYMORPHISM GENERATION
DATA ANALYSIS
RESULTS96
S-Allele analysis
RAPD and ISSR analysis
Discussion

MORPHOLOGICAL ANALYSIS OF THE FULL-SIB F1 HYBRID POPULATION	on104
Introduction.	104
MATERIALS AND METHODS	
PLANT MATERIAL	112
NUT HARVEST	112
MORPHOLOGICAL TRAITS.	
VEGETATIVE TRAITS	
BLOOM TIME AND PRECOCITY	113
YIELD AND FECUNDITY	
Self-compatibility	115

Pollen tube analysis	115
Fruit set	116
PERCENTAGE DOUBLES	117
Kernel weight and shell hardness	
KERNEL SIZE AND SHAPE	117
TESTA CHARACTERISTICS	
Crease	118
RUGOSITY	
KERNEL TASTE.	118
STATISTICAL ANALYSIS	120
Results	121
VEGETATIVE TRAITS	121
BLOOM TIME.	121
PRECOCITY	121
Fecundity	122
Fruit set	12 2
Pollen tube analysis	
Percentage doubles	124
Shell hardness	127
INSHELL WEIGHT	128
Kernel weight	130
KERNEL SHAPE	130
TESTA APPEARANCE	131
Kernel taste	
Discussion	137

CHARACTERISATION OF FACTORS RESPONSIBLE FOR ALMOND KERNEL TESTA PUBESCENCE, AND DEVELOPMENT OF A MOLECULAR MARKER BY BULKED SEGREGANT ANALYSIS
INTRODUCTION147
Materials and Methods
Plant material
ORGAN OLEPTIC EVALUATION OF TESTA PUBESCENCE

MICROSCOPY TECHNIQUES15	1
LIGHT MICROSCOPY	
Scanning electron microscopy15	3
Cell density and diameter measurements15	53
DATA ANALYSIS	;3
BULKED SEGREGANT ANALYSIS FOR TESTA PUBESCENCE	54
Data analysis15	5
Conversion of inter-simple sequence repeat to sequence Characterised amplified region	
DNA CLONING	6
PLASMID PREPARATION	57
PLASMID PREPARATION FOR SEQUENCING	9
SEQUENCE ANALYSIS AND SPECIFIC PRIMER DESIGN	59
PRIMER SELECTION AND OPTIMISATION	50
Assessment of primer efficaciousness	51
VERIFICATION OF SCAR AMPLIFICATION	52
APPLICATION OF SCAR TESTA PUBESCENCE MARKER16	2
RESULTS	3
ORGANOLEPTIC ANALYSIS	3
STEREO MICROSCOPY	3
LIGHT MICROSCOPY16	4
SCANNING ELECTRON MICROSCOPY164	1
DATA ANALYSIS	9
BULKED SEGREGANT ANALYSIS	
Conversion of ISSR to SCAR marker	5
Discussion	

CONSTRUCTION OF A GENETIC LINKAGE MAP FOR THE F ₁ Hybrid Mapping POPULATION USING RAPD, ISSR, SCAR, SSR and Morphological	
MARKERS	
INTRODUCTION 186	
MATERIALS AND METHODS	
LINKAGE MAP PEDIGREE	

MOLECULAR TECHNIQUES	
DNA EXTRACTION	
MOLECULAR MARKER GENERATION	190
MORPHOLOGICAL MARKERS	
Marker nomenclature	191
LINKAGE ANALYSIS AND MAP CONSTRUCTION	
GENERATION OF THE INTEGRATED PARENTAL MAP	
RESULTS	
Discussion	

APPENDIX A

RAPD PRIMER SEQUENCES
APPENDIX B
WEATHER STATION DATA 2000 – 2003

PAPERS

ACTA HORTICULTURAE

Thesis Summary

THE DEVELOPMENT OF A GENETIC LINKAGE MAP FOR ALMOND BASED ON MOLECULAR AND AGRONOMIC MARKERS

Almond, *Prunus dulcis*, is a tree nut crop that originated in central Asia and is now grown commercially worldwide. Within Australia there exists huge potential gain from optimisation of almond cultivars better suited to Australian conditions. This is the ultimate goal of the Australian Almond Breeding Program, which was established in 1997 at the University of Adelaide. As part of this breeding program a unique hybrid population was developed from a cross between the American self-incompatible cultivar 'Nonpareil' (NP) and European self-compatible cultivar 'Lauranne' (LA). The F₁ population derived from this cross is the focus of this study, the population consisted of 181 individuals, of which 93 were selected for use in the mapping study.

Investigation of a number of DNA extraction techniques was performed in order to optimise DNA extraction quality and integrity from almond leaves for future applications in molecular work.

To determine if the purported F_1 hybrids were true hybrids, derived from a cross between the cultivars NP and LA, both DNA fingerprinting with cluster analysis and S- allele identification was performed, and the majority of F_1 putative hybrids clustered between the two parents when analysed using the simple matching coefficient and UPGMA. The genetic similarity between individuals comprising the mapping population ranged from 70% to 93% while the parents were 72% similar in comparison to each other. This indicated high genetic variability available for studying heritabilities and for production of a genetic map. Analysing the *S*-allele complement of all the F_1 hybrids was also performed to offer a more robust method for hybrid determination, since individuals in a breeding population with aberrant *S*-allele inheritance can be considered non-related. The inheritance of the self-fertility gene is important in breeding programs, since the majority of almond cultivars are self-incompatible, tracking the inheritance of this allele in breeding programs is therefore highly desirable.

A detailed morphological study was performed on the whole population over three growing seasons, 2001, 2002, and 2003. In 2001 tree characters such as disease prevalence, bare branches, close internodes, level of upright branches, leaf size and colour were measured. For all the seasons a number of other traits were also measured including: yield, bloom time, self-compatibility, percentage of double kernels, shell hardness, kernel weight, shape, taste, pubescence, and colour. The heritability, genetic variance, segregation and raw correlations between traits were calculated and used to establish a mode of inheritance for these traits. Rainfall and temperature maximum, minimum and monthly averages were collected and used to compare trends in the collected morphological data with these climatic data.

A preliminary investigation was undertaken to determine if the cellular structure of the kernel testa epidermis was responsible for the pubescent versus smooth mouthfeel of the F₁ hybrids. Light and scanning electron microscopy identified the presence of cellular protuberances arising from the epidermis as a potential cause of the pubescent mouthfeel in almonds. Bulked segregant analysis using inter-simple sequence repeat (ISSR) primers identified a potential marker linked to the pubescent trait which was converted to a sequence characterised amplified region (SCAR), which was also used to screen twelve almond cultivars for this trait.

In addition to the use of BSA for the development of markers linked to traits of interest, the development of genetic linkage maps has the potential to greatly enhance current and future breeding programs by MAS. This study produced a genetic linkage map for this population, constructed using random amplified polymorphic DNA (RAPD), ISSR, and simple sequence repeats (SSR), with the mapping program Joinmap 3.0. Two parental maps were constructed, which coalesced into seven linkage groups for the female parent and eight linkage groups for the male parent, corresponding to the chromosome number of eight for almond. The marker density was 9.4 cM/marker for NP and 9.6 cM/marker for LA, covering 65% for the female and male parental maps in comparison to the highly saturated peach x almond map produced by the European Prunus Mapping Program (EPMP). Fourteen markers segregating in both parents were used to produce an integrated parental map for this cross, which coalesced into six linkage groups with a marker density of 11.6 cM/marker. The presence of anchor loci common to the EPMP map allowed homologous linkage groups to be established between the two populations.

This study has contributed to the understanding of key morphological traits important in almond breeding programs. The expression and influence of biotic factors on the expression of these traits was also investigated. Understanding factors responsible for kernel taste is also an important objective and this study has contributed to this knowledge. The development of a genetic linkage map will serve as a permanent and practical resource for almond breeders in Australia, and contribute important data to the EPMP. This has significant benefit for *Prunus* breeders worldwide, and further enhances knowledge on an economically important nut crop.