Lorikeet: An Efficient Multicast Protocol
for the Distribution of Multimedia

Streams

Justin Viiret

Thesis submitted for the degree of
Doctor of Philosophy
mn
Electrical and Electronic Engineering
at
The University of Adelaide

(Faculty of Engineering, Computer and Mathematical Sciences)

School of Electrical and Electronic Engineering

June 4, 2007

Contents

Signed Statement

Acknowledgements

Abstract

1 Introduction

1.1

1.2

1.3

1.4

Background
1.1.1 Unicast Delivery oo i v i
1.1.2 Multicast Delivery o oo
1.1.3 Tree Construction« v v v v v v s
1.1.4 Delivering Multicast Packets
1.1.5 Dynamic Trees« oo vt i v e
Lorikeet e e e e e
Thesis Structure e e e e e e e e

Major Research Contributionso oo

2 State of the Art

21
2.2
2.3
24

Internet Protocol (IP) Multicast
Small Group Multicast
Application-Level Multicast and Overlay Networks
Topology-Aware Multicast

viii

ix

xi

3 The
3.1
3.2
3.3

3.4
3.5

3.6

3.7

4 The
4.1
4.2

4.3
4.4
4.5

Steiner Tree Problem in Networks 32

Introduction 32
The Steiner Tree Problem in Networks 33
Exact Solutions 36
3.3.1 Spanning Tree Enumeration 36
3.3.2 Dynamic Programming 37
Reductions e e 37
Suboptimal Heuristicso 39
3.5.1 Shortest Paths (SP) Heuristic 40
3.5.2 Minimum Spanning Tree (MST) Heuristic 40
3.5.3 Shortest Paths Terminals (SP-T) Heuristic 40
3.5.4 Shortest Paths with Origin (SP-O) Heuristic 41
Performance Analysis 42
3.6.1 Exact Methods 42
3.6.2 Heuristics e 43
36.3 Results. o e e 44
The Steiner Tree Problem in Multicast 47
Lorikeet Protocol 49
A New Multicast Protocol oo oo 49
Design Goals e e 50
4.2.1 Application Characteristics . . . < v o v v v v v v vv v v oo 50
4.2.2 Environmental Characteristics« oo o1
4.2.3 Requirementso a s 52
Network Assumptions. v v v v v b b s 56
Control and Delivery i e e s an vaa v v ias os w0 58
The Lorikeet Protocolo 61
451 Notation e e e e e 62

452 Joining the Tree. o o 63

o Tt e L

T

453 Leavingthe Tree oo o 66
454 TRearrangement o o e o.oeo- e e e s e s e s e 67
455 DataDelivery v v v v v v vt e e 74

5 Performance Analysis 77
51 Introduction e e 77
5.2 Other Algorithms 78
5.2.1 Source-Join and Greedy algorithms 79
52.2 ARIES e e e e e 79
5.2.3 Delay-Sensitive Greedy (DSG)o 81
524 REUNITEand HBH 81
595 HBH e e e e 87

5.3 Simulation e s e e 88
5.3.1 Simulation Experiments 89

54 Complexity Analysis 90
55 Tree Cost . . o v o v o e e e e e 95
5.5.1 Lorikeet Join and Rearrangement Operations 95
5.5.2 Comparing Lorikeet and Other Algorithms 99
5.5.3 Incremental Deployment 102

5.6 SUMMATY . . o o o e v e o e e e e 104
6 Directory Nodes 106
6.1 Motivation s 6 o s % 2 e 5w 5w s e m e e e e e 106
6.2 Directory Nodeso oo oo e 109
6.3 Joiningthe Tree . . . v v v v v v v o s o v om0 v s m o o i w 111
6.3.1 Algorithm . . ¢ o v v v si v vn o v u it e e e 112

6.3.2 DISCUSSION . . v v v v v v o o b e e e e e e e e e e e 116

6.4 Resulbs . . . o o o e e e e e e e e e e e 121
6.5 COonclUSIONS . .« « « v vt e e e e e e e e e e e e e 124

7 Implementation Concerns 126

7.1 Accessing a Lorikeet stream 126

7.2 Implementing Lorikeeto 128

7.2.1 Lorikeet Recelvers. o oo e e 128

7.2.2 Lorikeet Capable Routers 129

7.2.3 Lorikeet SOUICES+« o i i e e e e 134

7.3 Systems Issues.o e e 134

7.3.1 Load and Capacity oo 135

7.3.2 Robustness and Failure Recovery 136

7.3.3 Multiple Simultaneous Operations 138

7.3.4 Handoff in Rearrangement« . ..o 142

7.3.5 Security e e e e 144

. 7.4 Deployment e e 146

y 7.41 Content Providers.o e 147

:§ 7.4.2 Internet Service Providers 148

743 End Users« o o o i i e e e e e e 149

7.4.4 Placing Capable Routers- 149

8 Conclusions and Future Work 151

8.1 SUMMATY . . o o o e o o e e e e e e e 151

8.2 Potential Implementation-Related Research 156

; 8.3 Potential Protocol Extension ool 157

: 8.3.1 Layered Video Deliveryo 157

a 8.3.2 Local Recoveryttt 160

{ 8.3.3 Other Further Work o 162

0. Bibliography 164
"i%

- A

List of Tables

(&2 BN .

Join Event Complexityo 93
Leave Event Complexity oo 94
Average Messages Passed Per Event 94
Rearrangement Counts 95

98

Comparison of Rearrangement Techniques (events 500-2000)

=i T m A s

s
3

- al

-t

List of Figures

= W N

o

10

11
12
13
14

15
16

17

Topology: Simultaneous Unicast vs. Multicast 2
Comparison of Simultaneous Unicast and Multicast 3
Unicast transmission over a packet-based network 4
A Multicast Delivery Tree oo 6
Tree costs relative to optimal trees for heuristics 45

Waxman data set: Tree costs for heuristics, relative to optimal SMT

COSE . . e 46
Hierarchical Multicast Delivery 60
Path Rearrangement 69
Rejoin Rearrangement 72
Loop Detection and Subtree Inversion 73
Example illustrating REUNITE’s tree creation protocol 84

Comparison of Join Techniques: Simple Join vs. Path-Greedy Join . . 97
Comparison between Lorikeet and other Tree Management Heuristics 100
Comparison of incremental deployment performance for Lorikeet and

REUNITE/HBH. 102

Capable Routers in the tree improve efficiency through link sharing. . 107
Capable routers may be not on the shortest paths to receivers, but
can still reduce the cost of the tree if used. 109

Path-Greedy Join with Directory Nodes 115

vi

(*

18
19
20

21

22

23

24

Two Approaches to sweetening the path
Selecting a sweetener
Average tree cost against sweetener value for Directory Nodes simu-

JationNS e e e e e e

Discovering capable routers that are on the shortest path to a new
FECEIVET. . o o o o e e e e e e e e e e e
Discovering a capable router that is not on the shortest path to a new
receiver, but has probe packets forwarded to it by a filtering rule on
aborder router. L e

Path Rearrangement with Simultaneous Joins

Layered Video Delivery using a Lorikeet Multicast Tree

Signed Statement

This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best of
my knowledge and belief, contains no material previously published or written by

another person, except where due reference has been made in the text.

1 consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying.

SIGNEL .. DATE: 40, 07/4@97 .

viil

Acknowledgements

A PhD is an enormous piece of work with a great many moving parts, and I have
been very fortunate to have so many people help me with my work on Lorikeet. I
am very grateful to all of them for sharing their experience, time and support; 1
certainly wouldn’t have got there on my own.

Guiding my way from the first step to the last have been my supervisors at
the University of Adelaide, Nigel Bean, Michael Rumsewicz and Reg Coutts. Their
expertise and accessibility have prevented (or, at least, explained and corrected)
many missteps along the way and I thank them wholeheartedly for their friendship
and support over last few years. I could not have asked for better mentors.

I have been generously supported by scholarships from both the University of
Adelaide and the CRC for Smart Internet Technology, without which I could not
have worked full-time on my research. Both organisations also offered invaluable
training, support and other facilities. The South Australian Partnership for Ad-
vanced Computing kindly gave me access to their Hydra cluster computing resources,
making the simulation of larger networks possible in units of time smaller than weeks.
Special thanks are also due to the staff of TRC Mathematical Modelling, who have
looked after me and provided me with so much (the desk nearest the coffee machine,
for starters!) over the last four years.

Matthew Sorell taught me about multimedia coding and network applications
when I was a callow youth, and later was kind enough to bring me on board to mark
assignments, tutor and occasionally lecture with him on those topics. 1 enjoyed

myself immensely and appreciate his assistance and enthusiasm. Matthew Roughan

X

and Olaf Maennel answered my questions about router design, BGP and many other
things besides.

My fellow students in the TRC provided comradeship and many other things:
from a captive audience for my expositions on technology, film and photography
through to much-needed moral support and academic assistance. Andre Costa pro-
vided a helping hand and a voice of experience when I was new to postgraduate
work and still more than a little green; Jeremy McMahon’s enviable ability to de-
construct and then calmly obliterate a problem helped me out of several tight spots;
and Mathew Kinghorn was always ready to discuss a protocol, talk film, eat lunch,
or some combination of the above. Good luck with everything, guys, and thanks for
all your help.

So many of my friends have helped me out in the last few years, remaining
supportive and understanding in the face of my occasional weird obsessions and
irregular hours. Milton Yates, Adrian Jones, Beth Nosworthy, Matthew Berryman,
Kit Macfarlane, Jane Miller and Bryn Roberts, thank you for all the lunches, coffees
and dinners. Nic Cottrell and Andrew Clarke have remained good friends of mine
overseas, always been willing to talk or listen when I needed them. 1 would also
like to thank David Watts and Tom Long for all the coffee and photographs, Carl
Estella for his friendship and his patient instruction in the simplest elements of Ba
Gua Zhang, and Marty Deveney for his willingness to share his vast experience in
both photography and postgraduate life.

My family have tirelessly supported me throughout my years at University, prod-
ding me into action when I ran out of steam and encouraging me when I needed
reassurance. I am indebted to my mother and father, my sisters and my grandpar-
ents for their love and dependability.

Aditi Rao has been a wellspring of enthusiasm and affection as I have worked on
my thesis, and I have always been inspired by her clarity of thought and expression.
I am very grateful for her support while she was in Adelaide, and for her confidence

and constant encouragement from afar.

Abstract

Internet Protocol multicast has been standardised since the late 1980’s, but is yet to
be extensively deployed by most Internet Service Providers. Many organisations are
not willing to bear the additional router CPU load and memory requirements that
multicast entails, and the IP multicast suite of protocols requires deployment on ev-
ery router spanned by the multicast group to operate. Additionally, these protocols
are predominantly designed for the general case of multiple-source, multiple-receiver
transmission and can be complex and inefficient to use in simpler scenarios.

Single-source streaming of multimedia on the Internet is rapidly becoming a very
popular application, and is predominantly being served by content providers using
simultaneous unicast streams. A multicast transmission protocol designed for this
application that can operate without requiring a widely deployed IP multicast infras-
tructure has the potential to save content-providers and network service providers
significant amounts of bandwidth. This protocol should provide packet duplication
and forwarding capabilities on routers in the network, rather than pushing this func-
tionality to the receivers themselves, requiring them to become part of the multicast
infrastructure.

We describe Lorikeet, a new protocol for the multicast distribution of multimedia
streams from a single source. This protocol builds its multicast tree from the source,
discovering routers that support the protocol in the network and using them to
provide branching in the tree. The tree itself is managed in a decentralised fashion,
with joining receivers finding parent routers through a limited, recursive search of

the tree. On a participating node, information about the tree’s structure is limited

x1

to the addresses of that node’s children and its path through the tree back to the
source. Unlike most other multicast protocols, a new receiver is connected to the tree
using its forward path from the source and packets are delivered through the tree via
hop-by-hop delivery over unicast connections between nodes. Lorikeet also actively
maintains the tree structure using a localised rearrangement algorithm triggered by
a topological change in the tree structure. This rearrangement allows the tree to
remain efficient in the face of changes to the receiver population, which can change
the shape of the tree over time.

Lorikeet is designed to operate with no further protocol support than that pro-
vided by existing Internet unicast protocols. It requires none of the standard IP
multicast infrastructure, such as Class D group addressing. Its use of unicast con-
nections between nodes allows it to be deployed incrementally on the network, and
its behaviour will degrade to simultaneous unicast when no routers that support the
protocol are present at all. However, significant performance gains can be achieved
even when there are only a few supporting routers present in the network: Lori-
keet produces trees with half the cost of a unicast tree when just 10% of routers
are Lorikeet-capable. Lorikeet’s tree construction and rearrangement algorithms
generate multicast trees of comparable total cost to those created by algorithms
of considerably higher message complexity, such as those that employ exhaustive
searches of the tree during joins.

We develop the Lorikeet protocol from a set of requirements based on its target
application and the properties of the current Internet. After describing the protocol’s
behaviour, we analyse its message complexity and its performance in terms of tree
cost. We also analyse several other multicast protocols from the research literature,
comparing their performance to that of Lorikeet in both complete deployment, and

incremental deployment scenarios.

Chapter 1

Introduction

“Multicasting” is the term used to describe group communication in which a sender
or group of senders transmits information to multiple receivers. Multicasting allows
senders to transmit a small number of copies of the information over a connected
network which are then reproduced at intermediate hops in the network path and
disseminated to all receivers in the group. This approach is significantly more effi-
cient than the transmission of a separate, identical copy of the information for every
receiver. Consequently, more receivers can be supported with the same resources.
A pair of diagrams showing the topological difference between these two approaches
for a single-sender scenario are given in Figure 1.

Figure 1 is a diagram of the distribution tree for a single source multicast trans-
mission — this is a representation of the logical connections maintained between the
source and the other nodes (receivers and routers). In the simultaneous unicast
case of Figure 1(a), the source is sending five copies of the data stream through the
network to five receivers, even if these streams may be travelling on the same net-
work path for much of the transmission, a situation which is obviously duplication
of effort. In comparison, the multicast tree in Figure 1(b) has the source sending
only two copies of the data stream into the network, which are then replicated at
routers elsewhere in the network and delivered to the same five receivers. Although

the quantity of data received by the end receivers is identical, the amount of network

CHAPTER 1. INTRODUCTION 2

branching rouler

branching touler

non-branching
router

) ©

(a) Simultaneous Unicast: the source (b) Multicast: the source transmits a
transmits a separate identical data small number of data streains which are
stream to every receiver. replicated and sent to receivers by a tree

of intermediate routers in the network.

Figure 1: Topology: Simultaneous Unicast vs. Multicast

capacity required to serve those receivers using multicast is considerably reduced,
particularly if there is a large amount of replication taking place.

In the context of passing data over the Internet, Internet Protocol (IP) Multicast
has been defined by a selection of Internet Engineering Task Force (IETF) standards
for more than fifteen years [20]. It is still not widely used for dissemination of
multimedia content to home users [21, 25], despite the advantages of using multicast
techniques for transmission of popular real-time content.

Figure 2 shows the potential benefits of using multicast over simultaneous unicast
in terms of the cost of the complete distribution trec. The graph shows the total
cost of the tree plotted against the event number, where an event represents either
a receiver joining or leaving the multicast session. The tree cost is the sum of
the costs of the individual links being utilised by the tree. The two approaches
shown (Shortest-Path and Greedy algorithms) are conceptually simple multicast
tree construction algorithms, and are described in Chapter 5. As the graph shows,

both multicast approaches maintain much cheaper distribution costs than using

CHAPTER 1. INTRODUCTION 3

simultaneous unicast.

4500 T T T

4000 ey ese ettt ."'I"‘ Ly g
- N N . ."'-’. '.l_
3500} i J

3000 S .

N
v
o
o
T
!

Tree Cost
N
o
o
o

1500} c

1000 !

500 = |

1 1 i
0 500 1000 1500 2000
event

— Greedy

- gho esl

L Imu taneous Unicast

Figure 2: Comparison of Simultaneous Unicast and Multicast

These results are generated by the “Wazman” simulation described in Chapter J.

The aim of this thesis is to extend the state of the art in multicast communi-
cations over the Internet by proposing a new protocol that overcomes some of the
barriers to deployment of existing protocols, uses the existing network efficiently,

and provides richer functionality to both receivers and senders.

1.1 Background

This section is a short introduction to many of the concepts underpinning multicast

transmission in general, ideas that are common to most multicast systems. After

CHAPTER 1. INTRODUCTION 4

this brief discussion, we present an overview of Lorikeet, our proposed multicast

protocol.

1.1.1 Unicast Delivery

The majority of data travelling across the Internet today is transmitted using what
are called unicast communications protocols. Unicast protocols send information as
a stream of packets (small portions of data that can be reassembled after rccep-
tion) between a single source and a single receiver. Since the Internet is a network
consisting of many computers (referred to here as hosts) connected together, these
unicast packets must traverse a path through the network, moving hop-by-hop from

one host to the next, from the source to the destination.

source
dustinalen

Figure 3: Unicast transmission over a packet-based network

Figure 3 illustrates this idea. Information is sent from the source S to the desti-
nation D through a series of intermediate nodes in the network that are connected
together. This series of nodes is referred to as the path or route through the network
for this (source, destination) pair. In an Internet network, each packet may travel
via a different path, since each intermediate node selects the next hop in the path
independently according to a routing protocol. This allows unicast transmissions to
recover from changes to the network structure, such as node or link failures.

In a unicast connection, the two end-points (the source and destination) are often

designated end-hosts. For the vast majority of Internet protocols, all the processing

CHAPTER 1. INTRODUCTION 5

that occurs happens at these end-hosts, with the routers along the path between
them simply forwarding packets.

Not all Internet nodes are connected to each other with the same type of network
link: some nodes are connected via very high-capacity links, such as nodes in the
core of the network through which large amounts of data are flowing, while others
are connected by lower capacity links, such as home users connccted via slower
ADSL connections. In general, end-hosts tend to be connected to the Internet via
limited capacity links, and this capacity is referred to as the access bandwidth of
those end-hosts; that is, the maximum bandwidth that their access link is limited
to. Even if they are connecting to another host through a path that is otherwise
of very high capacity, the throughput between them will be limited by the access
bandwidth of the slower host.

1.1.2 Multicast Delivery

Unlike unicast, multicast transmission describes the sending of information to a
group: from a source or collection of sources to a group of receivers. This is done
by having the sources send their data packets into the network, where they are
replicated by hosts along the paths to their destinations, ensuring that all receivers
in the group receive copies of them. Hence, the idea of a single path through the
network is not sufficient: instead, multicast transmission can be visualised as a tree.
If we consider the case of a single transmitting source S, sending information to a
set of five receivers r; through 75, the resultant multicast tree might look like Figure
4. In this diagram we can see that the source is supplying five receivers with data,
but only sending two copies. When a packet reaches an intermediate host (which
we call a router, marked R in the diagram) that is participating in the multicast,
that host makes copies of the packet and sends one copy to each receiver that it is
supporting. Routers with more than one direct child in the tree are referred to as

branching routers, while routers with only single children are non-branching.

CHAPTER 1. INTRODUCTION 6

branching router

branching router

non-branching
router

Figure 4: A Multicast Dclivery Tree

These multicast trees are logical trees overlaid on the underlying network struc-
ture. For example, the path from R to r; in Figure 4 may actually consist of a
path through several other routers in the network which are not participating in the

multicast group and are simply forwarding packets.

1.1.3 Tree Construction

As described in the previous section, a multicast tree is a tree, rooted at the source
or another “core” node, that connects the source to all of the receivers in the group.
When a new receiver joins the tree, it connects to the tree along a path through
the network: the way that a path is chosen to join this receiver to the tree may be
characterised as either a forward-path join or a reverse-path join.

In a reverse-path system, the receiver initiates the join by contacting its nearest
router, or a router on its path back to the source. That router connects to another
on its path to the source, and so on until the new receiver is part of the multicast
tree. We can see that the path through the tree to this receiver is therefore based on

the reverse path: that is, the path from the receiver to the source. Most traditional

CHAPTER 1. INTRODUCTION 7

multicast protocols use reverse-path tree construction, since it reduces the load
on the source. The downside of reverse-path systems is that many networks have
significant routing asymmetry: that is, the reverse path is often markedly different
from the forward path between two nodes, as discussed by Paxson [59]. If a reverse-
path join is being used for a multicast session in which all the data comes from the
source, the delivery tree is being constructed in the opposite direction from that
which is to be used for the actual delivery of data. This tree is likely to be less
efficient for data delivery than one constructed in the forward direction.

A forward-path join is a join that bases a receiver’s connection to the tree on the
path in the forward direction, from the source to the receiver. This requires some
collaboration from the source, but results in a multicast tree that is constructed in

the same direction as the delivery of data.

1.1.4 Delivering Multicast Packets

Once constructed, the multicast tree is used to deliver packets of data from a source
to the rest of the group. Each packet is transmitted by the source and forwarded
to a multicast router, which forwards a copy of the packet out each of its interfaces
that has known receivers attached, and so on. The direction of packet flow through
the network can be characterised as upstream (towards the source) or downstream
(towards the receivers), and multicast routers keep track of which interfaces are
upstream and which are downstream interfaces. Two types of multicast distribution
tree are generally used by multicast routing protocols: shortest path trees and shared
trees.

In a shortest path tree approach, a multicast distribution tree is constructed us-
ing the model described above, with a source at the root of the tree and branches
extending out towards receivers. Every multicast router in the group stores informa-
tion about this source in its multicast forwarding table. In scenarios with more than

one source, separate shortest-path trees must be constructed for each source and an

CHAPTER 1. INTRODUCTION 8

entry stored for each tree in every participating multicast router. This approach is
sometimes also called a source-based approach.

Unlike shortest path trees, shared trees use a single common node called the
rendezvous point (RP), sometimes also called a core node, as the root node of the
distribution tree. All sources send their traffic to the RP, which forwards it down
the shared tree to all of the receivers. This reduces the state information required in
routers, since only the RP needs to know the locations of all the sources, and only
one multicast tree (rooted at the RP) needs to be constructed. However, since all
data must be sent by the sources to the RP and then redistributed, this approach
will almost never be as efficient in terms of total tree cost as the use of shortest-path
trees. The only way for a shared tree to be as efficient is for the RP to lie on the
shortest paths between every source and receiver in the multicast group. Hence, the
selection of the RP’s location in the network is critical to minimising the cost of a

shared tree multicast group.

1.1.5 Dynamic Trees

Many multicast protocols are designed for static scenarios, where the set of receivers
is known and will not change over the course of the transmission. One example is
a corporate videoconference. In such a case the set of receivers is known ahead of
time, so the delivery trees are constructed, the conference takes place, and then the
trees are torn down. The receiver set is fixed for the duration of the session, and
the trees could even be statically constructed ahead of time.

Many multicast applications, however, are more dynamic systems: the set of
users can change over the course of the transmission, causing new paths through the
tree and new branching points to become available. ‘I'his can reduce the efficiency
of the distribution tree, particularly in multicast protocols where the selection of a
branching point for a new receiver is dependent on the paths chosen through the

network by receivers that joined the tree earlier on.

CHAPTER 1. INTRODUCTION 9

As an example, consider the case of an “Internet TV” station, where a content
provider is multicasting content 24 hours a day, 7 days a week - a news channel or
a music video channel, for example. In such a case, the composition of the receiver

set can change markedly over time for a number of reasons:

e Clients do not all watch the stream 24 hours a day. The vast majority of end
users will join the session, watch for a while, then leave the session. This is

referred to as dynamic membership.

e If the audience is worldwide, the locations of the majority of receivers will shift
depending on the time of day (for example, as an audience in one country goes
to sleep and an audience in another wakes up), creating very different tree

topologies.

e Failures may occur in the network, removing individual receivers or entire

branches from the tree.

In these scenarios with dynamic membership, it is possible in some multicast
systems to perform maintenance of the tree, often called tree rearrangement. In
these systems, branching points or receivers (or both) are re-connected to the tree
when appropriate in order to prune older, less efficient branches in the tree or make
use of new branches created by the addition of recent receivers. In some systems,
this rearrangement is triggered by participants randomly probing other points in
the tree to find better locations to connect. In others, rearrangement of the tree can
be triggered by an event counter threshold or a periodic timer. This maintenance
of the tree helps maintain efficiency in the face of changes to the tree’s structure

caused by the addition and departure of receivers.

1.2 Lorikeet

We propose a new multicast protocol called Lorikeet. Lorikeet is designed to be a

practical, incrementally-deployable single-source multicast scheme that will operate

CHAPTER 1. INTRODUCTION 10

on the current Internet without requiring IP multicast to be deployed. The target
application for Lorikeet is single-source live audio and video distribution. In addi-
tion, we use routers in the network to perform branching, enabling more efficient
use of the network and better performance than purely application-level protocols.
Lorikeet is capable of rearranging its distribution tree to cope with changing re-
ceiver populations, and maintains minimal stale information at individual nodes in
the tree. As is shown in Chapter 5, Lorikeet builds distribution trees with less than
half the cost of simultaneous unicast distribution when only 10% of the routers in
the network support the protocol.

Lorikeet uses a source-based joining procedure and a hop-by-hop delivery mech-
anism similar to the recursive unicast tree approach proposed in REUNITE [71] and
extended in HBH [18]. Unlike most other multicast protocols, including REUNITE
and HBH, Lorikeet employs a true forward-path tree construction technique, always
joining new receivers to the multicast tree via a unicast connection from an existing
router in the tree. This ensures that the tree is optimised for data delivery, which
occurs in the forward-path direction from source to receivers. In the join procedure,
a new receiver contacts the source and the source begins a recursive search of the
current tree to find a close parent node for the receiver, or connects the receiver
directly if a close enough parent cannot be found. Routers in the network that
support the Lorikeet protocol are termed capable routers and are able to provide
branching points in a multicast tree. Receivers in Lorikeet are always leaf nodes in
the tree and therefore support no children. This design decision was made in order
to simplify leaving the tree, focus on branching in the core of the network where
capacity is not limited to access bandwidth and facilitate tree rearrangement. Lori-
keet’s join operation is of low complexity compared to the joins proposed by other
multicast approaches which share some of Lorikeet’s features, such as ARIES [8]
and DSG [32], while still generating trees of comparable cost.

Dynamic membership is supported by allowing the distribution tree to locally

rearrange capable routers. This rearrangement is triggered by a topological event,

CHAPTER 1. INTRODUCTION 11

rather than a timer or threshold, in order to reduce the likelihood of unnecessary
modifications to the tree.
Thus, Lorikeet has a number of advantages over traditional multicast and many

other proposed multicast protocols:

e it is designed specifically for single source transmissions to end receivers, re-
moving the communications overhead required to perform sender discovery or

manage multiple trees.

e it provides join and leave mechanisms that have low message complexity, en-

abling receivers to join and leave the tree rapidly.

e it is incrementally deployable: Lorikeet will operate even with no capable
routers in the tree — receivers will simply join directly to the source, in a

“simultaneous unicast” configuration.

e it has no dependency on IP multicast or special multicast addressing, using
standard IP unicast addresses for source identification. It is still, however,

able to use routers in the network to perform branching.

e it is able to make efficient use of the network: Lorikeet’s trees are forward-path

trees constructed to make efficient use of the underlying network topology.

e it is able to effectively rearrange the tree to cope with changes to the receiver
set. In particular, these rearrangements are localised to the subtree under a

single router and no global calculations are required to achieve them.

Many of these features are also present in the REUNITE [71] protocol described
by Stoica et al. There are some significant differences between the work done on

REUNITE and Lorikeet, however:

e REUNITE claims to construct the tree in the forward-path direction but

clearly does not, instead using the reverse unicast shortest path from the

CHAPTER 1. INTRODUCTION 12

receiver to the source to select parent routers in the tree. Lorikeet therefore
creates more efficient trees in scenarios with asymmetric unicast paths. This

issue is also addressed by the HBH protocol, which modifies REUNITE’s join

procedure to better cope with asymmetric paths.

e Lorikeet explicitly searches the current tree for parent routers when connecting
a new receiver, while REUNITE only searches the reverse unicast path between
the new receiver and the source. Hence, Lorikeet is able to more effectively
leverage the routers already in the tree, providing more branching and a lower

cost delivery tree.

e REUNITE uses soft state with periodic refreshment to maintain all forwarding
information in the tree, while Lorikeet manages joins and leaves with explicit

control messages, requiring much less control communication to maintain the

structure of the tree.

With the exception of the changes to its join technique that improve perfor-
mance in trees that traverse asymmetric paths, HBH shares these properties with
REUNITE. A discussion of both protocols and a comparison between them and Lori-
keet are presented in Section 5.2.4. Simulation data comparing REUNITE/HBH and
Lorikeet is presented in Chapter 5, in which we show that Lorikeet is able to out-
perform REUNITE/HBH by over 30% in terms of total tree cost in scenarios with
limited protocol deployment in the network. Even at higher levels of deployment,

Lorikeet consistently generates cheaper trees.

1.3 Thesis Structure

In Chapter 2, we present a survey of other work on multicast. We begin by examining
the current state of Internet Protocol (IP) multicast, as standardised by the Internet
Engineering Task Force. We then discuss different approaches to multicast protocol

design from the literature, including small-group multicast, application-level and

=)

e

CHAPTER 1. INTRODUCTION 13

overlay multicast, and protocols that leverage information about the underlying
network topology.

Chapter 3 is a discussion of the Steiner Tree Problem in Networks, which is the
graph-theoretic problem that underlies multicast tree construction. We investigate
both exact algorithms for finding optimal solutions and heuristics for finding ap-
proximate solutions. An analysis of the performance of these heuristics is prescnted.

In Chapter 4, we describe Lorikeet, our new multicast protocol for single-source
multimedia streaming. We develop the ideas behind Lorikeet from the characteristics
of its target application and the network environment, then present a description of
each operation performed by the protocol.

The performance of Lorikeet and several other multicast protocols is analysed
in Chapter 5. Here, we describe our simulation environment and analyse Lorikeet’s
complexity and the behaviour of several different operations described in the previ-
ous chapter. Lorikeet’s performance is compared to that of several other competitor
protocols, including ARIES, DSG and REUNITE. Finally, we analyse Lorikeet’s
behaviour in an incremental deployment scenario and compare it directly with RE-
UNITE (which is also capable of incremental deployment.)

In Chapter 6, we present an investigation into the use of directory nodes, a service
designed to enhance Lorikeet’s ability to discover Lorikeet routers when they are
sparsely distributed throughout the network. We extend Lorikeet’s join algorithm
to use this service, and present some results on its efficacy.

Chapter 7 is a discussion of issues related to the development of a physical imple-
mentation of Lorikeet. In this chapter, we describe issues that are not immediately
obvious from Chapter 4’s description of Lorikeet’s topological behaviour, such as
security concerns, resource management and the handling of multiple simultaneous
operations. We also describe the different ways in which Lorikeet can be deployed
and the likely drivers for this deployment.

Chapter 8 presents a summary of our findings in this thesis, and discusses several

possible avenues for future work on Lorikeet and research in multicast in general.

CHAPTER 1. INTRODUCTION 14

1.4 Major Research Contributions
This section briefly outlines the major research contributions made by this thesis.

e We have developed and specified a new multicast protocol called Lorikeet,
designed for delivery of real-time content from a single source to a large set of

receivers on current Internet networks.

e We have investigated the Steiner Tree Problem in Networks and developed
Lorikeet’s join and tree maintenance algorithms from an understanding of the

underlying topological problem.

e Lorikeet is designed to be deployed incrementally and allow receivers to access
content even in the absence of network routers that support the protocol.
Lorikeet’s performance has been analysed at a range of network penetrations
ranging from zero to all routers in the network, and the level of deployment

required to make significant performance improvements has been identified.

e We have developed a rearrangement operation for Lorikeet’s distribution tree
that is triggered by a topological event (a router becoming non-branching)
rather than forcing a rearrangement according to a periodic timer or a thresh-
old being reached. This rearrangement operation is localised to a single branch

of the tree and does not require any global calculations.

e We have analysed the complexity of Lorikeet and several other algorithms for
joining, leaving and rearranging the tree in terms of the control messaging
required, in both static (Steiner heuristic) and dynamic (online multicast)

scenarios.

e The performance of Lorikeet in a number of scenarios constructed to approxi-
mate receivers joining and leaving a tree on a number of Internet-like topolo-
gies has been simulated and compared to several other protocols, including

REUNITE [71], ARIES [8] and DSG [32].

CHAPTER 1. INTRODUCTION 15

e We have examined the ways in which Lorikeet could be deployed in the net-
work, either in the core or out near the edges, in ISP access networks. For
the latter case, we have investigated the use of directory nodes as a capa-
ble router discovery service to improve performance when capable routers are

concentrated at the edge of the network, as with Web proxy servers.

e We have examined the barriers to widespread implementation of 1P multi-
cast and other multicast schemes and described a plan for implementation of

Lorikeet that would overcome these obstacles.

e We have suggested several ways in which Lorikeet can be extended to provide
features that are difficult or not possible to implement with other multicast

protocols, including

— adaptation of the data stream as it flows down the tree to deal with

receivers’ different capacity requirements; and

— local retransmission (between a parent router and child router or receiver)
of packets when they are lost but can be retransmitted before they are

due for playback.

This chapter has introduced the topic of multicast transmission over the Internet
and presented a brief discussion of some concepts that are basic to most multicast
protocols. We have also presented a summary of the major features of our protocol
for multicast transmission, called Lorikeet, and outlined the major research contri-
butions of our work. The following chapter will present a survey of existing research
in the field and current Internet standards, and later chapters will describe Lorikeet

in further detail.

Chapter 2

State of the Art

This chapter presents an overview of the research literature and the existing stan-
dards for Internet multicast communication. First, we describe the existing IP
multicast protocols and their uses, the majority of which are standardised by the
Internet Engineering Task Force (IETF) and have implementations available for use.
Next, we present a description of Source-Specific Multicast (SSM), a simplified set of
these protocols designed for single-source multicast only, and briefly give an account
of the state of IP multicast deployment and the barriers preventing its use by many
end users.

The remainder of this chapter we devote to alternative approaches to multicast
that have appeared in the literature. First, we go through the small group multi-
cast approaches, which encode the destination lists in the packets themselves and
deliver them via unicast with router support. Second, we treat application-level and
overlay network approaches. Application-level multicast schemes perform all dis-
tribution of data on the end-hosts themselves, building the distribution tree solely
out of end-hosts and requiring only unicast transmission between member nodes.
Overlay network approaches take this idea one step further, building a generalised
overlay of participating nodes on top of an IP network (often introducing differ-
ent addressing and routing schemes), then implementing multicast as a service on

this overlay network framework. Finally, we examine a group of multicast protocols

16

CHAPTER 2. STATE OF THE ART 17

that explicitly leverage information about the underlying network topology to build
efficient distribution trees.

This survey of different protocols is not intended to represent a complete, well-
defined taxonomy of multicast techniques. We have grouped them into subsections
for ease of comparison and brevity in description, rather than attempting to explic-

itly categorise each system.

2.1 Internet Protocol (IP) Multicast

The IETF maintains a set of standards that we group under the title “Internet Mul-
ticast”, defining group communication over Internet Protocol (IP). Internet Multi-
cast was initially defined in RFC 966 [20], which introduced the concept of “host
groups”, sets of hosts identified by a single IP address to which packets could be
delivered. Further development led to RFC 1112 [19] in 1989, which defined version
1 of the Internet Group Management Protocol (IGMP) and became the recom-
mended standard for Internet multicast transmission. These initial RFCs define a
basic mechanism for group communication, based around the use of special-purpose
multicast addresses. Every multicast group selects a single multicast address from
the pool of Class D IP addresses, 224.0.0.0 through 239.255.255.255 in IPv4. Packets
sent to a group’s multicast address are delivered by the network to every host in
the group. Many-to-many communication 1s supported; that is, a group can have
multiple senders as well as multiple receivers. Joining a group is achieved by an-
nouncing a desire to receive packets on that group’s multicast address (for example,
by binding the host’s ethernet interface to the multicast address and notifying the
local multicast router). Local routers use IGMP messages to discover when they
have members of multicast groups on their attached local networks, and use that
information to selectively forward multicast packets via only those interfaces. Shar-
ing of the multicast state information gathered by IGMP between routers in an

organisation is achieved through the use of multicast routing algorithms, which are

CHAPTER 2. STATE OF THE ART 18

analogous to the routing algorithms employed for unicast. The current version of
IGMP is IGMP version 3 [13]. In IPv6 networks, a newer protocol called Multi-
cast Listener Discovery (MLD) [75] serves the same function as IGMP does in IPv4
networks.

As described in Chapter 1, Internet multicast protocols can be characterised as
shortest-path and shared tree protocols. In a shortest-path protocol, the delivery
tree is constructed with the source at the root of the tree. IP Multicast routers
store information about this source as an (S, G) pair in their multicast forwarding
tables, where S is the unicast address of the source and G is the multicast address
of the group. In multicast groups with more than one source, routers must build a
separate (S, G) shortest path tree for each one. In a shared tree protocol, the tree
is Tooted at a rendezvous point (RP). All sources send their traffic to the RP, which
forwards it down the shared tree to all of the receivers. Shared tree multicast groups

are commonly described with (*, G) notation, with the wildcard “*”

representing
the sources and G as the multicast group address.

A number of different multicast routing protocols have been developed over the
years, beginning with the Distance Vector Multicast Routing Protocol (DVMRP) [76].
As its name suggests, DVMRP is a distance-vector routing protocol, similar to the
Routing Information Protocol (RIP) [36] developed for unicast routing. Distance-
vector routing protocols build routing tables for their participants in a distributed
manner, based on the sharing of information about reachable hosts and their net-
work distances between neighbours. The approach to multicast routing and delivery
used by DVMRP is a “dense mode” approach, based on a flood-and-prune mecha-
nism: when a multicast router receives a packet, it sends that packet out on all of its
interfaces except the one it came in on (the upstream interface). If a router has no
receivers in its connected networks for a packet it has received, it sends a “prune”
message to the upstream router, requesting that it not be sent subsequent packets
for that group. Periodic re-flooding is used to refresh state (in case new interested

receivers appear on previously-pruned networks). Upstream and downstream paths

CHAPTER 2. STATE OF THE ART 19

are determined through Reverse Path Forwarding (RPF) checks against multicast
route information maintained by routers. Routers running DVMRP maintain this
information by exchanging distance vector updates with neighbouring routers.

A later protocol, Protocol Independent Multicast — Dense Mode (PIM-DM) (1]
implements the same flood-and-prune approach, but does not build and maintain
its own routing table for RPF checks. Instead, it is able to use the routing table
provided by any underlying unicast routing mechanism. Both DVMRP and PIM-
DM are shortest path tree approaches to multicast tree construction.

Dense protocols, while very simple and useful for group transmission where re-
ceivers are common (that is, where there is likely to be at least one receiver in every
connected network), are very inefficient in cases where receivers are much more
sparsely distributed. To serve this scenario better, sparse protocols like Protocol In-
dependent Multicast - Sparse Mode (PIM-SM) [26] were developed. PIM-SM uses a
shared tree approach, with a rendezvous point (RP) that keeps track of the locations
of all the sources. Instead of flooding the network, sources send their data to the RP,
which handles distribution to the group’s receivers. The benefit of this approach
when compared to PIM-DM is that no flooding is required to notify routers of the
locations of active sources; instead, the RP is the only node that needs to know the
sources’ locations. Multicast routers in the group need only store one shared tree
rooted at the RP, rather than storing separate shortest path trees for each source.
The disadvantage of using a shared tree protocol is the inefficiency introduced by
using a single tree rooted at the RP — if the RP is not optimally located (given
the locations of the sources and the receivers), traffic will flow along longer paths
through the RP than it would if it was travelling from the sources to the receivers
directly. An additional protocol called Multicast Source Discovery Protocol [27]
(MSDP) can be used to connect several PIM-SM distribution trees together, with

each domain using its own independent RP.

CHAPTER 2. STATE OF THE ART 20

Source-Specific Multicast (SSM)

Many of the issues described above (such as source discovery and the use of an RP)
only apply to multicast sessions where there can be more than one source trans-
mitting data to the group. In the case of single-source groups, much of the extra
complexity associated with these standards is unnecessary. The Internet commu-
nity has recognised this and developed a standard called Source-Specific Multicast
(SSM) [9] for multicast groups with only a single source. Consequently, the origi-
nal standards for many-to-many multicast communication have come to be grouped
under the term Any-Source Multicast (ASM).

SSM represents a subset of the existing Internet multicast standards, simplified
for the one-to-many model. It shifts the problem of source discovery to the ap-
plication layer, and represents a multicast group with a single (S, G) tree: when
a new receiver wishes to join a group, it informs its local multicast router of the
unicast address of its source S, as well as the group address G. Routing of multicast
packets under SSM is done with a subset of PIM-SM and IGMPv3, without the
need for separate multicast routing tables (as in DVMRP), RPs or sender discovery.
However, SSM still uses the basic IP multicast delivery model and Class D group
addressing. SSM is derived from earlier work on EXPRESS [38], which originally

defined the single source multicast channel represented by an (S, G) pair.

Deployment on the Internet

All of the protocols described so far constitute “interior” multicast routing proto-
cols, designed to be used inside a single autonomous system (AS); that is, a single
organisation. Additional protocols are used to share information between ASes, per-
mitting multicast sessions to extend across larger areas of the network. The most
common protocol used for this purpose is the Multiprotocol Border Gateway Pro-
tocol (MBGP) [6], an extension to the standard BGP protocol used for interdomain

routing. MBGP allows BGP to share information about routes other than unicast

CHAPTER 2. STATE OF THE ART 21

IP routes (in this case, multicast RPF information) between different organisations.

These “traditional” IP multicast protocols all have a number of properties in
common that make them difficult to deploy on an Internet-wide scale: all the routers
between the source and the receivers need to have multicast enabled; some protocols
require additional memory for routing tables in multicast routers; Class D group
addresses need to be assigned; and many organisations are not willing to bear the
additional network and CPU load associated with multicast traffic.

For these reasons, IP multicast is not widely deployed across the Internet today:.
It is in use inside organisations for “local” applications (such as video-conferencing),
but is not generally available to end users connected to the Internet via commer-
cial Internet Service Providers. In the early 1990s, a network of multicast-enabled
routers called the MBone was created, connecting together via unicast tunnels which
allowed these “islands” of multicast connectivity to appear seamlessly connected.
The MBone was used for multicast protocol research and a small number of applica-
tions, such as audio and video multicasting of IETF meetings. In 2006, many larger
organisations have portions of their networks running native multicast, even across
AS boundaries, but it is still not available to end users. Today, Internet 2 (a research
network connecting a large number of predominantly American universities) is used

as a multicast research platform.

2.2 Small Group Multicast

IP multicast is not a particularly “lightweight” suite of protocols, presenting the
network user with a large amount of infrastructure that is required for group com-
munication to occur. Several potential multicast applications, however, involve
small groups of end receivers for which all this infrastructure can be considered
unnecessary or over-engineered. For these applications, an area of research that has
attracted some attention is small group multicast, also termed explicit multicast.

These systems are designed for multicast transmission of data between small groups

CHAPTER 2. STATE OF THE ART 22

of hosts, facilitated by the carrying of lists of destinations in the data packets them-
selves. Examples of small group multicast protocols include Xcast [11], SEM [12]
and LinkCast [3].

Xecast explicitly encodes the list of destinations in the data packets, rather than
using a multicast group address or storing state information at member nodes. This
list is provided by the multicast source, which must maintain a list. of all receivers
in the session. When a router receives such a packet it reads the header, partitions
the destinations according to their next hops, and forwards a copy of the packet
with appropriately rewritten headers to each next hop. This approach requires no
additional control communications in the network and requires no state information
to be stored at routers. However, having each packet contain a full list of receivers
severely limits the size of the multicast group, making explicit multicast protocols
inappropriate for large-scale multimedia transmission. Xcast+ [68] extends Xcast
by adding an IGMP join at the receiver side to the system and using a list of mul-
ticast routers, rather than receiver addresses, in the packets. Distribution of the
data packets to end-receivers is then handled by locally-scoped 1P multicast deliv-
ery from these multicast routers. Similarly, SEM [12] uses IGMP to manage joins
and has the source maintain only a list of participating multicast routers, with which
it constructs a tree (storing some limited forwarding state in intermediate routers).
Both these approaches still require that traditional multicast routing protocols be
deployed in the network, though they do succeed in reducing the state information
and control overhead required. LinkCast [3] improves upon XCast'’s storing of re-
ceiver lists in packet headers by encoding instead a set of link indices, generated
from the receiver join messages which are appended to by the routers which they
traverse. Though this approach can support a larger number of receivers than Xcast,
it still does not scale to large groups and requires deployment on every router in the

network in order for link index gathering to operate.

CHAPTER 2. STATE OF THE ART 23

2.3 Application-Level Multicast and Overlay Net-
works

Even explicit multicast techniques have the requirement that routers support the
protocol in order for them to operate: a router that does not support the protocol
cannot replicate and forward the packets correctly. To overcome this obstacle, there
has heen considerable research in “application-level” or “end-host” multicast. In
these systems, all processing is done at the edge of the network on the end-hosts:
every receiver participates in the tree as a branching node, forwarding packets to
other receivers further down the tree. Since all the branching is done at end-hosts,
there is no necessity for routers to support the protocol. Hence, simple unicast for-
warding is used for transmission from the source to receivers, and between receivers
themselves. Many of these approaches also implement rearrangement of the distri-
bution tree, to cope efficiently with changes to the receiver population — if a new
receiver joins the tree, other receivers may be able to improve their performance by
becoming children of this new receiver. When a receiver leaves the tree, its children
must be re-parented to maintain their connection to the group.

Helder and Jamin’s Banana Tree Protocol [37] is an application-level multicast
protocol designed to be the underlying control mechanism for a peer-to-peer file
sharing application. It has a very simple approach to joining the tree: nodes simply
join the multicast distribution tree as children of the source of the tree (it is assumed
there is a bootstrapping mechanism by which they can discover the location of
the source). Optimisation of the tree is then taken care of through a periodic
rearrangement procedure: a node periodically tests 1ts siblings for closeness, and
switches its parent to one of these siblings if it is closer than its current parent.
Helder and Jamin found that this approach worked well in ideal situations, but did
not perform adequately in more realistic scenarios: their conclusion was that a wider
range of graph transformations was required to effectively optimise the distribution

tree.

CHAPTER 2. STATE OF THE ART 24

Chu et al.’s Narada protocol [40] creates a well-connected mesh of hosts and then
constructs spanning trees from this mesh, rooted at each source of the transmission.
Rearrangement in Narada is based on members randomly probing each other and
adding new links based on a given utility function. Pendarakis et al.’s ALMI [60] uses
a centralised session controller (like an RP) to coordinate the multicast tree — this
session controller constructs the tree by periodically calculating a minimum spanning
tree based on measurements from tree members. Similarly, El-Sayed and Roca’s
HBM protocol [65, 24] uses a centralised RP that builds the multicast distribution
tree. This RP has complete information about all receivers in the group and is
responsible for calculating the tree’s topology and disseminating that information to
all its participants. Data transmission between receivers happens directly, however,
rather than through the RP as in traditional shared tree protocols. An analysis
of the performance of the application-level approach has been presented by Chu et
al. |39, 40]

In [51], Mathy et al. present an application-level tree construction protocol
called TBCP (Tree Building Control Protocol). TBCP is designed to be an efficient
tree construction mechanism that operates with partial knowledge of the multicast
group membership and limited network topology information. It uses a tree joining
algorithm that finds a parent node for a new receiver by recursively searching the
existing tree (and, if necessary, re-parenting existing nodes to maintain a bound on
the number of children a tree node can support). TBCP constructs a tree with very
limited network information and no dependencies on IP multicast or special-purpose
routers in the network. However, it only specifies a tree construction mechanism,
designed to be combined with the delivery, tree maintenance and leaving operations
provided by another overlay or application-level protocol.

The NICE application-level multicast protocol [5, 4] is designed for relatively
large receiver set, low-bandwidth real-time applications that can tolerate some loss,
such as news and stock tickers. NICE organises its member nodes into a hierarchical

control topology based on the separation of groups of nodes into layers, further

CHAPTER 2. STATE OF THE ART 25

partitioned into clusters of nodes that are close to each other in network terms. All
of the nodes in the group are in layer 0 and organised into clusters. Each cluster on
layer 0 (zero) has a cluster leader that becomes a member of a cluster at layer 1 (along
with other layer 0 leaders), and so on. Nodes only maintain state information about
other nodes in their clusters, thereby limiting the amount of space required on each
node. Data transmission is performed on a tree derived from this control hierarchy,
where nodes retransmit received packets to all members of clusters for which they
are the leader. NICE periodically performs maintenance on this control hierarchy;
this maintenance consists of split and merge operations designed to maintain cluster
size between two bounds. In addition, a node periodically probes the leaders of other
clusters in a given layer looking for a more appropriate cluster allocation. Several
other proposals (SAHC [52] and ZIGZAG [74], for example) present similar schemes
based on dividing the receiver set into bounded-size clusters from which a multicast
distribution tree can be constructed.

Several research projects have developed the idea of building overlay networks
where participant nodes are organised in a structured manner and nodes can be
addressed using, for example, their locations in a coordinate system. Much of this
research is in the related area of peer-to-peer networking, but several projects have
implemented application-level multicast as an application on a framework that pro-
vides an underlying overlay structure. The Narada system, described earlier, can be
considered an overlay network approach, since it organises its hosts into a mesh
before building distribution trees on it with a routing protocol. Ratnasamy et
al. describe such a system built upon an overlay network framework called the
Content-Addressable Network (CAN) [63], called CAN-based multicast [64]. Sim-
ilarly, Zhuang et al. present Bayeux [83], a multicast system that leverages an
underlying overlay framework called Tapestry (82]. In [14], Castro et al. present
an evaluation of application-level multicast schemes built on several of these overlay
network frameworks, namely CAN, Chord [70], Pastry [66] and Tapestry.

Chawathe’s ScatterCast [15] protocol is an overlay multicast distribution system

CHAPTER 2. STATE OF THE ART 26

that combines concepts from overlay network protocols, application-level systems
and traditional IP multicast. It builds an overlay network of “ScatterCast proxies”
(special-purpose, strategically located servers) and receivers, using locally-scoped
IP multicast for delivery where possible, and direct unicast connections where IP
multicast is not available. The overlay network of proxies is built by creating a
strongly connected mesh first, then running a standard routing protocol on top of the
mesh to build shortest path trees (rooted at sources) for data distribution. Similarly,
Yoid [28] and HMTP [81] are both application-level multicast proposals that leverage
existing JP multicast capability where possible, and construct overlay networks over
unicast elsewhere. HMTP builds a shared tree of members representing each “island”
of local multicast connectivity (called Designated Members, or DMs) and assumes
all end receivers are multicast-capable hosts within the same network as a DM.
In addition to the shared distribution tree, Yoid also creates a mesh topology for
control information and increased robustness.

Application-level multicast schemes solve the problem of requiring deployment
of the protocol across the whole network, since they only require unicast transport
between group members (which are all end-hosts). However, they do so at a perfor-
mance cost: all branching of the distribution tree happens at the edges rather than
in the core of the network. If branching in the core were possible, the system could
reduce path lengths significantly and hence build a more efficient tree.

Another issue with traditional multicast protocols that is addressed by many
application-level approaches is that of dynamic membership. IP multicast was
largely designed for well-behaved applications with a static list of hosts in the group,
where the list of receivers is fixed and does not change over the lifetime of the session.
The delivery tree is therefore very stable, and no further maintenance is required
after its construction. Many multicast applications, however, can invite potentially
very dynamic membership, with sets of users connecting and disconnecting over the
period of the transmission. Several application-level protocols try to maintain effi-

ciency during these changes by periodically rearranging the distribution tree. Often

CHAPTER 2. STATE OF THE ART 27

(137, 5, 42, 40]) this is achieved by having receivers periodically attempt to rejoin
the tree at the source or a nearby node, searching for a better parent in the tree

than their current parent.

2.4 Topology-Aware Multicast

Most overlay and application-layer multicast systems are built to operate at the
edge of the network on end-hosts, and their tree construction and maintenance
algorithms emphasise connectivity over performance. In this section we present an
examination of research into multicast systems designed to more closely match the
structure of the underlying network, generating higher performance multicast trees
and even rearranging the tree when the current tree is ineflicient due to changes in
the network or the receiver population. We have chosen to describe these systems in
greater detail since this goal of building and maintaining efficient trees is one shared
by our work on Lorikeet.

In ARIES (A Rearrangeable Inexpensive Edge-based on-line Steiner algorithm) [8,
7], Bauer et al. develop a multicast protocol designed to cope with dynamic mem-
bership by rearranging the distribution tree. In an ARIES tree, regions of the tree
maintain “damage counters” which are incremented when nodes are added or re-
moved from them. When the counter for a region exceeds a set threshold, that local
region is rearranged using a Steiner heuristic' that only modifies links in that region,
and its counter is reset to zero.

In several respects, ARIES is impractical for use on the current Internet, but a
valuable piece of research in multicast tree construction and maintenance. The join-
ing method used is a greedy join, which has a new node join the tree by connecting
to the nearest tree node to it in the network — this is an ideal operation that would

be much too expensive to perform on a current network, due to the necessity of

1Steiner heuristics are algorithms designed to find good approximate solutions to the Steiner

Tree Problem in Networks, described in detail in Chapter 3.

CHAPTER 2. STATE OF THE ART 28

measuring the cost of connecting via every node in the tree. ARIES’ rearrangement
algorithm also adds significant complexity and communications overhead to its pro-
tocol. Each region’s counters must be kept up to date by having newly-modified
nodes broadcast counter updates to their surrounding regions. ARIES’ authors sug-
gest the use of the Kruskal Shortest Path Heuristic (K-SPH) as the Steiner heuristic
to use for rearrangement: K-SPH operates by deleting all the links in a region, then
treating the individual nodes as ‘fragments’ to be re-connected, starting with the two
fragments that are closest together. It continues in this way until only one fragment
remains; that is, all the nodes in the region have been connected again. This opera-
tion requires a great deal of topological knowledge and measurement, even though it
is restricted to operating within a single region. Furthermore, we found that when
ARIES was implemented in our simulation environment, the shortest paths between
two fragments being connected by K-SPH could occasionally travel through a third
node currently in the tree, which would result in a loop. The only way to avoid this
result is by treating the rest of the tree outside the region as an additional fragment,
extending the rearrangement of the tree from a local region-based calculation to one
that involves the complete tree.

Goel and Munagala’s Delay-Sensitive Greedy (DSG) algorithm [32] also uses a
greedy join. Every node that joins the tree measures its stretch, the ratio of the
delay via its path through the tree to the delay on the shortest path from the
source. If the stretch for that node exceeds a set threshold, that node (and all of its
parent nodes that fail a second, tighter bound) is re-parented directly to the source,
thereby minimising its delay. This approach is designed to construct efficient trees
(through use of the greedy join), while satisfying a second constraint on the relative
delay: in a DSG tree, all receivers can be guaranteed a minimum delay relative to
their optimal shortest path delay. The stretch threshold check occurs during the
join operation, ensuring that the delay constraint is always met for all receivers;
DSG does not specify a leave operation, focusing solely on the tree construction

problem. As for ARIES, the use of a greedy join in DSG makes it impractical for

CHAPTER 2. STATE OF THE ART 29

large-scale deployment on the Internet. It does provide, however, an example of a
tree construction and maintenance system that balances several conflicting resource
requirements: in this case, total tree cost and the delay to individual receivers.

Stoica et al. have proposed a protocol called REUNITE [71] (an acronym rep-
resenting “REcursive UNicast TrEe”) based on hop-by-hop unicast transmission of
data between routers that support the protocol. This approach solves a number of
the problems slowing widespread use of IP multicast: it is incrementally deployable
on the network; it stores multicast forwarding state only on routers acting as branch
points (rather than all routers through which the multicast transmission passes); and
it has no requirement for separate multicast addresses, since the group is a single-
source group identified by the source’s unicast address. REUNITE uses a passive
tree construction method, relying on shared portions of unicast shortest paths from
the source to achieve branching (and therefore, more efficient network usage). The
tree is maintained by a constant exchange of messages between the source and the
receivers; the source sends TREE messages downstream, and the receivers send JOIN
messages upstream (though these are discarded when they reach the first multicast
router in that direction). Leaving the tree is accomplished by simply stopping the
transmission of JOIN messages, which results in a timeout at the parent router and
the tearing down of that branch of the distribution tree. This approach is called
a soft-state approach, since state information in routers will “disappear” after a
timeout if it is not maintained through the periodic exchange of messages. While
simple to describe, this approach does require the constant exchange of messages
simply to maintain state information (even if that state is unchanging). Participat-
ing routers must also maintain timers on all information stored in order to timeout
stale information.

The Hop-by-Hop (HBH) [18] protocol extends REUNITE's delivery mechanism
by proposing its combination with the single-source channel abstraction from EX-
PRESS [38], using class D multicast IP addresses to refer to its multicast groups.

It also refines the tree construction algorithm, focusing on the construction of for-

CHAPTER 2. STATE OF THE ART 30

ward path trees and dealing with some pathological cases that arise In asymmetric
networks that REUNITE does not treat as efficiently. Most of the properties de-
scribed above for REUNITE also hold true for HBH, and the two protocols build
identical multicast distribution trees in symmetric networks. REUNITE and HBH
are discussed further in Section 5.2.4.

Jannotti et al. have developed a single-source, application-level multicast proto-
col called Ouwercast [42), aimed at large-scale delivery of video content. Overcast is
designed to work with customised Overcast routers forming an overlay network, and
unmodificd HT'TP clients as end-receivers. Trec construction is designed to place
nodes in the tree as far downstream from the source in the tree as possible while
not sacrificing bandwidth from the source, measured on-line by transterring small
quantities of data. This approach is designed to ensure that as much branching as
possible takes place in the tree. Nodes periodically re-evaluate their position in the
tree and relocate themselves if appropriate.

In [46], Kwon and Fahmy present a new application-level multicast approach,
called Topology Aware Grouping (TAG). TAG constructs its (single-source) multi-
cast tree by exploiting information about the underlying network — namely, using
the overlap among underlying unicast paths from the source to the group members
to construct the tree. A new node joining the tree will become a child of the current
tree node that shares the longest overlapping unicast shortest path from the source
through the network. The resultant distribution tree is a forward-path tree designed
to match the underlying network topology quite well, assuming that the underlying
unicast paths are of high quality. TAG is, however, an application-layer approach
and thus cannot make use of routers in the core of the network. In addition, a
mechanism for determining the underlying unicast paths between the source and all
participating nodes is necessary — the approaches used in their implementation are
the use of traceroute and from publicly-accessible topology sources (such as OSPF
topology servers, monitors or Internet topology discovery projects). These sources

of route data are often incomplete, out of date or very coarse-grained, compromis-

CHAPTER 2. STATE OF THE ART 31

ing the efficiency with which TAG can construct its distribution tree. In addition,
underlying unicast routes may be more a reflection of routing policy than the opti-
mal shortest paths that would provide the most efficient paths from the source to

recelvers.

Research in multicast protocol design is clearly a Jarge field, with a multitude
of different protocols expressing different application and network requirements. IP
multicast was designed initially to be a generic solution, offering a platform for
many-to-many group communication with quite heavy network requirements, such
as the necessity of complete deployment and special-purpose addressing. These re-
quirements, and other issues, led to a lack of widespread deployment of “native” 1P
multicast and research into other approaches to solve these issues. Small group mul-
ticast systems require no state information at routers but have significant limitations
on group size and throughput. Application-level and overlay multicast protocols ad-
dress the problem of requiring complete deployment across the network by doing all
processing on end-hosts, but cannot match the performance of systems that are able
to do branching in the core of the network. Other protocols address the issues of
dynamic changes to the tree and directly exploiting the underlying network topology.

Our multicast protocol, Lorikeet, is designed to \address a single application, that
of the delivery of “live” streaming data (such as audio or video) across the Internet
to large groups. From this application arises a number of basic requirements, which
are described in Chapter 4. From the many different systems described above,
however, it is obvious that many different ways of constructing a delivery tree are
possible: the join operation is critical to the efficiency of a multicast protocol. For
this reason, we examine the underlying problem of constructing a tree containing
a subset of the nodes in a network, the Steiner Tree Problem in Networks. The
following chapter presents a description of the problem and an analysis of several

approaches for solving it, as a basis for designing a multicast join operation.

i

-

Chapter 3

The Steiner Tree Problem in
Networks

3.1 Introduction

This chapter describes the underlying graph-theoretic problem in multicast tree
construction, the Steiner Tree Problem in Networks. Briefly, this problem concerns
the creation of a graph that connects a set of nodes with the smallest possible cost.
These nodes are a subset of the nodes that make up a larger network. The nodes in
this subset are called terminals, and the graph that connects them with minimal cost
is called the Steiner Minimal Tree. This problem is similar to that of the construction
of a minimum spanning tree, with the difference being that not all of the nodes in
the network need to be present in the resulting tree; only the terminals are required,
although other nodes may be included. The Steiner Tree Problem in Networks has
been shown to be NP-complete [41] and finding exact solutions to problems quickly
becomes intractable as the network size grows. Many heuristics have been proposed
for finding good solutions to the problem with tractable complexity.

We begin by defining the Steiner Tree Problem in Networks and the Steiner

Minimal Tree. After that, we describe its relationship to multicast distribution tree

32

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 33

construction and its application in static (a fixed set of receivers) and dynamic (a
changing set of receivers) situations. Two techniques for finding exact solutions to
the Steiner Tree Problem in Networks are presented, along with a set of reductions
that reduce the size of the problem space when applying these techniques. Sev-
eral heuristics for finding approximate solutions to the problem are also described.
Finally, we develop a further heuristic that is appropriate for low-complexity con-

struction of an efficient tree as the basis for a multicast tree construction algorithm.

3.2 The Steiner Tree Problem in Networks

Consider an arbitrary graph G = (V, F, c¢), where V is the set of nodes! in the graph,
E is the set of edges between nodes, and ¢ : £ — R is an edge length function. The
Steiner Tree Problem in Networks is the problem of finding a subgraph of minimum

cost containing at least a subset N C V of nodes (called terminals.)

Hwang et al. [41] formulate the Steiner Tree Problem in Networks as follows:

e GIVEN: An undirected network G = (V, E, ¢) and a non-empty set N, N C V

of terminals.
e FIND: A subnetwork T¢(N) of G such that:

— there is a path between every pair of terminals,

— total length |To(N)| = 3=, er, (v ¢(er) is minimised.

The subnetwork Tg(NV) is called the Steiner minimal network for N in G. If all
edges in G have positive length, T(N) is called the Steiner minimal tree (SMT) for
NinG.

The Steiner Tree Problem and its variants have many applications in the sciences,

including group communication network routing in computer networks 8, 23]; circuit

1Hwang et al. use the word vertices. We have chosen to use nodes instead for consistency with

other work on multicast and the rest of this thesis.

= 'F-:mﬁ- S

P i S

-

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 34

layout in electrical and chip design (33, 50]; and infrastructure layout, such as the
design of networks of water pipes [80]. Garey et al. [30] have proven that the
Euclidean Steiner Tree Problem is NP-Complete. Consequently, a great deal of
research has been focused on the development of heuristics for the problem which
are able to operate much more quickly and produce good results for problems that
are too large to solve optimally in reasonable time.

In multicast tree construction, we build a logical distribution tree that con-
nects a set of receivers to a source (or multiple sources) in a larger network. The
paths through the network between these nodes may traverse additional intermedi-
ate nodes. If we consider the receivers and sources to be the terminals in the Steiner
Tree Problem, then the optimal way to connect them so as to minimise network
load (using the costs of the network paths between nodes as the metric) will be by
finding the Steiner minimal tree for those terminals.

Furthermore, we may categorise multicast scenarios into two different groups,
static situations and dynamic situations. In a static situation, the set of nodes to
be connected and the underlying topology is fixed for the duration of the multicast
session. In this case, the tree can be constructed at the start of the session and will
not change for the duration of the multicast transmission. The minimal tree need
only be calculated once. A good example of a static situation is a pre-arranged
private video transmission, from the head office of an organisation to all of its
regional offices over a private, fault-tolerant network. In this scenario, the source
and set of receivers is known at the beginning of the session and will not change -
so the tree only needs to be calculated once, used for the transmission, and then
torn down.

In a dynamic situation, however, several of those parameters that are fixed in a

static situation may change:

e The receiver set may not be fixed: users might join and leave the session for

different periods of time over its duration.

N e

A e

Ll

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 35

e The underlying network topology might change: links may be added or re-

moved, or nodes in the tree may fail.

An example of a dynamic situation is that of an Internet-based radio station.
The station operates constantly and listeners connect when they wish to, listen for
as long as they wish, and disconnect. The size and distribution of the receiver
population in this scenario may vary considerably with time. One way to approach
this scenario would be to construct a new distribution tree every time a change
occurred — a receiver leaving or joining the tree, for example. This would ensure
that the tree remained efficient, but would be very likely to involve significant control
overhead and disrupt existing users’ transmissions while the old tree was torn down
and the new one constructed.

Another approach is to have the tree remain in place and then modify it locally as
receivers join and leave. New receivers can be grafted on to the tree at an appropriate
location, and leaving receivers can be removed. This reduces the complexity of
the system and minimises disruption to existing receivers, but may result in a less
efficient tree than one constructed directly for the current receiver set at a particular
point in time. This is due to the continuing use of the pre-existing structure of the
tree, generated over time by other join and leave operations. Near-optimal decisions
made in the past may turn out to lead to significantly sub-optimal situations for
future receivers joining the tree.

In online situations, where the distribution tree must be calculated on demand,
exact methods to find the SMT cannot be used because of their prohibitive complex-
ity. Calculation of the tree must happen quickly, so the receivers can join the session
and begin receiving data. Multicast is one such online application of the Steiner Tree
Problem in Networks, and for this reason hcuristics for finding approximate SMTs
are used instead of exact methods. Additionally, only limited information about the
underying network topology or even the presence or absence of other nodes in the

trec may be available, making finding an exact solution very difficult or impossible.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 36

3.3 Exact Solutions

Many techniques for finding optimal solutions to the Steiner Tree Problem in Net-
works have been developed. In this section, we present two such techniques which
scale according to different attributes of the graph being operated on. The first
technique, Hakimi’s Spanning Tree Enumeration algorithm [35] is a complete enu-
meration approach, solving the problem by considering every possible minimal span-
ning tree of every subset of the network’s nodes that includes the terminal set. The
second technique is a dynamic programming approach proposed by Dreyfus and
Wagner [22] that generates the SMT by finding and combining the SMTs of smaller
sub-graphs.

When describing the worst-case complexity of various algorithms in the following
sections, we use v to represent the number of nodes, e to represent the number of
edges and n to represent the number of terminals in the network.

Further approaches to solving the Steiner Tree Problem in Networks to optimality

are described by Hwang et al. [41] and Winter [79].

3.3.1 Spanning Tree Enumeration

Hakimi’s Spanning Tree Enumeration method [35] finds the SMT for a graph G by
finding the minimum spanning tree for every set of nodes that contains at least the
terminal set. Every possible set of nodes is tested, and the connected minimum
spanning tree with minimum cost is an SMT for this terminal set on graph G.
There are several algorithms available for finding the minimum spanning tree of
a graph. We selected Prim’s Algorithm [61] for this implementation, which operatcs

as follows (given a set of nodes as described above):

e begin by adding an arbitrary node from the set to the output graph;

e add the smallest edge that would connect a currently unconnected node in the

set to the output graph;

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 37

e repeat the previous step until all nodes in the set are connected in the output

graph.

Assuming that shortest paths between all nodes have already been calculated,
the complexity of the algorithm as described here is O(n?2Y" ™). The spanning tree
enumeration method is polynomial in the number of terminals and exponential in
the number of non-terminals, and hence it is most suited to solving problems where

the majority of nodes in the graph are terminals.

3.3.2 Dynamic Programming

This approach, formulated by Dreyfus and Wagner [22], builds the SMT by con-
sidering small subsets of the terminal set, finding and storing the SMTs for those
subgraphs, and iteratively forming larger Steiner minimal trees from minimal length
unions of these smaller SMTs until the SMT for the complete terminal set is found.

Assuming that shortest paths between all nodes have already been calculated,
the complexity of the algorithm is O(3"v+2"v?). Hence, this approach is polynomial
in the number of nodes, but exponential in the number of terminals. The dynamic
programming approach is therefore suited to solving problems where the number of

terminals is small compared to the total number of nodes in the larger graph.

3.4 Reductions

The task of finding the SMT can be made significantly easier with the use of pre-
processing reductions that reduce the size of the calculation. These reductions can
be broadly classified as inclusion reductions and ezclusion reductions.

Inclusion reductions reduce the complexity of the problem by identifying nodes
and edges that must be included in the SMT. Therefore, these nodes and edges can
be placed in the output graph before the main calculation begins, and removed from

consideration in the input graph. A simple example of an inclusion reduction is a

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 38

test for terminal nodes of degree 1 (leaf nodes that are terminals). Since such a
terminal must be in the output graph, so must the single node connected to it and
the link between them.

Exclusion reductions identify nodes and edges that could not possibly be in the
SMT, thereby enabling their removal from consideration by the main calculation.
A simple example is a test for non-terminal nodes ol degree 1. Such nodes cannot
ever be on the shortest path connecting two terminals and hence may be removed
without affecting the SMT being calculated.

These reductions can have an enormous impact on the running time of exact
algorithms, such as the spanning tree enumeration and dynamic programming ap-
proaches described earlier. In many cases, simple Steiner tree problems can be solved
through the use of reductions alone. In other cases, the set of nodes and edges in the
input graph can be drastically reduced, decreasing the number of calculations nec-
essary to (for example) enumerate all possible minimum spanning trees containing
the terminal set, or calculate SMTs on smaller subgraphs of the terminal set.

We employed a number of reductions to facilitate the faster calculation of exact

SMTs in our simulations. The list of reductions used is as follows:

Non-Terminals of Degree 1 Remove any node of degree 1 that is not in the

terminal set, along with its connecting edge.

Non-Terminals of Degree 2 Remove any node of degree 2 that is not in the
terminal set which can be “bypassed” by a shorter path between its neighbours.
If it cannot be bypassed, remove it and add an equal length direct path between

the two neighbours.

Paths with Many Terminals Any edge (v;, v;) with cost greater than the bottle-

neck Steiner distance? between v; and v; may be removed.

2The path P between two nodes v; and v; in graph G is made up of one or more clementary
paths, where an elementary path is the subset of P that connects v; and the next terminal (or

v;), two terminals, or a terminal and v;. The Steiner distance is the length of the longest such

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 39

Non-Terminals of Degree 3 For a given non-terminal v with degree 3, if the
minimum bottleneck Steiner distance between a pair of v’s neighbours is less
than or equal to the sum of the v’s edge costs, then v can be removed along
with its edges, and replaced by direct links of identical cost between its three
neighbours. This is a specific case of a generalised “Non-terminals of degree

k” reduction.

Terminals of Degree 1 Any terminal node of degree 1 must belong to every SMT,
and so may be removed (along with its connecting edge) from calculation and
added to the final tree immediately. This is the only inclusion reduction we

use in our implementation.

Cut Reachability This exclusion reduction uses a tree spanning the terminal
nodes (such as the output from a fast Steiner heuristic) to identify non-

terminals that can be removed {from consideration.

Detailed descriptions of these reductions (and several others) can be found in
[41]. In our simulations, we performed the above reductions in the given sequence,
repeating the sequence until none of the reductions modified the graph. Such repe-
tition is necessary as some of the reductions (such as the Non-Terminals of Degree 3
reduction) introduce additional edges that may be subject to exclusion by another

reduction.

3.5 Suboptimal Heuristics

Since finding the optimal solution for most graphs is so computationally intensive,
even with reduction preprocessing, various heuristics are used in practice to find a
good suboptimal solution. This is particularly true of multicast tree construction

algorithms, which must be able to run online very quickly.

clementary path for a path P. The bottleneck Steiner distance is the minimum Steiner distance

taken over all possible paths from v; to v; in G.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 40

Other heuristics have also been developed for the Steiner Tree Problem in Net-
works - several are described in [41]. We chose to use a small subset of these, limiting
our analysis to the faster algorithms available, since we are focusing on algorithms

that could be used online to build multicast trees.

3.5.1 Shortest Paths (SP) Heuristic

The Shortest Paths heuristic operates as follows:

e Begin with an arbitrary terminal in the output graph.

e Find the closest terminal to the output graph that has not yet been added.
Connect this terminal to the output graph via its shortest path to the nearest
node in the output graph. Note that this node could be a terminal or a non-

terminal.

e Repeat until all terminals have been added.

This algorithm requires the shortest paths from every terminal to every other
node in the graph to be known. Consequently, its complexity is dominated by the
calculation of these shortest paths. If Dijkstra’s algorithm using heaps is used to

calculate them, then the complexity of the SP heuristic is O(n(e + vlogv)) [41].

3.5.2 Minimum Spanning Tree (MST) Heuristic

The Minimum Spanning Tree heuristic operates by calculating the MST for the
complete graph, and then removing each non-terminal of degree one until no more
can be removed. In our implementation, Prim’s algorithm was used to find the

MST. The complexity of the MST heuristic is O(e + vlogv) [41].

3.5.3 Shortest Paths Terminals (SP-T) Heuristic

This operates similarly to the SP heuristic described above, but only connects new

terminals to terminals in the output graph, rather than to any node. Thus, it

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 41

only requires shortest paths between pairs of terminals to be calculated. The SP-T

heuristic operates as follows:

e Begin with an arbitrary terminal in the output graph.

e Find the closest terminal to the output graph that hasn’t yet been added.
Connect this terminal to the output graph via its shortest path to the nearest

terminal in the output graph.

e Repeat until all terminals have been added.

This heuristic requires less information than the SP algorithm, as it only needs
the shortest paths from every terminal to every other terminal. In practice, however,
Dijkstra’s algorithm must still be calculated on the whole input graph, as these
shortest paths traverse intermediate non-terminal nodes which must be considered
in the calculation. Hence, the complexity of the SP-T algorithm is the same as that

of the SP algorithm, O(n(e + vlogv)).

3.5.4 Shortest Paths with Origin (SP-O) Heuristic

The Shortest Paths with Origin heuristic further limits the SP algorithm by requiring
that all terminals connect to the tree via their shortest paths to an arbitrarily
selected terminal. This terminal is the origin, or root of the tree. The algorithm
proceeds as follows, assuming an origin has been selected and added to the output

graph:

e Select an unconnected terminal 7" and determine the shortest path P from it

to the origin.

e Add T and all the nodes and links in the path P to the output graph (unless

they are already present).

e Repeat until all terminals have been added to the output graph.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 42

This algorithm is similar to the SP and SP-T heuristics described above, but only
connects new terminals via their shortest path to the origin, rather than selecting the

nearest node or terminal. The complexity of the SP-O heuristic is O(e + vlogv) [41].

3.6 Performance Analysis

All of the heuristics and both of the exact Steiner tree algorithms described in the
previous section have been simulated on a variety of input data. The simulation
software used is a custom-written package developed in the Python programming
language.

The first set of input data (graphs and sets of terminals) used to compare these
techniques came from the SteinLib Testdata Library® [45], data sets B and C. Both
of these data sets contain sparse graphs with random edge weights and varying
numbers of terminals. Data set B consists of eighteen problems with 50-100 nodes,
and data set C consists of twenty problems with 500 nodes.

The second set of input data are the “Waxman” topologies that are used later
for simulating dynamic multicast scenarios. These topologies consist of 500 nodes,
350 of which are leaf nodes, and are described in detail in Section 5.3.1. In these
simulations all of our terminals are leaf nodes, to more closely model receivers in an

Internet multicast scenario.

3.6.1 Exact Methods

The two algorithms for finding optimal solutions both scale according to different
attributes of the network and terminal set, and are thus applicable to different classes
of problem.

The spanning tree enumation algorithm requires very little memory (since it need

only store one tree and the current minimum cost at any given time) but takes a

3Available on the Web at http://elib.zib.de/steinlib/steinlib.php.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 43

great deal of time to compute, and scales exponentially with the number of non-
terminals in the graph. Thus, it is suitable for denser graphs where the number of
terminals is large relative to the total number of nodes.

The dynamic programming approach requires considerably more storage than
the spanning tree enumeration algorithm, since it must compute and store a large
number of subgraphs as it executes. In terms of computation time, however, il scales
exponentially with the number of terminals rather than with the number of non-
terminals. Thus it is most suitable for finding the solution to large, sparse graphs
where the number of terminals is small relative to the number of non-terminals.
We found that the memory requirements of this algorithm were such that for larger
graphs we had to resort to the use of temporary disk storage, which considerably

slowed the execution of the program.

3.6.2 Heuristics

Four heuristics for finding approximate solutions to the Steiner Tree Problem in
Networks have been presented. All four complete in polynomial time, with their
complexity dominated by the shortest-paths calculations that they require.

Three of the heuristics (the Shortest-Paths, Shortest-Paths-Terminals and Shortest-
Paths with Origin heuristics) are path heuristics, building a tree spanning the ter-
minals by connecting unconnected terminals to nodes already in the tree until all
terminals are connected. The three heuristics differ in the number of nodes in the
tree available for connection and consequently in the size of the search required.

The fourth heuristic (the Minimum Spanning Tree heuristic) is a tree heuristic,
which builds a tree spanning the network first, then prunes non-terminals to form a
smaller tree that is an approximation of the SMT. This is similar to the approach
taken by the spanning tree enumeration technique for finding the exact solution,
except that only one spanning tree is considered (the MST of all nodes) and then

reductions are applied to prune that tree.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 44

3.6.3 Results

Two charts illustrating the competitiveness of the heuristics when run on the Stein-
Lib B and C data sets are included as Figures 5(a) and 5(b) respectively. These
charts show the cost of the final tree for each heuristic divided by the cost of the
optimal SMT against each network in the data set. Note that Figure 5(a) is plotted
on the same vertical axis as Figure 5(b) to simplify comparison.

For small graphs, the heuristics shown performed fairly similarly and quite well,
occasionally even finding the optimal solution. As the problems grew larger, how-
ever, their performance tended to fall off, particularly that of the MST heuristic.
The SP and SP-T heuristics performed remarkably similarly, despite the extra con-
straint that the SP-T heuristic could only connect new terminals to terminals, rather
than to any node. Consistent with the requirement that it only join terminals to
the “source” of the graph, the SP-O heuristic performed less well, but still produced
a graph that was within 1.5 times the cost of the optimal graph in almost all cases.

The MST heuristic performs quite differently, since it operates by constructing
a larger tree and then removing nodes from it, rather than building the tree itera-
tively as in the other heuristics. Its performance in these scenarios is quite variable,
suggesting that it is sensitive to properties of the input data that do not have so
much of an effect on the performance of the other heuristics.

The MST heuristic performs much better on dense graphs, where the majority of
nodes are terminals, than sparse graphs, where there is a small number of terminals
relative to the total number of nodes. This is shown graphically by Figure 5(b),
where the three peaks in the MST heuristic’s chart (data sets C06, C07, C11, C12,
C16 and C17) are all very sparse graphs, with 500 nodes and 5 terminals each.

Figure 6 is a graph of the heuristics’ competitiveness on the larger Waxman net-
work topologies. These results are the mean tree costs generated by each algorithm
averaged over five different Waxman network topologies. For each heuristic, three

different terminal sets were used, composed of 20, 50 and 100 terminals.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS

45

22— —

~
|

[
o

i3
>

Tree Cost relative to Optimal
-
o

-
N

0.8 r T T T —r
boi b0z b03 b04 b05 b6 b07 bo8 b09 bl0 bll bl2 bi13 bl4 b15 bl6 b17? bis
SteinLib Problem

1' - - -Shortest Paths —&— Shortest Paths Terminals —®— Shortest Paths with Origin

Minimum Spanning Tree |

(a) SteinLib data set B: Tree costs for heuristics, relative to optimal SMT cost

2.4

2.2

Tree Cost relative to Optimal
-
»
]
/
|

LD NN S

08 . —r T
01 02 03 <04 05 ¢06 <07 <08 09 «cl0 cl1l €12 I3 14 cl5 «ci6 17 ¢18 €19 <20
SteinLib Problem

= = = Shortest Paths —8— Shortest Paths Terminals —®—— Shortest Paths with Crigin

Mimmum Spanning Tree |

(b) SteinLib data set C: Tree costs for heuristics, relative to optimal SMT cost

Figure 5: Tree costs relative to optimal trees for heuristics

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 46

1.40

1.20 {— — — —

1.00 +— - — — -

Tree cost relative to Optimal Solution

0.80 —
Exact Minimum Spanning Tree Shortest Paths with Shortest Paths Shortest Paths Terminals
QOrigin

ll 20 Receivers 50 Receivers 1100 ReEiversl

Figure 6: Waxman data set: Tree costs for heuristics, relative to optimal SMT cost

In these results, all four heuristics maintain a tree cost within 1.2 times the
optimal tree cost. As in the SteinLib results, the SP and SP-T heuristics do very
well, with the other algorithms producing more expensive trees. This is consistent
with the larger amount of freedom to choose connection points on the tree available
to those two algorithms. In contrast, the SP-O heuristic may only connect terminals
to one point (the source) in the tree, leading it to generate longer paths and hence
a more expensive tree. The MST heuristic once again shows that it performs better
in denser scenarios than it does in sparse ones, with its performance improving as
the number of terminals in the graph increases. It does not, however, outperform
the SP and SP-T algorithms and is only marginally better than the SP-O heuristic

in these examples.

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 47

3.7 The Steiner Tree Problem in Multicast

The Steiner Tree Problem in Networks is the underlying problem in the development
of algorithms for the construction of multicast distribution trees on a network. The
“terminals” in the Steiner Tree Problem represent the multicast group’s members,
connected together by paths through other intermediate nodes (non-terminals) in
the network. The specific application of large-scale dynamic multicast over the
Internet also adds a number of other constraints to the problem: in particular, the
construction of the tree must be fast and operate with minimal information about
the network topology. Centralised information about the topology of the whole
network (as assumed in this chapter) is not available, and gathering information
from large numbers of nodes online during a join is not feasible if the join is to
complete quickly.

In this chapter, we have presented two exact algorithms for solving the Steiner
Tree Problem in Networks and four heuristics for finding approximate solutions. The
exact algorithms are not appropriate for use in a real-time multicast system, for two
reasons: they require complete topological information, and they scale exponentially,
requiring a great deal of computational time to find the solution. Neither of these
requirements can be met in an online multicast tree construction scenario.

The four heuristics described earlier are the Shortest Paths (SP) heuristic, the
Shortest Paths Terminals (SP-T) heuristic, the Shortest Paths with Origin (SP-
O) heuristic and the Minimum Spanning Tree (MST) heuristic. The first three of
these are path heuristics which construct a tree gradually by connecting unconnected
terminals to nodes already in the tree until all terminals are connected. The MST
heuristic is a tree heuristic which constructs a spanning tree first and then prunes
unnecessary nodes. All four heuristics are able to produce approximate solutions
within 1.2 times the exact solution’s cost on the Waxman topologies used to simulate
a multicast scenario, although the MST heuristic performs less well on the more

sparse data sets in the SteinLib tests. These heuristics operate in polynomial time,

CHAPTER 3. THE STEINER TREE PROBLEM IN NETWORKS 48

much faster than the exact approaches.

However, there are still obstacles to the use of such heuristics in an online mul-
ticast situation. These approaches require considerable topological information —
complete information about the network in the case of the MST heuristic, and a
great many shortest-path measurements in the case of the others. Although it is
possible to implement an Internet-based tree construction algorithm based on the
SP heuristic, for example, such an algorithm would need to contact each node in the
tree for every new receiver that joined it, in order to find the closest parent node.
Such large amounts of control messaging are inappropriate for anything but small
groups. At the other extreme, the SP-O heuristic requires no such calculations, but
limits the efficiency of the tree by connecting every receiver to the origin; this ap-
proach relies on the presence of shared portions of these paths to provide efficiency
savings through branching.

We feel that the use of a path heuristic is an appropriate way to design a multi-
cast construction algorithm, but an appropriate compromise must be made between
control messaging and performance. The algorithm must consider more possible
parent nodes than the SP-O heuristic in order to promote branching in the tree and
thereby improve performance, while not exhaustively searching the existing tree as
is done in the SP and SP-T heuristics.

In the following chapter we will describe a multicast tree construction technique
that develops from these ideas. We begin by describing the characteristics of our
target application and the network on which it operates. From these attributes we
create a series of requirements, which are used to develop a complete protocol for

multicast tree construction and maintenance.

Chapter 4

The Lorikeet Protocol

4.1 A New Multicast Protocol

In previous chapters we have described some of the principles of multicast distri-
bution and presented an overview of current Internet standards and research work
in the area of multicast protocol design. We have also analysed the graph-theoretic
problem that underlies multicast tree construction, the Steiner Tree Problem in Net-
works. It is clear from the large variety of multicast systems in the literature that
there are many ways to approach the problem of tree construction and maintenance,
" and that all of these approaches have both advantages and disadvantages depending
on the target application.

In this chapter we present a new multicast protocol, called Lorikeet. Lorikeet is
targeted at single-source distribution of live multimedia content over the current In-
ternet. It uses a hierarchical tree of unicast connections between the source, routers
and receivers to deliver this data, requiring neither deployment on every router in
the network nor traditional IP multicast infrastructure. Since this application is
likely to be used in quite dynamic situations, receiver join and leave are low com-
plexity operations designed to complete quickly. Additional support is provided for

rearrangement of the tree to maintain efficiency as the receiver set changes.

49

CHAPTER 4. THE LORIKEET PROTOCOL 50

We commence our discussion with a description of the characteristics of the
application and the environment that we envisage for this protocol. From these
characteristics, we build a set of requirements for Lorikeet. Finally, we describe the

protocol itself and specify the behaviour of each operation it performs.

4.2 Design Goals

4.2.1 Application Characteristics

As described in Chapter 1, we seek to create a new protocol designed to efficiently
deliver streaming multimedia content to home users using multicast over the current
Internet. At present, streaming multimedia is predominantly served by simultaneous
unicast applications, resulting in very inefficient use of network bandwidth which
could be significantly reduced if a multicast system were available.

This application has a number of properties that directly affect the design of a

multicast protocol built to facilitate it:

1. The data transmission can tolerate some loss, since the data being transmitted
is multimedia data and, depending on the application requirements, some small

loss of information will not be perceived by the user.

2. The application has a single source and only transmits content in one direction,

from the source to the receiver.

3. People will request content manually and expect delivery to commence quickly,

hence join operations must complete in reasonable time.

4. The transmission may be continuous (such as for a 24 hour news broadcast)

or short-lived (for a live event, such as a music concert).

5. The set of receivers is unlikely to be static; it will probably change over time

as new receivers join the session and other receivers leave.

CHAPTER 4. THE LORIKEET PROTOCOL 51

6. Content providers are likely to want to be able to authenticate receivers and

collect statistics on receivers.

4.2.2 Environmental Characteristics

Our protocol is targeted at current Internet technology and is thus subject to the

properties of Internet networks and delivery mechanisms. Some of these properties

that directly influence the protocol design are as follows:

il

The current Internet generally only provides best-effort delivery of packets,
using a variety of underlying routing protocols. For a given stream of packets
transmitted from node A to node B, there is no guarantee that all packets
will be delivered, no guarantee that they will arrive in order, and no guar-
antee that they will all traverse the same path through the network from A
to B. Quality of Service mechanisms like DiffServ [57] are available on some
networks, generally for corporate use, but they are not yet widespread enough

to rely on for providing guaranteed delivery to home users.

. Tt is unrealistic to assume that the protocol will be deployed on all routers,

everywhere. In order for a protocol to be practical on today’s Internet, it must

be incrementally deployable.

. Tt is assumed that Internet routers can calculate an appropriate measure (hop-

count, for example) of the “cost” of the path between two nodes (routers or

receivers) in the network.

. The current Internet does not necessarily provide symmetric links (with the

same capacity in both directions) or symmetric routes (through the same set

of links in both directions) through the network.

Access bandwidth (the capacity of the last link, between an end-user and their
Internet service provider) is generally very limited, and high-bandwidth mul-

timedia. applications can often consume a significant fraction of that capacity.

e

CHAPTER 4. THE LORIKEET PROTOCOL 52

End-users usually only have a single link to the rest of the network, through

a consumer Internet service provider.

4.2.3 Requirements

From these application and environmental characteristics arise a number of system

requirements, which we present and discuss in the following points.

1. The system should assume only best-effort transmission of data and is not re-

quired to deliver all packets, or all packets in sequence.

This differentiates the system from a reliable multicast system (for example, those
presented in [47, 48, 58]), in which all of the data transmitted must be received by
all of the receivers. We are focusing specifically on streaming multimedia data,
which can tolerate some loss, and hence unreliable transport is acceptable, within
certain constraints. Damage to streams through packet losses can also be mitigated
through the use of application-layer or video coding mechanisms, like Forward-Error

Correction (FEC) and layered coding.

2. The system is designed for one way, single-source transmission.

Multicast transmission should make more efficient use of network resources in
delivering non-interactive content, such as streaming video. In such a case, the data
transmission flows only from the sender to the receivers.

This application has a compelling commercial driver, since large amounts of net-
work capacity are currently expended on single-source audio and video transmission
[69]. Examples include webcasts of live events, movie trailers, adult entertainment
and Internet radio stations.

Concentrating on the single-source case significantly simplifies the protocol, since

CHAPTER 4. THE LORIKEET PROTOCOL 53

there is no need to do sender discovery (as in many traditional IP multicast pro-
tocols) and the tree can be optimised for data coming from the single sender. A
similar idea has been applied to traditional multicast in the form of Source-Specific

Multicast (SSM) [9], currently under consideration by the IETF.

3. Tree construction should be “good” in the sender-receiver direction.

Most traditional multicast algorithms are receiver-driven, where the receiver joins
the tree by contacting its nearest multicast-capable router. This means that the tree
is constructed from the bottom up (from the receiver to the source), while the actual
data flows in the opposite direction — from the sender(s) to the receivers. Such a tree
construction mechanism is called a reverse-path join. This is inherently inefficient
in today’s Internet, where routing can be (and often is) quite asymmetric due to
phenomena like hot-potato routing in the core [72] and the presence of asymmetric
links (such as ADSL and satellite links) in the access network.

We therefore construct our trees in the downstream, or forward-path, direction,

to match the direction of data transmission.

4. Receivers must have no children in the tree.

As stated earlier, one of the properties of the current Internet is that the access
bandwidth (the capacity of the link between an end user and their Internet Service
Provider) is generally quite limited. In many cases, this link is also asymmetric,
with larger capacity available for transmissions to the user than from the user. This
is one of the major issues faced by end-host multicast systems: the data rate of
the transmission is necessarily constrained by the upstream bandwidth available to
receivers, since receivers must re-send the data stream to other receivers. A second
problem faced by systems in which end-host receivers must support other receivers

is the fact that end-hosts generally have a single link to the network which must be

CHAPTER 4. THE LORIKEET PROTOCOL 54

traversed twice by the same data, whereas routers in the core generally have several

links to the network.

We therefore set the requirement that receivers must be leaf nodes of the tree. All
branching takes place further upstream, which more accurately reflects the capacity
distribution and topology of the network and allows receivers to receive higher-
bandwidth streams. In addition, requiring receivers to be leaf nodes simplifies leav-
ing the tree and tree maintenance, since a receiver can simply be pruned from the

tree without having to reconnect its children elsewhere.

5. People will request content manually and expect delivery to commence quickly,

hence join operations must complete in reasonable time.

In order for the system to be usable by people in real-time, it must be designed
to perform tree construction with enough speed to be responsive. For example, a
user should not need to wait for a significant amount of time between submitting a

request to join the tree and beginning to receive data.
6. The system must efficiently handle dynamic membership.

As described in Section 1.1.5, many modern applications for multicast trans-
mission can have dynamic membership, with nodes joining and leaving the tree
continually. The multicast protocol should be able to cope with these changes to

the distribution tree and perform maintenance on it when required, in order to main-

tain its efficiency.

7. The use of a multicast session (rather than a unicast transmission) should be

transparent to receivers.

Receivers should not be aware that they are participating in a multicast session,

o gty

CHAPTER 4. THE LORIKEET PROTOCOL 95

only that they are receiving data from the network. To put it another way, partici-
pating in the multicast session should appear to the receiver to be no different from

receiving a unicast stream. Specifically:

e there should be no need to allocate a special multicast address (as in traditional

multicast);

e sessions can be identified using URLs that are acquired out-of-band (for exam-
ple, via a link on a Web page) — the URL identifies the source and the “name”

of the stream;

e there is no need to worry about address collisions, because of the above two

points;

e a connection is established with a server, as in a client-server application like
the World Wide Web. This server may or may not be the source, as will be

discussed in Section 4.5.2.

8. Not all routers in the network need to support the protocol being used.

Not all routers in the network need to support the protocol — the system should
degrade to simultaneous unicast in the case of no routers that support the protocol
being present (this is the worst-case scenario.) This is to maximise the utility of
such a protocol, making sure it is usable even in the case where no routers that
support the protocol are available in the network. In addition, the protocol should
be capable of incremental deployment in the network without requiring changes to

all of the routers across the Internet all at once.

CHAPTER 4. THE LORIKEET PROTOCOL 56

4.3 Network Assumptions

As described in the requirements above, this protocol is designed to be deployed on
today’s Internet network without requiring large-scale changes to existing routing
and transmission protocols. Hence, the use of standard UDP or TCP packets would
be the most appropriate method for carrying control signalling, transmitted over
standard unicast paths provided by existing Internet routing protocols. We assume
that the network consists of a group of interconnected smaller networks, with limited
capacity on links to end users (corresponding to home DSL links or small business
links, for example) and large capacity in the core.

Tree construction and rearrangement operations will involve the calculation of
the cost of the path between two nodes in the network. Both of these nodes will be
capable of supporting the protocol, since both will be either receivers, participating
routers or the source. Intermediate nodes on the path between the two nodes may
not necessarily support the protocol — these nodes simply perform standard Internet
forwarding. The cost metric used to select between different paths through the tree
must be calculable at individual routers without requiring the involvement of a large
portion of the multicast tree or the use of significant additional state information.
Ideally, we would like the cost metric to be chosen so that the protocol’s multicast
trees are constructed with minimal total bandwidth usage.

Since we wish our protocol to be incrementally deployable, the only pieces of
infrastructure we can modify are the participating routers themselves. This require-
ment rules out the creation of modified routing protocols that must be run on every
(capable or not capable) node in the network. In addition, the only metrics that are
available are those that can be calculated between capable routers and receivers, us-
ing the underlying Internet infrastructure. Traditionally, the available metrics have
been hop count (the number of intermediate nodes) and delay (the round trip time,
or time taken for a packet to be transmitted from one node to the other and back).

Our application, as described earlier, is a one-way streaming application, sending

CHAPTER 4. THE LORIKEET PROTOCOL o7

data from the source to the receiver set. Since there is no communication in the
other direction, it is not generally sensitive to delay: delay is only an important
factor if the application is time-sensitive or interactive. In our situation, promoting
branching in the network and minimising the bandwidth used is much more impor-
tant than minimising the delay to receivers. Therefore, we suggest the use of hop
count as the initial metric to use in tree construction and rearrangement operations:
it is easily calculable on the current Internet and requires no extension of existing
infrastructure. In addition, it allows the paths used by the protocol to match those
used for today’s unicast traffic. Note that although hop count is an additive metric,
additivity is not a required property for our metric: all that is necessary is a way
to select the minimum cost path through the network from a set of candidate paths
without requiring information from a large number of nodes.

Although hop count provides an immediately available (though coarse) measure
of the cfficiency of a path between two nodes, it has at best only a limited correlation
with available capacity. If we wish our protocol to select its paths so that it minimises
the proportion of available bandwidth used by the tree, it is nec.essary to discover the
bandwidth of intermediate links in the network directly and use that as a cost metric.
Such discovery is not possible on a wide scale today. However, this functionality may
be developed in the future due to its utility in helping control the next generation
of applications that have stricter quality of service and capacity requirements.

In such a scenario, we would propose the use of a cost metric based on the
bottleneck bandwidth (the bandwidth of the smallest capacity link on the path) or
available bandwidth (the proportion of the bottleneck bandwidth that is available at
a given instant) of the path between the two nodes.

In this thesis we use positive integer costs in our simulations, representing a
general cost, rather than restricting ourselves to the use of hop count in which the

cost of every link is unity.

CHAPTER 4. THE LORIKEET PROTOCOL o8

4.4 Control and Delivery

As described in Chapter 2, many different approaches to multicast control and deliv-
ery have been developed. All of these approaches share the central idea of construct-
ing a logical tree of nodes, then using that tree to replicate data packets as they
pass downstream from the source, in order to supply them to all of the multicast
group’s receivers. However, the mechanisms for constructing and maintaining the
tree and for managing the delivery of data vary considerably, depending on the re-
quirements of the intended application and the constraints imposed by the network
environment.

The concept of control of the multicast tree encompasses all of the mechanisms
used to manage the tree’s structure: where state information about the tree is
stored, how it is modified and which nodes should respond to events that occur in
the multicast group. XCast [11], for example, is a small group multicast system
in which the source manages all information about the tree, maintaining a list of
receivers and transmitting that list in data packets to be replicated along with the
data payload by downstream routers. In this case, routers in the network maintain
no state information about the tree at all and merely “follow orders” from the source.
In contrast, REUNITE [71] has no centralised list of receivers at all. Instead, each
node in the tree maintains information on its parent and its children and forwards
data from the former to the latter. These lists are soft state information, meaning
that they must be periodically refreshed by regular communications from children
or discarded after a timeout. Traditional IP multicast in its simplest form relies
on an implicit tree, constructed from the bottom up by having receivers contact
their local multicast routers to register interest in a particular group. Routers then
share information with each other about the presence of group members and forward
packets to all neighbours connected (directly or indirectly) to known group members.
This approach is deliberately very decentralised in order to support multiple senders

and large, dense groups. However, it requires that it be universally deployed in order

CHAPTER 4. THE LORIKEET PROTOCOL 59

to operate, and provides very limited capabilities for management and measurement
of the multicast tree and its members. Multicast groups also require mechanisms to
identify them — in the case of traditional IP multicast, this is a specially assigned
IP address from the Class D address space dedicated to multicast, while in many
other systems it is the address of the source or some other unique identifier.

Given the requirements enumerated in Section 4.2.3, it is clear that our protocol
cannot require universal deployment and need only support single-source groups.
Hence, the system must operate on top of current Internet protocols without re-
quiring large-scale changes, and no complex sender-discovery protocols are required.
Since we require tree construction to be in the downstream direction, the source
must have some involvement in joining new receivers to the tree, rather than having
new receivers join just by contacting their local router. In order to scale effectively
to very large trees, the multicast tree cannot be stored in a central node, but must
be stored in a distributed fashion. We also require that the protocol efficiently han-
dle dynamic membership and complete join and leave operations quickly. To satisty
these constraints, we propose the use of a hierarchical multicast tree.

In a hierarchical multicast tree, each participating node maintains as little infor-
mation as possible about the tree’s structure - it need only know the locations of
its children and its parent (and the source address in order to identify the partic-
ular multicast group.) This is similar to the scheme employed by REUNITE [71].
However, unlike REUNITE and most other algorithms, we have elected to connect
receivers to the tree using their forward paths from the source. This requires the
source to accept join requests from new receivers and search the tree for a nearby
parent router. This search must be performed quickly, surveying a path through
the current tree for a good match without exhaustively searching the tree (which
would be too slow) or maintaining large amounts of topological information at the
source (which would require a great deal of communications overhead to maintain).
To this end, we propose using a limited search of the tree structure, starting at the

source and examining a path through the tree, selecting the best parent from that

CHAPTER 4. THE LORIKEET PROTOCOL 60

limited search. This method allows us to retain only limited information about the
tree at individual member nodes.

Since our protocol is limited to the use of current Internet protocols (as we
cannot require universal deployment), our choices for delivery mechanisms are very
limited. Traditional IP multicast is not universally deployed and hence cannot be
relied upon as a delivery system. Therefore, we have decided Lo use a hop-by-hop
unicast delivery model, similar to the recursive unicast approach used by REUNITE.

A simple example of this mechanism is illustrated in Figure 7.

multicast source

intermediate
routers

end receivers

Figure 7: Hierarchical Multicast Delivery

This multicast group’s participants are shown as a delivery tree, rooted at the
source, with end-receivers as the leaf nodes of the tree. Data is transmitted hop-by-
hop down the tree from the source, using direct unicast connections between each
parent and child on the tree. When a node with children (a router) receives a packet
from its parent, it replicates the payload of the packet and transmits a new packet
with the same payload to each of its children, with the source set to its address and

the destination set to the appropriate destination address for each child. This hop-

CHAPTER 4. THE LORIKEET PROTOCOL 61

by-hop approach, while “heavier” than traditional group-address-based multicast

protocols which can simply forward packets, has a number of advantages:

e No group addressing is necessary — the tree is identified purely by the source
address (and a path for selecting between different multicasts from the same

source)

e Packets can be explicitly operated on for the benefit of receivers downstream of
a router — for example, packets can be cached until acknowledged to provide
local recovery, or streams can be stripped of detail to accommodate clients

with lower capacity.

e Tree maintenance and rearrangement can be implemented, since we have con-

trol over the tree’s topology.

e Aggregate statistics can be easily gathered -- for example, counting the number
of receivers in the network is straightforward and can be aggregated and passed

upstream by routers.

e Authentication and charging is possible, since a join request must always reach

the source of the tree.

It is important to note that cach packet’s data payload is unmodified at branching
routers — replication of packets is done by simply copying packets and rewriting their

headers, with no further processing required.

4.5 The Lorikeet Protocol

Our protocol, Lorikeet, is a hierarchical multicast system. Data is transmitted by the
source to its children, who relay the data packets to their children. All receivers in
a Lorikeet multicast tree are leaf nodes — hence there is no requirement for receivers

to relay data to children. The relaying takes place in routers in the network that

CHAPTER 4. THE LORIKEET PROTOCOL 62

implement the Lorikeet protocol, here referred to as capable routers. All routers
maintain a very small amount of state information; for a given multicast tree, each
router knows the addresses of all capable routers on the path back to the source and
the addresses of its children only.

Aside from the transmission of data by the source, a single-source multicast
tree has a number of distinct events that can occur. In all multicast systems, a
new receiver can join the tree and a participating receiver can leave the tree. In
rearrangeable multicast systems, local portions of the tree (or, in some cases, the
complete tree) can be rearranged periodically to improve efficiency. The following

sections describe how these three events are implemented by the Lorikeet protocol.

4.5.1 Notation

We consider a network represented by a graph G = (V, E) where V is the set of
nodes and E is the set of edges connecting pairs of nodes. Overlaid on this network
G a multicast distribution tree T = (Vi, Er) is constructed, where Vy C V and
Ep C E. The tree T is rooted at a source node S € Vr. Every node in Vp except
S must have an edge in Er connected to a parent node in Vp, and may have other
edges connected to nodes in V.

This multicast distribution tree has a single source node S. The other nodes are
either routers or receivers. Receivers must be leaf nodes — that is, receivers cannot
have children in the tree. The cost of the shortest path from node X to node Y is the
total cost of all the links in the shortest path (X,Y) and is denoted by cost(X,Y).
The cost of the tree path from X to Y, where (X,Y) € V and X is upstream from
Y, is the total cost of the path (X,Y) using only links in Ep and is denoted by
tree(X,Y).

The degree of a node is the number of links it has to other nodes (either to its
parent or its children). Every node in the tree has one (and only one) parent node,

with the exception of the source node, which has no parent. Routers, other than

CHAPTER 4. THE LORIKEET PROTOCOL 63

the source, with degree > 2 are described as branching routers, since they distribute
data to more than one child node. Routers, other than the source, with degree 2 or
less are referred to as non-branching routers. As stated earlier, routers that support

the protocol are called capable routers.

4.5.2 Joining the Tree

A new receiver r joins the tree T via the following procedure:

1. The new receiver r contacts the source S using a standard unicast connection
and tells S that it wishes to join the multicast tree for a given session (sources

can potentially serve multiple sessions/trees).
2. S finds r a parent router R and returns that address to r.

3. R and r establish a unicast connection between them, and R begins to transmit
the data being distributed by the multicast session on that unicast connection

tor.

The path to a new receiver consists of an existing path through the tree from the
source to the selected parent, to which is appended a unicast connection (using the
underlying routing framework) from the selected parent to the new receiver. Before
the receiver is connected to the parent, a probe packet using a defined Lorikeet port
number is sent along this ultimate unicast path. Any capable routers along this path
may sense this packet (by identifying its port number), announce their existence to
the parent router, and join the tree. The first capable router encountered via this
mechanism becomes a child of the parent router and the parent of the new receiver,
and the process continues until the probe packet finally reaches the receiver.

Note that the source S may be a “repeater” that accepts streams from one or
more other sources and redistributes them to a multicast tree using Lorikeet. This
arrangement is similar to the idea of a rendezvous point (RP) described in Section

1.1.4, and allows several sources to transmit data over a single, centrally-managed

CHAPTER 4. THE LORIKEET PROTOCOL 64

tree. These sources are also “hidden” from the tree, freeing them from having to
handle tree construction or deliver more than one stream.
Step 2 listed above (finding a parent for new receiver r) operates using one of

the two join algorithms described in the following sections.

Simple Join

The Simple Join algorithm is designed to select a good parent node by using a
decentralised, non-exhaustive searching procedure. It is conceptually similar to a
single iteration (adding a single terminal) of a Steiner Tree Problem heuristic like
those described in Chapter 3. This algorithm searches more potential parents in the
tree than the Shortest Paths with Origin heuristic, but does not search the entire
tree, like the Shortest Paths heuristic. Instead, it extends a single path downstream
from the source until a router that is closer to the new receiver than all of its children
is found.

Note that once the source hands off the scarch to one of its children, it is no
longer involved in the rest of the join.

The Simple Join algorithm operates as follows:

2a. The current router Reyrrent i Set to the source, S and the initial tree path

contains only S.
2b. Reurrent calculates cost(Reyrrent, T)

2¢. If Reyrrent has no children in 7" which are capable routers and not receivers,

then R yrrent is made the parent router of r and Step 2 terminates.

2d. Ryrrent asks those of its children in 7' which are capable routers (and hence

not receivers), denoted Cy, Ca, ..., Cp, to each calculate cost(Cy, 7).

2e. Reyrrent Teceives these costs from its children and determines the child with

minimum cost, identified as Ciin-

CHAPTER 4. THE LORIKEET PROTOCOL 65

2f. If cost(Reyrrent,) < €OSt(Chuin,) then Reyrrens is selected as the parent router
for 7, terminating Step 2. If not, Rymrent is added to the tree path and Cp,
becomes the new R.,rreni. 'The process above repeats from step 2c, now being

executed on the new R, rent-

In implementation of this algorithm, of course, it is likely that some admission
control would be necessary. A potential child router Cy may wish to reject a new
receiver for a variety of reasonms, including router load or insufficient downstream
bandwidth on the next hop’s interface. In these scenarios, the router Cy would
reject its parent’s request for a cost calculation and would thus be removed from
consideration as a parent for that receiver. In the case of failed authentication for
the multicast connection, the receiver would be rejected by the source upon making

its initial connection.

Path-Greedy Join

The Path-Greedy Join algorithm builds on the Simple Join algorithm and trades
further complexity for cost. It also searches a single downstream path through
the tree, but does not terminate until a router with no further routers for children
is reached. At this point, the entire search path is examined and the lowest-cost
parent chosen from it. This approach requires slightly more management of the join
procedure (such as passing along the complete search path) but has two advantages
over the simple join: (1) it searches more tree nodes; and (2) it avoids terminating
at a local minimum along the search path when a cheaper parent could be found
further downstream.

In this algorithm, the join message that is passed down the tree also contains
the search path so far, comprising the list of capable routers traversed and their
associated costs to the new receiver.

The Path-Greedy Join algorithm operates as follows:

2a. The current router Ry rent 1S set to the source, S, and the initial tree path

CHAPTER 4. THE LORIKEET PROTOCOL 66

2b.

2c.

2d.

2e.

2f.

2g.

contains only S and its associated cost, denoted by cost(S,r).

If Royrrens has no children in 7" which are capable routers (that is, its children

are all receivers), then go to Step 2g.

Reyrrent asks those of its children in 7' which are capable routers, denoted

C1,Co, ...,Cy, to each calculate cost(Cy,r).

Reyrrent Teceives these costs from its children, and determines the child with

minimum cost, identified as Ci,.
Reurrent and €ost(Reyrrent,) are added to the tree path.
Cnin becomes the new Ryeni- The process above repeats from Step 2c.

The final Reyrrent €xamines the tree path passed down to it and determines
the router Ry, in the tree path for which cost(Ryn,7) is minimised. This
router is returned to the source S, which notifies the new receiver r that its

parent in the tree is Rn.

4.5.3 Leaving the Tree

The process for a receiver r leaving the tree is as follows:

1.

The leaving receiver r contacts its parent router R and informs it that it wishes

to terminate its connection to the tree.
The parent router R disconnects r from the tree.

If the parent router R has no remaining children after r's departure, it notifies
its parent that it wishes to leave the tree and is subsequently disconnected by
the parent. This process repeats recursively towards the source until a parent

router with other children is encountered.

CHAPTER 4. THE LORIKEET PROTOCOL 67

In addition to the above join and leave processes, Lorikeet can also perform
rearrangement of the tree. Rearrangement in the Lorikeet protocol is described in

more detail in the next section.

4.5.4 Rearrangement

Rearrangement of the tree is necessary to maintain efficiency when changes to group
membership occur. As described earlier in Requirement 6 (see Section 4.2.3), large-
scale multicast sessions may experience significant changes in the locations of their
receivers. Since the construction of the tree is determined by the locations of re-
ceivers as they join, when those receivers leave and others join the tree will be un-
likely to be as efficient as a tree constructed for the new group of receivers. To allow
the tree to improve its structure to suit new receivers, we employ a rearrangement
scheme that adapts the tree to cope with changes as receivers leave.

Rearrangement in Lorikeet is triggered when (as a result of a leave operation) the
parent router of the departing receiver changes status from a branching router (router
with two or more children) to a non-branching router (router with one child). We
believe that this trigger for rearrangement based directly on a topological event is a
novel technique. Other approaches in the area include: (a) triggering rearrangement
by counting the number of join or leave events in an area and rearranging when a
threshold is reached, as in ARIES; (b) triggering rearrangement periodically with a
timer mechanism; (c) triggering rearrangement as part of a join event based on a
performance criterion, as in DSG.

Two rearrangement algorithms were developed in the creation of this protocol:
namely, the Path rearrangement strategy and the Rejoin rearrangement strategy.

Both are described below.

CHAPTER 4. THE LORIKEET PROTOCOL 68

Path Rearrangement

This rearrangement strategy focuses on the consolidation of long chains of routers
with one parent and one child, by considering their replacement with direct uni-
cast paths between the “top” and “bottom” branching routers in the chain. The

algorithm operates as follows:

1. Router R detects that it has become non-branching as a result of the departure

of one of its children.

2. R sends a message upstream via its parent towards the source looking for the
nearest upstream branching router (router with two or more children), referred
to as R,,. This message is passed from router to router (hop-by-hop) until
a candidate is found. If no branching occurs upstream of R, the source S is

selected as IRyp.

3. R also sends a similar message downstream via its single remaining child look-
ing for the nearest downstream branching router in that direction, referred to
as Ryown. 1f no branching occurs downstream of R, the final capable router on

the path (which will be supporting a single receiver) is selected as Rgoun.

4. If cost(Rup, Rioun) < tree(Ryy, Riown), then Rgsy, is re-parented to Ry, via
the unicast path, and intermediate routers (including R) are removed from

participation in the tree.

5. If a rearrangement has taken place, new parent router I,, transmits a re-
arrange message down the new path to Ryon, containing its path from the
source. Each downstream capable router uses this path to update its tree path
(used for loop detection), appends its own address to the path in the message

and forwards it on to its children.

Note that in the case that no branching routers are discovered downstream of R,

the furthest downstream capable router is selected as Ryoun, rather than the receiver

CHAPTER 4. THE LORIKEET PROTOCOL 69

it supports. This is due to the likelihood that the access bandwidth available to the
receiver is likely to be considerably smaller than the upstream bandwidth of its
parent router. Therefore, the parent router will be able to perform a rearrangement
with less of an interruption to the flow of data, since it may maintain both the old
and new connections while the rearrangement takes place. In addition, this allows
the receiver’s implementation of the protocol to remain simple, requiring only join
and leave operations.

Figure 8 illustrates the Path Rearrangement approach.

Figure 8: Path Rearrangement
Receiver r leaves the tree, turning its parent R from a branching router into a non-
branching router. The current tree path (Ryp, R, Raown) is then replaced with the

shortest path from Ry, to Rgoun if a shorter path is available.

CHAPTER 4. THE LORIKEET PROTOCOL 70

Rejoin Rearrangement

Rejoin rearrangement allows a branching router to be reconnected to the tree at a
parent with a lower parent-to-branching-router cost. It also allows the path to be
shortened as in Path rearrangement, described above. The algorithm operates as

follows:

1. Router R detects that it has become non-branching as a result of the departure

of one of its children.

2. R sends a message upstream via its parent towards the source looking for the
nearest upstream branching router, referred to as R,,. If no branching occurs

upstream of R, the source S is selected as R,,,.

3. R also sends a message downstream via its single child looking for the nearest
downstream branching router, referred to as Rgouwn. If no branching occurs
downstream of R, the final capable router (a router supporting a single re-

ceiver) is selected as Ryown-

4. R,, calculates the cost of the shortest path to Rioun, cost(Ryy, Raown) and the
cost of the current path through the tree, tree(R,,, Roown) and returns both

results to Rypuwn-

5. Rgown contacts the source of the multicast tree and finds a new parent router,

R, using the join procedure described in Section 4.5.2.
6. Rgowrn considers two types of rearrangement:

(a) If cost(R', Ripwn) < €OSt(Rup, Raoun), then the path (Ryp, ..., Riown) is

removed and Rg,,n 18 connected to R’ instead.

(b) Otherwise, if cost(Rup, Riown) < tree(Ruy, Riown), then we set Raoun’s
parent to R,, and remove the intermediate links and routers from the

tree.

TEmaa

Ty

CHAPTER 4. THE LORIKEET PROTOCOL 71

(¢) Otherwise, no change is made.

7. If a rearrangement has taken place, the new parent router (R’ or R,,, depend-
ing on which rearrangement is performed) propagates a rearrange message
down the new path to Rgown, containing its path from the source. Each down-
stream capable router uses this path to update its tree path (used for loop
detection), appends its own address to the path in the message and forwards

it on to its children.

Figure 9 illustrates this approach.

Loop Detection and Subtree Inversion

Unfortunately, several problems are encountered when rearrangement is implemented
on suboptimal trees, where paths through the tree may not be the underlying short-
est paths. Since there is no global state information maintained in Lorikeet (for
scalability reasons), routers have very limited knowledge of which nodes are in the
tree — a given router knows of the source, its parent and its direct children, but has
no further knowledge of the tree. This creates the possibility that loops may be
created, whereby a router r tries to rejoin to the tree (as part of a rearrangement
operation) and the underlying shortest path between the tree and r goes through
a router which is one of 's descendants. Figure 10 (a) and (b) illustrate this be-
haviour: the new path chosen for the router r goes through v, which is a child node
of r.

Note that in the Lorikeet protocol loops cannot occur during join or leave oper-
ations, as all Lorikeet receivers are leaf nodes and do not therefore have child nodes
in the tree. Loops are only possible when nodes that are already in the tree are
discovered on the shortest paths between capable routers.

This problem is solved by having routers (not receivers, of course) maintain a
little more state information. Rather than simply storing the identity of its parent

node, a router must store the complete tree path back to the source, that is the

-y

e P PR W
.

-

CHAPTER 4. THE LORIKEET PROTOCOL 72

Figure 9: Rejoin Rearrangement

Receiver 7 leaves the tree, turning R from a branching router into a non-branching
router. We search downstream from R for the first downstream branching router,
Riown, and upstream for the first upstream branching router, R,,. cost(R,,, Raown)
is calculated. Rgown then contacts the source S, which finds a potential new parent
R'. If cost(R', Ryown) is less than cost(Ruyp, Riown), Rdown becomes a child of R and
R is pruned from the tree. Otherwise, if cost(Ry,, Riown) is less than the current

value of tree(Ryp. Riown), Raown Decomes a direct child of Ry, and R is pruned from

the tree.

CHAPTER 4. THE LORIKEET PROTOCOL

73

(a) Original Tree, with r
to be rearranged. The
node marked r is Rgown
as described earlier. Only
routers (not receivers) are

shown.

(b) New path to r from
new parent p goes through
v, a child of r in the orig-
inal tree. Data is already
flowing from r to v, so a
loop occurs at the network

level.

(c) Perform a subtree in-
version, with v becoming
the parent of r and a child
of p. The link from r’s
old parent to r is removed,
and the old parent of r will
also be removed if it has no

other children.

Figure 10: Loop Detection and Subtree Inversion

Ry

CHAPTER 4. THE LORIKEET PROTOCOL 74

ordered list of upstream capable routers in the tree. This information is propagated
down the tree as routers join it, constructed by taking their parent’s path and
appending their parent. The tree paths of affected routers are also updated on
modification of the tree due to rearrangement.

With this extra information, router v is able to detect when one of its ancestors
wishes to become one of its children and perform a subtree inversion. This situation
only occurs when v is discovered on the underlying unicast path between a selected

new parent node p and r. In this case, the process that occurs is as follows:

1. v disconnects from its parent and becomes a child of p.

2. 7 then becomes a child of v.

The end result of this operation is shown in Figure 10(c).

4.5.5 Data Delivery

Data transmission in Lorikeet is performed by forwarding copies of packets after
rewriting their headers. When a capable router in the tree receives a packet from
its parent, it rewrites the packet’s source address to match its own address. One
copy of the packet is then sent to each of its children, with the destination address
set to each child node’s address accordingly.

This approach only requires the rewriting of fixed size headers and is therefore
relatively cheap computationally. Since connections are only maintained between
parent and child nodes, local acknowledgement of packets can be performed on a
link-by-link basis if necessary without acknowledgements travelling further up the
tree and swamping upstream routers or the source.

Since Lorikeet maintains explicit control of the tree by having its routers maintain
direct connections with their parents and children, routers could potentially perform
operations on the data being distributed through the tree. Such modification of
content is difficult to achieve in other systems where topological information about

the tree is not available at routers. Some examples of this functionality include:

CHAPTER 4. THE LORIKEET PROTOCOL 75

e Local retransmission of packets on a link-by-link basis: for example, across a
parent-child link. The parent may cache packets and require positive acknowl-
edgement of every packet from the child. Then, the parent can retransmit a
packet if it is not acknowledged within a set time period, without having to
require the source to retransmit to the whole group or swamping the source

with acknowledgements.

e Selective modification of the data as it traverses the tree. For example, the
data being transmitted by the source could consist of a layered video stream,
consisting of a low-bandwidth base layer and additional lower-priority layers
that add detail to the base layer (as described in [55]). Each layer would be
identified by a tag in the packet’s header. It would be possible to have routers
discard layers according to the demands of their children: a router whose
children only have the capacity for 256kb/s of the video can only forward
enough layers of the stream to satisfy that requirement, while another router
further upstream might forward the complete 1Mb/s stream. Obviously, this
system would require some minor modifications to the join algorithm in order
to treat capacity as another component of the metric, thereby constructing

trees with higher-capacity nodes placed nearer the source.

A more detailed discussion of Lorikeet’s implementation and additional features

that it potentially enables is presented in Chapter 7.

In this chapter we have described our target application, large-scale single-source
multimedia transmission, and our network environment, the current Internet. From
the properties of this application and the constraints imposed by the environment,
we developed a set of requirements for a multicast protocol. The Lorikeet multicast

protocol is designed to meet these requirements, providing a single-source group

CHAPTER 4. THE LORIKEET PROTOCOL 76

communication protocol that can support a large number of receivers and operate
using unicast transmission on the current Internet, thus allowing it to be deployed
incrementally. In addition, it provides support for rearrangement of the tree to
maintain efficiency with a changing receiver set, using a novel topological trigger for
these rearrangement operations.

The following chapter describes the simulation environment developed for the
analysis of Lorikeet, and presents an analysis of Lorikeet’s performance. Lorikeet’s
performance is analysed at various levels of deployment in the network and compared

to the performance of other multicast protocols.

Chapter 5

Performance Analysis

5.1 Introduction

In Chapter 4, we presented a definition of the Lorikeet protocol for multicast tree
construction, maintenance and data transmission. In this chapter, we analyse Lori-
keet’s performance in simulations of a number of different multicast scenarios.

First, we describe several other competitor algorithms that have been imple-
mented in topological simulation for the purposes of comparison. These include
two simple algorithms as baselines for comparison (the Source-Join and Greedy
algorithms) and several other approaches from the literature (ARIES [8, 7], Delay-
Sensitive Greedy (DSG) [32] and REUNITE/HBH [71, 18]), as discussed in Chap-
ter 2. We investigate worst-case and average case message complexity of these
algorithms in order to quantify the overhead they impose on the network.

We begin the performance analysis by examining the different approaches to
Lorikeet tree construction (the Simple and Path-Greedy join algorithms) and tree
rearrangement (the Path and Rejoin rearrangement algorithms) in order to deter-
mine which combination of these is most appropriate for general-purpose use.

The selected version of Lorikeet is then compared against other multicast al-

gorithms in equivalent environments. Specifically, the simulations are of networks

77

CHAPTER 5. PERFORMANCE ANALYSIS 78

where all of the routers present are capable routers, rather than a mix of capable
and non-capable routers. This property of universal deployment is a requirement of
most of the other algorithms being simulated.

Finally, we analyse the performance of Lorikeet and the REUNITE/HBH proto-
col (neither of which require universal deployment) at different levels of deployment
in the network, from zero capable routers to 100% capability. This allows us to con-
firm their performance in an incremental deployment situation, and predict what
level of deployment yields a significant benefit from the use of multicast compared

to simultaneous unicast.

5.2 Other Algorithms

The collection of algorithms described in this chapter are discussed here in enough
detail to describe their behaviour in tree construction and maintenance. In imple-
menting them for simulation, we found that in several cases their descriptions in the
literature were incomplete or ambiguous — where this is the case, we have discussed
these issues and their resolution. In particular, the ARIES protocol did not account
for loops occurring as a result of its rearrangement process, an issue we addressed by
modifying its rearrangement heuristic. We also present a more detailed discussion of
the REUNITE algorithm and its extension HBH, as we feel that they are the most
appropriate competitor protocols to compare to Lorikeet. Both REUNITE/HBH
and Lorikeet share several basic properties, such as targeting unicast delivery over
the current Internet, minimising the storage of state information and permitting
incremental deployment. However, we show that the approaches employed by these
protocols for tree construction and maintenance are quite different, as is their mes-

sage complexity.

CHAPTER 5. PERFORMANCE ANALYSIS 79

5.2.1 Source-Join and Greedy algorithms

The Source-Join algorithm is the simplest algorithm implemented. It performs a
join operation by always connecting a new receiver to the source of the multicast
by the shortest path (as selected by the underlying routing algorithm). Branching
occurs when several of these paths share a router, which will request that it only
receive one copy of the stream from the source. This algorithm is analogous to the
Shortest Paths with Origin heuristic described in Chapter 3.

The Greedy algorithm performs a join operation by always connecting the new
receiver to the nearest node in the existing multicast tree. This is done by exhaus-
tively searching the tree, calculating the cost of the path between the new receiver
and each capable router, and selecting the minimal cost path. This algorithm is the
decentralised analogue of the Shortest Paths heuristic described in Chapter 3.

Both the Source-Join and Greedy algorithms in our implementations perform
leave operations in the same way, by removing the leaving receiver and pruning

upstream nodes recursively until a router with other children is found.

5.2.2 ARIES

ARIES (A Rearrangeable Inexpensive Edge-based On-line Steiner Algorithm) (8, 7]
is a rearrangeable multicast algorithm designed to maintain efficiency in the face of
changes to the multicast tree. Join operations are performed in the same way as the
Greedy algorithm described above, using an exhaustive search of the current tree.
Tree maintenance is done by rearranging a localised region of the tree whenever
that region has enough receivers join or leave the tree within it. The definition of a
region is quite complex — it is a portion of the tree that contains at least one mod-
ified node, or M-node (a node that has joined or left since the last rearrangement)
and is bounded by stable nodes, or Z-nodes (nodes that have not been modified).
Every Z-node keeps a counter for each region in which it participates which is in-

cremented whenever a node joins or leaves that region. When this counter reaches

CHAPTER 5. PERFORMANCE ANALYSIS 80

a set threshold, a rearrangement of the region is triggered. When a node leaves the
tree, it is marked as a deleted node, but not removed — this removal happens on the
next rearrangement. Since both join and leave operations increment the counter,
rearrangements can occur as a result of either type of event.

The following section describes the issues that arose while implementing ARIES

in simulation, and the modifications made to address them.

Loop Detection in ARIES rearrangement

To rearrange a region, ARIES employs the Kruskal Source-Join Heuristic (K-SPH),
although any static Steiner tree heuristic could be used, such as those in Chapter
3. K-SPH operates by deleting all the links and deleted nodes in the region, and
then joining the remaining fragments together, joining the two closest fragments by
the underlying shortest path in each iteration until only one fragment remains. To
start with, the fragments are all individual Z-nodes, since M-nodes become Z-nodes
on rearrangement. After the rearrangement the region ceases to exist, since it no
longer contains any M-nodes.

We found that this approach presented a problem. Upon implementing it, we
found that our trees would develop loops. This occurs because although K-SPH
constructs a local connected graph, that graph is part of a larger overlay tree. Some
of the paths between fragments being joined may contain nodes that are part of the
larger tree, but not part of the region being rearranged.

Solving this problem requires expanding the initial fragments so that nodes in
the region that are connected to the rest of the tree form one large fragment (or
several large fragments, if the tree is partitioned by the region) that consists of the
remainder of the tree. Unfortunately this operation requires a search of the entire
tree, which somewhat reduces the advantage of limiting rearrangement to individual
regions in the first place. Although changes to the tree only take place in this smaller
region, the operation itself requires the participation of the whole tree.

For these reasons, we have limited our analysis of ARIES to a centralised, topo-

CHAPTER 5. PERFORMANCE ANALYSIS 81

logical model, where its performance in terms of tree cost can be compared to that

of other algorithms.

5.2.3 Delay-Sensitive Greedy (DSG)

The Delay-Sensitive Greedy (DSG) algorithm [32] is another more complex tree
construction algorithm designed to also maintain the efficiency of the tree over time.
It uses a Greedy join as described above, but allows for the re-connection of a node
along the shortest path to the source if a delay constraint is not met by its initial
location in the tree. This delay constraint is described in terms of the stretch of a
node v, which is defined as stretch(v) = tree(S,v)/cost(S,v), where tree(...) and
cost(...) arc the multicast tree cost and shortest-path cost as defined in Section
4.5.1. If the stretch of node v exceeds a threshold, the first upstream node v’ that
satisfies a tighter bound is found and that that node is rerouted to the source along
the shortest path from S to v'. Thus, DSG only performs tree maintenance as
part of its join operation. Goel and Munagala [32] do not address the behaviour of
Jeaving nodes, so we have implemented it in our simulations as described earlier for

the Source-Join and Greedy algorithms.

5.2.4 REUNITE and HBH

In [71], Stoica et al. proposed the REUNITE (REcursive UNIcast TreE) protocol
for multicast over recursive unicast trees. Later, in [18], Costa et al. developed
HBH (Hop-By-Hop), a protocol that improves upon some of REUNITE’s behaviour
in asymmetric networks. In this section, we discuss first the salient features of the
REUNITE protocol and subsequently the modifications proposed by HBH’s authors.

As described in Chapter 2, Lorikeet shares many of REUNITE’s advantages over
both traditional IP multicast and many application-level approaches; the following
points are paraphrased from the introduction to the REUNITE article [71] and are
common to both REUNITE and Lorikeet:

CHAPTER 5. PERFORMANCE ANALYSIS 82

e Reduction of forwarding state: information about nodes participating in the

multicast tree is only maintained at a small number of nodes;

e No need for class D addresses: REUNITE uses unicast forwarding for both
control and data transmission, identifying the multicast group by a source

address (and port, or path);

e Incrementally deployable: the protocol will operate even if only a subset of
network nodes deploy the protocol, rather than requiring complete deployment

or tunnelling (as for IP multicast);

e Load balancing and graceful degradation: routers may choose to ignore control
messages and the protocol will automatically use other routers to handle new

joins or groups;

e Support for access control: since the source handles joins, access control can

be implemented by authenticating receivers at the source.

However, there are a number of differences between the approaches used for tree
construction and maintenance in REUNITE and Lorikeet. REUNITE’s multicast
tree for a group is stored (in a distributed fashion) in Multicast Forwarding Tables
(MFTs) in routers participating in the tree. Each MFT contains a list of receivers
that are downstream of that router, to which the router will send duplicate copies
of any packets for the group that it receives. These MFTs are soft state: that is,
they are maintained through the periodic reception of JOIN messages from these
receivers. If a receiver does not send a JOIN message for a specified amount of time,
its entry in the router’s MFT is marked as “not alive” and eventually removed. A
second table stored by routers in the tree is the Multicast Control Table (MCT).
The MCT is used to keep track of which trees a non-branching router (one that
merely forwards packets, rather than duplicating them) is a member of.

Lorikeet works differently in that its management of the tree is more explicit;

state in routers is not soft, but is instead modified through explicit join and leave

CHAPTER 5. PERFORMANCE ANALYSIS 83

messages communicated between a node and its parent. State information is limited
in a similar way, in that a router only maintains information about its children and
its path back to the source, which is necessary to facilitate rearrangement of the
tree.

We now discuss REUNITE’s join and leave behaviour in more detail.

Joining the Group

REUNITE’s join mechanism is similar to the Shortest Path approach described in
Section 5.2.1. A receiver r wishing to join the group sends a JOIN message through
the network, towards the source S. If there are no existing routers in the tree along
the path (r,S), S creates an entry in its MFT for r and begins sending r data along
the path (S,r). However, if there does exist a router R that is already a member
of the tree on the path (r,S) traversed by the JOIN message, @ will intercept this
message and join 7 to itself, creating an MFT entry for r at router . The authors
of REUNITE describe this approach as constructing the multicast tree based on the
forward direction unicast routing towards the receiver. This is correct for the first
receiver in the tree, since it is by necessity connected directly to the source. However,
subsequent receivers may be connected to tree routers found on their reverse unicast
path back to the source using the process described above, rather than through a
forward-path search originating from the source. We illustrate this behaviour with
two examples, given below.

The example diagram shown in Figure 11 is taken from page 4 of the paper
by Stoica et al. [71] that proposes the REUNITE protocol. In this scenario, the

following asymmetric unicast routes are given:
e S— N1— N3— Rl
e R1 - N2— N1— S,

e S — N4 — R2; and

CHAPTER 5. PERFORMANCE ANALYSIS 84

e R2 - N3 — N1 - S.

N1 N1
N4 N4

N2 N3 N2 N3

R1 R2 R1 R2

(a) (b) (¢)

Figure 11: Example illustrating REUNITE’s tree creation protocol, from Stoica et
al. [T1], page 4.

In this example, the receiver R1 is the first receiver to join the group (Fig-
ure 11(a)). Since no router in the network is aware of the group, the JOIN message
sent by R1 is propagated all the way to the source S, which adds an entry for K1
to its MFT and begins to send data to R1. In addition to sending data, S also
sends periodic TREE messages down the delivery tree (Figure 11(b)). When these
messages arrive at routers N1 and N3, they update their MCTs to indicate that
they are part of the multicast tree. These routers do not duplicate packets at this
stage; they merely forward packets to R1.

In Figure 11(c), a second receiver R2 joins the group by sending a JOIN message
towards 5. When this message reaches N3 (the first router on the reverse path
towards S that is a member of the delivery tree), N3 becomes a branching node: it
removes its MCT entry for the group and creates an MFT entry for R2. Thus, a
data packet that arrives at N3 (on its way to receiver R1) will be duplicated and
also sent to R2 by N3.

This join has clearly been made on the reverse path from R2 to S through N3,
rather than on the forward path S — N4 — R2. If N4, the only router on the

CHAPTER 5. PERFORMANCE ANALYSIS 85

forward path from S to R2, were a member of the group it would still not be used
to supply R2 since the forward path from S to R2 is never examined during the
JOIN procedure.

Consider the case where the forward and reverse paths between S and R2 are

exchanged with each other, giving the following routes:

e §S— N1— N3 — Rl
e R1 - N2> N1->5;
e S— N1— N3 — R2; and

e R2 - N4 — S.

In this scenario, R1 joins as it did in the first example, and N1 and N3 once
again become non-branching routers in the tree. This time, however, the forward
path to R2 is via N3, which is already a participant in the tree. However, in this
case, the JOIN message from 122 passes via the reverse path through N4, and (since
N4 is not in the tree) R2 joins directly to the source, just as R1 did. Here, the use of
the reverse path to join the second receiver has meant that the source must maintain
two separate unicast connections directly to end receivers, rather than branching at
N3 as would be done if a true forward-path delivery tree were constructed.

Broadly, REUNITE’s join mechanism will only allow a receiver to join the tree
at a router currently participating in the tree that is on the reverse path from that
receiver to the source. If there are no such routers, the receiver will be joined to the
source directly. This means that in multicast groups where receivers are sparsely
distributed, the likelihood of discovering a participating router on the shortest path
back to the source from a given receiver is low. In such a situation, not as much
branching will take place and the total cost of the tree will be greater than in systems

that promote branching by using the existing tree to join new receivers.

CHAPTER 5. PERFORMANCE ANALYSIS 86

Leaving the Group

A receiver R1 leaves a REUNITE multicast group by simply stopping the sending
of JOIN messages. This causes the router which has R1 in its MFT to timeout the
entry for R1 (since it is not being refreshed any longer by periodic JOIN messages)
and conclude that R1 has left the tree. The router cannot immediately stop sending
packets to R1, however. Consider the first example described above, when 21 and
R2 have joined the tree. If R1 now decides to leave, S cannot stop sending packets
to R1 without interrupting the transmission to R2 as well, since R2 is supplied by
N3 without S’s direct knowledge. The approach to solving this issue that is used by
REUNITE is to allow these receivers (that are dependent on the path to the leaving
receiver) time to discover new branch points in the tree to receive packets from.
When R1 leaves, therefore, S marks its entry in its MFT as not alive, and keeps
sending data and TREE messages down the delivery tree as before. These TREE
messages are marked with a stale bit, indicating that the branch is to be removed in
the near future. When downstream routers receive these stale TREE messages, they
mark their MFTs as stale also (in the case of branching routers) or remove their
MCTs for the group (in the case of non-branching routers). In our example, taking
place after the situation shown in Figure 11(c), router N1 would remove its MCT
and router N3 would mark its MFT as stale. This has the effect of causing later
JOIN messages from downstream receivers to propagate further up the tree, to be
intercepted by either the nearest non-stale participating router, or the source itself.
These receivers effectively rejoin the tree further upstream on the same path to the
source, at a participating router that is not on the stale branch. After a further
timeout, the stale MFT entries at routers on the stale branch are removed, and the
leaving receiver is removed from the tree. The result in our example scenario would
be that the JOIN messages from R2 would propagate further up the shortest path,
past the routers N3 and N1, which are stale or no longer participants, and reach S.

R2 would become a child of S along its forward path, S — N4 — R2, and router

CHAPTER 5. PERFORMANCE ANALYSIS 87

N4 would create an MCT indicating it was part of the group.

This approach to handling receiver leaves is necessary because REUNITE’s de-
sign makes the stream being delivered to a particular router dependent on the pres-
ence of the receiver that established that branch. In Figure 11, for example, routers
N1 and N3 are in the tree because they are supporting R1, which is a child of S.
Later receivers that join those branches, however, join to “lower” routers in the tree,
such as N3, without S’s knowledge. This way of storing the tree leads to interde-
pendencies between the receivers supported by a given branch of the tree: if this
“first” receiver leaves and its branch is pruned, all the other receivers that depend
on that branch must be re-parented.

Since REUNITE limits receivers to connecting to the delivery tree via sub-paths
of their shortest paths to the source, it does not allow for rearrangement of the tree
to improve its efficiency.

In contrast, Lorikeet’s receivers have no interdependencies: a receiver can be
simply pruned from the tree without affecting any other receivers, since its parent
always maintains a direct connection with its child. If this pruning of a receiver leaves
its parent with no further child nodes, we also prune the parent recursively. This
approach requires no constant exchange of messages or timer-based mechanisms.
Lorikeet provides mechanisms for rearrangement of the tree to improve efficiency
as its participants change, such as the Path and Rejoin rearrangement techniques

described in Section 4.5.4.

5.2.5 HBH

In [18], Costa et al. describe HBH (Hop-By-Hop), an extension of the REUNITE
protocol that is designed to address several deficiencies in REUNITE’s tree man-

agement. Their work makes a number of modifications to the the protocol:

o The authors suggest the use of Class-D multicast IP addresses (as in traditional

IP multicast) for identification of groups, using the source-specific channel

CHAPTER 5. PERFORMANCE ANALYSIS 88

abstraction introduced in EXPRESS [38].

e HBH stores the next branching node in the MFT table, rather than the des-
tination receiver. This modification makes the tree more stable than those

constructed by REUNITE with respect to leaving receivers.

e HBH adds a third message type in addition to REUNITE’s JOIN and TREE
messages, the FUSION message. This message is sent by a router that receives
several different TREE messages referring to different end receivers, and enables

it to take over control transmissions to these receivers from the source.

The integration of IP multicast addressing into the protocol is not treated in
detail in [18], and the authors list the formal definition of the interface between HBH
and TP multicast addressing as future work. The other modifications to the protocol
allow HBH to cope better with receivers for which the reverse path is different
from the forward path (as in asymmetric networks), using the FUSION message
to move management of these receivers further down the tree to the appropriate
branching routers. In symmetric networks, HBH produces the same multicast trees
as REUNITE does.

Since our simulations use only symmetric networks, the REUNITE and HBH
protocols generate identical results in these scenarios; therefore the two protocols

are referred to collectively for the remainder of this thesis.

5.3 Simulation

In order to analyse the behaviour and performance of Lorikeet and the other algo-
rithms described in this chapter, we wrote implementations of each of them designed
to operate on a simulation of a network. This simulation is a discrete event simu-
lation of the network topology only, since we have chosen to focus on the critical
issues of construction and maintenance of an efficient multicast tree, rather than on

other aspects of the protocols.

CHAPTER 5. PERFORMANCE ANALYSIS 89

Our simulation is a complete software package written in the Python program-

ming language. A typical simulation follows the following sequence of steps:

1. Load a pre-calculated network graph from disk and initialise a multicast tree

containing the source alone.

2. Calculate (or load from disk) the shortest-path information for the network,

consisting of the shortest paths between all nodes.

3. Calculate (or load from disk) a sequence of join and leave events for the receiver
set. A sequence is an ordered set of events, where each event consists of a single

identified node joining or leaving the tree.

4. Tteratively run the sequence of events according to the selected multicast al-

gorithm. For each event, we:
(a) Determine the new multicast tree by simulating the operation of a mul-
ticast protocol for this event.
(b) Write the resulting (intermediate) multicast tree to disk for analysis.

(c) Calculate and write to disk a number of measurements (for example: tree

cost, capable router count, receiver count).

All of the parameters used in simulation may be saved and re-run in order to
ensure that (for example) the same sequence of events is used to simulate different
protocols for comparison. The following section describes the two basic environments

used for our simulations.

5.3.1 Simulation Experiments

To generate our results, two types of experiment are used:

e “Waxman” topologies (generated by the BRITE tool [56]) with 500 nodes,
and 650 links. 350 of these nodes are leaf nodes (receivers), and the other 150

CHAPTER 5. PERFORMANCE ANALYSIS 90

are routers. The sequences used on these topologies are randomly generated:
for each event, a node is selected. The event is a join event if the node is not
currently a member of the multicast tree and a leave event if it is. In all cases
shown here, the results are averaged over five different “waxman” topologies

(with the same number of nodes and edges).

¢ The “Windowed” topology is also generated by the BRITE tool (using its “2-
level” topology support), with 2500 nodes and 3020 links. 2000 of the nodes
are leaf nodes, and 500 are routers. The sequence used is generated by giving
every node a geographical location on a 2D grid measuring 1000x1000 units
(this data is provided by BRITE), then having a “join window” travel from left
to right across the grid selecting nodes to join to the tree. A second window,
travelling behind the first, selects nodes to leave the tree. This approach is
used to simulate the correlation of network joins in some situations, such as
a 24hr broadcast where receivers are likely to be correlated by timezone. The
windowed simulation has several parameters: (a) the initial count of receivers
in the tree; (b) the rate at which the window moves across the plane; (c) the
window size; and (d) the departure lag, or lag between the joining and leaving

windows.

5.4 Complexity Analysis

The complexity of distributed algorithms like these multicast tree construction al-
gorithms is very difficult to quantify because of their dependence on the network
and overlay topologies. Algorithms may perform very differently on networks where
receivers are clustered close to each other compared to when they are more sparsely
distributed, for example. In addition, the ordering of join and leave operations is
quite significant: the addition of new routers to the overlay tree can affect the selec-
tion of parent nodes in later joins, as can the pruning of routers that are not needed

at the time.

CHAPTER 5. PERFORMANCE ANALYSIS 91

We feel that the best way to describe these protocols is in terms of message com-
plezity, where we analyse the number of messages between nodes that an algorithm
takes to perform an operation. All algorithms presented in this chapter have two ba-
sic operations: the join operation and the leave operation. Tables 1 and 2 present the
lower- and upper-bounds for the message complexity of these operations. As shown
in the tables, the Lorikeet algorithms have much smaller lower-bounds on complexity
than the Greedy-join based algorithms, while maintaining the same upper-bound.

Two special cases in analysing these algorithms for complexity are the Source-
Join and REUNITE algorithms. As shown, both of these have very low message
complexity for both join and leave operations, since all receivers join at and leave
from the source via the (already known) underlying shortest path. However, this
approach trades this reduced complexity for increased tree cost: it relies on receivers
sharing portions of their paths from the source, rather than explicitly making use of
routers that are in the tree but not on that receiver’s shortest path from the source.
An implementation of the Source-Join algorithm would require additional complex-
ity to achieve this path sharing, either by having the source maintain a copy of the
topology, or by having routers detect and consolidate duplicate streams. REUNITE
is effectively an implementation of the Source-Join algorithm: it operates using ad-
ditional periodic messaging to maintain its soft state forwarding tables at routers,
thereby facilitating multicast branching. For this reason, the complexity figures
given for Source-Join and REUNITE are significant underestimates, since either ad-
ditional functionality or periodic messaging (which is difficult to compare to more
explicit control systems) is required in real implementations of these algorithms.

These lower- and upper-bounds only present the behaviour of the algorithm in
the trivial and worst-case scenarios; thus, they do not represent the behaviour of
the system in the vast majority of cases. To give a more complete picture of the
behaviour of Lorikeet against other algorithms we counted the messages passed over
the course of a simulation and present the results as averages in Table 3. The sim-

ulation used to generate these results is the “Windowed” experiment described in

e R -

CHAPTER 5. PERFORMANCE ANALYSIS 92

Section 5.3.1, with the following parameters: the initial count of receivers is 100,
the rate at which the window moves is 0.5 units/event, the window size is 200 and
the departure lag is 100. Results for ARIES are omitted from this table because
of the difficulty in developing a distributed implementation of ARIES, as described
in Section 5.2.2. However, the number of messages passed by the ARIES algorithm
will be at least as great as the number passed by the Greedy algorithm, plus the
additional cost of the messages required to maintain ARIES’ counters and perform
rearrangement. Results for REUNITE are also omitted due to its dependence on pe-
riodic messaging to maintain its soft state information; this time-dependence makes
REUNITE's message complexity difficult to compare to the other event-driven pro-
tocols presented here.

It can be seen from the table that the exhaustive join technique’s higher com-
plexity gives rise to a much larger average number of messages passed on join events
for both the Greedy and DSG algorithms, and also for ARIES (as noted above).
This makes these algorithms unsuitable for real-time use on multicast transmissions
with more than a trivial number of receivers, since this control overhead will grow
at least linearly with the number of receivers. It is also worth noting that the join
complexity is more significant than the leave complexity in multicast protocols, as a
receiver must wait for a join to complete before it can begin receiving data. Hence,
we feel that only algorithms which do not perform exhaustive searches on join, but
instead limit the size of their searches further, are candidates for real-world use.

Although Lorikeet has the same worst-case complexity as the Greedy algorithm,
its best case is an order less complex, and in the average case each join only takes
a small number of messages. This is due to the way that Lorikeet performs its join
operations, only expanding one branch of the tree at each branch point. Table 3
also shows that the difference between Simple and Path-Greedy join in terms of
the number of messages passed is marginal, with only an increase of between three
and four messages on average for Path-Greedy join in this scenario. Rearrangement

in the Lorikeet variants is only ever performed on leave operations, because of the

CHAPTER 5. PERFORMANCE ANALYSIS 93

Algorithm Lower Bound Upper Bound
Simultaneous Unicast Q(1) 0(1)
Greedy QN) O(N)
Source-Join Q1) 0(1)
REUNITE (1) 0(1)
DSG Q(N) O(N)
Lorikeet Simple (1) O(N)
Lorikeet Path-Greedy Q1) O(N)

Table 1: Join Event Complexity

trigger that is used (a router becoming non-branching).

The values given for the standard error in these results are quite large for most
of the algorithms. This is due to the fact that the number of messages passed per
operation vary a great deal from one operation to the next and are highly dependent
on the topology of the tree at the time. For example, a join operation that takes place
shortly after the creation of a tree requires fewer messages to find a good location
compared to a join on a tree which already has several hundred participating nodes.

Table 4 shows the number of attempted and successful rearrangements for the
simulation used to calculate the data given in Table 3. It shows that rearrangement
is more often successful with Path-Greedy join than with Simple join, and moreover
that Rejoin rearrangement is slightly more often successful than Path rearrangement.

It is obvious from the data that Rejoin rearrangement is more expensive than
Path rearrangement, since it requires an additional join operation. However, we feel
that the extra cost for Rejoin rearrangement is acceptable since rearrangements are

performed in the background; in other words, “hidden” from the user.

TR -

CHAPTER 5. PERFORMANCE ANALYSIS

94

Algorithm Lower Bound Upper Bound
Simultaneous Unicast Q(1) O(1)
Greedy Q(1) O(N)
Source-Join Q(1) O(N)
REUNITE (1) 0O(1)
DSG Q(1) O(N)
Lorikeet (either) without Rearrangement (1) O(N)
Lorikeet (either) with Path Rearrangement (1) O(N)
Lorikeet Simple with Rejoin Rearrangement Q(1) O(N)
Lorikeet Path-Greedy with Rejoin Rearrangement Q(1) O(N)

Table 2: Leave Event Complexity
Algorithm Join Leave Rearrange
Simultaneous Unicast 1.00 +0.00 1.00+£0.00
Source-Join 6.98 +2.45 1.94+1.32
Greedy 178.41 +33.74 1.64 £0.96
DSG 182.16 + 33.63 1.67 £ 1.00
Lorikeet Simple 16.88 £4.49 1.86+ 1.17
Lorikeet Simple, Path rearrangement 16.88 +4.49 2.23+1.23 2.09+£1.17
Lorikeet Simple, Rejoin rearrangement 16.85+449 2.214+£1.20 17.75£4.73
Lorikeet Path-Greedy 19.52 +5.57 1.74+1.24
Lorikeet, Path-Greedy, Path rearrangement 19.06 24.97 1.98+1.19 3.79+4.71
Lorikeet Path-Greedy, Rejoin rearrangement 19.04 £5.29 1.97+1.18 19.48 +6.82

Table 3: Messages Passed Per Event

In this table, the Join column lists the message count for join events, the Leave col-

umn lists the message count for leave events where no rearrangement takes place, and

the Rearrange column lists the message count for leave events where rearrangement

takes place. The mean and standard error are given for each count.

P

CHAPTER 5. PERFORMANCE ANALYSIS 95

Algorithm Attempts Successful
Lorikeet Simple, Path rearrangement 291 0
Lorikeet Simple, Rejoin rearrangement 291 9
Lorikeet Path-Greedy, Path rearrangement 296 42
Lorikeet Path-Greedy, Rejoin rearrangement 297 54

Table 4: Rearrangement Counts
Number of attempted and successful rearrangements. The total number of leave

events in this simulation was 964.

5.5 Tree Cost

In this section, we analyse Lorikeet’s performance in terms of the total cost of the
tree; that is, the sum of the costs of the individual links connecting nodes in the tree.
We begin by analysing the different variants of Lorikeet described in Chapter 4: the
Simple and Path-Greedy join algorithms and the Path and Rejoin rearrangement
algorithms. The next section compares Lorikeet’s performance to that of the other
algorithms described earlier, in a complete deployment scenario (where all routers
in the network support the protocol.) Finally, we analyse Lorikeet and REUNITE
at different levels of router capability, to determine how they respond to incremental

deployment in the network.

5.5.1 Lorikeet Join and Rearrangement Operations

This section presents a comparison of the different variants of the Lorikeet protocol.
These can be divided into two categories: different join algorithms and different

rearrangement algorithms.

Joining the Tree

As presented in Section 4.5.2, we have examined two different approaches to joining a

Lorikeet multicast tree, the Simple and Path-Greedy joining algorithms. The Simple

CHAPTER 5. PERFORMANCE ANALYSIS 96

join algorithm is the initial algorithm developed to selectively search the existing
tree for a parent for a new receiver. The Path-Greedy approach extends the Simple
join to terminate the search later and avoid local minima. Both algorithms were
simulated, and Figure 12 shows the total tree cost over an event sequence, averaged
over five sequences on the same topology, with all routers being capable routers.
The Greedy joining algorithm is included as a baseline for comparison.

We can see that the Path-Greedy algorithm provides approximately a 5% im-
provement over the Simple algorithm in the total cost of the tree once the system
reaches a stable number of receivers. This improvement comes at a small additional
cost in terms of message passing and implementation complexity, as shown in Ta-
ble 3. Both algorithms are within 12% of the cost of the Greedy algorithm, which

has much higher complexity than either Lorikeet approach.

Rearranging the Tree

Section 4.5.4 presents two different techniques for performing rearrangement of the
tree in order to maintain efficiency with a changing population of receivers. The
simplest approach is path rearrangement, which optimises the path between two
branching routers in the tree, and the more complex approach is rejoin rearrange-
ment, which rejoins a branching router to the tree to take advantage of new parent
routers, falling back to path rearrangement if a rejoin would not improve the cost
of the tree.

Table 5 shows the tree cost averaged over the stable portion of an event sequence
(events 500-2000) measured for all of these rearrangement techniques. The cost is
shown relative to the tree cost with no rearrangement. In this simulation, the
“Windowed” experiment (described in Section 5.3.1) is used, as rearrangement is
more effective when node joins and leaves are correlated. The parameters used here
are as follows: the initial count of receivers is 100, the rate at which the window
moves is 0.5 units/event, the window size is 200 and the departure lag is 100.

These results show that rearrangement of the tree provides a cost improvement

CHAPTER 5. PERFORMANCE ANALYSIS

900 T T

800} N
- e o .
vTd et T, eatE ey TR Lk I N WO L P TN
TS LT [l S PSS B e g Yy v "y ¥
. V. P - - . » Tlea v A Lo
"-\.UJ"‘ e ""“.‘ ““""‘"n""“‘ "I‘\"\,hn‘ - FLAFTMELY
anae

700t

wm
o
[=]

Tree Cost
I
o
L=

3007,

200

100

0 500 1000 1500 2000
event

—— Greedy
— = - Lorikeet (Path-Greedy join)
- - - Lorikeet (Simple join)

Figure 12: Comparison of Join Techniques: Simple Join vs. Path-Greedy Join

CHAPTER 5. PERFORMANCE ANALYSIS 98

Simple Join

Algorithm Mean Min Max
No rearrangement 1.00 1.00 1.00
Path rearrangement 1.00 1.00 1.00

Rejoin rearrangement 1.00 098 1.01

Path-Greedy Join

Algorithm Mean Min Max
No rearrangement 1.00 1.00 1.00
Path rearrangement 0.94 0.85 1.00

Rejoin rearrangement 091 0.80 0.98

Table 5: Comparison of Rearrangement Techniques (events 500-2000)

of up to 20% over no rearrangement in this scenario. The addition of rearrangement
to the Path-Greedy join algorithm provides a significantly greater reduction (up
to 20%) in the cost of the tree than the addition of rearrangement to the Simple
join (up to 2%). This improvement in tree cost is more evident in the Rejoin
rearrangement results, since the Rejoin algorithm inherits the join mechanism as part
of its operation: using the more effective join algorithm improves the performance
of the rearrangement.

From these results, we find that the combination of the Path-Greedy join al-
gorithm with the Rejoin rearrangement mechanism offers the best performance in
terms of total tree cost. The Path-Greedy join does not add significantly to the
message complexity of the system compared to the Simple join algorithm, and the
complexity of performing rearrangement is no more expensive than performing an
additional join. Since these rearrangements occur infrequently and can be performed
asynchronously without affecting receivers directly, we feel that this additional cost
is justified.

For the remainder of this chapter, we use the Path-Greedy join with Rejoin

CHAPTER 5. PERFORMANCE ANALYSIS 99

rearrangement for all Lorikeet results.

5.5.2 Comparing Lorikeet and Other Algorithms

All of the other algorithms except REUNITE referenced in this chapter make the
assumption that the protocol is supported by every router in the network; effectively,
every node in the network is a capable router. In addition, they make no distinc-
tion between end-receivers and routers, thus allowing end receivers to support child
nodes.

Thus, to make a “fair” comparison, we test a simulation of Lorikeet against
simulations of the ARIES, DSG, REUNITE, Greedy and Source-Join algorithms
with all routers in the network marked as “capable” for Lorikeet’s purposes. Our
network topology is constructed in such a way that receivers are nodes with degree
1 (leaf nodes) so as to address the second restriction. The simulation used is the
“Waxman” experiment described in Section 5.3.1.

The graph in Figure 13 shows the tree cost relative to the Greedy approach
for each algorithm during a sequence of events, where an event constitutes a new
receiver joining the tree or a currently-joined receiver leaving the tree. The graphs
of the cost of all of the algorithms except ARIES follow a similar shape to each
other, with the Greedy algorithm consistently having the smallest cost and the
Source-Join algorithm having the largest cost. This is consistent with the expected
behaviour of both algorithms, since the Greedy algorithm uses an exhaustive search
of the multicast tree for the optimal parent node on join, while the Source-Join
algorithm always joins to the source. The Source-Join and REUNITE algorithms
produce identical results, since they both perform a join along the shortest path to
the source for each receiver.

Note that the difference between the best- and worst-case algorithms on this
graph is approximately 15%, and that (as shown in Figure 2 in Chapter 1) all of

these algorithms are far more efficient than using simultaneous unicast, which has a

CHAPTER 5. PERFORMANCE ANALYSIS

100

Tree Cost relative to Greedy

-
rY

~

-

[=

&
T

1.04 I

1021 |+

0.98 -

0.96

106} 7

REUNITE and Source-Join

Lorikeel

| DSG

1 Greedy
ARIES

L
1000
event

1500

——— ARIES {threshold 50)

— — = DSG (alpha=1.5, bela=1.2)

Greedy

Lorikeet {Paih-Greedy join, Rejoin rearrangement)
——— REUNITE
= = = Source-Join

2000

Figure 13: Comparison between Lorikeet and other Tree Management Heuristics

CHAPTER 5. PERFORMANCE ANALYSIS 101

tree cost of more than five times the Source-Join algorithm’s cost in this simulation.

Lorikeet and DSG fall between these two algorithms, which is also consistent
with their expected behaviour. Both of them consider more options when choos-
ing a parent node for a new receiver than the Source-Join approach, but are not
considering as many nodes as the Greedy algorithm. In DSG, this is because DSG
needs to rejoin nodes directly to the source when they fail the stretch test, and in
Lorikeet this is due to the use of a join algorithm that does not perform exhaustive
search. However, Lorikeet’s join algorithm does perform significantly better than
simply joining all receivers directly to the source, as in Source-Join or REUNITE.

The ARIES algorithm uses an exhaustive join as described earlier and prunes
deleted nodes not when they leave the tree, but as part of a periodic tree rearrange-
ment process. This process also rearranges parts of the tree to form local minimal
Steiner trees. In this example, the rearrangement threshold is 50, meaning that 50
join/leave events must happen in a region of the tree before that region is rear-
ranged. This behaviour gives the “sawtooth” pattern shown on Figure 13, which
straddles the Greedy line since ARIES essentially uses the Greedy joining approach.
ARIES is able to improve on the cost of the Greedy algorithm’s tree through the
use of rearrangement.

This figure shows that Lorikeet’s performance falls between that of the Source-
Join algorithm and the algorithms based on exhaustive joining heuristics (Greedy,
DSG, ARIES). This demonstrates the trade-off between algorithm complexity and
tree cost — Lorikeet’s complexity is higher than that of the Source-Join algorithm,
which only considers one parent node for a new receiver, but considerably lower than
that of the exhaustive algorithms, which consider all possible parent nodes during a
join operation. It is also interesting to note that Lorikeet with Path-Greedy joining
is competitive with the Greedy algorithm (within 8%) despite its considerably lower
complexity.

These figures show that Lorikeet is able to approach the performance in terms

of total tree cost of algorithms that have much higher complexity and perform

CHAPTER 5. PERFORMANCE ANALYSIS 102

exhaustive searches of the tree on join operations. Due to this lower complexity,
Lorikeet scales much better to large groups of receivers and ensures that joins to the
tree (for which the user has to wait) are completed quickly. This makes Lorikeet far

more appropriate for large-scale use.

5.5.3 Incremental Deployment

One of Lorikeet’s design requirements, as described in Section 4.2.3, was that not
all routers need know the protocol being used. In other words, the protocol should
work even in a network that has only some capable routers present, or in a network
with none at all. This property gives the system the ability to be incrementally

deployed, a property that is effectively required to achieve broad usage across the

Internet.
5000 - 140
4500 T
- /E 120
4000 - — = —
-~
3500 . _ 4100

80

60

Total Tree Cost
N N w
o [%,] [
o o o
o (=] [=)

1500 -

1000 -

Number of Capable Routers in Tree

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Proportion of routers in network that are capable

M | orikeet: Tree Cost C—JREUNITE: Tree Cost N
— — Lorikeet: Capable Router Count REUNITE: Capable Router Count

Figure 14: Comparison of incremental deployment performance for Lorikeet and

REUNITE/HBH.

CHAPTER 5. PERFORMANCE ANALYSIS 103

Figure 14 shows two sets of data from a simulation of the “Waxman” experiment
described in Section 5.3.1 for both the Lorikeet and REUNITE/HBH protocols. The
first (the column graph) shows the cost of the tree after 2000 events for a selection
of values representing the proportion of capable routers in the network. The second
(the line graph) shows the number of those capable routers being used in the tree
after 2000 events.The simulation was run with ten different event sequences on five
different Waxman topologies and the results averaged to generate the graphs shown.
The error bars on both graphs represent 95% confidence intervals.

As the graph shows, REUNITE/HBH and Lorikeet generate distribution trees
of exactly the same total cost when no capable routers are present; in this situation,
all receivers are connected to the source by direct unicast connections. With the
introduction of capable routers in the network, however, Lorikeet makes much better
use of them, outperforming REUNITE/HBH by more than 30% when routers are
sparsely distributed. Even at higher penetrations, Lorikeet, constructs significantly
cheaper trees.

For Lorikeet, the cost of the multicast tree when no routers are capable is more
than double the cost of the tree when 10% of the routers in the network are capable.
The efficiency of the total system clearly increases with capable router deployment,
but the graph suggests that even a small amount of capability in the network makes
a large improvement over the use of simultaneous unicast (which is exactly the
same as Lorikeet with no capable routers). Approximately 75% of the improvement
possible at full deployment is achieved when only 20% of the network’s routers are
capable, in this simulation.

The graph of the number of capable routers in the tree is linear, representing
about 85% of the capable routers in the network at each point. This is unsurprising
as capable routers, once discovered, remain in the tree while they still have child
nodes to support, and there is a significant population of receivers in the tree by
the end of the simulation. Some routers, of course, do not get discovered or do

not remain long in the tree, as they are on the edge of the network on rarely used

CHAPTER 5. PERFORMANCE ANALYSIS 104

paths. The count of capable routers in the multicast tree is very similar for both
algorithms. This is due to the fact that both Lorikeet and REUNITE/HBH discover
capable routers in the same way, along the shortest paths between the source and
receivers.

In a REUNITE/HBH multicast tree, the paths between nodes that are used are
always sub-paths of the unicast shortest paths between the receivers and the source.
Since Lorikeet places no such restriction on the path used by a receiver to join the
tree, additional branching may be enabled. For example, a receiver may choose to
join the tree through a router off the shortest path to the source whose path from
the source is slightly longer than the receiver’s direct path, but whose path to the
receiver is very short. This ability to select from a wider range of potential parents
allows Lorikeet to construct more efficient (in terms of total tree cost) multicast

trees.

5.6 Summary

In this chapter, we presented a series of results and simulations designed to quantify
the performance of Lorikeet’s different components and compare that performance to
other multicast algorithms. Since our focus in this work is on tree construction and
maintenance, a topological simulation was designed to facilitate analysis of Lorikeet
(and other systems) in terms of the trees it constructs.

To begin with, we described several competing multicast algorithms, namely
ARIES, DSG and REUNITE/HBH. Two simple algorithms (the Source-Join and
Greedy algorithms) were also included as baselines for comparison. The message
complexity of these different approaches was discussed, showing both analytically
and with empirical measurements the difference between algorithms that exhaus-
tively search the tree (using Greedy joins) and algorithms that perform more limited
searches, like Lorikeet.

The performance of Lorikeet’s different join and rearrangement algorithms was

CHAPTER 5. PERFORMANCE ANALYSIS 105

examined through simulation. From our results, we concluded that the Path-Greedy
join with Rejoin rearrangement was the most effective variant of Lorikeet for general
purpose use, and we selected that version of the algorithm for further comparison.
Next, we compared Lorikeet to the other algorithms discussed earlier, simulating all
of the different systems on a network in which all the routers supported the proto-
cols being used. This comparison showed that Lorikeet performs well in comparison
to other algorithms, improving on REUNITE/HBH and the naive Source-Join al-
gorithm and approaching the performance of the algorithms based on exhaustive
join techniques, which are not practically deployable for large-scale use due to their
message complexity.

Finally, we examined the performance of the only algorithms in our comparisons
above that support use with only partial deployment in the network, Lorikeet and
REUNITE/HBH. These results showed that Lorikeet makes much more effective
use of sparsely-distributed capable routers, outperforming REUNITE/HBH by more
than 30% in situations with limited deployment. Lorikeet’s advantage was reduced
at higher levels of deployment, but it was still able to generate cheaper trees in all
cases.

The following chapter will describe our attempt to improve Lorikeet’s perfor-
mance further in networks where capable routers are sparsely distributed, through

the use of a directory service for locating capable routers.

Chapter 6

Directory Nodes

6.1 Motivation

To efficiently distribute the data being transmitted by the multicast source, a Lori-
keet multicast tree requires capable routers (routers that support the Lorikeet proto-
col) to be present in the tree. These capable routers facilitate branching, or copying
of data packets to more than one downstream node. Capable routers are discovered
when new receivers join the tree, by searching the underlying shortest path between
the new receiver and its point of connection to the rest of the tree.

If capable routers are scarce or not present on these shortest paths, then the
multicast tree ends up as effectively a “simultaneous unicast” scenario, with every
receiver receiving a separate unicast stream from the source. A simple diagram
illustrating this situation is shown in Figure 15.

In Figure 15(a), no capable routers are present and the source must therefore
connect to all of the receivers directly. Consequently, the source maintains four
connections, one for each receiver, and sends the same data to each. In Figure
15(b), a single capable router R has been discovered and is being used to support
three of the receivers. Therefore, the source need only transmit two copies of the

data, one to the first receiver (which is still directly connected to the source) and

106

CHAPTER 6. DIRECTORY NODES 107

the other to the router R, which copies the data to its three child receivers. Such
branching reduces the load on the network and allows the network to support many

more receivers without overloading the source.

(a) No capable routers in the tree; (b) R is a capable router and
every receiver has its own connec- shares the link (S, R) between its
tion from S. children. reducing network load.

Figure 15: Capable Routers in the tree improve efficiency through link sharing.

The Lorikeet protocol, as described in earlier chapters, makes an important as-
sumption: that capable routers are present on the shortest paths between parent
routers and receivers, where they can be discovered and used for branching. How-
ever, it 1s possible that capable routers may be present in the network but not on the
shortest paths to receivers; in this situation it is desirable to discover them through
some other mechanism and add them to the tree. Some example scenarios in which

these conditions may arise include:

e multicast trees where the source has just started transmitting and the tree

contains no capable routers at all;
e networks where capable routers are few in number and sparsely distributed,

e networks where routers on the shortest path are large backbone routers that
may not be capable or do not want to “snift” for Lorikeet join packets for
performance reasons. Hence, any capable routers present will not be on the

shortest path. A simple diagram showing this situation is presented in Figure

16.

CHAPTER 6. DIRECTORY NODES 108

Once a capable router is added to the tree to support a receiver, however, it
can be reused by other receivers that join the tree after its addition. Such reuse
may lead to a tree that is of lower cost than it would have been had that capable
router not been added, thus justifying the capable router’s addition — even if its use
is initially more expensive than directly connecting the first receiver to the source.
In these situations, an alternative method must be used to find capable routers in
the network that are not present on the shortest paths to receivers, but are close
enough in network terms to reduce the cost of the tree through increased branching.

For example: in the situation shown in Figure 16(a) the multicast stream is being
transmitted from the source to a capable router R;. Router R; is then transmitting
the stream to three receivers via shortest paths that are largely the same but contain
no further capable routers. Hence, the path through the non-capable routers (shown
as dashed nodes) is not being shared, but is instead carrying three copies of the
stream, one for each receiver. Those links carrying multiple copies of the stream are
shown in bold. Capable router R¢ is close enough to the three receivers to provide
a net decrease in the cost of the tree if it were used, by reducing the burden of the
path to ¢ to a single copy of the stream.. This scenario is illustrated in IMigure
16(b), and it can be seen that the number of links carrying multiple copies of the
stream is reduced to just one. Since R¢ is not on the shortest path to any of the
three receivers, however, it will not be discovered by Lorikeet’s join mechanism and
will remain unused.

It is important to note that multicast transmission using the Lorikeet protocol
should not be dependent on any additional discovery procedure to operate - such
a system should only provide a way to improve performance in some scenarios. As
discussed in earlier chapters, Lorikeet is designed to operate with very few (or even
no) capable routers in the network, in order to permit incremental deployment of
the protocol. We feel that this support for incremental deployment is a strong

requirement for new Internet protocols designed for wide use.

CHAPTER 6. DIRECTORY NODES

109

capable router not
on the shortest path

. I Y
- N

] N

- T . Q-
* N\ # A% L4 A
] \ ’ \ : \ t W
‘ »‘ »' ! .
v s M s \ 7 A *
Yoo M 2~ s ARS £

(a) Capable router R¢ is present, but not on the shortest paths to receivers.

capable router not
on the shortest path

«4—— shortest path from S to receivers g

(b} If R¢ is discovered and used for branching, the number of links carrying

duplicatc streams is reduced.

Figure 16: Capable routers may be not on the shortest paths to receivers, but can

still reduce the cost of the tree if used.

6.2 Directory Nodes

The solution proposed for the problem of finding capable routers that are off the

shortest path is the concept of a directory node. A directory node is a node within the

network that can be queried by Lorikeet sources and routers. When it is queried, it

returns a set, of capable routers from a database that it maintains — thereby providing

a way for the algorithm to introduce more capable routers (and hence more potential

for branching) into the multicast tree.

CHAPTER 6. DIRECTORY NODES 110

Such directory services for discovering the addresses of hosts providing desired
information are used in many other Internet protocols, the most obvious example of
which is the use of the Domain Name Service (DNS) to support name resolution and
email delivery. Many peer-to-peer protocols also use directory services to discover
the locations of other nodes or data within the network overlay, such as the trackers
used by the BitTorrent [10] protocol and the GWebCache [34] soflware used by some
clients to bootstrap a connection to another node in the Gnutella [31] network. These
applications rely on directory techniques to operate.

In our proposal for Lorikeet, directory nodes will exist at well-known addresses
within the network (perhaps defined in a specific DNS zone, for example) and can
share information with each other about known capable routers. Capable routers
should be administratively configured to periodically notify a directory node about
their location, information which can then be propagated to other directory nodes
and used in responses to querying routers.

When a join operation is underway, a router may query a directory node for a
list of “adopted children” (additional capable routers) to consider in addition to its
own children in the tree. Paths through these adopted children will, by definition,
have an equal or higher network cost than the shortest path to the receiver. In order
to bias the system towards the addition of new capable routers, the cost of a path
through an adopted child is reduced, or “sweetened”, for the purposes of comparison
in order to make it more likely to be selected. Using a sweetened path is a decision
to use a higher-cost path through a new capable router in the short term, with a
view to recovering the cost difference by sharing it in subsequent operations.

We have not addressed the system by which directory nodes would maintain or
share with each other the information that they store — such topics have been ad-
dressed in the literature, particularly in the design of peer-to-peer network protocols,
such as CAN [63] and Tapestry [82], and content replication systems such as those
described by Kangasharju et al. [44], and used by the commercial firm Akamai [2]
and the research project Coral [17, 29].

CHAPTER 6. DIRECTORY NODES 111

The focus of our interest in this area is the improvement of Lorikeet’s perfor-
mance, with the service provided by directory nodes being a logical approach to

achieving that goal.

6.3 Joining the Tree

Directory nodes are used to enhance Lorikeet’s existing join operation, described
in Section 4.5.2. They are designed to provide additional potential parent routers
for consideration during the join. As the join operation proceeds, routers in the
tree (including the source) can query a directory node and ask for a list of capable
routers (adopted children) to be considered for inclusion in the tree.

When a list of capable routers is returned to a querying router by the directory
node, these adopted children are queried to ensure that they are not already par-
ticipants in the tree (which could otherwise cause the formation of loops). Adopted
children that are not yet participants in the tree are then used as additional children
in the join’s path calculation. The cost of using one of these adopted children is the
marginal cost: the cost of adding the new capable router to the tree, plus the cost
of the link between that router and the new receiver. In order to bias the system
towards the inclusion of new capable routers, since the cost can be no less than that
of the shortest path, we decided to use a “sweetener” to reduce the cost of paths
containing adopted routers, dividing the marginal cost by a factor o greater than
one.

It is important to note that this approach requires the cost metric used by
Lorikeet for selecting links be additive, since this addition to the algorithm relies on
being able to add two partial path costs together and use the result for comparison.

Although initially we applied the sweetener to the entire marginal cost, we soon
found that a more appropriate way to apply the sweetener was on a link-by-link
basis, rather than to the whole marginal cost. Therefore, only those links for which

the destination node is a capable router not currently in the tree have their cost

CHAPTER 6. DIRECTORY NODES 112

divided by the sweetener value, while other links in the path remain at full cost.
The motivation behind this approach is to only bias the system towards the inclusion
of nodes that can be reused (namely, new capable routers) and not the cost of the
link to the new receiver, which is a link that cannot be shared with other receivers.

A more detailed discussion of path sweetening is given in Section 6.3.2.

6.3.1 Algorithm

In this section, we present a description and example of our mechanism for the use
of directory nodes in Lorikeet’s join operation.

This algorithm builds on the Path-Greedy join technique described in Section
4.5.2. At every step of the search through the tree for a parent, each selected router
is able to query a directory node for adopted children. The marginal costs of these
adopted children are calculated, and the cheapest of them is stored in the join
message that is passed down the tree as the tree path is calculated by the Path-
Greedy join algorithm. Adopted children are not used in the tree path itself, as
selecting an adopted child would mean terminating the search early (since adopted
children have no children themselves).

When the Path-Greedy search terminates, having found the tree path, the cheap-
est router in the tree path is compared to the cheapest adopted child, and the option
with the smallest cost is chosen to be the parent of the new receiver. If the tree path
router is chosen, the system behaves as the regular Path-Greedy algorithm does. If
the adopted child router is chosen, the final path to the new receiver will consist
of the path through the tree to the parent of the adopted router, then the adopted
router, and then the new receiver itself.

Pseudocode for the algorithm is shown below. The following state variables are
passed down the tree with the join message, and their initial values are as shown.

The sweetener value is denoted by «.

P :=[] {the tree path, initially an empty list}

—

CHAPTER 6. DIRECTORY NODES 113

Ry, := S {the current best candidate parent router in the tree}

Cr,,., = cost(S,r) {the cost of the path from Ry, , to the new receiver r}
Ra,.., := None {the best adopted child router}

Ca,,., = 0o {the marginal cost of using Ra,,,, }

Parentga,, ., = None {the tree router which is the parent of Ry, }

R, := S {the router on which the processing is currently taking place}

loop

{this processing occurs on the current router, R.}

R

calculates cost(R,,).

append R, and its cost to the tree path P.
for each child R of R, do

R, contacts Ry and instructs it to calculate cost(Ry, 7).

Ry sends its calculated cost to R..

end for

Repig = child Ry, with minimum cost(Ry, 7).

R

requests adopted children for receiver r from a directory node.

for each adopted child R, do

R, queries R, and discards R, if it is already a participant in this multicast

tree.

R, calculates marginal cost: marginal(R,) := Lcost(R,., R,) + cost(R,,T)

R, sends its calculated cost to R,.
end for
Radopted := adopted child R, with minimum marginal(R,).
if marginal(Rggopted) < Ca,,,, then

{there is a new best candidate adopted router}

Ray... = Radopted

Ca,.., := marginal(Rqqopted)

Parenty,,,, = R,

end if

CHAPTER 6. DIRECTORY NODES 114

if R, has tree children then
if cost(R.nita,7) < Cr,,,, then
{there is a new best candidate tree router}
Ry,,.. = Renita
Cr,,., == cost(Renia,)
end if

R, := Repia {pass control to the minimum cost child}

else

{there are no further tree children; now we choose the parent for r}
if Cy,,.,, < Cp,., then
{the best parent is the best candidate adopted router}
return (subset of P from S to Parenty,.)+[Ra,.., 7]
else
{the best parent is the best candidate tree router}
return (subset of P from S to Ry,)+][r]
end if
end if
end loop

Using directory nodes in this way adds only a very small amount of extra state
information to the join message used by the Path-Greedy Join. In addition to the
data required by the Path-Greedy algorithm already, the join message must carry
Ry,..,, the location of the best adopted child, Cy, ,, the marginal cost of that
adopted child, and Parenta, ,, the location of the router that “found” the best
adopted child.

An example of this procedure operating is shown in Figure 17. The node marked
r is the new receiver, S is the source of the multicast tree and Ry, ..., R are capable
routers that are already in the tree. The shaded nodes are nodes that were asked to

calculate their cost to the new receiver, while the unshaded nodes were completely

CHAPTER 6. DIRECTORY NODES 115

uninvolved in the tree search.

Figure 17: Path-Greedy Join with Directory Nodes

The tree path after performing the first part of the join operation (searching the
tree) is (S, Ry, R3, Rg), as shown in bold. As the tree path was constructed, each
router contacted a directory node and queried for adopted children. R4, R42 and
R 3 are the best adopted children returned by directory nodes to queries from Rj,
R; and R respectively. S did not receive any adopted children in this case.

As the join traverses the tree path, the marginal costs of the adopted children

are calculated and used to determine the best adopted child. The marginal costs for

the three in our example are as follows:

1

marginal(R4,) = <—cost(R;, Ra1) + cost(Ra,7)
o
1

marginal(Ra,) = —cost(Ry, Raz) + cost(Raz, 1)
o
1

marginal(Ra3) = —cost(Rs, Ras) + cost(Ras,7)
o

CHAPTER 6. DIRECTORY NODES 116

These values are compared as the tree path is traversed, and the adopted child
with the minimum marginal cost is chosen as Rg,,,,,. If we assume that in this case
the minimum cost adopted child is R4 and the minimum cost tree router is Rs,
then the final part of the join operation proceeds as follows:

When the tree path calculation reaches the final router Rg, which has no further
tree children, a comparison is made between the two possible cases; either tree router
R3; becomes the parent of r, or adopted child router R4, does. If the path from I3
has the lowest cost, the path to the new receiver will become (S, Ry, R3, 7). If the
adopted router R 42 has the lowest cost, it will be added to the tree as a child of 23

and the final path to the new receiver will become (S, Ry, R3, Raz, 7).

6.3.2 Discussion

In our application of directory nodes to the Path-Greedy join algorithm above, we
defer the use of adopted children until after the end of the tree search, similarly
to how we traverse the complete tree path before deciding on a router to be the
new receiver’s parent. Initially, we did investigate the immediate use of an adopted
router if its cost is the minimum cost found during a step in the search process.
This approach, however, created unexpected problems. Since an adopted child is
a router that was not present in the tree before it was discovered, it has no tree
children. This results in the join procedure terminating when one of these routers
is selected in a round of the join operation. If the sweetener value is high and/or a
large number of adopted children are used, it becomes very likely that an adopted
child will be selected, rather than a child from the existing tree. This has the effect
of terminating the join operation quickly, when a particularly cheap adopted child
is encountered early in the search. Consequently, this reduces the number of nodes
considered in each search and over time results in a higher cost tree. The effects
can be illustrated topologically as well: if all join operations are terminated early

then the resultant tree is short and fat, consisting of a large number of receivers

CHAPTER 6. DIRECTORY NODES 117

connected to the tree by short paths through adopted children. Such a tree will
have less branching (and hence be less efficient) than a tree generated by a join
process that exploits routers already in the tree more often.

To address this issue we designed the technique described here, where the use
of adopted routers is deferred until the complete tree path has been calculated.
This approach allows the existing tree to be exploited as much as possible before
adopted children are considered and biases their use towards the bottom of the tree,
rather than the top. Adding additional nodes at the bottom of the tree ensures that
existing branching in the tree is leveraged, rather than simply adding additional

branches from the source or other routers high up in the tree.

The Cost of an Adopted Child

In the previous section, we briefly described the way in which the marginal cost of
a path involving an adopted child is sweetened in order to promote the addition of
more capable routers (and therefore, more potential for branching) to the tree.

Early in our work on directory nodes, we applied the sweetener to the entire
path through the adopted router, sweetening both the link between the adopted
router and its parent and the link between the adopted router and the new receiver.
Later, we refined this approach, sweetening only those links that end in new capable
routers, while other links (such as the one between the adopted router and the new
receiver) were considered at “full cost”. Note that a “link” in this description is
a link in the #ree, which may consist of a path through a number of non-capable
routers, rather than a link in the underlying physical network.

A simple example illustrating the difference between the two approaches to path
sweetening is shown in Figure 18.

In this example, the router R is a router in the tree, while routers Rp, and Rps
are adopted child routers. We let the sweetener be 2 and the link costs be as shown.

When new receiver r joins the tree, the whole-path approach treats both paths

as identical, with the same sweetened path cost of (10 4+ 1)/2 = 5.5. However, the

CHAPTER 6. DIRECTORY NODES 118

Figure 18: Two Approaches to sweetening the path

links (R, Rp1) and (R, Rpy) are reuseable, whereas the links (Rp1,7) and (Rps.7)
are not. It is possible to recover the cost of the reusable links through later join
operations to those routers. This is what our later approach does: in this example,
it gives the left-hand path a sweetened cost of 10/2+ 1 = 6 and the right-hand path
a sweetened cost of 1/2+ 10 = 10.5, thereby selecting the left-hand path as cheaper.

The rationale for our selected approach to sweetening paths is that it draws a
distinction between paths through the network that can be reused in the future (links
to capable routers) and paths that offer no possibility of reuse (links to receivers).
Therefore, given a choice of different paths to a receiver with similar costs, it is
logical to choose the one with the least cost final link, since that link cannot be
reused in subsequent joins.

The optimal value of the sweetener itself is very dependent on the topology of the
network and the properties of the application. The selection of the sweetener is based
on the probability that that router will be used by enough receivers joining later
to make its addition to the tree cheaper than connecting those receivers elsewhere.

This probability is affected by the proximity of receivers to each other and to capable

CHAPTER 6. DIRECTORY NODES 119

routers in the network and is thus difficult to determine a prior: without extensive
knowledge of the network and the popularity of the multicast transmission.
An analysis of the relationship between the selection of the sweetener value and

its effect on the total cost of the tree is given below.

distribution
tree

Figure 19: Selecting a sweetener

In the diagram shown in Figure 19, we have a Lorikeet multicast tree containing
a capable router R with no children. That router is selected as the final tree router
in the join algorithm for new receiver r1, and has also received adopted child Rp
from a directory node. The costs on the paths between these nodes are as shown.

For a sweetener value a, the cost of connecting r; to the tree via a direct connec-
tion to R is a;, while the (sweetened) cost for connecting it through Rp is 2 + b;.

Hence, Rp will be added to the tree if:

Shbh<a (6.1)
[84

Assuming that the above inequality holds and Rp is added to the tree, we now

CHAPTER 6. DIRECTORY NODES 120

add receiver r, in a subsequent join operation where both R and Rp are candidate
parent nodes. Rp will become the parent of 75 if by < as.

Since Equation 6.1 allows the longer path through Rp to be chosen even if its
actual contribution to the cost of the tree is greater than that of the direct path
(c+ by > a1), the cost of adding Rp must be recovered through subsequent joins to
Rp that would have otherwise joined elsewhere on the tree. If we take the value q;
to represent the cost of joining the receiver r; to the tree by a path other than that
through Rp, and the value b; to represent the cost of joining the receiver r; by the

path through Rp, then the cost of adding Rp will be recovered when:

c+ b 0 (6.2
=1 =1

for n receivers r; to r,. Rearranging for c yields,

¢ < Z(ai —by). (6.3)

As is plain from the diagram, this tells us that the cost of adding Rp, the link
with cost ¢, will be recovered when we have added enough new receivers r; for which
the sum of the differences in their costs exceeds c.

It is difficult to make decisions based on the values of a; and b;, since we do
not know a priori the locations or path costs of new receivers. Let k represent the
average cost recovered per new receiver by joining n receivers through capable router

RDZ

k= PGl (6.4)
n

Then the minimum number of receivers required to recover the cost of adding Rp
is given by n, which (by Equation 6.1) is equivalent to the smallest integer greater
than or equal to %, denoted [%] -1

c
Hence, [E] — 1 is the number of additional receivers that must join the tree once

r1 has introduced the adopted child router Rp in order to recover the cost of adding

CHAPTER 6. DIRECTORY NODES 121

Rp.

6.4 Results

The extended Path-Greedy join algorithm described in Section 6.3 was implemented
in the Lorikeet simulation environment. In order to analyse its performance, we
created simulations on a Waxman topology (see Section 5.3.1) with sequences of
2000 events. These simulations are configured so that capable routers can either
be leaf nodes (nodes with degree one) or non-leaf nodes (nodes with degree greater
than one), and the proportions of capable leaf nodes and capable non-leaf nodes
can be controlled independently. Tree routers in these simulations are configured to
ask a directory node for all of the capable routers present in the network and then
consider them as adopted children. This exhaustive behaviour was chosen in order
to show the best possible performance improvement through the use of directory
nodes. In a real implementation, of course, query results would need to be limited
to a much smaller set of adopted children to avoid too large an increase in the
message complexity of the join.

Simulations were performed over a large range of different levels of capable router
penetration, with sweetener values varying from 1.0 through to 5.0. Figure 20

presents the results of three of these simulations, as follows:

1. A Waxman topology with no capable non-leaf routers and 10% of leaf nodes

as capable routers;

2. A Waxman topology with 10% of capable non-leaf routers and 10% of leaf

nodes as capable routers;

3. A Waxman topology with 50% of capable non-leaf routers and 50% of leaf

nodes as capable routers.

The figure shows a graph of the mean tree cost over the final 1000 events against

the sweetener value. Each of the three simulations was run 25 times, using different

CHAPTER 6. DIRECTORY NODES 122

sequences of events on the same topology, and the results shown are the means
calculated over all 25 runs.

2000 T T T T T T T

1800 N

1600

—_
S
[<3
(=]

—_
N
<
(=]

Average Tree Cost

1000

SE e e (R e e U e e e e e vR S S e

800 (- "

600 |- .

Sweetener

No core capable routers, 10% of leaf nodes are capable
— — = 10% of core routers and 10% of leaf nodes are capable
- . -+« 50% of core routers and 50% of leal nodes are capable

Figure 20: Average tree cost against sweetener value for Directory Nodes simulations

The three situations simulated are very different. In our first scenario, all of
the capable routers present are configured as leaf nodes. Hence, they will not be
discovered on the shortest paths from the source (or other routers) to receivers;
instead, Lorikeet must rely on the use of directory nodes to discover new routers. In
this case, the only capable routers available are a randomly chosen 10% of the leaf
nodes in the network, with no capable routers at all in the middle of the network.
Our second scenario shows the result of introducing an equal proportion of capable

routers into the middle of the network, where they can be directly discovered on

CHAPTER 6. DIRECTORY NODES 123

the paths between routers and receivers. In the third case, we simulate a situation
where a large number of capable routers are present, comprising 50% of non-leaf
routers and 50% of leaf nodes.

Consider the first case, where the only capable routers present are leaf nodes.
With a sweetener of 1.0, no paths through capable routers are being discounted.
Since all of our capable routers are leaf nodes in the network, none of them are
on the shortest paths between the source and the receivers. Therefore, no capable
routers returned by a directory node will achieve a lower cost than the direct shortest
path, and the protocol will not discover any capable routers at all. However, as
the sweetener is increased, the cost of the tree drops significantly. The total cost
of the tree is reduced by approximately 42% at a sweetener of 1.3, despite the
relatively small number of capable routers (only 10% of all leaf nodes) available. This
illustrates how valuable even the presence of a small number of branching routers
is, converting the system from simultaneous unicast to a branching multicast tree.

In the second case, we have added more capable routers to the network, making
10% of its non-leaf nodes into capable routers in addition to the 10% of leaf nodes
that were capable in the first scenario. Here, the chart clearly shows the beneficial
effects of having capable routers in the middle of the network, rather than limiting
their availability to edge nodes alone. The average tree cost with a sweetener of 1.0
(where the join algorithm will not select new capable routers from directory nodes)
is almost 40% lower than that of the first scenario. This is a measure of the efficiency
improvements attributable to the placement of capable routers in the middle of the
network, rather than at the edge. The use of directory nodes with sweeteners above
1.0 only provides a small (about 14% at best) improvement in tree cost.

This trend is further demonstrated by our third scenario, in which half of all
non-leaf routers and half of all leaf nodes are made capable. Here, we can see that
the unsweetened case is lower again, at 61% of the unsweetened tree cost of our first
set of results. Increasing the sweetener (and therefore using directory nodes) has

very little additional effect, providing at most a 4% reduction in tree cost.

CHAPTER 6. DIRECTORY NODES 124

Our first scenario demonstrates that capable routers at the edge of the network
can significantly reduce Lorikeet’s tree cost, providing that a mechanism like the
use of directory nodes is available to permit their discovery. However, as shown
by our second and third examples, the addition of capable routers to the middle
of the network (even only in limited numbers, such as 10% of non-leaf nodes in
the network) provides a similar performance improvement without the additional
complexity. This is intuitive if the cost of using a capable leaf node is considered.
A capable router in the middle of the network which is either on the shortest path
or already in the tree is likely to be considerably cheaper to use than a leaf node
that is further away from the direct path, where data transmitted through it must

traverse its single access link twice.

6.5 Conclusions

The last section showed that the use of directory nodes is warranted in scenarios
when capable routers are not present on the shortest paths between the source
and receivers. Without the use of an alternative discovery mechanism (like the
use of directory nodes), the behaviour of Lorikeet degrades to simple simultaneous
unicast, with every receiver maintaining a unicast connection to the source. If even
a small number of capable routers at the edge of the network can be used to provide
branching, this is sufficient to reduce the total cost of the tree significantly.
However, the performance gains achieved through the use of capable routers
at leaf nodes in conjunction with directory nodes can also be achieved by placing
capable routers in the middle of the network, without the directory node mechanism.
Furthermore, adding directory nodes to this scenario does not significantly improve
performance further: branching in the middle of the network is much more efficient
than branching at the edge, where the network costs to end receivers are higher.
These results were obtained with an exhaustive search of the capable routers at leaf

nodes; in a practical implementation, performance improvements would necessarily

CHAPTER 6. DIRECTORY NODES 125

be reduced further. The simple case described in the introduction, with a capable
router placed in the network adjacent to the path on which multicast traffic is
flowing, can be addressed much more simply by having a conventional router on the
path filter and forward probe packets using standard IP filtering. This approach is
described in more detail in Section 7.2.2.

The increase in message complexity required by the addition of directory nodes
to the protocol is not negligible — it potentially adds several extra messages to each
stage of the recursive join algorithm and an extra traversal of the tree path. This
could be minimised by intelligent selection of the adopted children returned by the
directory nodes, caching of query results in tree routers and other improvements,
but it still remains significant.

Lorikeet is envisaged for deployment in networks where there will be at least some
capable routers present on paths traversed by multicast joins, whether they are in
the middle of the network or on border routers, hosted by service providers nearer
the edge of the network. In these situations, the use of directory nodes to enable
discovery of other routers adds extra complexity to the protocol while delivering
very limited performance improvements, as shown in the previous section. For these
reasons, we feel that the use of directory nodes as a part of the core Lorikeet protocol

for general use is not warranted.

Chapter 7

Implementation Concerns

Previous discussion in this dissertation has largely focussed on the topological as-
pects of multicast and Lorikeet’s design from a tree construction and maintenance
perspective. In the requirements given in Section 4.2.3, however, we stressed the ne-
cessity for Lorikeet to be a practical, as well as efficient, multicast protocol. In this
chapter, we discuss some issues of implementation that arise from those requirements

and from the hierarchical, unicast-based design we have proposed.

7.1 Accessing a Lorikeet stream

Lorikeet is designed to be a multicast transmission protocol for live streaming mul-
timedia. It has no mechanism for locating available content on the Internet: we feel
that this functionality is better implemented in out-of-band mechanisms, as it is for
other transmission protocols like BitTorrent [10] and streaming protocols like those
used in Microsoft’s Windows Media Player [78] or Apple’s Quicktime [62].

Since Lorikeet is a single-source multicast application, the address of the source
and an identifier to distinguish different streams originating at that source provides
enough information to identify and connect to a multicast group. To that end, we
propose the use of a Uniform Resource Identifier (URI) [73] mechanism to identify

Lorikeet streams, with the following syntax:

126

CHAPTER 7. IMPLEMENTATION CONCERNS 127

1kt://host:port/path

where host is the address of the source that is sending the Lorikeet stream, portis the
port number being used by the server on that host to accept receiver connections,
and path is a path that identifies the stream, distinguishing it from others being
distributed by the same source.

Using this scheme for describing a Lorikeet multicast stream allows easy descrip-
tion and referencing of Lorikeet resources on the World Wide Web as is currently
done with many other protocols, including email, telnet, FTP, Windows Media
streams (“mms” streams), Quicktime streams, etc. Existing Web browsers already
have mechanisms for defining handler applications and plugins to handle protocols
that are not supported natively by the browser. This functionality could be used to
display streams inline in a Web page or hand over Lorikeet URIs to a video playing
application that supports the Lorikeet protocol.

The Lorikeet protocol itself can be decomposed into two parts: conirol and trans-
mission. Control messages are transmitted over TCP sessions established between
communicating nodes in the multicast tree: for example, between the source and a
child router, a parent router and a child router, or between a router and a receiver.
A TCP connection is also used for the initial part of a join operation, when a new
receiver contacts the source. These sessions are used for messages related to con-
struction and maintenance of the tree, such as the searches for a parent that occur
when a new receiver joins and the notification of a parent router during a leave
operation.

Separately, Lorikeet uses UDP for transmission of the data stream itself through
the tree. Each stream being transmitted by a source (since a source can manage
several groups) can be identified by the source’s IP address and a unique UDP
port number used by the source for that stream. This (IP, port) tuple can be used
to uniquely identify a stream within a capable router for forwarding purposes, as
described in the next section. The source sends UDP packets containing the data to

its direct children only. Those child nodes that are routers then rewrite the headers

CHAPTER 7. IMPLEMENTATION CONCERNS 128

of these packets and forward copies to their children and so on, until the packets

have been transmitted to every receiver connected to the tree.

7.2 Implementing Lorikeet

In this section, we present a discussion of the necessary requirements for a physi-
cal implementation of the Lorikeet protocol on all three types of participant node:

receivers, capable routers and sources.

7.2.1 Lorikeet Receivers

In many ways, the client software used on end-users’ computers to receive informa-
tion from a Lorikeet multicast tree is the simplest of the three components described
in this section. It does not need to do a great deal of control, since it supports no
child nodes, and only needs to connect to the tree and begin receiving the data
stream.

The client receiver software’s operation is as follows:

1. Using a Lorikeet URI (as described earlier), identify and contact the source.
Request the stream described in the URIL The source will return the (source,

port) tuple identifying the group.
2. Wait for the source to provide a parent router Rp to connect to.

3. Connect to Rp, identifying the desired multicast group with the (source, port)

tuple, and begin receiving data.

4. When the user decides to leave the tree, notify Rp that the receiver is leaving

and disconnect.

The codecs (compression/decompression algorithms) necessary to play the stream

back to the user will be application-dependent, and can be negotiated with the source

CHAPTER 7. IMPLEMENTATION CONCERNS 129

in step 1 above. Most modern operating systems provide access to a variety of dif-
ferent codecs, and there are many third-party libraries available that could be used
to provide this functionality.

A Lorikeet client could be built as a stand-alone application or Web browser
plugin, as is done with many existing multimedia playback software packages [78, 62].
Playback software could also be built for set-top box devices, for streaming video to

traditional television screens.

7.2.2 Lorikeet Capable Routers

The capable routers in Lorikeet provide branching to the multicast tree. Each router
receives a single copy of the data stream from its parent and retransmits a copy of
that data to each of its children. In addition to this, capable routers must handle
control operations: adding new children, removing leaving children, participating in
new receiver joins and performing rearrangements.

We envisage two different types of capable router implementation: a software
implementation on a network-connected server and a router implementation on a
core or border router. Which of these implementations is used would depend on the
requirements of the organisation deploying the capable router and the properties of
the network in which it is to be used. We describe both approaches in the following

sections.

Software Implementation

A software implementation of a Lorikeet capable router would be hosted on a
network-connected server running a general purpose operating system such as Linux.
All functions would be implemented by a user-space server application, in much the
same way that a World Wide Web server is usually implemented. It would listen on
a TCP port for control messages and use UDP for transmission of the stream itself.

Control operations on the router are facilitated by maintaining TCP connections

CHAPTER 7. IMPLEMENTATION CONCERNS 130

with the router’s upstream parent in the tree (another capable router or the source
itself) and each of its children, which could be either capable routers or receivers.
Messages received on these connections are either passed on further up (or down) the
tree, or result in changes to the parent or receiver lists maintained by the router so
that packet forwarding can take place. When a request to participate in a join arrives
from the upstream router, the measurement of the cost to the new receiver is done
and passed upstream to be used in calculation. If the router is the cheapest option
at this stage of the calculation, it performs its stage by passing the join message to
its child routers, selecting the cheapest child from the results, and passing control of
the join to that router. If a request to add a child node arrives, a TCP connection
is established to that node and the router adds its address to the list of children to
which it transmits copies of the stream. Leave operations are handled similarly, with
the router receiving a leave message over the control connection from the departing
child. In response, it removes that child from the list of children receiving the
stream and disconnects its control connection. Rearrangement requests are received
from downstream or upstream routers in the tree, depending on the direction of the
router triggering the rearrangement. If the current router is a non-branching router,
it passes the request on to the next router. A branching router must perform the
rearrangement as described in Section 4.5.4.

In order to participate in multicast branching, this capable router needs to be
discoverable on the paths traversed by messages between the source and new re-
ceivers, as described in Section 4.5.2: Capable routers on these paths sense a probe
packet sent along the unicast path from a parent router to a receiver, announce their
existence to the parent router and join the multicast tree. These probe packets are
sent on a defined, well-known port number assigned to Lorikeet, and are therefore
easily identifiable. An example of this behaviour is shown in Figure 21. In practice,
however, it is very unlikely that a software router like the one proposed in this sec-
tion could be placed on a critical path in the network, since it is unlikely to be able

to forward packets as efficiently as a standard router can.

CHAPTER 7. IMPLEMENTATION CONCERNS 131

In this situation, a different approach is nceded. We suggest a similar approach
to that employed in “transparent proxying” schemes, where World Wide Web re-
quests passing through a border router are redirected to a proxy server. That proxy
server can then service the request using a cache if possible before contacting the
actual server, in order to reduce latency and save bandwidth. Using this approach,
the capable router need not be on the shortest path in a network: instead, a hard-
ware router on the initial path identifies these probe packets (based on the use of a
standard UDP port number used for Lorikeet path probes’, for example) and for-
wards them on to a capable router. That router is then able to contact the parent
router from which the probe originated, announce itself and join the tree. No further
packet forwarding from the intercepting router is required, since the capable router
is able to participate in the tree on its own after the initial contact is made. This
behaviour is illustrated in Figure 22.

Such filtering based on port number is functionality that is alrecady available and
in heavy use for many other applications in currently deployed routing infrastructure,
particularly for firewall security in border routers. This technique frees capable
routers from the necessity of deployment on ingress and egress points in the network,
allowing them to be placed at will as long as appropriate redirection filters are in
place. Load-balancing between capable routers could also be achieved trivially with

this technique, by redirecting packets to a pool of capable routers.

Router Implementation

Alternatively, the Lorikeet protocol could be implemented on a commercial router,
designed to be deployed directly in the network with no additional support. For
this to be possible, Lorikeet’s copying and delivery of packets must be realistically

capable of implementation on line cards, most likely in hardware as is done currently

INote that this port would he a standard, defined UDP port uscd specifically for new receiver
probes. Tt is a different port from the one allocated to the stream by the source, as described in

Section 7.1, which could be randomly selected.

CHAPTER 7. IMPLEMENTATION CONCERNS 132

))

probe packel .
mulicast tree paih

\ \
R R

O

(a) A probe packet arrives at (b) Router R joins the tree

capable router K on the path and becomes the parent of re-

Lo receiver 7. ceiver .
Figure 21: Discovering capable routers that are on the shortest path to a new

receiver.

5

probe packet

multicast Iree palh

forwarded probe

capable rouler

capable router

(a) A probe packet arrives at (b) Capable router Ry joins the
(non-capable) router R. R for- tree and hecomes the parent of
wards the probe to a nearby ca- receiver .

pable router, R;.

Figure 22: Discovering a capable router that is not on the shortest path to a new

receiver, but has probe packets forwarded to it by a filtering rule on a border router.

A

CHAPTER 7. IMPLEMENTATION CONCERNS 133

with TCP/IP forwarding.

We feel that such an implementation is possible. When a Lorikeet data packet
arrives from the current router’s parent (either the source or another capable router),
it must be copied, and a version of the packet sent to all of the current router’s
children. For each copied packet, the source address and port are rewritten to
match the current router’s address and port, and the destination address and port
are rewritten to match the child’s address and port. This can be done without
manipulating any part of the packet other than the IP header, which is fixed-length
and can be operated on very quickly: indeed, it should require not many more
operations than forwarding a traditional IP multicast packet or copying a packet to
the monitor port on a switch.

In order for this branching operation to take place on a line card, it must be
possible to match an incoming packet to the correct multicast group and the corre-
sponding list of children from the packet’s IP header alone. The forwarding tables
necessary for this can be prepared in the control plane when the router joins the
multicast group: it merely stores the transmitting address and port of its parent
router alongside the (source, port) tuple that identifies the group. When a new
child joins the group, the router looks up the (source, port) tuple provided during
the join and identifies the appropriate parent router and port. This new child is then
added to the list of children that packets from that parent router are forwarded to.

Control behaviour would occur in the router in much the same way as described
for the software implementation in the previous section, except that no filtering rules
would be necessary as the router could be deployed in a part of the network likely
to carry Lorikeet traffic. Since modifications to the tree are not as frequent as the
forwarding of data packets, they may be handled by the router’s main CPU as are

other routing and control protocols.

—— A o

o

CHAPTER 7. IMPLEMENTATION CONCERNS 134

7.2.3 Lorikeet Sources

A Lorikeet source node is conceptually similar to a World Wide Web server: it
handles requests for information and transmits that information to receivers when
requested. The key difference is that, unlike the Web, a Lorikeet multicast group is
not a client /server situation in which a single client requests information and is sent
it directly by the server. Instead, the source handles join requests from receivers,
organises their addition to the multicast tree, and transmits only to its direct children
(which handle further dissemination of the data via the tree themselves).

We can think of the source as having two processes operating per stream (since
a source can serve multiple different streams). The first process listens for control
messages, such as leave requests from the source’s direct children or join requests
from new receivers in the network. When a join request from a new receiver is
received by the source, it begins the join operation described in Chapter 4 and finds
the new receiver a parent in the tree. The source’s direct children are managed in
the same way as a capable router manages its children, described in the previous
section.

The second process running on the source handles the transmission of data to the
multicast tree. This process acts as a pipe, receiving the data stream from an input
device (such as a network connection, or a video capture mechanism), performing
any data encoding and packetisation that is necessary, and transmitting a copy of
the resultant stream of packets to each child node that is connected directly to the
source. Those child nodes that are routers will then re-transmit the packets to their

children, and so on.

7.3 Systems Issues

In this section, we describe issues that affect the multicast tree at a system level,
resulting from the interactions of capable routers, receivers and the source. First,

we consider the issue of finite resource limits in capable routers and the necessary

SELELE Tt

CHAPTER 7. IMPLEMENTATION CONCERNS 135

behaviour to deal with situations in which those limits are reached. Second, we
describe techniques for providing robustness against failure in the multicast tree.
Third, we discuss Lorikeet’s behaviour in situations where multiple operations that
modify the tree (joins, leaves and rearrangement) take place simultaneously. Next,
we examine the question of ‘handover’ in Lorikeet’s proposed rearrangement algo-
rithms, outlining how to minimise disruption of the stream while a rouler is heiug
re-parented. Finally, we discuss the security ramifications of our design, identify-
ing properties of the design that protect against typical weaknesses in multicast

protocols, as well as discussing some possible attacks that are difficult to prevent.

7.3.1 Load and Capacity

It is unrealistic to assume that unlimited resources are available on Lorikeet routers:
in practice, all routers have physical limits on their available CPU time, memory and
interface bandwidth or link capacity. While our description of Lorikeet in Chapter
4 focuses on Lorikeet’s topological behaviour, these physical limits have been con-
sidered and are easily addressed in implementation.

All three limits can be enforced by refusing to support additional child nodes
(receivers or routers undergoing rearrangements) when they are reached. For ex-
ample, a capable router that is approaching any of these resource limits may begin
returning a “router full” response as part of a join operation, when it is asked for
the cost of its path to a new receiver. This would result in that router’s removal
from consideration as a parent in the join, and the new receiver or rearranged router
would consequently be parented elsewhere in the tree, where sufficient capacity 1s
available. This approach does remove the branch of the tree downstream of the
“full” router from consideration as well; this is no different, however, from what
would have occurred if the router were available but simply more expensive than

one of its siblings.

These limits could be enforced by either monitoring the status of the resources

I

e

CHAPTER 7. IMPLEMENTATION CONCERNS 136

in question and entering “full” mode when they reach a threshold, or by setting
administrative limits on the maximum number of groups and the maximum number
of children that the router is to support. Note that interface bandwidth is not a
global resource; it is quite possible to support a child connected via one network
interface when another downstream interface is saturated.

Clearing a router of the groups it is participating in (for a reboot or scheduled
downtime, for example) can be achieved gracefully through Lorikeet’s join mech-
anism, as described for rejoin rearrangement. Children (both receivers and other
routers) are simply notified that they must rejoin the group. Since the router itself
will not be accepting new children until the downtime is complete, these children

will join the group at different parent routers and continue receiving the stream.

7.3.2 Robustness and Failure Recovery

The data in a Lorikeet tree is delivered hop-by-hop from the source, down a tree of
routers, to the set of receivers. The failure of any router in the tree will therefore
necessarily partition the tree and prevent delivery to the subtree supported by that
router. In these circumstances, the tree must be able to detect and recover from
such a failure and provide an alternate delivery path to that subtree if possible.

Failure in a Lorikeet tree can occur at three different points;
1. Failure of the source.

2. Failure of a receiver.

3. Failure of an intermediate router in the tree.

Each of these scenarios is treated in detail in the following sections.

Failure of the source

Lorikeet is designed to support single-source live video transmissions, and its tree

structure is built upon the assumption that all data is transmitted from a single

CHAPTER 7. IMPLEMENTATION CONCERNS 137

source. Building in support for multiple sources, therefore, is not possible without
major modifications to the protocol’s design. Other mechanisms may be used to
increase the robustness of the source to failure, much as is done for web servers:
for example, the multicast source could be made a “repeater”, streaming the data
sent to it by multiple redundant “real” sources that are protected from the outside

network.

Failure of a receiver

In a Lorikeet tree, all receivers are leaf nodes. This property means that receivers
may fail without affecting any other node in the tree, unlike in other protocols where
a receiver can be required to support a subtree of other receivers. Hence, the failure
of a receiver in a Lorikeet tree does not require any explicit recovery to take place
beyond the cessation of data transmission from its parent. Unfortunately, because
data delivery in the tree only occurs in the downstream direction, extra message
passing must be added to the protocol to allow the parent to detect the receiver’s
failure.

Our suggested implementation is to require routers to query their direct children
periodically with a status request, to which they must reply within a defined timeout
period. If a child does not acknowledge three successive requests, the parent router
must treat them as having left the tree and remove them according to the procedure
described in Chapter 4. This allows a child node that has failed, or whose leave
request has been lost, to be pruned from the tree.

Without this sort of recovery procedure, a failed receiver could prevent a router
from being rearranged (since we trigger rearrangement when a router becomes non-
branching) or being removed from the tree if appropriate. It is important to note,
however, that these exchanges need not occur very frequently; routers could check
their children for failures once every minute, for example. The presence of an unde-
tected failed receiver does not affect the distribution tree or the underlying network

apart from the bandwidth required for a single copy of the data stream on the final

CHAPTER 7. IMPLEMENTATION CONCERNS 138

tree hop, and the resources that it consumes on its parent router.

Failure of a Lorikeet router

The failure of a Lorikeet router is the most complex of the three cases described
here. Unlike a receiver, a router has a subtree to which it distributes data received
from its parent; therefore, its failure results in this subtree being disconnected from
the data source.

We propose the detection of router failure using the same mechanism as is used
for the detection of failed receivers described above. Each node participating in the
tree (both routers and receivers) must periodically exchange status request messages
with its parent router, to ensure that each end of the “hop” in the tree is still active.
If a node does not receive a response to a status request within a defined timeout
period, the request must be repeated. If three successive requests time out without
a response, the node must assume that the other node has failed and must attempt
recovery.

If it is the parent node that has failed, the child node must rejoin the tree using
the standard join procedure as described in Section 4.5.2; the only difference being
that the node could be either a receiver or a router with a downstream subtree
already in place.

If it is the child node that has failed to respond, the parent router has no option
but to remove it from the tree. In the case of a genuine failure, the failed node’s
children (if any) will also detect the failure and rejoin the tree using the procedure

above.

7.3.3 Multiple Simultaneous Operations

Lorikeet is designed to operate as a distributed system, with no centralised manage-
ment (beyond the source’s initial involvement) of joins and other operations that

modify the multicast tree. In such a system, it is probable that these operations will

CHAPTER 7. IMPLEMENTATION CONCERNS 139

occasionally overlap or occur at the same time, since they are not being scheduled by
a central entity in the network. Lorikeet’s hierarchical design ensures that changes
to the tree are localised, but care should still be taken in design and implementation
to ensure that simultaneous operations on the tree do not result in loops or parti-
tions in the tree, or other anomalies. In this section, we examine each topological
operation in the Lorikeet protocol and consider its behaviour in the event of multiple

simultaneous operations.

Joins

Join operations in Lorikeet follow the following procedure:

1. A new receiver contacts the source and requests to join the tree;
2. The source finds the new receiver a parent router through a search of the tree;

3. The source connects to that parent router and begins receiving the data

stream.

Since this operation only adds new leaf nodes to the tree and does not modify the
connections between other nodes, multiple joins can proceed simultaneously without

requiring any sort of synchronisation.

Leaves

Leave operations in Lorikeet are performed by having the leaving receiver contact its
parent router in the tree and sending a ‘leave’ message. That router then disconnects
the receiver from the tree and stops sending it data packets from the multicast. Since
all receivers are leaf nodes, the disconnection of a receiver has no direct impact on
other receivers in the tree (as it would in a system where receivers can support other
receivers).

A leave operation in Lorikeet can, however, modify the topology of the tree to

a greater extent than the simple removal of a leaf node. If the leaving receiver was

CHAPTER 7. IMPLEMENTATION CONCERNS 140

the only child of its parent router, then that parent router will also leave the tree,
and this will occur recursively up that branch of the tree until a router with other
children is encountered. If the leaving receiver’s parent had only one other child,
then the leave operation may trigger a rearrangement as the parent router changes
status from a branching router into a non-branching router.

Although these events involve changes to the structure ol the tree, they can
be implemented without requiring complex locking procedures. In the case of the
router with a single child which is leaving the tree, that router may also leave the
tree as long as it is not currently negotiating a join with a new receiver. Similar
logic applies in the case of rearrangement, described in the next section.

The issue of how to determine when a router is not currently negotiating a
join with a new receiver requires some explanation. In the case of the Simple Join
technique, the question is easily answered: when a router in the tree passes the query
on to its cheapest child, it is no longer participating in the join. This is because
decisions in the Simple Join algorithm are taken locally and immediately. In the
Path-Greedy Join algorithm, however, a router may be called upon to become the
parent of a new receiver much later, after the complete tree path has been traversed.
In this case, the routers in the tree path (those that are being considered as potential
parents) must be notified when a parent is selected. This can be achieved by sending
a message upstream from the last node in the tree path (where the decision is made),
announcing that the parent for the receiver has been selected and that those routers
can consider themselves free to leave if appropriate. A router with no children that

is involved in negotiating a join will leave after receiving this message.

Rearrangement

In Section 4.5.4 we described two rearrangement techniques for Lorikeet: the Path
rearrangement algorithm, and the Rejoin rearrangement algorithm. Both rearrange-
ment algorithms are triggered by a receiver leaving the tree, changing its parent node

from a branching router to a non-branching router.

CHAPTER 7. IMPLEMENTATION CONCERNS 141

In the Path rearrangement algorithm, we attempt to remove a chain of non-
branching routers from the tree. This is done by searching upstream and downstream
for the nearest branching routers (or the source and a receiver) and comparing their
current path through the tree to a direct connection. If connecting them directly
would improve the cost of the tree, a direct connection is made and the chain of
non-branching routers is disconnected. One approach to dealing will receiver joins
on the chain during such a rearrangement would be to disallow those routers from
accepting new receivers while the rearrangement is in progress. However, this is not
necessary: instead, any new receivers may be accepted as normal, and the chain
of routers will be left in place if it is supporting a receiver, as is done in the leave

operation.

(a) Before rearrangement. Receiver 7 has left (b) After rearrangement. Receiver 7y
the tree. joined the tree as the rearrangement of

Ryown was taking place.

Figure 23: Path Rearrangement with Simultaneous Joins

Figure 23 illustrates this situation. In the figure shown, receiver 7 has just

CHAPTER 7. IMPLEMENTATION CONCERNS 142

left the tree, leaving its parent router R, a non-branching router. This triggers a
rearrangement, and R, sends out probes to identify the branching routers R, and
Ryown. It is determined that the direct path between R, and Ri,n is cheaper than
the tree path (Ryp, R1, Ra, Raown), 50 they are connected by the direct path. As this
is occurring, a new receiver r, joins the tree at our original non-branching router
R,. Consequently, we disconnect Ry from Rs, but we do nol prune [y as it now
supports another receiver. The pruning of this “old” path should follow the same
behaviour as the recursive pruning done as part of a receiver leave.

The Rejoin rearrangement algorithm identifies Ryown in the same way as the
Path algorithm, but offers R4, a chance to rejoin the tree, using the standard
Lorikeet join operation. In this case, the link between Rgo,n and its parent router is
disconnected and a new parent is connected, changing the tree path for R4o,, and
all of the nodes in the tree downstream of Rgown. This should not affect joins that
are in progress during a rearrangement, as the cost calculations that they perform
do not involve the tree path (only the marginal cost of connecting the receiver)
and no routers are being removed from the tree during the rejoin. If the rejoin is
successful, the old upstream path to Rgoyn will be pruned recursively according to
the logic already described; if new receivers have joined those routers in the interim,
they will be kept in place. If the rejoin is not successful, the algorithm falls back to

attempting Path Rearrangement.

7.3.4 Handoff in Rearrangement

Rearrangement of the multicast tree in the Lorikeet protocol was described in detail
in Section 4.5.4. It is triggered by a topological event (the change of a router from
branching to non-branching) and involves the potential migration of a single router
(the nearest downstream branching router) to a different location in the tree.

An even more efficient tree could potentially be created by making more complex

changes to the tree structure, as is done by the ARIES algorithm [8] with its use

CHAPTER 7. IMPLEMENTATION CONCERNS 143

of a Steiner heuristic to rebuild and optimise portions of the tree. This approach,
however, is quite invasive: it deletes and re-connects all of the links in a portion
of the tree, potentially disrupting the flow of packets being delivered through the
tree to those nodes and any nodes further downstream. In comparison, we feel that
the re-parenting of a single router is much simpler, requires less communication
overhead, and is therefore more easily achieved with minimal disruption to the flow
of data to the branch of the tree downstream of that router.

In implementation, the most effective way to achieve the relocation without
interrupting the packet flow is to perform the steps necessary for rcarrangement in

the following sequence:

1. Signal R, the nearest downstream branching router, that it is to be rearranged.

R continues receiving packets from Rgyrrent, 1ts current parent router.

2. Using the chosen rearrangement strategy, locate Ry, the new parent router

for R.
3. Connect Ry, as the parent of R, and have R,., begin sending packets to .

4. R remains connected to both Ryrrens and Rpey until it is synchronised: that

is, it is receiving the same packets from both parents.

5. R sends a leave message t0 Reyrrens and disconnects from it, completing the

rearrangement.

This ensures that R is connected to at least one parent router at all times during
its relocation in the tree and that the flow of packets through the tree to R’s chil-
dren is not interrupted. This description makes the assumption that the upstream
capacity available to R is at least twice the capacity required for the stream, which
we feel is a reasonable assumption for a router in the core of the network or even
one on the border of a network operated by a small ISP. Note that receivers are

never rearranged, as such an operation would not benefit the rest of the tree and

CHAPTER 7. IMPLEMENTATION CONCERNS 144

because their upstream capacity is more likely to be limited. Instead, as described
in Section 4.5.4, the last capable router on the path is rearranged in the event that
there is no downstream branching router when a rearrangement is triggered.

In the case where two copies of the stream is sufficient to exceced the upstream
capacity available to R, the rearrangement would have to be performed by inter-
rupting the flow of data. However, the effects of this interruption downstream could
be mitigated by having R cache enough packets, before disconnecting from its old

parent, to last the time taken to connect to its new parent.

7.3.5 Security

The major focus in this work is the topological behaviour of the Lorikeet protocol.
However, security is a concern in the design of any practical network protocol. This is
particularly true of multicast protocols, since (unlike client/server protocols) misuse
of a multicast tree can potentially affect many users simultaneously. In this section,
we briefly outline some of the potential security implications of our design. We
do not provide detailed solutions, but merely raise and briefly discuss some of the
relevant issues.

The requirement that all receivers be leaf nodes in the tree effectively insulates
receivers from each other. Receivers can only receive data from routers in the tree,
and are not directly affected by other receivers. Allowing receivers to become tree
parents would allow malicious receivers to potentially modify the stream and deliver
different data to downstream nodes, or simply not re-send the packets entirely. It
is less likely that routers in the network operated by service providers would engage
in such malicious activity.

Lorikeet’s hierarchical structure for control protects the tree from many dis-
tributed attacks. No single node in the tree (not even the source) has complete
information about the topology of the tree, or even its population. Instead, nodes

store only the addresses of their children and the addresses of the nodes in their path

CHAPTER 7. IMPLEMENTATION CONCERNS 145

back to the source. Modifications to the tree’s topology are performed as directed
by messages sent up and down the tree, with join messages always originated by
the source. This allows some authentication of topological changes, since they must
always be passed to a node from a direct neighbour in the tree.

Likewise, Lorikeet routers only forward data packets arriving from their upstream
parent router to their downstream children, so there is no possibility of a new source
appearing in the tree and swamping the multicast group with false data packets.

Since Lorikeet’s receivers have limited access to the tree and cannot affect each
others’ access to the stream, malicious capable routers are the most likely source
of insecurity in the system. By their very nature, they are trusted to forward data
packets to child nodes correctly, and to handle joins and leaves as directed. If a router

were to attack or otherwise destabilise the tree, such behaviour could include:

e Dropping (not forwarding) packets, thereby denying all downstream nodes the

data stream;

e Feeding downstream routers a different data stream than the one being trans-

mitted by the source;

e Reporting an artificially low cost during a parent search for a new receiver,
thus forcing that new receiver to join directly to that router, where it could

be denied the stream or fed different data;

e Reporting an artificially high cost during a parent search for a new receiver,

reducing the efficiency of the tree by forcing the receiver to join elsewhere.

Many of these attacks could be prevented or at least detected through the use of
digital signing of the data by the source. However, this would require that complete
data be delivered in order to each receiver, which means that additional complexity
in the protocol is necessary to provide reliability, as in the many reliable multicast
protocols (for example, [47, 48, 58]) in the literature. Such “hijacking” or “man-

in-the-middle” attacks are possible with virtually any networked protocol that does

CHAPTER 7. IMPLEMENTATION CONCERNS 146

not use end-to-end encryption. We feel that the overhead of providing complete
reliability (with the associated re-sending of packets) and end-to-end signing or
encryption in order to protect Lorikeet trees against malicious capable routers is
unjustified: it is in the interest of service providers (who would deploy such routers)
to ensure that they are operating correctly, much as it is in their interest to make

sure that they correctly forward IP packets and correctly announce BGP routes.

7.4 Deployment

As shown in Chapter 6, when the concept of a directory node service was introduced,
Lorikeet’s efficiency is very dependent on its ability to discover capable routers in
the network. Capable routers are necessary for branching: if no capable routers can
be found between the source and receivers joining the tree, those receivers will join
directly to the source, resulting in a simultaneous unicast scenario.

A similar issue has plagued traditional IP multicast for many years. IP multi-
cast protocols require complete multicast protocol deployment on all of the networks
spanned by a group in order for that group to operate. Deployment of native IP mul-
ticast across the wider Internet so that it can be accessed by ordinary home users,
however, has not happened. There are a variety of reasons for this lack of deploy-
ment, including the CPU and storage load such protocols impose on ISPs’ routers,
the difficulty in providing an appropriate charging model for multicast traffic, and
the lack of applications. The latter is a chicken-and-egg scenario: applications are
difficult to deploy when the infrastructure they require is not widely available, and
ISPs were not willing to provide the infrastructure without user demand, which is
generally fuelled by applications.

Lorikeet does not require complete deployment across the network to operate,
thus solving this issue. However, for this sort of protocol to become used, there
must still be commercial and other drivers for its implementation and deployment

by content providers, ISPs and end users. We discuss each of these entities in turn

CHAPTER 7. IMPLEMENTATION CONCERNS 147

in the following sections.

7.4.1 Content Providers

At present, current providers of streaming multimedia content on the Internet pri-
marily rely upon simultaneous unicast transmission alone for their content. Si-
multaneous unicast operates everywhere, across the complete Internet, and can be
deployed with the reasonable expectation that all users interested in the content will
be able to access it.

However, the use of simultaneous unicast puts considerable pressure on content
providers to have enough server resources to support a large number of simultaneous
users and very high-capacity links to the outside world. Since every user receiving
the stream must have their own unicast connection to the source, the source must
be well-connected enough to support the number of receivers that are connected.
As the content provider’s connectivity to the outside world approaches saturation,
newly arriving receivers will either degrade the quality of the transmission to all
receivers, or (if some form of access control is used) be denied access to the stream
altogether. Very popular content on the Internet often exhibits this phenomenon
when the content provider runs short of capacity or even CPU or memory on the
server hosting the content, resulting in long delays or server failure.

The use of a multicast protocol would alleviate this situation by allowing the
content provider to support the same number of receivers with a much smaller
capacity requirement, since only a small number of connections directly to the source
of the transmission would be required. Branching within the network would take care
of delivering the stream to the complete set of receivers. This scenario potentially
scales much better than simultaneous unicast, as well: assuming that sufficient
branching routers are present in the network, a much larger number of receivers
could be supported with no additional impact on the capacity required by the content

provider.

CHAPTER 7. IMPLEMENTATION CONCERNS 148

Hence, the deployment of a multicast protocol that will operate over the existing
Internet network, such as Lorikeet, provides content providers with a way to support
a large number of users without a very high-capacity link to the Internet. It also
increases the likelihood that they will be able to cope with spikes in demand without

disruption of service.

7.4.2 Internet Service Providers

In order for Lorikeet to offer improved performance over simultaneous unicast trans-
mission, capable routers need to be present in the network. The presence of these
routers is largely dependent on Internet Service Providers having compelling reasons
for deploying them and supporting the Lorikeet protocol.

Obviously, the strongest reason for the deployment of a new service by an ISP
(and Lorikeet can be considered a new service, due to its requirement for changes
to routers) is demand, in this case from content providers and users. If a service
like Lorikeet were to be used by a significant fraction of an ISP’s customers, that
ISP would be very likely to deploy capable routers in order to improve the quality
of that service experienced by its customers. A second driver for ISP deployment
of capable routers in their networks is the cost savings such a deployment could
provide. Once a capable router is present in the ISP’s network, between its users
and the Lorikeet sources elsewhere on the Internet, that capable router will become
a local branching router for all users on that network. If the ISP has several users
subscribing to the same multicast stream, it can supply all of those users from the
single stream entering the branching router, rather than carrying a separate stream
from elsewhere on the Internet for each receiver.

This approach is similar in spirit to the many ISPs and other organisations
around the world carrying local mirrors of software repositories for their customers.
A more direct comparison can be made with the use of Internet radio relays by some

ISPs? to provide better performance to customers and save bandwidth on popular

2For an Australian example, see Internode’s Online Streaming Radio page at http://www.

CHAPTER 7. IMPLEMENTATION CONCERNS 149

radio streams.

7.4.3 End Users

For end users, Lorikeet’s advantages over simultaneous unicast are the same as those
provided by other multicast systems, including traditional 1P multicast. Multicast
streams offer better performance, as the stream is most likely to be coming from
a capable router that is closer in network terms than the source. They also offer
improved availability, as the source is less likely to be swamped by requests for pop-
ular content (as described in Section 7.4.1). Unlike IP multicast systems, however,
Lorikeet is deployable immediately, without requiring any protocol support from the
users’ ISPs.

In addition, Lorikeet is a less complex system to deploy than other protocols
that require traditional IP multicast support or other new services at the network
layer. For end-users, Lorikeet requires only unicast connectivity to the outside world,
with no changes to users’ routers or operating systems beyond the installation of
an application (such as a browser plugin or standalone player) that supports the

protocol.

7.4.4 Placing Capable Routers

The issue of the placement of capable routers in the network is highly dependent on
how they are implemented, as described in Section 7.2.2. If a hardware router can
be developed that can handle Lorikeet forwarding with comparable speed to native
IP forwarding in current hardware, then these routers can be deployed near the
core of the network, where they can provide easily-accessible branching points for
multicast streams traversing the core. If, on the other hand, Lorikeet proves difficult
to implement with sufficient performance, then Lorikeet branching must take place

further out in the edge of the network, where traffic volumes are lower. In that

internode.on.net/radio/.

CHAPTER 7. IMPLEMENTATION CONCERNS 150

scenario, routers can be placed in ISPs’ networks as described earlier, providing
support at least to those ISPs’ customers and other nearby users. It is important
to note that once a capable router is discovered by a multicast source or other tree
router, it can be used for branching on subsequent joins for any receivers that are
appropriately close. Hence, even if it is not feasible to place capable routers on
direct paths in the core of the network, their discovery can be achieved through the
use of targeted filtering rules in standard routers or a directory service like the one

proposed in Chapter 6.

This chapter has endeavoured to discuss some of the issues involved in writing
a complete, practical implementation of the Lorikeet protocol. It is not a complete
protocol definition, but was rather intended to illustrate the reasoning behind some
of our design decisions, as well as to discuss the ramifications of wider deployment
of Lorikeet-based multicast. In the following chapter, we investigate several differ-
ent possible extensions to the Lorikeet protocol for future research, building on its

hierarchical structure and hop-by-hop delivery to provide additional functionality.

Chapter 8

Conclusions and Future Work

In this dissertation we have presented our work on the multicast transmission of
streaming multimedia over the Internet, from an analysis of existing work and the
underlying Steiner Tree Problem in Networks, through to the development of a new
protocol called Lorikeet. This chapter is a summary of our findings, followed by a

discussion of future work and further possible research in the area.

8.1 Summary

In Chapter 1 we introduced our topic of research and presented some background
material on multicast transmission, introducing a number of elements that are com-
mon to most currently available protocols and research in the field. In particular,
we noted that the standardised IP multicast protocols are not in widespread use
on today’s Internet, despite multicast’s obvious advantages for the dissemination of
data to large groups. We also drew attention to the properties required by today’s
multimedia applications, such as the need to cope with very large, dynamic receiver
populations.

This background material was extended in Chapter 2, where we examined the
current state of research in multicast as well as the protocols that have been stan-

dardised by the Internet Engineering Task Force (IETF). We began by describing

151

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 152

the current suite of IP multicast standards from RFC 966 [20], which introduced
the concept of a “host group” identified by a single IP address, through to current
protocols like Protocol Independent Multicast - Sparse Mode (PIM-SM) [26], the
most popular current standard for IP multicast delivery. Current work on Source
Specific Multicast (SSM) [9] was also described.

We then presented a brief overview of multicast research from the literature. Our
discussion was divided into three broad sections: Small-Group multicast protocols,
Application-Level and Overlay multicast protocols and Topology-Aware multicast
protocols. These groups do not represent a strict taxonomy of multicast protocols;
there is considerable overlap even between these broad groupings. They do, however,
present different solutions to the problems associated with traditional IP multicast:
Small-group multicast removes the need for separate group addresses and multicast
routing protocols; application-level and overlay protocols remove the dependency on
protocol support in the network, relying on unicast transmission between end-hosts;
and the topology-aware protocols attempt to construct efficient trees, rather than
relying on the simple reverse-path techniques used by IP multicast.

In Chapter 3 we investigated the graph-theoretic problem that underlies the
construction of multicast trees, the Steiner Tree Problem in Networks. We began by
defining the Steiner Tree Problem and explaining its relationship to multicast tree
construction, in both static situations (with a fixed set of receivers) and dynamic
ones (with a changing set of receivers). We investigated two algorithms for finding
optimal Steiner Minimal Trees (SMTs) and four heuristics for finding approximate
solutions to the problem. Since finding the SMT for an arbitrary network is NP-
complete, our primary focus (particularly with a view to applications in multicast)
was on the heuristics, which are able to operate in polynomial time. These heuristics
were compared in simulation, and their suitability as a basis for an online multicast
tree construction algorithm discussed.

Chapter 4 presented the core of our work on multicast, a description of the

Lorikeet protocol. We commenced with a description of a target application: the

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 153

streaming of multimedia content from a single source. This is currently a very
popular application on the Internet that predominantly uses simultaneous unicast
streams for delivery. In simultaneous unicast, each receiver connects directly to the
source of the content and receives their own unicast stream of packets. The devel-
opment of a more efficient multicast delivery system could result in large reductions
in bandwidth use and increased availability for live streaming content.

From this application and the properties of the network environment in which
it is to operate (the current Internet), we developed a set of requirements for a new
multicast protocol. These include a number which address the limitations of other
multicast protocols when used for single-source multicast, such as the requirements
that the multicast tree be constructed in the direction of data delivery from the
source, that the protocol cope efficiently with dynamic membership of the group,
and that the protocol should operate even if not all routers in the network support
it. The latter property enables Lorikeet to surmount the chicken-and-egg problem
that has slowed the deployment of IP multicast, described in Section 7.4, while still
allowing routers in the network to provide branching to the tree (unlike application-
level multicast).

We developed two different algorithms for handling receiver joins in Lorikeet,
the Simple Join and Path-Greedy join algorithms. Both of these perform a limited
recursive search of the multicast tree, with the Path-Greedy join extending the
search further in order to improve the result. Both algorithms have significantly
lower complexity than exhaustively searching the tree. This explicit use of the tree
for joining is very different from what most other multicast protocols do, since it
builds the tree in the same direction as data delivery occurs (from the source to the
receivers) and attempts to maximise the chance of reusing existing paths through
the network. In contrast, traditional IP multicast and many other protocols build
trees based on the use of the paths from receivers to the source. Since many network
paths are asymmetric in today’s networks, this leads to a tree that is suboptimal

for data delivery in the forward-path direction.

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 154

Chapter 4 also described two rearrangement algorithms, called Path and Rejoin
rearrangement. These algorithms were designed to maintain the efficiency of the tree
in the face of changes to the receiver set. Both algorithms improve the quality of
the tree by re-connecting a capable router to the tree via a different parent, thereby
taking advantage of changes made to the tree since the router was first connected.
To trigger a rearrangement, Lorikeet uses a topological event — a router changing
status from branching to non-branching — which to the best of our knowledge is
a novel technique. In other algorithms, rearrangements are triggered by periodic
timers or by count(‘ars7 rather than directly by a change in the topology of the tree.

The Lorikeet protocol, with its two join operation variants and two rearrange-
ment algorithms, was implemented in simulation, along with several other protocols:
the Source-Join and Greedy algorithms, which are simple approaches to provide
baselines for comparison, and the ARIES [8, 7], DSG [32] and REUNITE/HBH |71,
18] protocols (described in detail in Section 5.2).

In Chapter 5 we performed a complexity and performance analysis of Lorikeet
and these other protocols. We examined all of the algorithms listed above (including
the different variants of Lorikeet) in terms of both analytical worst-case and empiri-
cal average-case message complexity. These results showed clearly that Lorikeet was
much more cfficient than those competitors which use exhaustive searches of the tree
as part of their join operations. We then investigated the relative performance of
the different variants of the Lorikeet algorithm, in order to determine which join and
rearrangement algorithms were most effective. As a result, we selected the Path-
Greedy join with Rejoin rearrangement as the representative “version” of Lorikeet
for all further tests.

Next, we performed a series of simulations analysing Lorikeet’s performance in
terms of total tree cost in comparison with other protocols. The results of these
simulations show that Lorikeet produces a tree with a total cost that falls between
those of the low cost trees produced by ARIES, Greedy and DSG, algorithms that
use an exhaustive search, and the high cost trees generated by REUNITE/HBH and

A ®

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 155

Source-Join, which both join new receivers directly to the source and rely on shared
paths to provide branching. Lorikeet produced trees within 8% of the cost of the
Greedy tree (for all intents and purposes a lower bound for tree cost, due to its use
of an exhaustive search), while maintaining much lower complexity.

Finally, we investigated the performance of the two protocols in our simulation
that support incremental deployment, Lorikeet and REUNITE/HBH. In our sim-
ulations, the total tree cost for both protocols was reduced as the proportion of
capable routers in the network increased. At low capable router proportions (10%
to 20%), Lorikeet outperformed REUNITE/HBH in terms of tree cost by more than
a third. Even at higher proportions, Lorikeet constructed significantly cheaper trees
until almost all routers were capable, where both protocols approach the limit of
their performance. Lorikeet’s better performance can be attributed to the fact that
Lorikeet searches the tree explicitly during joins and is able to select from a wider
range of potential parent routers. This enables Lorikeet to perform more branching,
and hence produce lower-cost trees.

In Chapter 6 we explored the possibility of adding functionality to Lorikeet to aid
the discovery of capable routers in networks where the majority of capable routers
are not present in the core of the network. Our solution was to add directory nodes
to the network and to the protocol. The Path-Greedy join algorithm was modified
to query a directory node for additional “adopted routers” over the course of a join,
providing a mechanism for other capable routers to be discovered.

Upon simulation, we found that this addition improved Lorikeet’s performance
in the case when all the capable routers were off the shortest paths. However, when
capable routers in the core of the network were introduced into the simulation, they
quickly began to provide the bulk of the branching in the tree, rendering the gains
due to the use of directory nodes negligible. We concluded that while the use of
directory nodes has significant benefits in networks with few capable routers, those
benefits decrease as deployment becomes more widespread. If such deployment is

to occur relatively rapidly, this negates the overall benefit of providing a directory

e R -

e ——m

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 156

node service.

8.2 Potential Implementation-Related Research

In this thesis, our primary focus has been on the analysis of the topological be-
haviour of multicast protocols and the development of Lorikeet’s tree construction
and maintenance algorithms. All of our results and analysis, however, have been
gathered using a topological simulation of the protocol running on a discrete event
simulator. The development of a complete, working version of Lorikeet would allow
parts of the protocol that we have not investigated in depth to be tested. Examples
of these properties, which have been touched on brieflty in Chapter 7, include the
storage requirements on capable routers, the protocol’s behaviour when multiple
simultaneous changes to the tree are taking place and the logistics of performing a
rearrangement without interrupting the data stream to downstream nodes.
Implementation of the system in software and on router line cards would allow
performance testing of Lorikeet in a variety of different locations in the network,
from small networks on the edge with low rates of traffic, through to core routers
in research networks that handle much higher throughput. It would be valuable to
ensure through real-world testing that the extra processing required to participate
in a Lorikeet multicast tree is practically achievable on current router hardware.
Once practical implementations of the protocol are available, performance testing
of Lorikeet through real use across the current Internet would provide information
on its performance on a wide-area network under real use. In particular, it would be
possible to show how appropriate our simulation topologies are for simulating real
Internet topologies and how the distribution of capable routers through the network

affects the efficiency of multicast trees built with them.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 157

8.3 Potential Protocol Extension

There are several related areas of research that complement our work on Lorikeet
and could provide further improvements to the protocol or application-specific ex-
tensions. In this section, we outline a number of these possibilities for future work.
Layered Video Delivery and Local Recovery are both extensions that leverage Lori-
keet’s control of the multicast tree topology to provide different levels of service
or provide additional robustness. Subsequently, we discuss several other topics of
interest: access control and authentication, calculation of the cost metric and the

collection of statistics from receivers.

8.3.1 Layered Video Delivery

In today’s Internet, information is accessed by a huge variety of devices, ranging
from small, bandwidth- and display-constrained mobile phones through to com-
mercial users with large capacity network links and high-resolution displays. This
heterogeneity has led to considerable interest in providing differentiated multime-
dia content, designed to serve each class of receiving device with its own optimised
stream [49, 54, 43]. For example, most movie trailers from large commercial studios
are now made available on the World Wide Webh for viewing in a number of sizes,
from low resolution appropriate for viewing on mobile devices through to full high-
definition video with surround sound, to cater for users with different requirements.
This approach generally requires the user to select the appropriate stream manually,
or relies on a user-selected preference that is set in the client application.

A great deal of research in the literature addresses this issue of heterogene-
ity through the development of scalable video codecs (compression/decompression
algorithms) that perform what is termed layered or hierarchical coding. These al-
gorithms code a video signal into a number of separate “layers”, the complete set
of which can be decoded together to recover the complete video signal, or a sub-

set can be used to obtain a lower-quality video signal. This principle is applied in

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 158

high-definition television (HDTV) broadcasts using the MPEG-2 standard, where
the signal comprises a standard-definition (SD) layer and a second “enhancement
layer” that provides the extra resolution to build the high-definition (HD) image.
In this case, layered encoding is employed primarily to provide reliability — if the
channel is too noisy to recover the HD layer, the picture will drop back to SD [16],
which is transmitted with more robust error-correction. Several projects have sought
to use layered coding to provide similar benefits to multicast transmission over the
Internet [55, 67, 77], using multiple layers to tailor the picture to receivers or to
provide additional reliability through the use of error-correction layers. McCanne et
al.’s RLM protocol [54], for example, distributes layered video via a set of multicast
groups, one per layer. Receivers can then adjust their receiving rate (according to
congestion and available capacity) by joining and leaving those groups.

Lorikeet’s hierarchical, managed approach to tree construction can be combined
with layered video coding to provide support for heterogeneous receivers without the
overhead of maintaining separate multicast trees for each layer. Instead, we suggest
that the source makes available the complete set of layers and that capable routers
in the tree perform “layer stripping” when appropriate. Capable routers need only
provide their children with the number of layers they can support, and the number
of layers being received from upstream can be “upgraded” to cope with the addition
of a new child that requires a higher rate than that which is currently being received.

Figure 24 shows a simple example of a 2MB/s stream,‘partitioned into four
layers of 512kb/s each, being transmitted by source S to five receivers with varying
requirements. As the figure shows, each of the routers in the tree needs only to
receive the number of layers required by its highest-rate child, making more efficient
use of the network if many receivers in the tree do not require the full complement
of layers.

Implementation of the control mechanism for layered video could be done in a
number of ways. One option is a reactive model, where capable routers react to the

capacity requirements of their children and upgrade their streams as required. A

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 159

1Mb/s

e 1Mb/s
512kb/s
2Mb/s @ 512kb/s

1Mb/s
1Mb/s

2Mb/s

Figure 24: Layered Video Delivery using a Lorikeet Multicast Tree

more complex metric-based model could also be used, where the required capacity
is considered as part of the join operation, and new receivers are joined to routers
which are (a) already receiving a stream of sufficient rate, or (b) can be upgraded to
the desired rate cheaply. Similarly, capable routers could downgrade the number of
layers being received when a high-rate child leaves the tree, much like the recursive
pruning operation that occurs when a router’s last child leaves.

Adding the necessary control operations to Lorikeet’s capable routers would not
be difficult, although tuning the join operation to use a modified metric may result
in the creation of very different trees. If this extension were to be implemented in
hardware routers, however, delivery of these packets may present a challenge. The
layer identifier presents another piece of information that needs to be decoded from
incoming packets in order to forward them to the correct receivers: namely, those
that are receiving that layer of a particular stream. In IPv6, this could be achieved

using the “flow label” field, designed for identifying different flows, but this solution

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 160

is not appropriate in today’s largely IPv4-based Internet. In IPv4 we could use
the IP TOS (type of service) bits in the header to identify a layer, as is done by
the Differentiated Services (DiffServ) [57] architecture used for providing different
levels of service for traffic. However, the TOS bits are used for many different
purposes (including DiffServ) by different ISPs, and can not be relied upon to operate
correctly across the wider Internet. An alternative approach would be for the source
to transmit each layer from a different UDP port, allowing capable routers to match
each port to a different layer of the stream. This approach will operate correctly
across networks when the TOS bits cannot be relied upon, fhough it places more of a
limit on the number of layers and streams that a source can support. Nevertheless,
even two layers per stream (as for standard and high-definition television) could

provide significant extra flexibility for users.

8.3.2 Local Recovery

Lorikeet is designed for multicasting one-way streaming multimedia, such as live
broadcasts of events or news. For this application, perfectly reliable transmission is
not necessary: multimedia data is able to tolerate small amounts of packet loss or
damage to packets without becoming visibly or audibly distorted to the viewer. In
addition, the playback of received data need not be as immediate as it is required
to be in two-way voice communication, where a delay of more than a few hundred
milliseconds is very obvious to the participants. A constant delay of a few seconds
would not be noticed when watching a cricket match or a news broadcast. Such a
delay could be introduced to allow receivers to cache the stream in order to cope
with transient network effects like congestion, as well as potentially perform recovery
of missed packets.

In [53], Maxemchuk et al. present a protocol for performing recovery of lost
packets on the Internet Multicast Backbone (MBONE), aimed at improving the

quality of video transmitted on multicast groups. Their design involves a subset of

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 161

receivers in a group cooperating by detecting lost packets and querying a retransmit
server for them, which would retransmit the packets in question. After a fixed
time delay, the querying receiver then retransmits all of the packets it has received
(including the retransmitted ones) on another multicast group, referred to as the
repair channel. Receivers that wish to make use of this mechanism join the repair
channel instead of the main multicast group and are thereby able to take advantage
of retransmitted data. The advantage of this approach is that it can be deployed
without changes to the source or to the receivers — these retransmit and repair
servers merely need to be deployed in the group.

In Lorikeet, however, we could deploy a packet recovery system without requiring
extra multicast groups. Packet recovery could take place on a local, link-by-link
basis: for example, capable routers could cache a defined number of packets (for
example, ten seconds’ worth). When a lost packet is detected by a node, it could
send a negative acknowledgement to its parent, requesting the retransmission of the
missing packet. That packet would then be sent to that node only, rather than
retransmitting it to all of the receivers on a separate multicast tree or requiring the
creation of a new “repaired” tree.

This approach, like that of Maxemchuk et al., does not seek to provide complete
reliable delivery of all packets to all receivers. Instead, it seeks to improve the quality
of the stream delivered to receivers by providing a mechanism for retransmission of
packets that may not yet have been played back to the user. Such retransmission
may have a considerable effect on the user experience, particularly if the network is
suffering from congestion. If a receiver is caching several seconds of video in order
to minimise network effects such as jitter, then it is quite possible for a lost packet

to be recovered from that receiver’s parent router before it is due for playback.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 162

8.3.3 Other Further Work

Another large area of research applicable to Lorikeet is that of access control, au-
thentication and charging. Because of the highly distributed nature of a multicast
tree, the creation of appropriate methods for the implementation of access control
and authentication and the development of a charging model for multicast traffic
are not trivial. If a capable router somewhere in the network can simply make addi-
tional copies of the stream for receivers at will, how is control of the traffic possible
in the case of a content provider that wishes to control and charge for access to its
content? In Lorikeet’s case, this is simplified somewhat when compared to tradi-
tional IP multicast, since Lorikeet requires that joining the tree be done through the
source, which can also therefore authenticate and charge receivers. However, pro-
tecting the stream so that malicious users cannot receive it without authenticating
is an interesting distributed security problem. Similarly, there are other charging
models — such as charging by the minute - which would require changes to Lori-
keet’s join and leave operations, and the development of a mechanism for tracking
the lengths of individual receiver sessions.

In Section 4.3, we wrote about the difficulty of finding a metric for use in Lori-
keet’s cost calculations used to select routers in the tree during a join operation. This
metric should represent the cost of a path in terms of network bandwidth, must be
increasing and must be calculable at individual routers without requiring significant
communications or storage overhead. For use in Lorikeet initially, we have suggested
the use of hop-count as this metric, which, although a crude measure of the cost of
a path, is available already for use on the current Internet. There is a great deal of
interest in the research community and in the commercial world in the provision of
guaranteed quality of service over IP networks, however, and it is very possible that
research in this area may furnish us with a more accurate metric for determining the
cost of a given path. We feel that research on easily making available measurements

of the bottleneck bandwidth (the bandwidth of the smallest capacity link on the path)

CHAPTER 8 CONCLUSIONS AND FUTURE WORK 163

or available bandwidth (the proportion of the bottleneck bandwidth that is available
at a given instant) for a given path would be very beneficial to both Lorikeet and
other applications with specific network resource requirements.

In the Lorikeet protocol there is very little feedback transmitted by receivers or
routers in the tree to upstream routers or the source. It is possible to use Lorikeet’s
managed tree structure for collection and aggregation of information: for example,
routers could periodically count the receivers that they support directly, counts
that could be sent upstream and summed recursively until the source is provided
with summary information on which of its downstream branches are “heaviest” with
receivers. This aggregation technique could be used to collect many different kinds
of information about the tree and its receiver population, which could be put to a
variety of uses: examples include lightweight statistics gathering by the source and

data collection for more advanced join and rearrangement strategies.

Our work on Lorikeet provides some of the groundwork for a new class of practical
protocols for large-scale multimedia transmission, protocols that can be deployed
without requiring universal changes to Internet infrastructure and make efficient use
of the network’s topology. Multicast offers an attractive way to significantly reduce
the bandwidth requirements of multimedia applications, something that will become

necessary as the use of streaming video over the Internet increases in prevalence.

Bibliography

[

A. Adams, J. Nicholas, and W. Siadak. RFC 3973: Protocol Independent
Multicast - Dense Mode (PIM-DM): Protocol Specification (revised), January
2005.

Akamai website. http://www.akamai.com/.

Mozafar Bag-Mohammadi, Siavesh Samadian-Barzoki, and Nasser Yazdani.
Linkcast: Fast and scalable multicast routing protocol. In NETWORKING,
pages 1282-1287. Springer-Verlag, 2004.

Suman Banerjee and Bobby Bhattacharjee. Analysis of the NICE application
layer multicast protocol. Technical Report UMIACS TR 2002-60 and CS-TR
4380, Department of Computer Science, University of Maryland, College Park,
MD, USA, 2002.

Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-
able application layer multicast. In ACM SIGCOMM, pages 205-217, Pitts-
burgh, Pennsylvania, USA, August 2002. ACM.

T. Bates, R. Chandra, D. Katz, and Y. Rekhter. Multiprotocol extensions for
BGP-4, February 1998.

Fred Bauer. Multicast Routing in Point-to-Point Networks Under Constraints.
PhD thesis, Computer Engineering, University of California, Santa Cruz, June

1996.

164

BIBLIOGRAPHY 165

8]

(12]

[13]

[14]

[15]

[16]

[17]

18]

Fred Bauer and Anujan Varma. ARIES: A rearrangeable inexpensive edge-

based on-line Steiner algorithm. In IEEE INFOCOM, pages 361-368, 1996.

S. Bhattacharyya. RFC 3569: An overview of source-specific multicast (SSM),
July 2003.

BitTorrent website. http://www.bittorrent.com/.

R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridaens. Explicit
multicast (Xcast) basic specification, July 2005. Internet Draft, draft-ooms-

xcast-basic-spec-08.txt.

Ali Boudani and Bernard Cousin. SEM: A new small group multicast routing

protocol. In ICT 2008, volume 1, pages 450-455. IEEE, February 2003.

B. Cain, S. Deering, 1. Kouvelas, B. Fenner, and A. Thyagarajan. RFC 3376:

Internet Group Management Protocol, version 3, October 2002.

Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron,
Marvin Theimer, Helen Wang, and Alec Wolman. An evaluation of scalable
application-level multicast built using peer-to-peer overlays. In IEEE INFO-
COM. 1IEEE, 2003.

Yatin Chawathe. Scattercast: an adaptable broadcast distribution framework.

Multimedia Systems Journal, 9(1):104-118, 2003.

Tihao Chiang and Dimitris Anastassiou. Hierarchical coding of digital televi-

sion. IEEE Communications Magazine, 32(5):38-45, May 1994.
Coral content distribution network website. http://www.coralcdn.org/.

Luis Henrique M. K. Costa, Serge Fdida, and Otto Carlos M. B. Duarte. Hop
by hop multicast routing protocol. In ACM SIGCOMM, pages 249-259, San
Diego, CA, USA, August 2001. ACM.

BIBLIOGRAPHY 166

[19] S. Deering. RFC 1112: Host extensions for IP Multicasting, August 1989.

[20] S. E. Deering and D. R.. Cheriton. RFC 966: Host groups: A multicast extension
to the Internet Protocol, December 1985.

[21] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and Doug
Balensiefen. Deployment issues for the IP multicast service and architecture.

IEEE Network Special Issue on Multicasting, 14(1):78-88, January 2000.

[22] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,
1:195-207, 1972.

(23] D. Z. Du and X. Cheng, editors. Steiner Tree Based Distributed Multicast
Routing in Networks, pages 327-351. Kluwer Academic Publishers, 2001.

[24] Ayman El-Sayed and Vincent Roca. Improving the scalability of an application-
level group communication protocol. In /CT. IEEE, 2003.

[25] Ayman El-Sayed, Vincent Roca, and Laurent Mathy. A survey of proposals for
an alternative group communication service. IEEE Network Special Issue on

Multicasting: An Enabling Technology, 17(1):44-51, January 2003.

[26] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja-
cobson, C. Liu, P. Sharma, and L. Wei. RFC 2362: Protocol independent
multicast-sparse mode (PIM-SM): Protocol specification, June 1998.

[27] B. Fenner and D. Meyer. Multicast Source Discovery Protocol (MSDP), Octo-
ber 2003.

[28] Paul Francis. Yoid: Extending the Internet Multicast Architecture, April 2000.

[29] Michael J. Freedman, Eric Freudenthal, and David Mazieres. Democratizing
content publication with Coral. In Proceedings of the First USENIX/ACM
Symposium on Networked Systems Design and Implementation, San Francisco,

CA, USA, March 2004.

BIBLIOGRAPHY 167

[30]

[31]

[32]

(36]

[37]

(3]

[39]

M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing
Steiner Minimal Trees. SIAM Journal of Applied Mathematics, 32:835-859,
1977.

Gnutella protocol development website. http://rfc-gnutella.sourceforge.

net/.

Ashish Goel and Kameshwar Munagala. Extending greedy multicast routing
to delay sensitive applications. Technical Report STAN-CS-TN-99-89, Dept. of
Computer Science, Stanford University, July 1999.

M. Grétschel, A. Martin, and R. Weismantel. The Steiner tree packing problem
in VLSI design. Mathematical Programming, 78(2):265-281, August 1997.

GWebCache website. http://www.gnucleus.com/gwebcache/.

S. L. Hakimi. Steiner’s problem in graphs and its implications. Networks,

1:113-133, 1971.
C. Hedrick. RFC 1058: Routing Information Protocol, June 1988.

David A. Helder and Sugih Jamin. Banana tree protocol, an end-host multicast

protocol. Technical Report TR-429-00, University of Michigan, July 2000.

Hugh W. Holbrook and David R. Cheriton. IP multicast channels: EXPRESS
support for large-scale single-source applications. In ACM SIGCOMM, pages
65-78, Cambridge, MA, USA, August 1999. ACM.

Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. Enabling
conferencing applications on the internet using an overlay multicast architcc-
ture. In ACM SIGCOMM, pages 55-67, San Diego, CA, USA, August 2001.
ACM.

BIBLIOGRAPHY 168

(40]

[41]

[42]

[44]

[47]

[48]

[49]

Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for
end system multicast. IEEE Journal on Selected Areas in Communications,

20(8):1456-1471, October 2002.

Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner Tree

Problem, volume 53 of Annals of discrete mathematics. Elsevier Science, 1992.

John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and Jr.
James W. O’Toole. Overcast: Reliable multicasting with an overlay network.

In OSDI 2000, October 2000.

J. Kangasharju, F. Hartanto, M. Reisslein, and K.W. Ross. Distributing layered
encoded video through caches. In IEEE INFOCOM, Anchorage, Alaska, USA,
April 2001. IEEE.

Jussi Kangasharju, James Roberts, and Keith W. Ross. Object replication
strategies in content distribution networks. In Proceedings of WCW’01: Web
Caching and Content Distribution Workshop, Boston, MA, USA, June 2001.

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality.
Networks, 32:207-232, 1998.

Minseok Kwon and Sonia Fahmy. Path-aware overlay multicast. Computer

Networks, 47(1):23-45, January 2005.

Li-Wei H. Lehman, Stephen J. Garland, and David L. Tennenhouse. Active
reliable multicast. In IEEE INFOCOM, pages 581-589, San Francisco, CA,
USA, March 1998.

B.N. Levine and J.J. Garcia-Luna-Aceves. A comparison of reliable multicast

protocols. ACM Multimedia Systems Journal, 6(5):334-348, August 1998.

Bo Li and Jiangchuan Liu. Multirate video multicast over the internet: An

overview. Network Magazine, 17(1):24-29, January 2003.

BIBLIOGRAPHY 169

[50]

[52]

[53]

[54]

[56]

Le-Chin Eugene Liu and C. Sechen. Multi-layer chip-level global routing using
an efficient graph-based Steiner tree heuristic. In EDTC °97: Proceedings of
the 1997 European conference on Design and Test, pages 311-318, Washington,
DC, USA, 1997. IEEE Computer Society.

Laurent Mathy, Roberto Canonico, and David Hutchison. An overlay tree
building control protocol. In J. Crowcroft and M. Hofmann, editors, Networked
Group Communication: third International COST264 Workshop, NGC 2001,
pages 76-87, London, UK, November 2001. Springer-Verlag.

Laurent Mathy, Roberto Canonico, Steven Simpson, and David Hutchison.
Scalable adaptive hierarchical clustering. In NETWORKING ’02: Proceed-
ings of the Second International IFIP-TC6 Networking Conference on Net-
working Technologies, Services, and Protocols; Performance of Computer and
Communication Networks;, and Mobile and Wireless Communications, pages

1172-1177, London, UK, 2002. Springer-Verlag.

N. F. Maxemchuk, K. Padmanabhan, and S. Lo. A cooperative packet recovery
protocol for multicast video. In Int. Conf. on Network Protocols, pages 259-266,
Atlanta, Georgia, USA, October 1997.

Steven McCanne, Van Jacobson, and Martin Vetterli. Receiver-driven layered
multicast. In ACM SIGCOMM, pages 117--130, Stanford, CA, USA, August
1996. ACM.

Steven R McCanne. Scalable compression and transmission of internet multicast
video. Technical Report UCB/CSD-96-928, EECS Department, University of
California, Berkeley, 1996.

Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:
Universal topology generation from a user’s perspective. Technical Report
BUCS-TR-2001-003, Computer Science Department, Boston University, April
2001.

BIBLIOGRAPHY 170

[57]

[58]

[59]

[60]

[65]

K. Nichols, S. Blake, F. Baker, and D. Black. RFC 2474: Definition of the
Differentiated Services field (DS field) in the IPv4 and IPv6 headers, December
1998.

Sanjoy Paul, Krishan K. Sabnani, John C. Lin, and Supratik Bhattacharyya.
Reliable multicast transport protocol (RMTP). IEEE Journal on Selected Areas
in Communications, 15(3):407-421, April 1997.

Vern Paxson. End-to-end routing behaviour in the Internet. IEEE/ACM Trans-
actions on Networking, 5(5):601--615, October 1997.

Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel.
ALMI: An application level multicast infrastructure. In Proceedings of the 3rd
USENIX Symposium on Internet Technologies and Systems (USITS), pages
49- 60, March 2001.

R. C. Prim. Shortest connection networks and some generalizations. Bell System

Tech. J., 36:1389-1401, 1957.
Apple Quicktime website. http://wuw.apple.com/quicktime/.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. In ACM SIGCOMM, San
Diego, CA, USA, August 2001. ACM.

Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.

Application-level multicast using content-addressable networks. In Proceedings

of NGC 2001, 2001.

Vincent Roca and Ayman El-Sayed. A Host-Based Multicast (HBM) solution
for group communications. In P. Lorenz, editor, ICN, pages 610-619. Springer-
Verlag, 2001.

BIBLIOGRAPHY 171

(66]

[68]

[69]

[71]

[72]

(73]

Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware), pages

329-350, November 2001.

Claudia Schremmer, Christoph Kuhmiinch, and Wolfgang Effelsberg. Layered
wavelet coding for video. In 11th International Packet Video Workshop (PV
2001), page 42 ff., Kyongju, Korea, 2001.

Myung-Ki Shin, Yong-Jin Kim, Ki-Shik Park, and Sang-Ha Kim. Explicit mul-
ticast extension (Xcast+) for efficient multicast packet delivery. ETRI Journal,

23(4):202-204, December 2001.

Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. An analysis of live
streaming workloads on the Internet. In IMC ’04: Proceedings of the 4th ACM
SIGCOMM conference on Internet measurement, pages 41- 54, New York, NY,
USA, 2004. ACM Press.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

In ACM SIGCOMM, pages 149-160, San Diego, CA, USA, August 2001. ACM.

Ion Stoica, T. S. Eugene Ng, and Hui Zhang. REUNITE: A recursive unicast
approach to multicast. In IEEE INFOCOM, Tel Aviv, Israel, March 2000.
IEEE.

Lakshminarayanan Subramanian, Venkata N. Padmanabhan, and Randy H.
Katz. Geographic properties of internet routing. In Proceedings of USENIX
Annual Technical Conference, pages 243-259, Monterey, CA, USA, June 2002.

L. Masinter T. Berners-Lee, R. Fielding. RFC 3986: Uniform Resource Identi-
fier (URI): Generic syntax, January 2005.

BIBLIOGRAPHY 172

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[83]

Duc A. Tran, Kien A. Hua, and Tai Do. ZIGZAG: An efficient peer-to-peer
scheme for media streaming. In IEEE INFOCOM, San Francisco, CA, USA,
April 2003. IEEE.

R. Vida and L. Costa. RFC 3810: Multicast Listener Discovery version 2
(MLDv2) for IPv6, June 2004.

D. Waitzman, C. Partridge, and S. E. Deering. RFC 1075: Distance Vector
Multicast Routing Protocol, November 1988.

Bin Wang and Jennifer C. Hou. QoS-based multicast routing for distribut-
ing layered video to heterogeneous receivers in rate-based networks. In IEEE

INFOCOM, pages 480--489, Tel Aviv, Israel, March 2000.

Windows Media Player website. http://www.microsoft.com/windows/

windowsmedia/.

Pawel Winter. Steiner problem in networks: A survey. Networks, 17(2):129-167,
1987.

Guoliang Xue, Theodore P. Lillys, and David E. Dougherty. Computing the
minimum cost pipe network interconnecting one sink and many sources. SIAM

Journal on Optimization, 10(1):22-42, 1999.

Beichuan Zhang, Sugih Jamin, and Lixia Zhang. Host Multicast: A framework
for delivering multicast to end users. In IEEE INFOCOM, 2002.

Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical Re-
port UCB/CSD-01-1141, Computer Science Division, University of California,
Berkeley, April 2001.

Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and

John D. Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant

BIBLIOGRAPHY 173

wide-area data dissemination. In NOSSDAV’01, pages 11-20, Port Jefferson,
NY, USA, June 2001. ACM.

