

Lost VOIP Packet Recovery in Active Networks

Yousef Darmani

M. Eng. Sc. Sharif University of Technology, Tehran, Iran

Thesis submitted for the degree of Doctor of Philosophy

in

Department of Electrical and Electronic Engineering The University of Adelaide

> Supervisors: Professor Langford White Mr. Michael Liebelt

> > June 2004

Contents

At	Abstract				
Sta	ateme	ent of Originality xv	ii		
Ac	know	vledgments xi	x		
Pu	blica	tions xx	ci		
1	Intro	oduction	1		
	1.1	Internet telephony	1		
	1.2	Problem statement	3		
	1.3	Thesis outline and methodology	4		
2	Pack	set loss models and metrics	7		
	2.1	Packet loss	8		
		2.1.1 Causes of packet loss	8		
		2.1.2 Loss rate and packet length	0		
		2.1.3 Statistical information about packet loss	0		
	2.2	Loss models	2		
		2.2.1 n-order Markov chain	2		
		2.2.2 Bernoulli model	3		
		2.2.3 Gilbert model	3		
		2.2.4 Extended Gilbert model	5		
		2.2.5 Poisson Model	6		
	2.3	Model evaluation	6		
	2.4	Summary	7		
3	Voic	e Over Internet Protocol (VOIP) 1	9		
	3.1	Properties of speech	0		
	3.2	Voice quality measurement	1		
	3.3	Voice Over Internet Protocol (VOIP)	2		

	3.4	Metho	ds to cope with packet loss problem
		3.4.1	Sender and receiver based scheme
		3.4.2	Sender based scheme
		3.4.3	Receiver based recovery scheme
		3.4.4	Network and receiver based recovery scheme
		3.4.5	Packing methods used in the simulations
	3.5	Quality	y of Service (QoS)
		3.5.1	QoS model
	3.6	Protoc	ol
		3.6.1	Internet Protocol (IP)
		3.6.2	User Datagram Protocol (UDP)
		3.6.3	Real-time Transport Protocol (RTP)
		3.6.4	RTP/UDP/IP
		3.6.5	Other protocols for VOIP
	3.7	Summ	ary
4	Acti	ve node	37
	4.1	Reasor	ns to use active networks
	4.2	Active	and passive networks
	4.3	Active	node and lost packets
	4.4	Active	path
		4.4.1	Virtual Private Network (VPN)
		4.4.2	Virtual Active Path (VAP)
	4.5	Active	Packet
	4.6	Active	node problems
		4.6.1	Active node in VOIP
		4.6.2	Node security
		4.6.3	Node structure
		4.6.4	Node resource reservation
		4.6.5	Node software specifications
		4.6.6	Node software structure for voice packet recovery
	4.7	Role of	factive node
	4.8	First an	nalysis
		4.8.1	Two consecutive losses
		4.8.2	n consecutive losses
	4.9	Second	l analysis
		4.9.1	Two consecutive losses
		4.9.2	n consecutive losses

	4.10	Third a	analysis	61			
	4.11	Active	node location	63			
	4.12	Simula	ation and test environment	64			
		4.12.1	Active packet structure in the simulations	66			
		4.12.2	Active node implementation	67			
		4.12.3	Simulation topology	71			
	4.13	Summa	ary and conclusion	73			
5	Deta	ched Sa	amples Packing Method (DSPM)	75			
	5.1	DSPM	sender routine	76			
		5.1.1	Packing Routine	76			
		5.1.2	Main Routine	78			
	5.2	Receiv	ver or active node routine	83			
	5.3	Protoco	ol specification and verification	85			
		5.3.1	Finite State Machine (FSM) model	85			
		5.3.2	Specification and Description Language (SDL) model	87			
	5.4	Results	s of DSPM	87			
	5.5	Summa	ary and conclusion	91			
6	Detached Adaptive Differential Pulse Code Modulation (DADPCM)						
	6.1	DADP	CM sender routine	94			
		6.I.I	First step: Separate sample:	94			
		6.1.2	Second step: Encoding and decoding samples	95			
		6.1.3	Third step: packing the encoded samples	96			
	6.2	Receiv	er routine	99			
	6.3	Active	node routine	99			
	6.4	s of DADPCM	1				
		6.4.1	Voice quality	01			
		6.4.2	Data rate)2			
		6.4.3	Processing time)3			
	6.5	Importa	ant samples)4			
		6.5.1	Fixed-sized packets	04			
		6.5.2		14			
		0.3.2	Fixed distortion	7 1			
		6.5.3		9			
			Next correlation				

7	Deta	ached A	daptive Differential Pulse Code Modulation 5 (DADPCM5)	113
	7.1	Sende	r routine	114
		7.1.1	First step: Separate samples	114
		7.1.2	Second step: Encoding and decoding samples	116
		7.1.3	Third step: Packing the encoded samples	116
	7.2	Receiv	ver routine	117
		7.2.1	No loss	117
		7.2.2	Individual loss	117
		7.2.3	Heavy burst loss	118
	7.3	Active	node routine	118
	7.4	Result	s of DADPCM5	118
		7.4.1	Quality versus data rate	119
		7.4.2	Quality versus loss rate	120
		7.4.3	Processing time	121
	7.5	Summ	ary and conclusion	122
0	Data	ahad F	aurian Coofficients Restring Mathed (DECDM)	123
8	8.1		ourier Coefficients Packing Method (DFCPM) te Fourier Transform	123
	8.2		ation in time	124
	8.3			125
	0.2	8.3.1	Compression:	127
		8.3.2	Lost packet effect compensation:	120
	8.4		ments	128
	0.4	8.4.1	First experiment	128
		8.4.2	Second experiment	130
		8.4.3		130
		8.4.4	Fourth experiment	133
		8.4.5	Fifth experiment	135
	8.5		ned Fourier Coefficient Packing Method (DFCPM)	136
	0.0	8.5.1	Sender routine	136
		8.5.2	Receiver routine	139
		8.5.3	Active node routine	142
		8.5.4	Threshold	142
		8.5.5	Result of DFCPM	142
	8.6	Enhan	ced Detached Fourier Coefficient Packing Method (EDFCPM)	145
		8.6.1	Sender routine	145
		8.6.2	Receiver routine	146
		8.6.3	Result of EDFCPM	146

	8.7	Summary and conclusion	149		
9	Enha	Enhanced Code Excited Linear Prediction (ECELP)			
	9.1	Conjugate Structure Algebraic Code Excited Linear Prediction (CS-ACELP)	152		
		9.1.1 Encoder	152		
		9.1.2 Decoder	153		
	9.2	ECELP64	154		
	9.3	ECELP13	156		
	9.4	ECELP475	158		
	9.5	Redundancy and loss rate	158		
	9.6	ECELP in active node	159		
	9.7	Results of ECELP	159		
		9.7.1 Individual loss	160		
		9.7.2 Burst loss	161		
	9.8	Summary and conclusion	161		
10	Com	plimentary Adaptive Differential Pulse Code Modulation (CADPCM)	163		
10			164		
		Packing scheme	164		
	10.2	10.2.1 Unvoiced block	164		
		10.2.1 Unvoiced blocks	165		
		10.2.2 Voiced and Onvoiced blocks 10.2.3 Voiced2unvoiced block	165		
	103	Redundancy and loss rate	165		
		CADPCM in active node	166		
		CADPCM at the receiver	166		
		Result of CADPCM	166		
	10.0	10.6.1 Voice quality	166		
		10.6.2 Data rate	167		
		10.6.3 Processing time 10.6.3 Processing time	168		
	10.7	Summary and conclusion	169		
11	Conc	lusion	171		
	11.1	Contributions	171		
		Methodology	173		
		Major results	1 7 4		
	11.4	Future directions	176		

A SDLs of DADPCM5

B	Source codes Voice samples and test environment					
С						
	C.1	Voice samples	181			
	C.2	Test environment	184			

Bibliography

185

Abstract

Current best-effort packet-switched Internet is not a perfect environment for real-time applications such as transmitting voice-over the network (Voice Over Internet Protocol or *VOIP*). Due to the unlimited concurrent access to the Internet by users, the packet loss problem cannot be avoided. Therefore, the VOIP based applications encompass problems such as "voice quality degradation caused by lost packets".

The effects of lost packets are fundamental issues in real-time voice transmission over the current unreliable Internet. The dropped packets have a negative impact on voice quality and concealing their effects at the receiver does not deal with all of the drop consequences. It has been observed that in a very lossy network, the receiver cannot cope with all the effects of lost packets and thereby the voice will have poor quality. At this point the *Active Networks*, a relatively new concept in networking, which allows users to execute a program on the packets in active nodes, can help VOIP regenerate the lost packets, and improve the quality of the received voice. Therefore, VOIP needs special voice-packing methods. Based on the measured packet loss rates, many new methods are introduced that can pack voice packets in such a way that the lost packets can be regenerated both within the network and at the receiver. The proposed voice-packing methods could help regenerate lost packets in the active nodes within the network to improve the perceptual quality of the received sound. The packing methods include schemes for packing samples from low and medium compressed sample-based codecs (PCM, ADPCM) and also include schemes for packing samples from high compressed frame-based codecs (G.729).

Using these packing schemes, the received voice has good quality even under very high loss rates. Simulating a very lossy network using NS-2 and testing the regenerated voice quality by an audience showed that significant voice quality improvement is achievable by employing these packing schemes.