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Abstract

Over the last ten years, terahertz (THz or T-ray) biomedical imaging has become a
modality of interest due to its ability to simultaneously acquire both image and spec-
tral information. Terahertz imaging systems are being commercialized, with increas-
ing trials performed in a biomedical setting. Advanced digital image processing algo-
rithms are greatly need to assist screening, diagnosis, and treatment. Pattern recogni-
tion algorithms play a critical role in the accurate and automatic process of detecting
abnormalities when applied to biomedical imaging. This goal requires classification of
meaningful physical contrast and identification of information in images, for example,
distinguishing between different biological tissues or materials. T-ray tomographic
imaging and detection technology contributes especially to our ability to discriminate
opaque objects with clear boundaries and makes possible significant potential applica-

tions in both in vivo and ex vivo environments.

The Thesis consists of a number of Chapters, which can be grouped in to three parts.
The first part provides a review of the state-of-the-art regarding THz sources and de-
tectors, THz imaging modes, and THz imaging analysis. Pattern recognition forms the
second part of this Thesis, which is represented via combining several basic operations:
wavelet transforms and wavelet based signal filtering, feature extraction and selection,
along with classification schemes for THz applications. Signal filtering in this Thesis
is achieved via wavelet based de-noising. The ultrafast pulses generated terahertz
time-domain spectroscopy (THz-TDS), which is demonstrated to justify their decom-
position in the wavelet domain as it can provide better de-noising performance. Fea-
ture extraction and selection of the terahertz measurements rely on observed changes
in pulse amplitude and phase, as well as scattering characteristics of several differ-
ent types of powder samples under study. Additionally, three signal processing algo-
rithms are adopted for the evaluation of the complex insertion loss function of such
samples as lactose, mandelic acid, and dl-mandelic acid: (i) standard evaluation by
ratioing the sample with the background spectra, (ii) a subspace identification algo-
rithm, and (iii) a novel wavelet packet identification procedure. These system identi-
fication algorithms enable THz measurements to be transformed to features for THz
pattern recognition. Meanwhile, a novel feature extraction method involving the use

of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the
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Abstract

wavelet transforms of measured T-ray pulse responses of ex vivo osteosarcoma cells as
well as other biomedical materials is presented. Classification schemes are carried out
via simple and robust schemes, such as the linear Mahalanobis distance classifier, and
the non-linear Support Vector Machine (SVM) classifier. In particular, SVMs are used
as a learning scheme to achieve the identification of two classes of RNA samples and
multiple classes of powered materials. Coherent terahertz detection hardware—THz
time-domain spectroscopy (THz-TDS)—is used to obtain all the data for validation of

these classification schemes.

The past decade has witnessed the tremendous development of terahertz instruments
for detecting, storing, analysing, and displaying images. Terahertz time-domain spec-
troscopy (THz-TDS) is a broadband technique that generates and detects THz radiation
in a synchronous and coherent manner. By contrast, the newly developed THz quan-
tum cascade laser is a narrow-band radiation source that provides potential for realis-
ing compact systems; they produce image data with higher average power levels. The
third part of this Thesis discusses methods to improve the capability of both broad-
and narrow-band terahertz imaging, driven by computer-aided analytical techniques.
A wavelet based reconstruction algorithm for terahertz computed tomography is rep-
resented to show how this algorithm can be used to rapidly reconstruct the region of
interest (ROI) with a reduction in the measurements of terahertz responses, compared
with a standard filtered back-projection technique. These reconstruction algorithms are
applied to the analysis of acquired experimental data and to locally recover the two-
dimensional (2D) and three-dimensional (3D) structures of several optically opaque
objects. Moreover, a segmentation technique based on two dimensional wavelet trans-
forms is investigated for the identification of different materials from the reconstructed

CT image.
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Conventions

The following conventions have been adopted in this Thesis:

1. Definitions. The T-ray band is defined in this Thesis to span from 0.1 to 10 THz (THz
= 102 Hz). This is an emerging definition in the literature. The T-ray band overlaps a
little with the millimetre wave band (at lower T-ray frequencies) and the far-infrared

band (at higher T-ray frequencies).

2. Notation. The acronyms and symbols used in this Thesis are defined in the Glossary
on p. 403. Standard abbreviations are used for the order of magnitude: T, tera-, 1012, G,
giga-, 10%; M, mega-, 10%; k, kilo-, 103; m, milli-, 10~3; 1, micro-, 10~%; n, nano-, 10~?; P,
pico-, 10712 f, femto-, 10~ 15.

3. Units. All T-ray electric field amplitude data in this Thesis is expressed in arbi-
trary units (AU). This means that the amplitude of the T-ray electric field has been
normalised to a peak measurement, or to another reference measurement on the same

system, depending on the experiment.

4. Spelling. Australian English spelling conventions have been used, as defined in
the Macquarie English Dictionary (A. Delbridge (Ed.), Macquarie Library, North Ryde,
NSW, Australia, 2001).

5. Typesetting. This document was compiled using LATEX2e.

6. Mathematics. MATLAB code was written using MATLAB Version 7.0. Manufac-
turer: the MathWorks Inc., Natick, MA, USA; URL: http:/ /www. mathworks.com.

7. Referencing. The Harvard style has been adopted for referencing.
8. Diagram colours. The following colour scheme is approximately followed in the
diagrams:

e Blue: T-ray beams (T-rays are invisible to the naked eye).

e Red: laser beams (the majority of laser beam sources appearing in the diagrams

are from optical femtosecond lasers).

e Yellow: motion stages and samples (motion stages represent moving equipment,

and samples can be composed of a wide variety of substances).
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e Orange: electrooptic and semiconductor crystals (these are typically T-ray sources

and detectors).

e Black/white: equipment, including optical components such as lenses and beam

splitters.

9. URLs. Universal Resource Locators are provided in the Thesis for finding informa-
tion on the world wide web using the hypertext transfer protocol (HTTP). The infor-

mation at the locations listed was current on 315t December 2008.
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