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Abstract

Brain computer interface (BCI) systems measure brain signal and translate 

it into control commands in an attempt to mimic specific human thinking 

activities. In recent years, many researchers have shown their interests in BCI 

systems, which has resulted in many experiments and applications. However,

most methods are just based on a specific selected dataset or a typical 

feature. As a result, there are questions about whether some methods 

generalise well on other datasets. Therefore, the major motivation of this 

thesis is to compare various features and classifiers described in the literature. 

Pattern recognition is considered as the core part of a BCI system in our 

research. In this thesis, a number of different features and classifiers are 

compared in terms of classification accuracy and computation time. The 

studied features are: time series waveform, autoregressive (AR) components, 

spectral components; these are used with different classifiers: such as

template matching, nearest neighbour, linear discriminant analysis (LDA),

Bayesian statistical and fuzzy logic decision classifiers. 

In order to assess and compare these different features and classifiers, an 

extensive investigation was carried out on a public dataset (imagined left or 

right hand movement) from an international BCI competition and the results 

are reported in this thesis. The classification was done in a continuous fashion, 

to match a real time application. In this process, the average and best 

accuracy, as well as the computation time, were analysed and compared. The 

results showed that most classifiers achieved very high accuracies and short 

computation times for most features.

A BCI experiment based on imagined left or right hand movement was 

carried out at the University of Adelaide and some investigations on the data 

from this experiment are discussed. The result shows that the selected 

classifiers can work well with this new dataset without much additional

preprocessing or modifications. 

Finally, this thesis culminates with some conclusions based on our 

research, and discusses some further potential work.



viii



ix

Abbreviations

ALS:   

ANN:          

AR:             

BCI:            

CSP:           

CSSD:          

DFT:            

ECoG:        

EEG:                     

EM:              

EMG: 

EOG:           

ERD:           

ERS:              

FFT:           

FMRI:           

GMM:           

LDA:            

LMS:            

LOO:             

MLP:             

PDF:    

         

Amyotrophic Lateral Sclerosis

Artificial Neural Network

Autoregressive

Brain Computer Interface

Common Spatial Pattern

Common Subspace Decomposition

Discrete Fourier Transform

Electrocorticography

Electroencephalography

Expectation Maximization

Electromyography 

Electrooculography 

Event Related Desynchronization

Event Related Synchronization

Fast Fourier Transformation

Functional Magnetic Resonance Imaging

Gaussian Mixture Models

Linear Discriminant Analysis

Least Mean Square

Leave One Out

Multi-Layer Perceptron

Probability Density Function

http://mathworld.wolfram.com/DiscreteFourierTransform.html


x



xi

List of Figures

Figure 1.1 A typical Brain Computer Interface system .....................................2
Figure 1.2 Main parts and functional areas of the brain ...................................3
Figure 1.3 Geometric mapping between body parts and motor cortex.............5
Figure 1.4 International 10-20 System of Electrode Placement .......................5
Figure 1.5 Feedbacks in a closed loop BCI system .........................................8
Figure 2.1 The process of pattern recognition................................................16
Figure 2.2 Averaged time series waveforms of two thinking activates .........  17
Figure 2.3 Extracting AR coefficients feature.................................................18
Figure 2.4 Spectral peaks and AR poles........................................................19
Figure 2.5 Different R values with different AR order in channel C3 or C4 and 
class of imaginary left or right hand movement  .............................................20
Figure 2.6 Distribution of alpha band powers in channels C3 and C4. ...........22
Figure 2.7 Averaged asymmetry ratios over time in different classes.............24
Figure 2.8 Distribution of CSP features..........................................................28
Figure 3.1 Averaged time courses (imaginary left hand movement) of the 
absolute amplitudes .......................................................................................32
Figure 3.2 Averaged time courses (imaginary right hand movement) of the 
absolute amplitudes .......................................................................................32
Figure 3.3 Using LDA for the alpha band power in channels C3 and C4 .......37
Figure 3.4 The same number of Gaussian prototypes for different classes ...38
Figure 3.5 Evenly divided alpha band power feature space...........................40
Figure 3.6 Feature space is divided by k-means algorithm............................41
Figure 3.7 Estimated clusters of the alpha band power feature using the EM 
algorithm ........................................................................................................43
Figure 3.8 A Fuzzy logic classification system. ..............................................44
Figure 3.9 Membership functions for two inputs of the fuzzy logic classification 
system............................................................................................................45
Figure 3.10 Different if-then rules are combined to make a final decision......46
Figure 3.11 The alpha band power feature space is divided by an output 
surface. ..........................................................................................................48
Figure 3.12 Output Membership functions of the fuzzy logic classification 
system............................................................................................................49
Figure 4.1 Relationships of the Kappa and ITR with accuracy for the 2-class 
problem. .........................................................................................................54
Figure 4.2 Classification accuracy versus time for the band power feature and 
the LDA classifer............................................................................................56
Figure 4.3 Classification accuracies versus time for 3 template building 
methods. ........................................................................................................56
Figure 4.4 Classification accuracy versus time for the correlation sequence 
method ...........................................................................................................57
Figure 4.5 Classification accuracies versus time for the AR coefficients feature
with 3 classifiers.............................................................................................58
Figure 4.6 Classification accuracies versus time for the band power feature 
with 3 classifiers.............................................................................................59
Figure 4.7 Classification accuracies versus time for the principal eigenvector
feature with 3 classifiers.................................................................................62



xii

Figure 4.8 Classification accuracies versus time for the common spatial 
pattern feature with 3 classifiers.....................................................................62
Figure 4.9 Classification accuracies of all possible combinations of training 
and testing periods runs.................................................................................64
Figure 4.10 The best classification accuracies for different features and 
classifiers .......................................................................................................66
Figure 4.11 Computation times for different features and classifiers. ...........67
Figure 5.1 The equipment and indicator used in the experiment ....................69
Figure 5.2 Sequence of experimental events.................................................69
Figure 5.3 Classification accuracies versus time for time series waveform 
template(s) for the reference recording dataset .............................................71
Figure 5.4 Classification accuracies versus time for the AR coefficients feature 
with the LDA and Bayesian statistical classifiers for the reference recording 
dataset. ..........................................................................................................72
Figure 5.5 Classification accuracies versus time for the band power feature 
with the LDA and Bayesian statistical classifiers for the reference recording 
dataset. ..........................................................................................................73
Figure 5.6 Classification accuracies versus time for the common spatial pattern 
feature with the LDA and Bayesian statistical classifiers for the reference 
recording dataset............................................................................................74



xiii

List of Tables

Table 1.1 Common EEG waves and their frequency range .............................3
Table 4.1 An example of confusion matrix .....................................................53
Table 4.2 Classification results using template matching...............................58
Table 4.3 Classification results using AR components ..................................59
Table 4.4 Classification results using spectral components ...........................60
Table 4.5 Classification results using eigenvector components .....................62
Table 4.6 Classification results using features extracted in two different ways
.......................................................................................................................64
Table 5.1 Classification results for the reference recording dataset...............74
Table 5.2 Classification results for the bipolar recording dataset ...................74

Publication

Ruiting YANG, Douglas A. GRAY, Brian W. NG, Mingyi HE, Comparative 

Analysis of Signal Processing in Brain Computer Interface, accepted by the 

4th IEEE Conference on Industrial Electronics and Applications, Xi’an China 

25-27, May, 2009



xiv



1

Chapter 1 Introduction and Literature Review

This chapter introduces background materials for the research reported in 

this thesis. It begins with a brief introduction to Brain Computer Interface (BCI) 

in section 1.1. This is followed by a summary of physiology literature related to 

this research in section 1.2 and a technical description of the key parts of a

Brain Computer Interface, including signal acquisition, signal processing, 

application and feedback in section 1.3. Section 1.4 provides a literature 

review of BCI techniques, including experiments, features and classifiers in 

BCI research. Finally, section 1.5 states the major aim of this thesis.

1.1 Concept of Brain Computer Interface

A disabled person, such as a serious amyotrophic lateral sclerosis (ALS) 

patient, may lose the ability to exercise language and muscle functions, which 

are two common ways of human information output. The communication 

pathway to the outside world can be restored for these patients if their

intentions can be translated from their brain signals into actions by the use of 

a machine. Brain Computer Interface research aims to provide the means of 

fulfilling this promise.

Brain Computer Interface research provides a new communication channel 

from humans to devices via a computer. At the first international meeting for 

BCI technology, it was agreed to define the term BCI as a system that does 

not depend on the brain’s normal output pathways of peripheral nerves and 

muscles [1]. According to the definition, a Brain Computer Interface should be 

able to detect human intentions and translate them to the computer where 

suitable actions are carried out. Typically, a BCI system consists of several 

components: brain signals, signal acquisition, signal processing, operation of 

application and feedback presentation. Human intentions modulate the 

electrical brain signals which are detected and recorded by the signal 

acquisition block and then filtered by the signal preprocessing block. The 

signal processing block, which includes processes such as feature extraction 

and classification, subsequently analyses the captured signals and provides 
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the corresponding instructions to appropriate devices. During the operation of 

these devices, some feedback may be returned to the user(s). The block 

diagram of a BCI system is shown in Figure 1.1.

Figure 1.1. A typical Brain Computer Interface system.

BCI signal acquisition systems are broadly divided into two classes,

defined in terms of the manner with which the brain signal is captured, and 

these are known as invasive and non-invasive methods. The invasive 

approach relies on using electrocorticography (ECoG) 1 from electrodes 

implanted inside the skull and it has been applied to some epilepsy patients 

[42] and monkeys [8]. The non-invasive approaches are based on using 

electroencephalography (EEG) from electrodes on the scalp or imaging

techniques, such as functional Magnetic Resonance Imaging (fMRI) [12, 13]. 

For the BCI applications, the advantages of using the ECoG include higher 

signal to noise ratio [43], shorter training time [42] and being free of problems 

with muscular and ocular artifacts [45]. These advantages generally ensure 

greater classification accuracy. However, surgery and the subsequent

recovery period pose great risks for the patient. Additionally, it is hard to find 

volunteers for such methods and the applications would be limited to a few 

patients with serious neurological problems or animals. So far, fMRI 

technology is too expensive and the equipment is not portable for a broad and 

practical use in BCI. Therefore, the non-invasive EEG is still the most 

preferable signal acquisition technique in current BCI research.

                                               
1 Electrocorticography (ECoG) uses electrodes placed directly on the surface of brain to record 
electrical activity from the brain cerebral cortex.

Signal 
acquisition

Signal pre-
processing

Feature 
extractionClassificationApplication

Brain
SignalsMind task

Feedback
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1.2 Physiology background

1.2.1 The human brain 
The average human brain only weighs about 1400 grams but it contains 

billions of neurons and the number of synapses in the brain, estimated to be 

on the order 1014 [68]. There are four main parts in the human brain: cerebral 

cortex, diencephalon, cerebellum and brain stem [41]. The most relevant part 

to BCI is the cerebral cortex and it can be divided into two hemispheres. From 

the topographic aspect, each hemisphere can be divided into frontal, parietal, 

occipital and temporal lobes. According to relevant functions, the hemisphere 

can be divided into several areas, such as auditory cortex, sensor motor 

cortex. These areas can be seen in Figure 1.2.

Figure 1.2. Main parts and functional areas of the brain [40]

1.2.2 Electroencephalography (EEG)

EEG reflects electrical activities continuously produced in the brain and is

typically described in term of rhythmic brain waves, which are primarily 

grouped together according to their frequency. Some common EEG waves

are named after Greek letters and shown here in Table 1.1. 

Name Frequency (Hz)
Delta(δ) Up to 3
Theta(ө) 4~7
Alpha(α) 7~13
Beta(β) 14~26

Gamma(γ) 34~100

Table 1.1. Common EEG waves and their frequency range

a1172507
Text Box
 
                                          NOTE:  
    This figure is included on page 3 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Different brain waves have different signal intensities at a given location of 

the scalp and usually arise from different thinking activities. For example, the 

alpha rhythm (7-13 Hz) always exists in the occipital regions, when a healthy 

adult is relaxed or has his/her eyes closed. It is generally involved in 

perceptual, judgment and memory functions [18]. The beta rhythm (14-26 Hz)

is prominent when people are excited or active. In addition to these common

brain waves, another brain wave, mu rhythm, appears over the primary 

sensorimotor cortical areas, when a body movement is suppressed or when 

there is an imagined movement [4]. With a hand movement (or a mental 

imagery of the hand movement), it characteristically attenuates the signal in 

relevant positions on the contralateral side. The mu rhythm occupies the same 

frequency range as the alpha rhythm and peaks at about 10 Hz. Central beta 

rhythm is another kind of sensorimotor related brain wave, and peaks at 20 Hz. 

It is similar to the mu rhythm but with different locations and shorter recovery 

time after the signal attenuation [38]. 

In summary, EEG signals in the range 7~30 Hz form the main frequencies 

of interest for a motor cortex based BCI system, more specifically, 7~13 Hz for 

the mu rhythm and 14~26 Hz for the beta rhythm. The mu rhythm has the 

same frequency as alpha rhythm, so, the frequency band of mu rhythm is 

usually labeled as alpha band and similarly, the band of 14~26 Hz is labeled 

as beta band.

Each part of the human body has a corresponding region in the motor and 

somatosensory area of the neocortex (see Figure 1.3). For example, the left 

hand is represented laterally on the right hemisphere and the right hand on 

the left hemisphere. Specifically, they correspond to positions C4 and C3 in 

the International 10-20 System of Electrode Placement [32], which is shown in 

Figure 1.4. The mapping of brain area to function is reasonably consistent, but 

there is still some variance among individuals [67]. Subsequently, there is also 

some variance in the placement of electrodes, which has resulted in some

BCI systems not being able to work consistently on every subject [31]. When 

a BCI system aims to provide solutions for a particular individual rather than a 

general group, the electrode placement can be optimised by an experienced 

technician. When a subject is relaxed and not engaged with one of his/her 
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limbs (real or imagined), the intensity of the idle brain signals in related 

positions lie in a specific range but are not zero. When the subject starts to 

move his/her arm or even tries to imagine a movement of the arm, there will 

be an attenuation to the idle rhythm around 7~30 Hz, specifically, 7~13 Hz for 

the mu rhythm and 14~26 Hz for the beta rhythm. As the attenuation effect is 

due to suppression of synchrony in neural system, it is termed as event 

related desynchronization (ERD). There is also an effect of enhancing signal 

intensities in these two frequency bands, which is termed event related 

synchronization (ERS) [46]. Imagining different movements can cause 

different ERD and ERS effects on the idle signal and produce different 

modulated signals. This is the main physiological cue used by BCI systems to 

identify a subject’s thought. 

Figure 1.3. Geometric mapping between body parts and motor cortex [39]

Figure 1.4. International 10-20 System of Electrode Placement [37]

a1172507
Text Box
 
                                          NOTE:  
    This figure is included on page 5 of the print copy of 
     the thesis held in the University of Adelaide Library.

a1172507
Text Box
 
                                          NOTE:  
    This figure is included on page 5 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Since the sampling rate of typical EEG acquisition equipment is much 

higher than the Nyquist frequency required for EEG signals (e.g., two datasets

used in this thesis), the temporal resolution is usually good but the spatial 

resolution is poor due to the relatively large distance (a matter of centimeters)

between electrodes and the EEG overlapping from different areas. The spatial 

resolution can be improved by using surface Laplacian filters [69], but this 

relies on using more electrodes in the signal acquisition. Both spatial and 

temporal data are available, so, the problem can be viewed as a space-time-

processing problem although most researchers have treated the processing in 

the spatial and temporal domains separately. Usually, data are processed 

spatially and then analysed in the temporal domain (e.g., [4, 6]). 

1.3 Key components of a Brain Computer Interface system

As discussed above, a BCI system consists of several components. 

Technically, the BCI system can be divided into 3 key parts: signal acquisition, 

signal processing and application. Additionally, feedback has been used in 

certain BCI systems and these then form closed loops.

1.3.1 Signal acquisition and pre-processing

The EEG signal can be recorded easily and with inexpensive equipment

(specifically, several electrodes and an amplifier). In order to capture the

proposed EEG signals, it is important to accurately place electrodes on the 

correct positions according to the International 10-20 System of Electrode 

Placement. When the signal is captured, an amplifier amplifies it with typically

60–100 dB of voltage gain. Such large gains are necessary since the 

amplitude of EEG signals is about 100 µV [41]. In this process, the captured 

analogue signal is sampled to produce a digital signal by the acquisition 

equipment. Usually, before further analysis, it is necessary to perform some 

pre-processing, such as filtering out unnecessary frequency components and

removing artifacts. It is noted that artifacts measured by electromyography 

(EMG)2 and electrooculography (EOG)3 can seriously degrade the EEG signal.

                                               
2 Electromyography (EMG) is a technique to measure the activation signal of muscles.
3 Electrooculography (EOG) is a technique to measure the resting potential of the retina.
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1.3.2 Signal Processing

When the EEG signals have been transmitted to a computer, signal 

processing algorithms convert them into control commands, which are sent to 

devices. The conversion algorithm typically has two stages: feature extraction 

and classification. Feature extraction aims to obtain the most appropriate 

features which reflect differences between various classes of brain signals, 

while classification aims at determining the class to which any particular brain 

signal belongs. If a subject’s intentions could be identified accurately, it would 

be straight forward to issue relevant commands to the electromechanical 

devices that make the physical control movements. At this stage, the problem 

is one of controlling such devices and falls outside the scope of this thesis. 

Therefore, the core of a BCI system is considered as a pattern recognition 

system and the research in this thesis focuses on the feature extraction and 

classification algorithms used in BCI. 

Normally, the recorded EEG signals can reflect relevant brain activities but 

it is currently impossible to identify every intention, because the understanding

of neural activities is still limited and only a few patterns of intentions are 

known well .  Additionally, thinking processes are always complex and 

changeable, which also makes the patterns complicated. However, it is

unnecessary to know every intention, since the practical applications of BCI 

can be achieved by identifying a limited set of intentions. For example, in a 

gaming environment, the basic operations, such as turning left or right in a 

virtual car on a screen, can be achieved by imagining left or right hand 

movement. Therefore, in current research, it is sensible to focus on detecting

some recognizable intentions, such as imaginary hand movements, rather 

than general thoughts. 

1.3.3 Application

The classification process produces a trigger or control command for 

devices. However the control aspect can have an influence on the nature and 

specification of the signal processing block as different control strategies 

place different demands on the signal processing. In BCI research, offline

classification is easier since a longer time is allowed to make decisions.
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However, for many practical applications, real time operation is a key 

requirement, and in this case only short time delays are acceptable, since a

control process should track a subject’s thinking in a timely manner. Therefore,

the classification must be finished promptly when online operation is required.

Further, classification results may be used as continuous inputs to a control 

system rather than just a command. 

1.3.4 Feedback

A BCI system is usually a closed loop system and two types of feedback

are involved in, as shown in Figure 1.5. The two types of feedback result in a 

mutual learning process, which helps both a subject and computer adapt to 

each other.  Bio-feedback is helpful for the user to acquire the skills of 

controlling his/her EEG response in a BCI system and machine feedback is 

essential to modify the classifier and training dataset. The bio-feedback may 

speed up the learning process and improve performance, because feedback 

would give subjects the motivation to stay concentrated for the length of the

trial and would help subjects to correct their thinking model in reaction to a 

wrong classification. The performance of an application can be used as the

feedback, for example, in a game scene, whether the movement of a cursor

on screen follows the decoded intentions. On the other hand, there may be

some harmful effects from the bio-feedback, such as provoking feelings of 

frustration, attempts to guess the next cue or intention and inducing EEG 

artifacts from visual stimulus.

Figure 1.5.  Feedbacks in a closed loop BCI system.

Bio-feedback

Machine feedback
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1.4 Literature review

Research in the field of BCI has a short history. In the 1970’s, several 

scientists developed some simple BCI projects that were driven by electrical 

activity recorded from the head. Among them, the most successful project,

which aimed to control the movement of a cursor, was carried out by Dr.

Jacques Vidal [1].  In recent years, many groups around the world have 

investigated BCI systems, resulting in many experiments and applications

such as cursor [4], wheelchair [29] and robot [7] control, and very high 

recognition rates have been achieved. However, it is hard to compare the 

performances due to different experimental arrangements and measurement 

techniques. Some of these experiments were performed on the paralyzed

subjects [44], but the majority of them were performed on healthy users. In an

international BCI competition [15], it became obvious that some of the 

submitted algorithms did not generalise well to other BCI datasets. Therefore, 

it invited doubts as to whether BCI systems could work generally rather than 

only for some specific data. On the other hand, extensive research [31] in 

Graz showed that using 99 subjects, 70% of the sessions were classified with 

an accuracy of 60% to 80%, which proves that the BCI research can be useful

for universal users.

1.4.1 BCI experiments

For a BCI experiment, the number and position of electrodes is the initial 

issue to consider. Generally, using more electrodes requires greater effort in

the preparation and recording of data. As a result, there is a trend that many 

researchers prefer to use only a few electrodes. Usually the recording method 

is to use bipolar electrodes or electrodes with a common reference electrode, 

typically located on an ear or an event irrelevant position. Typically, two 

electrodes were used at positions C3 and C4 as a bipolar channel and the 

difference between them was detected as the signal [47]. Some motor based 

BCI systems used positions C3, C4 and Cz to record three-dimensional EEG 

signals, as described in the literature from Graz [6, 28]. More electrodes were 

used by some researchers, such as the 13 electrodes used for a wheelchair 

application [29]. Almost all the researchers use the standard international 10-
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20 System of Electrode Placement and many of them focus on the positions

C3 and C4 when attempting to classify imaginary movements. Even when 

more electrodes were involved, they were either only used as the reference 

electrodes or even ignored in further processing [6]. 

There are several kinds of tasks designed for the BCI applications, such as

imagining hand [28] and feet [9] movements. Most systems are based on the 

synchronous protocols, which usually limit the thinking in several seconds 

after a given cue [3, 11, 17]. In contrast, the asynchronous protocols were 

used in some research, which allows the subjects to imagine some given task 

but without the use of a cue [4, 7, 9]. 

1.4.2 Feature selection

Determining suitable features is a key precursor to a successful BCI 

system. Many features have been investigated in BCI research, such as

amplitude of EEG signals [11], band powers [7, 9, 31, 52], phase 

synchronization [3], matched filter outputs [4], and regressive parameters [27-

29]. In practical feature extraction of EEG signals, the following issues need to 

be considered:

Normally, the EEG signal or BCI features are noisy. Low pass filtering is 

used extensively, since most sources of noise have many higher frequency

components while the signals do not. Artifact removal is usually performed

manually during the experiment, such as visual inspection or monitoring the 

eye movements (e.g. blinks) with an electrode [6]. The method of linear 

regression has been used to remove the artifacts by automated correlation [48,

49]. Instead of removing the artifacts, some methods aim to transform the 

signal to a new space, such as the common spatial pattern (CSP)  technique 

[33] or separate the task related EEG from the artifacts, such as common 

subspace decomposition (CSSD) [10,11]. These methods are based on the 

Karhunen-Loève transform [23], which will be discussed in the next chapter.

Another issue is the high dimensionality of BCI features. BCI feature 

vectors often have high dimensionality since numerous electrodes are used. 

Actually, the useful features are generally extracted from only a subset of all 

available channels. Besides judging and placing electrodes at correct
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positions in an experiment, some methods have been considered to reduce 

the number of features. For example, 9 channels were removed while the 

remaining 19 channels were kept and used as features in reference [11]. The 

authors compared the difference of EEG amplitudes in the same channels 

between a subject’s thinking activities corresponding to different classes and 

rejected the irrelevant channels. In another study [3], the number of electrodes 

was reduced from 22 to 7 by selecting some typical geometric positions on the 

subjects’ head. In another study [6], a reference was obtained for an electrode 

by applying a Laplacian filter to the 4 nearest neighbours. In doing so, the 

dimension of signal was reduced by 4.

BCI features should contain some time information as thinking activities 

and response are related to specific events in time. To reflect these activities,

features extracted from EEG signals must be able to change over the period 

of each session or trial. To deal with a time course of the EEG signal, two 

main approaches utilising temporal information have been proposed. The first 

method is to divide the time course into several segments with a fixed time 

window and to extract features from one of them or a combination of different 

segments.  The most common examples are to estimate spectrum from the 

samples in a fixed time window [3, 4, 14, 35, 53] and moving the window

during the process. The other method is to deal with the time course with a 

changeable size window and work as a dynamic classification [27-29]. The 

extreme example is to use all previous time information at every sample [34]. 

This has been used to achieve satisfactory results; adaptive classification (see

1.4.3) in [16, 17] is based on updating the classifier through renewing the 

feature space as new temporal information becomes available. 

1.4.3 Classification

Classifiers have been investigated intensively by machine leaning 

researchers and several kinds of classifiers have been applied to BCI

systems. Four basic categories are reviewed here: nearest neighbour

classifiers, neural networks, linear classifiers and Bayesian statistical 

classifiers. 
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1.4.3.1. Nearest neighbour classifiers

The nearest neighbour classifiers have been used in BCI systems but 

usually in the role of a baseline for comparison purposes. Basically, they 

assign a feature vector to a class according to the one or k nearest 

neighbours. Usually, those neighbours are determined by Euclidean distance. 

An example is the work of Blankertz et al [21]; EEG signals were low pass 

filtered and cut off at 5 Hz or without any pre-processing, then, signal 

amplitudes in different channels were used as features and the k nearest 

neighbour approach was used as the classifier, but the performances were

not satisfactory. However, in study [22], the normalized signal amplitude 

feature was simplified by a Karhunen–Loève transform [23] and good 

performance was achieved by the combination of the simplified feature and 

the nearest neighbour classifier. Another study [29] used the averaged 

correlation coefficient as the feature and the nearest neighbour classifier to 

obtain nearly 80% for the recognition rate.

In the above examples, only the Euclidean distance was used. Euclidean 

distance considers that equiprobable classes have the same diagonal

covariance matrix, while the Mahalanobis distance considers the situation for 

non-diagonal covariances [20]. There are scarce examples of the 

Mahalanobis distance based classifiers in BCI literature. Babiloni et al applied 

the combination of spectral features and a Mahalanobis distance based 

classifier to a dataset which involved 8 subjects and achieved very high 

accuracy [24].

1.4.3.2. Neural network

Artificial neural network (ANN) is a popular non-linear classifier. When 

composed of sufficient neurons and layers, a neural network can approximate 

any continuous function and any number of classes can be classified by it [20]. 

This makes the Multi-layer perceptron (MLP) a very flexible classifier that can 

adapt to a great variety of problems. Anderson et al [14] have applied a neural

network classifier with AR coefficients to BCI research. However, it was found 

to be necessary to make some improvements to both of the AR model and 

classifier. Meanwhile, other attempts have been made to apply neural
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networks to BCI, such as the research in Oxford and Graz [25, 26]. However,

computation of the MLP classifier is complex and runs the risk of being 

trapped in local optima [20]. In addition, the MLP is a universal approximator, 

so it tends to suffer from over training. Especially, the non-stationary nature of 

the EEG data will make it very difficult for the neural networks to achieve the 

optimal result. Therefore, neural network classifiers are not popular in BCI 

research and will not be discussed further in this thesis.

1.4.3.3. Linear classifiers 

Linear classifiers have been used in BCI research extensively, due to their 

simplicity and low computational requirements [20]. Almost all the features 

can b e  u s e d  i n conjunction with linear classifiers, such as phase 

synchronization [3], band powers [9, 31], common spatial pattern [2, 6], AR 

coefficients [27, 28, 31] and most of them obtained really good results.

Linear support vector machine has also been used in BCI systems as a 

linear classifier and also demonstrate very good performances, as shown in

references [21, 30].

1.4.3.4. Bayesian statistical classifiers

Bayesian statistical classifiers form another broad kind of classifiers used 

in BCI research. Researchers in Berlin [34] used amplitudes at frequencies of 

10 and 20 Hz and estimated a Gaussian model for each class to compute the 

probability of a feature associated with the class. Similarly, the researchers in 

the IDIAP research institute [7, 17] divided the band powers into narrow sub-

band powers and used these as features and inputted them into Gaussian

classifiers to achieve satisfactory results. However, in order to enhance the 

accuracy with non-stationary EEG features, a higher number of Gaussian 

prototypes were selected for each class, which increased the computation 

times and required some sophisticated methods to judge from results of 

several Gaussian prototypes. 

The hidden Markov model is a type of stochastic modeling appropriate for 

non-stationary stochastic sequences, with statistical properties that undergo 

distinct random transitions among a set of stationary processes [20].  It has 

also been applied to BCI research [35] where i t  was shown that the
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classification obtained using this approach is optimal at the end of the trial. 

This is an advantage, compared with other BCI systems where the optimal 

time is not known in advance.

1.4.4. Adaptive classification 

A classifier trained on data from one subject will probably not work very 

well for a new subject, perhaps not even for a new session with the same 

subject. One study [16] has successfully applied adaptive classification to BCI. 

In order to suit a new situation, the hyperplane of a linear classifier was shifted 

after applying an updated retraining step. The results showed that surprisingly 

simple adaptive methods in combination with an offline feature selection 

scheme can significantly increase BCI performance. In this approach, the 

parameters of the classifier were flexible enough to follow the dynamic EEG 

data. In a study [17], the authors applied supervised online learning in the 

initial training phase and the Gaussian classifier was modified by recalibrating 

the centre and covariance of each Gaussian prototype. Essentially, the 

adaptive classification reduces the error (or some similar cost functions) 

through retraining and updating the feature space. 

1.5 Major aims of this thesis

From the literature above, many kinds of classifiers have been applied to

BCI systems, but most investigations have been based on specific selected 

datasets or typical features and classifiers. As a result, there are still 

outstanding questions about (1) what constitutes the best set of features to 

use and (2) how generalisable are these classifiers to other features or 

datasets. Therefore, the major aim of this thesis is to compare some of the 

features typically used in BCI research and to compare various classifiers 

described in the literature on the same dataset to enable valid comparisons to 

be carried out.
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Chapter 2 Feature Extraction

The signal processing block is fundamental to BCI when it is viewed as a 

pattern recognition system.  This chapter concentrates on the first part of 

signal processing: feature extraction. Some basic concepts about feature 

extraction are introduced in section 2.1. The investigated features, including 

time series waveform, spectral components, autoregressive (AR) components

and eigenvector components, are discussed in sections 2.2 to 2.5,

respectively.

2.1 What is feature and feature extraction?

It is common to classify similar objects in the same class, and two different 

classes can be distinguished according to their differences. In order to identify

the class of a given object, it is important to extract some properties which can 

reflect the similarities in the same class as well as differences between 

classes. In pattern recognition, features are measured or derived properties

from the object (or process) of interest, which contain distinctive information 

allowing different type of objects (or processes) to be clearly differentiated.

Different thinking activities often result in different patterns of EEG signals, 

but the differences between the recorded signal waveforms are not always 

immediately obvious on inspection. In particular, the signals of interest can be 

hidden in a highly noisy environment or the EEG signals may consist of a 

superposition of a large number of simultaneously active brain sources that

are typically distorted by artifacts such as EOG and EMG. Indeed, the signal 

itself may not always be stable. Therefore, it is crucial for a BCI system to 

extract a suitable feature set which distills the required inter-class 

discrimination information in a manner that is robust to various contaminants 

and distortions. 

Choosing good discriminating features is the key to any successful pattern 

recognition system and as discussed above, it is usually hard for a BCI 

system to judge a thinking activity just using raw data, which are very noisy. 

Therefore, the raw data must be transformed to a reduced representative set 
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of features for use by the classifier. The process is shown in Figure 2.1. The

process of mapping the original measurements into more effective features is 

generally called feature extraction or feature selection [50]. A desirable 

characteristic of any feature set is reduced representation size, which implies 

low dimensional features, but the reduction must not be at the cost of 

removing relevant information that discriminates between the classes. In BCI 

research, both signal processing intuition and physiology knowledge should 

be involved in the feature extraction. 

Figure 2.1. The process of pattern recognition 

2.2 Time series waveform template

Recall from Chapter 1 that multi-channel EEG signals are recorded using

different electrodes. The signal in each channel is recorded as a sequence of 

data points sampled at regular times; this is termed the time series and

describes the shape and form of a signal in the time domain. Both temporal

and spatial signal processing can be applied to the multi-channel time series, 

which contain both temporal and spatial information. 

Due to experimental protocols, BCI time series usually include the idle 

signal and the attenuation caused by ERD and enhancement caused by ERS. 

As discussed earlier, different thinking activities have different effects on EEG 

signals and may cause different distortions to the waveform, so it is 

hypothesized that the differences between classes should be reflected in the 

shape of the time series waveforms, and hence the time series waveform was

the first feature tested in this research. 

The average time series waveforms of training trials in one of the datasets

for each class (imagining left or right hand movement) in two channels (C3 

and C4) are shown in Figure 2.2. It shows that the waveforms of both 

channels are similar before 4 seconds, when the subject was relaxed (more 

details are described in Chapter 4). However, there are some differences

Recorded 
raw data

Feature 
extraction Classifier Decision
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between the waveforms of two thinking activities, especially in the period of 6-

8 s. In the first class, i.e., imagining left hand movement, the signal in C4 is 

suppressed more than in C3 and the waveforms in C3 and C4 are very 

different, while in the second class, i.e., imagining right hand movement, the 

signals in both channels are similar, but there is a trend that the signal in C4 is 

stronger than the synchronous signal in C3 during the period 7-8 s. Using the 

time series waveforms to distinguish the pattern of different thinking activities

relies on matching them with some extracted templates from training data;

more details of how this was done will be introduced in the next chapter.

Figure 2.2. Averaged time series waveforms of two thinking activates(imaginary left/ right 
hand movements). The waveforms were recorded from electrodes C3 and C4 and 70 trials 
were included in each class.

2.3 Autoregressive components

A random time series signal y(t) can often be described by an

autoregressive model of order p in the following form:

                     ,e(t)y(t-p)a)3y(t-a)2y(t-a)1y(t-a y(t) p321                 (2-1)

where e(t) is a white noise process with zero mean and variance σ2 [54]. Using 

more samples can provide a more accurate estimate of an AR model. In BCI 

research, it is supposed that different thinking processes produce different 

signals and the discriminative information can be captured by comparing the 

relevant AR model parameters.
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2.3.1 AR coefficients

The AR model expresses the signal characteristics through the AR 

coefficients a i , i = 1 ··· p. There are several classical algorithms for estimating 

the AR coefficients, such as the Yule-Walker, Burg, covariance and forward-

backward approaches [54]. It was found that all these algorithms provided

very similar results for the EEG signals analysed, when the above different AR 

algorithms were used to estimate the AR parameters of a 4-th order process 

using 512 random data points. The average AR coefficients were [-1.6555, 

1.4132, -0.8577, 0.3450], and the variance of these coefficients across the

different models were insignificantly small, i.e., 10-3× [0.1664, 0.6861, 0.5732, 

0.0922].

For multi-channel EEG data, a possible BCI system can produce AR 

coefficients for each channel and combine them as a feature vector. Denote 

the EEG signals captured from electrodes C3 and C4 as xC3(t) and xC4(t),

respectively. The AR coefficients are extracted from these channels 

independently using the least mean square (LMS) algorithm and placed into 

the vectors aC3(t) and aC4(t), where the first element is the first coefficient and 

the last element the last coefficient. The two p×1 vectors aC3(t) and aC4(t) are 

concatenated to form a feature vector f(t) of dimension 2p×1. The process is 

shown in Figure 2.3. 

Figure 2.3. Extracting AR coefficients feature

2.3.2 AR poles

Applying the z-transform to (2-1), gives
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An AR model's transfer function contains poles in the denominator and trivial 

zeros at z=0 in the numerator, so it is referred to as an "all-pole" model. The 

poles pi, are obtained by solving the roots of the AR coefficient polynomial in 

the denominator of H(z). Since the AR coefficients are real, the roots must be 

real or occur in complex conjugate pairs. Each pair of complex conjugate 

poles has a one to one relationship with the AR spectral peak in the z domain 

[55], where the sharpness of the peak is determined by the distance of the 

poles to the unit circle (see Figure 2.4). Specifically, the closer the poles are to 

the unit circle, the bigger is the amplitude of the spectral peak. A p-th order 

AR model has m peak frequencies where 
2
pm  , when p is even and 

2
1Pm 

 , when p is odd. Assuming that fs is the sampling rate of the EEG

signal, the AR pole is represented by ,e|p|jbap ij
iiii

 the phase i is 

obtained using )
a
b

(tan
i

i1
i

 , the amplitude is | pi |, and from reference [55] the

spectral peak frequency fi is given by

                                                  
2
f

2
f si
i 




 .                                                    (2-3)

The amplitude and phase of the AR poles can be chosen as a feature

vector, since they reflect the two main aspects of signal: intensity and 

frequency. 

Figure 2.4. Spectral peaks and AR poles
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2.3.3 Optimal AR order 

Actually, before calculating the AR coefficients, the order of the model, p, 

needs to be selected. The order of the model is a trade-off between accuracy 

and simplicity. A higher order gives a potentially more accurate model but 

produces a greater number of parameters increasing the dimension of the 

feature space and reducing the ability of the classifier to generalize.

For a signal y(t) with q samples, the ratio, R, between square error and 

average signal power, defined as,







 q

1pt

2

q

1pt

2

)t(y

)t(e

R                                               (2-4)   

is a measure of how accurately the model matches the processed data. R=1

means that the signal is a white noise process and R=0 means the signal 

could be modelled exactly by an AR process. Two AR models were estimated

for each of the 70 EEG time series in each class (corresponding to imaginary 

left or right hand movements); a separate model is estimated for each channel

(C3 or C4). For the signals in the same class and the same channel, average 

R values for different AR orders are shown in Figure 2.5. If the curve has a 

concave shape the optimal order can be obtained as the minimum point. 

Figure 2.5 shows the presence of a “knee” in each curve when the order is 

equal to 4. 

Figure 2.5. Different R values with different AR order in channel C3 or C4 and class of 
imaginary left or right hand movement  
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Additionally, from physiological considerations, it is known that only the 

brain signals in the alpha and beta bands are related to imaginary hand 

movements. Every brain wave has a peak value of its frequency spectrum and 

every spectral peak corresponds to a pair of AR poles (see Figure 2.3).

Subsequently, 2 spectral peaks correspond to 2 pairs of AR poles, therefore, 

the optimal AR order can be chosen equal to 4. Further analysis carried out 

has showed that choosing a higher AR order just gave more poles located 

near the origin and did not improve classification accuracy.

2.4 Spectral components

The EEG time series contains all the information but also mixes the 

information of interest with some redundant noise.  As discussed in Chapter 1, 

the EEG signals in channels C3 and C4 are similar to each other when the 

subject is relaxed, but the imaginary hand movements cause contralateral 

attenuations, which are reflected in significant differences between the signals 

in channels C3 and C4. Specifically, the alpha (7~13 Hz) and beta (14~26 Hz) 

bands are the two most prominent frequency bands where the modulation of 

signals happens. Therefore, it is instructive to analyse the EEG signals in the 

frequency domain. The most common way is to use the Discrete Fourier 

Transform (DFT) to generate the power spectrum, which gives a plot of the 

portion of a signal's power (energy per unit time) falling within given frequency 

bins, where the bin size is determined by the length of data analysed.

2.4.1 Alpha and Beta band power 

The alpha and beta bands are the two most prominent frequency bands in 

BCI research, where the signals are modulated by thinking activities. Besides 

the effect from blinks and emotion, the main effect is the contralateral 

attenuation effect from mu and central beta rhythms. There are some common 

ways to obtain the band powers, such as band pass filtering and squaring the 

samples; using the Fast Fourier Transformation (FFT) to transform the signal 

weighted by a Hamming window to the frequency domain and to calculate the 

signal power in the frequency bands of interest. Compared to the FFT 

method, the first method keeps amplitude but ignores phase information. 

http://mathworld.wolfram.com/DiscreteFourierTransform.html
http://mathworld.wolfram.com/DiscreteFourierTransform.html


22

Denoting the Fourier coefficients as Xv=av+jbv and the resolution of the FFT as 

∆f, the phase )
a
b(tan

v

v1 and the amplitude .|X|A v Varying the length of the 

Hamming window changes the frequency resolution of the amplitude and 

phase information obtained from the transform. For example, choosing ¼ 

second as the length of the Hamming window and taking the FFT of a signal 

with sampling rate fs, the complex coefficient Xv would contain the phase 

information of every frequency bin, spaced 4 Hz apart. The power in the 

frequency bands of interest are given by

  Alpha band power 



 

Hz13fv

Hz7fv

2
v |X|P ,                                     (2-5)

                            Beta band power 



 

Hz26fv

Hz14fv

2
v |X|P  .                                      (2-6) 

In this research, ∆f was set to 0.25 Hz, i.e., data of length 4 seconds was 

Fourier transformed. The alpha band powers in both channels C3 and C4 for 

different imagined movements are shown in Figure 2.6. As shown, there is a 

significant difference between the alpha band powers of the two classes. 

Therefore, the band powers in both channels C3 and C4 can be combined to 

form a very low dimensional feature vector. It is reported in a study [53] that

the phase information combined with band powers was used as a feature and 

better performance was achieved, but in our research, no improvement was

found when using the phase information, so it was not used further.

Figure 2.6. Distribution of the alpha band powers in channels C3 and C4. The red circle and 
green cross are symbols for alpha band powers of 70 imagined left and right hand 
movements respectively. 
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2.4.2 Spectrum density peak 

In spectrum analysis, an alternative to using the total energy in selected

frequency bands is to choose the peak value of power in these bands as the 

feature containing the discriminative information for determining motor 

activities. The peak value usually appears at approximately 10 Hz in the alpha 

band and 20 Hz in the beta band. This spectral peak for the alpha band is 

defined as:

                                                )|X(|maxP 2
vHz13fvHz7max,


  ,                               (2-7)

and similarly for the beta band                               

                                                )|X(|maxP 2
vHz26fvHz14max,


  .                                       (2-8) 

2.4.3 Asymmetry ratio

The signals in channels C3 and C4 are asymmetric during imagining hand 

movements, especially in the alpha and beta frequency bands, which is the 

main source of distinguishable information utilised in BCI. However, there is 

no direct explanation for the exact amount of change of signal intensities. A 

tentative idea is to work out whether there is a ratio, independent of signal 

absolute intensities, between the two channels which can indicate a 

corresponding task. To this end, we use the asymmetry ratio defined in [52] as:

)PP(
)P-P(

R
c4,c3,

c4,c3,
asy,




 

 ,                              (2-9)

where P,C3 and P,C4 are the alpha band powers (or spectrum density peaks) in 

channels C3 and C4 respectively. Similarly asyR , can be defined and used. 

The asymmetry ratio is based on the band power, therefore, it can be 

considered as a supplementary feature to the band power. 

In a dataset where a subject was asked to start imagining at 3 s and each 

trial lasted for 9 s (more details are described in Chapter 4), the averaged 

asymmetry ratios of 70 trials in each class (imagining left or right hand 

movement) are calculated, and averaged asymmetry ratios for different 

classes over a period of 9 s are shown in Figure 2.7. Obviously, during the 

relaxation phase, the difference between asymmetry ratios of different thinking 
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activities is very small, but during the imagining hand movement, the 

asymmetry ratios can reach ±50% and the difference between classes 

becomes very significant. 

Figure 2.7. Averaged asymmetry ratios over time in different classes. Asymmetry ratios of 70 
trials in each class were averaged, the red and green lines are for imagining left and right hand 
movement respectively.

2.5   Eigenvector elements analysis

2.5.1 Introduction 

The combined time series of m samples from n electrodes can be denoted

as a matrix,

.
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X is fully characterized by its distribution function, but it is difficult to determine

this distribution function. Instead of the raw time series or an estimated 

distribution function, it is preferable to use less complex but more computable 

variables such as the covariance matrix.

The covariance matrix indicates the dispersion of the signal distribution. It 

is defined by
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where E is the mathematical expectation operator and
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where Mi is the mathematical expectation of the signal from the i-th electrode.

In practice, Mi is estimated by averaging the signal values over m samples

from the same electrode, i.e.     
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.                        (2-14)

Thus, the covariance matrix is a symmetric matrix,  whi le i ts diagonal

components are the variances of individual random variables, and the off-

diagonal components are the covariances of pairs of random variables [50]. It 

quantifies the extent of linear relationships between the elements. In this case, 

it describes any linear relationship between the signals from different 

electrodes, so it quantifies spatial properties of the brain signals. 

Any matrix can be viewed as a linear transformation and its eigenvector

has the property of only changing in scale under this transform, and the value 

of this change is determined by the corresponding eigenvalue. Therefore, the 

eigenvectors reflect the basic components in a system and the eigenvalues 

indicate the relative prominence of the components.   

2.5.2 Principal Eigenvector

For an EEG signal X captured from n electrodes, its covariance matrix Σ is 

an n by n square matrix. The eigenvalues λ of this square matrix can be 

derived from the characteristic polynomial and the relevant eigenvector v can 

be obtained by solving the linear equation (Σ - λI) v=0, where I is the identity

matrix. Practically, the eigenvalues and eigenvectors can be estimated by QR 

decomposition algorithm [56].  

The eigenvector, with the largest corresponding eigenvalue, is termed the

principal eigenvector of Σ. The principal eigenvector describes the dominant 

http://upload.wikimedia.org/wikipedia/commons/1/11/De-eigenvalue.ogg
http://en.wikipedia.org/wiki/Eigenvalue#cite_note-13
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spatial variation of a given thinking activity, so, a hypothesis is that captured 

EEG signals from different thinking activities have different principal 

eigenvectors but the principal eigenvectors of EEG signals from the same 

class are similar. Therefore, the principal eigenvector can be used as a 

feature and the classification can be carried out by comparing the similarity 

between the principal eigenvectors from the test trials and those from the 

training trials. 

2.5.3 Common spatial pattern

In the 2-class problem of distinguishing between imaginary left and right 

hand movements, brain signal time series with length N samples are recorded 

by n electrodes. The recorded data set for each trial is denoted as the n by N

matrix X. For each trial, an n×n covariance matrix can be computed from the 

n-channel time series. All the covariance matrices obtained from trials of the

same class are averaged and the result is denoted as RL or RR, for the classes

of imagined left/right hand movements, respectively. A mixture of the 

covariance matrices of both classes, is denoted as R, which is defined by

                                                    R=RL+RR.                                              (2-15)

Since the covariance matrices RL or RR are symmetric, then so is R.

Common spatial pattern (CSP) [50, 51] is a technique for analysing multi-

channel data belonging to 2-class problems. I t  i s  based on the K-L 

decomposition, which aims to project the signal onto a subspace where 

differences between classes are highlighted and similarities are minimized. 

This is achieved by a signal decomposition using an n by n matrix W to project 

the recorded raw signal X to Xcsp, which lives in a new space, as follows:

                                                     Xcsp=WTX.                                            (2-16)

The matrix W is chosen such that it simultaneously diagonalizes two 

covariance matrices, i.e.

               WTRLW =ΛL                                            (2-17)

                                                               WTRRW=ΛR                                                         (2-18)

where the  ΛL and ΛR are diagonal matrices. In order to find the matrix W, X is 

first whitened by 
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                                                                     XΦY T2
1


 ,                                         (2-19)

where ө and Φ are the eigenvalue matrix and normalised eigenvector matrix

of R, respectively. Then R and RR are transformed to 

                                                     IRΦΦ   2/1T2/1 ,                                    (2-20) 

and

                                                  KΦRΦ   2/1
R

T2/1 ,                                      (2-21)

where I is the identity matrix, and in general, K is not a diagonal matrix. 

Now compute ψ and ΛR, which are the normalised eigenvector matrix and 

eigenvalue matrix of K, respectively. It follows that, 

ψTIψ=I,                                                   (2-22)                                                              
ψTKψ=ΛR.                                       (2-23)

Finally, the matrix W is equal to TΦΨ T 2/1 . In this process, the matrix RL is 

diagonalised because

                 LRR
T

L
T ΛΛIΨΦRRΦΨΨΦRΦΨ   -)( 2/1T2/12/1T2/1     (2-24)

It is derived in reference [50] that the matrix T2/1 ΦΨ T  is the eigenvector 

matrix of R
1 RR . In practice, the series of computations to obtain W can be 

replaced by solving the generalized eigenvalue problem for matrices R and RR;

that is, solving the problem Rv=λRRv, which can be estimated by a QZ 

decomposition [56].  

In summary, the covariance matrices for the transformed observations 

satisfy:

                                                                        ΛL =WTRLW,                                                (2-25)

                                                                  ΛR =WTRRW,                                        (2-26)

                                                             ΛL+ΛR=I.                                           (2-27)

After the above transformations, recorded datasets corresponding to these

two classes can effectively be distinguished by eigenvalues contained in the 

matrices ΛL and ΛR. This is evident since the individual eigenvalues λLj and λRj,

inside the matrices ΛL and ΛR, satisfy,

                                                        λLj+λRj=1 j= 1, 2… n.                                        (2-28)                                                                             
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Through the CSP transform, Xcsp=WTX, the variance of the spatially filtered 

signal is maximized for one class while it is minimized for the other class. As 

discussed above, the eigenvector with the largest eigenvalue for class 1 

would correspond to the smallest eigenvalue for class 2 and vice versa.

The two classes do not share common important features, and different

distributions of features are obtained for different classes. For a signal X of 

unknown class label, we can apply the CSP transform, with the transformation 

matrix W obtained from the training set. The diagonal elements of the 

transformed data’s covariance matrix T WΣWΣcsp  can be used as features 

or further features can be obtained from the new signal XWX T
csp  by other 

feature extraction methods, such the calculation of the alpha band power. For 

an example, in one of the datasets (more details are described in Chapter 5), 

the diagonal elements ΣCSP(1,1) and ΣCSP(3,3) are combined to form a two-

dimensional feature. The scatterplot from these features is shown in Figure 

2.8. 

Figure 2.8. Distribution of CSP features. The red circle and green cross are symbols 
for CSP features of 20 imaginary left and right hand movements respectively.

A limitation of the CSP feature is that it not suitable to multi-class

problems. This is not an issue in this thesis as the main focus is on a 2-class

problem. However, a generalization to the multi-class problem can be 

addressed by considering all possible pairs of 2-class problems separately

[33], and their results fused by various voting schemes to form a final decision.
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Chapter 3 Classification

This chapter provides a detailed description of the core part of a Brain 

Computer Interface: the classifier. The role of the classifier in the BCI system 

is to identify a subject’s intentions from a finite number of predefined choices. 

Following feature extraction, a suitable classifier needs to be designed. This is 

usually achieved through machine training, which utilises part of the data and 

their known corresponding labels. This information is used to train the classifier 

into recognising how the different categories are distributed throughout feature 

space. In our approach, features extracted from the BCI signals were divided 

randomly into two parts, one for training and the other for assessing the 

classification accuracy. Generally, it is assumed that the training and test data 

have similar properties and underlying distributions, which is a fundamental 

precondition of feasibility in classification.

In order to establish an effective classification process within wider BCI 

systems, an investigation was performed to test several types of classification 

algorithms. The classification methods that have been used in this project are 

template matching, nearest neighbour, linear discriminant analysis, Bayes 

statistical classifier and fuzzy logic decision classifiers; details will be

described in the subsequent sections. Finally, some attempts to improve each 

classifier are also described in this chapter.

3.1 Template matching

An EEG signal time series waveform describes the shape and form of a 

signal in the time domain. It is assumed that the EEG time series contains

sufficient information for discriminating between different thinking activities.

The primary idea is to survey the similarity between training time series and 

test time series, and the test time series data is classified into a class whose 

member waveforms bear the greatest similarity with it.

A measure of the similarity between two time series is the linear cross

correlation between them. For multi-channel EEG data, signals captured from 
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electrodes C3 and C4 are denoted as xC3(t) and xC4(t), respectively; when 

concatenated together, the trial is marked as 

     









(t)x)2(x)1(x
(t)x)2(x)1(x

4C4C4C

3C3C3C




X ,                                          (3-1)

Similarly, another trial can be marked as 











(t)y(2)y(1)y
(t)y(2)y(1)y

4C4C4C

3C3C3C




Y .                                         (3-2)

The correlation coefficients of X and Y are expressed by a 2 by 2 matrix Rxy. 

The signal in each channel is used as a variable and Rxy(i,j) stands for the

correlation coefficient of signals from the i-th channel in X, xi and the j-th 

channel in Y, yj. The matrix Rxy is derived from the covariance matrix Cxy, which 

returns a 2-by-2 matrix containing the estimated pairwise covariance

coefficient between each pair of rows in X and Y. Mathematically,

                                             Cxy(i,j)=E{(xi-Mxi)(yj-Myj)},             (3-3)                                        
where E is the mathematical expectation operator and Mxi and Myj are the 

means of xi and yj,, respectively and

j)(j,i)(i,

j)(i,
j)(i,

xyxy

xy
xy CC

C
R  .                                (3-4)

Therefore, the diagonal elements of correlation matrix represent the 

similarity between X and Y. For example, Rxy(1,1) shows the similarity 

between the time series xC3 and yC3.

3.1.1 Build the template for each class 

The template matching approach relies on comparing the similarity 

between a test signal and a set of template waveforms in each class to judge

to which class a signal belongs. Therefore, it is important to build a suitable 

database of template waveforms for each class. Three methods were 

considered.

(a): The simplest way assumes that a given class of thinking processes,

such as an imaginary left hand movement, follows a single template in the 

time domain and different templates exist for the other classes. To construct 

the single representative template for one class, all the waveforms of the 

training trials in the same class are averaged. If there are m trials in a class 

and the trials are recorded as Xi (i=1,2,···,m), then the template of the class is 
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                                                              T= 


m

1im
1

iX ,                                                   (3-5)

In this way, the common (average) properties in each class are obtained 

and utilised but the differences amongst trials in the same class (i.e. intra-

class variations) are averaged out. This way of template estimation has a 

short computation time but, as will be shown in Chapter 4, produces low 

accuracy. This can be attributed to the fact that, in reality, real thinking 

processes are more complicated and greater dynamics exist than can be 

represented by a simple template waveform. Differences exist between 

different subjects’ EEG signals; even the same subject will, on different 

occasions, be influenced by the environment and some factors such as 

emotion and fatigue.

(b): The second idea is a combination of template matching and the 

nearest neighbour method. It considers that every trial in the training set is 

potentially useful as an individual template, and some similarities should exist

amongst trials in the same class. When the classifier is in use, the correlations 

between the waveform being tested and every waveform in the training 

database are calculated and a decision is made according to the nearest 

neighbour rule (see next section). This method utilises information from all the 

individual training trials and, as will be shown in Chapter 4, provides better 

results than the single template classifier. However, the computation time is 

much longer, because many more correlation coefficients need to be

calculated and compared. 

(c): Instead of simple averaging or having highly redundant templates, the 

third way is a trade off between accuracy and computation time. In such an 

approach, the templates are built according to the signal amplitude level of 

EEG signals in pre-stimulus brain state. Usually, subjects are supposed to be 

relaxed before imagining given activities, and it is found that, during this 

period, the signal amplitudes vary amongst different trials. It has been

demonstrated in a number of studies that the differences in pre-stimulus brain 

state from tr ial  to tr ial  do influence the subsequent response [61].

Observations of the signal waveforms of training trials show that, when signals 

from different trials but from the same class have similar signal intensities in 

the pre-stimulus brain state, subsequent ensuing variations of time series are 



32

very similar. So, using the signal intensity in the pre-stimulus brain state as a 

measured quantity, the training trials can be divided into several subgroups. 

All the training trials in each subgroup are averaged and the result is used as

the template for this subgroup. For example, the alpha band filtered time 

series in channels C3 and C4 were divided into 4 subgroups according to their 

pre-stimulus signal intensity levels and Figures 3.1 and 3.2 show the 

templates in each channel for different subgroups of each class, respectively.

Then, the correlations between the test waveform and every template in the 

same class are calculated and, similarly to approach (b), the largest 

correlation is used as the correlation between the test waveform and the class.

Figure 3.1. Averaged time courses (imaginary left hand movement) of the absolute 
amplitudes. Data are shown for alpha band (7-13 Hz) at electrode C3 and C4. Each of the 
four subgroups showing different pre-stimulus activity is averaged over 17 trials. 

Figure 3.2. Averaged time courses (imaginary right hand movement) of the absolute 
amplitudes. Data are shown for alpha band (7-13 Hz) at electrode C3 and C4. Each of the 
four subgroups showing different pre-stimulus activity is averaged over 17 trials.
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3.1.2 Using cross correlation sequence to improve classification

The amplitude of the EEG signal at an electrode of interest (such as C3 or 

C4) is usually obtained by comparing the signal to an EEG reference signal, 

for example, the signal at electrode Fz. This implies that the sign of EEG 

signal can be positive or negative and the correlation coefficients between two 

signals may be negative. The range of correlation coefficients is [-1, 1], the 

correlation equal to 1 is in the case of identical signals, -1 in the case of the 

same signal but with exactly opposite phase, and values between -1 and 1 

indicates the degree of correlation. Thus the relevant parameter of interest is 

the absolute value of the correlation coefficient.

Due to the variable human response time, there might be time delays

between signals recorded from different trials resulting in a small correlation 

coefficient between two very similar EEG time series.  Recall that the 

correlation coefficient is the zero-th lag of the cross correlation sequence and 

this arbitrary time offset can be compensated for by calculating the cross 

correlation sequence for all the possible lags and finding the lag with the 

highest absolute value of the cross correlation sequence. The normalized

cross-correlation sequence with n-th lags is 

                                                        
}{}{

}{
(n)

ni i

ini
xy yExE

yxER


                                    (3-6)

and for the best correlation       

                                                    ]|)n(|[maxR xynm R .                                           (3-7) 

As will be shown in Chapter 4, this process enhances the classification 

accuracy but also increases the computation time.

3.2 Nearest neighbour classifier

In feature space, features corresponding to the different classes usually 

form separate clusters. Therefore, close neighbours in feature space are likely 

to have similar properties and belong to the same class. The nearest 

neighbour classifier is based on this principle. The training data is used to 

populate the hypothesized clusters of the training data in feature space and 

the distance of a test sample from every training sample is calculated. As the 
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labels of the training trials are assumed to be known, the test sample is 

assigned to the class to which the closest training sample belongs. The metrics 

used in this research were Euclidean, Manhattan and Mahalanobis distances. 

If an n-dimensional testing data is denoted as X=(x1,x2,···xn)T and a training data 

is Q=(q1,q2,···qn)T, then the Euclidean distance is defined as:

                                                             



n

1i

2
iie )qx(D ,           (3 - 8 )

the Manhattan distance is       

                                      



n

1i
iim |qx|D ,            (3 - 9)

and the Mahalanobis distance is 

                                             )()(D 1T
M QXΣQX   ,                                 (3-10)

where Σ is the covariance matrix of vector X which is estimated by

                                           .))((
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pp






 XXXXΣ                              (3-11)

where m is the number of samples and X is the sample mean of the feature Xp.   

3.2.1 The nearest neighbour 

In the first application of the nearest neighbour technique to BCI, only the 

closest feature in the training set was considered. For instance, the alpha 

band powers in channels C3 and C4 were combined and used as a 2-

dimensional feature vector and the test data was classified as belonging to 

that class of the training sample with the shortest distance. Mathematically, 

denoting c classes of thinking activities as {ω1, ω2,…,ωc}, and there are Ni

training samples in i-th class. Taking the Euclidean distance as an example, 

for a test data X, the nearest neighbour discriminant function for class ωi is 

expressed as:
                                           )D(min)(g ekki X , k=1,2,···,Ni,             (3-12)         

where Dek is the Euclidean distance between the test feature and the k-th
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training sample in class ωi. The decision rule is that if

                                          )](g[min)(g iij XX  , i=1,2,···,c,                       (3-13)

then X belongs to class ωj.

3.2.2 K-nearest neighbour

With a limited number of training trials, only limited training samples are 

available to populate the feature space, and some of them may be polluted by 

noise and artifacts. So, the estimated feature space may be biased and errors 

in the recorded data may seriously influence the classification result, 

especially if the erroneous data happens to be in a position where some 

samples under test appear often. However, the chance of several similar 

errors occurring together is much lower. Therefore, instead of using only the 

closest sample, several (k) closest samples can be considered and the 

classifier is termed as: k-nearest neighbour. Again, the labels of the training 

data are assumed to be known, the test sample is classified to the class 

relevant to the most common label in the k closest training samples – a voting 

scheme is used to decide between competing choices and there are a variety 

of voting schemes that can be used. In order to avoid tied votes for 2-class 

problems, k is usually chosen to be an odd number. 

A practical drawback of using a large k is that in certain regions of feature 

space, the density of training data may be so low that it is difficult to 

generalize the classifier decision, which could be easily changed if additional 

training data were available and the decision may be dominated by some non-

representative but frequently occurring training samples.

3.2.3 Fast nearest neighbour algorithm

During the classification, in order to get high accuracy, distances of the

test sample from every training sample are calculated, so, the computation 

time is very long. But in this process, some training samples which are far 

away from the test sample, have little effect on the classification result. If such 

samples could be excluded from the candidate feature space, the number of 

distance calculations is reduced and the computation time is shorter, without
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incurring any loss in accuracy. Based on the idea above, feature space can 

be divided into several equally sized clusters. The distance from the feature 

under test to a representative sample for each cluster, such as the mean of 

the samples, is then calculated. Then the closest and second closest cluster 

would be selected and merged as the new feature space, where the nearest 

neighbour algorithm is carried out. A similar method of using subset is 

introduced in [63] and there is another method, the condensed nearest

neighbour [62], which removes samples far away from decision boundaries.

3.3 Linear discriminant analysis classifier

Linear classifiers address a simple situation of where two classes are 

linearly separable so a linear discrimination function can be used to 

distinguish between the classes. Fisher’s linear discriminant analysis (LDA) 

uses a plane or hyperplane (for high dimensional features) to separate the 

features representing two different classes. The decision hyperplane can be 

represented as:                                 

0
T w)(g  xwx ,           (3-14)

where w is known as the weight vector, x is the input feature vector and w0 a

predetermined threshold. The feature is assigned to one class or the other 

depending on the sign of g(x). For multi-class problems, multiple planes or 

hyperplanes can be used together. There are many classical methods to 

compute w and w0, such as the perceptron method, least squares methods

[20], and these are not described in detail here. The advantages of the linear

method are simplicity and low computational requirements. The classification 

computation can usually be finished in several steps of matrix calculations on 

a computer. Therefore, it is a good choice for online BCI systems, where a 

rapid response from limited computational resources is required. 

3.3.1 LDA classifier in BCI

In current BCI research, most problems belong to the 2 class category and 

multi-class problems are dealt with by first transforming them into several 2 

class sub-problems. For example, the most common and popular case is to 
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identify imagined left or right hand movement. Figure 3.3 shows how LDA is

used for the alpha band power feature.

Figure 3.3. Using LDA for the alpha band power in channels C3 and C4. The red circle and 
green cross are symbols for alpha band powers for imagined left hand and right hand 
movements respectively. The straight line is an LDA classifier.

3.3.2 Improved LDA

Figure 3.3 shows the LDA can provide a satisfactory classification result, 

but obviously, there are still some incorrectly classified samples due to the 

hard border of LDA.  An improved idea is to set up a piecewise linear relation 

to solve the problem where the feature space is split into several subsections 

and a separate LDA classifier is trained for each subsection. This way results 

in flexible multi-LDA classifiers. Every classifier works in a given area, such as 

a given signal intensity range in channel C3, and achieves locally optimal 

classification. A disadvantage of this method is that a sufficient number of 

samples are required in each subsection; otherwise, the piecewise classifier 

would not be general enough.

If the feature space can be divided into many tiny subsections and with 

enough samples in each, the piecewise LDA classifiers can approximate any 

smooth curve in the feature space. Instead of incorporating many piecewise 

LDA classifiers, the quadratic discriminant function can be used to estimate a

curving classifier, for example:

                      )-()-()-()-(=)g( 1T1
1

T
22211 μxΣμxμxΣμxx           (3-15)   

where µi and Σi are the mean and estimated covariance matrix for the i-th class
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respectively. The test samples are assigned to one class or the other 

depending on the sign of g(x).

3.4 Bayesian statistical classifier 

The principle underlying the Bayesian statistical classifier is to calculate

and compare probabilities of an observed feature x given statistical models for 

different classes y and assign x to the class associated with the highest 

probability. In  the  case o f  this BCI research, there are two classes 

corresponding to imaginary left or right hand movements, so y {L, R}. It is 

assumed that the two classes have equal a priori probabilities, i.e., P(y) = 0.5.

The distribution of features for each class is assumed to be a mixture of the 

same number of Gaussian prototypes. Figure 3.4 shows a simple example to 

explain how to estimate the prototypes for each class. Closely spread 

samples in the same class are clustered together and assumed to belong to 

the same Gaussian distribution. Then, parameters of the distribution are 

estimated from these samples.

Figure 3.4. The same number of Gaussian prototypes for different classes. The red circle and 
green cross are symbols for the features in two classes respectively, while 3 Gaussian 
prototypes are estimated for each class.  

Generally, using more prototypes can provide more accurate estimation of 

the underlying statistical model but requires an increased number of training 

samples and increases the computational load. The number of prototypes was 
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decided by comparing the accuracies of classification with different numbers

of prototypes. For example, for the Graz dataset (more details are described 

in Chapter 4), classifications with 3, 4 and 5 prototypes were tested separately.  

Whilst the results were similar, classification with 4 prototypes in each class 

was the best.

There are two ways of estimating the Gaussian prototypes, the first is to 

divide the feature space evenly and use the statistical properties of samples 

(mean and variance) in each area to estimate the corresponding prototype. 

The second method uses a Gaussian Mixture Models (GMM).  When the first 

procedure was applied to this BCI problem, the covariance between two 

channels was ignored and the two channels were considered as independent. 

This was justified since correlations between them did not influence the 

classification significantly. The probability density function (pdf) of the n-

dimensional feature vector x, conditioned on it being in the i-th prototype in 

class y was calculated by the following formula:
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where µi and Σi are the individual means and the estimated covariance matrix

for the i-th prototype in class y. The probability density function of the n-

dimensional feature vector x, conditioned on it being in class y, is denoted 

P(x|y) and can be obtained by mixing the probabilities of x occurring in the 

underlying Gaussian prototypes P(x|ci).
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where M is the number of prototypes and wi is the weight of each prototype 

and more details about it are described in the following sections. The 

classification can be achieved by computing the probability of a certain class 

given a data x using Bayes’ theorem:
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since P(L )= P(R )= P(y) =
2
1 .
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3.4.1 Gaussian models from evenly divided feature space

The first method divides the feature space into several equally sized 

regions and assumes several Gaussian prototypes in the same class y are

weighted equally. For each cluster ci , the training samples in that cluster are 

used to estimate the parameters of the Gaussian prototype. After calculating 

P(x|ci) according to (3-16) the desired probability P(x|y) is estimated using either

                                               ])|cP([max|y)P( ii
xx  ,                                 (3-19)
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Taking the alpha band power feature in channels C3 and C4 as an example, 

as shown in Figure 3.5, the two-dimensional feature space is divided evenly. 

Then, a Gaussian prototype is set up and its parameters are obtained from 

samples in the corresponding sub-region. Every Gaussian prototype has 

equal weight and only works in its local area.

Figure 3.5. Evenly divided feature space. The two sub-figures are alpha band powers for
imagined left hand and right hand movements respectively. The feature space is divided by 
the lines and all the parameters are estimated in a sub-region. 

3.4.2 Gaussian models from EM algorithm

The second method, Gaussian mixture models (GMM) uses a different a

priori weight P(ci) for each prototype. Gaussian mixture models consist of a set 

of local Gaussian prototype density functions, and an integrating network. 

There may be some overlaps amongst the M local Gaussian prototypes and 
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the joint probability of x with each class P(x,y) is a  weighted sum over all the M

underlying Gaussian prototypes in class y. It is given by following equations:
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where the quantities µi, Σi and wi are the individual means, the covariance 

matrices and the a priori probability of i-th prototype in class y respectively.

All the parameters of each prototype are estimated from training samples 

in each cluster and clusters can be readily formed using a method with 

computational simplicity, for example, the well-known k-means algorithm gives 

compact clusters through minimizing the sum of point-to-centroid

(representative) distances, summed over all k clusters [20]. An example of the 

initial clusters divided by the k-means algorithm is shown in Figure 3.6.

Figure 3.6. Feature space is divided by k-means algorithm. Alpha band powers of imagined
left hand movements are divided into 4 subgroups.

Then, the expectation maximization (EM) algorithm [57, 65], which 

maximizes the likelihood of the training set generated by the estimated pdf,

can be used to estimate the parameters of each Gaussian model. Each 
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iteration of the EM algorithm consists of two steps: E step and M step. In the t-

th iteration, the E step computes an expectation of the likelihood function with 

the estimated parameters )t( in the last M step, whilst the M step calculates 

the new parameters )1t(  to maximize the likelihood function.

Assuming there are N training samples in a class y and Ni of them are used

to estimate the i-th Gaussian prototype, the process can be described by 

following equations:

The initial weight is set as iw (0) =
N
Ni , in the t-th iteration,
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is the probability of the i-th Gaussian prototype gives to xp of being labelled as 

in class y, where xp is the p-th sample in the training set. Then the ip (t) is used 

to estimate the new weights )1t(w i  , means )1t( iμ and covariance )1t(i Σ

for the i-th Gaussian prototype according to following formulas:

   



N

p
pi

i
i t

N
tw

1

)(1)1(  ,                                  (3-25)

                                               p

N

p
pi

ii
i

i

t
twN

t x



1

)(
)(

1)1(  ,                                (3-26)

         T
ipip

N

p
pi

ii
i ttt

twN
t

c

))())((()(
)(

1)1(
1

  


xxΣ .       (3-27)

The new weights, means, and covariance matrices are then used in (3-22) and 

(3-24) to estimate the new .ip The likelihood function is updated in the 

following way:
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The iteration will not stop until ∆L=L(t+1)-L(t)< 0 , where the 0 is a given 

threshold or the number of iteration reaches a specified value. Figure 3.7 

shows an example of Gaussian mixture models estimated by the EM 

algorithm.
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Figure 3.7. Estimated clusters of the alpha band power feature using the EM algorithm. The
red dots stand for alpha band powers for imagined left hand movements, the ‘+’ denotes the 
centre and the ellipse the variance of each cluster.

3.5 Fuzzy Logic classifier  

As discussed in Chapter 1, the EEG signals in channels C3 and C4 are 

similar to each other when the subject is relaxed, but imaginary hand 

movements cause contralateral attenuations, which give rise to significant 

differences between the signals in channels C3 and C4. With this important 

piece of physiological knowledge, the classification can sometimes be 

achieved by simple intuitive measures. For example, intuitively, if the signal in 

C3 is quite strong but the signal in C4 is weak, it is probable that the subject is 

imagining a left hand movement. In this example, instead of a precise number, 

the concepts ‘strong’ and ‘weak’ are used, where the description is imprecise 

but more general and simple.

In the above example, the description of a certain signal, such as ’strong’,

leaves an uncertainty of signal intensity. Fuzzy logic classifier is based on the 

idea of achieving classification by an approach using intuitive natural 

language descriptions rather than precise numerical values. A fuzzy logic 

classifier can be considered as a system with several inputs and one output 

and fuzzy logic is used to formulate the mapping from given inputs to output. 

This process is shown in Figure 3.8.
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Figure 3.8. A fuzzy logic classification system. Alpha band power in channels C3 and C4 are 
two inputs and the output is a classification decision.

3.5.1 Foundations of Fuzzy Logic

Fuzzy logic is a multi-valued logic modeled by fuzzy sets. Fuzzy sets are 

sets whose members have degrees of membership [58]. Denoting feature x

extracted from a trial and a set S, a mapping can be defined as:

                                                








Sx
Sx

xS fi,0
if,1 ,                                   (3-29)

which only shows whether or not x belongs to set S. But sometimes, x may be 

located very near to the border between two sets and it is risky to assign it

wholly to one set. In order to avoid the dilemma choice, the mapping can be 

generalized to a function which allows x to belong to the set S to a certain 

degree μS [0, 1]. A fuzzy set can be defined as S={x, μS(x)| x U}, where U is the 

universe of discourse and the function μS(x) is called membership function of x

in S. The membership function maps each element of U to S to a degree of 

membership between 0 and 1. 

3.5.2 Training and building membership functions

In the training process of a fuzzy logic classifier, extracted features in each 

class are divided into several clusters. Based on each cluster, a fuzzy set is 

set up with a linguistic description and a membership function is estimated

from samples in this cluster.  The methods of clustering and estimation of 

parameters are similar to the methods used in the Bayesian statistical 

classifier.

Taking the alpha band power feature in channels C3 and C4 as an 

example, in the same class, the extracted alpha band power in each channel

is divided into 5 clusters. Then 5 fuzzy sets {vs, s, m, l, vl} are set up and with 

linguistic descriptions {‘very small’, ‘small’, ‘medium’, ‘large’, ‘very large’}. 

Their membership functions {mf1, mf2, mf3, mf4, mf5} are estimated from

samples in the corresponding clusters respectively and shown in Figure 3.9.
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In this research, each membership function is estimated as a Gaussian 

function in the beginning and modified later. For example, for the alpha power 

in channel C3, to estimate the membership function mf4, in order to assign a 

degree of memberships μS =1 to features in a given range, the centre of the 

Gaussian function curve is expanded and it becomes a generalized bell 

function (see Figure 3.9). Also, as a part of training, the classifier is tested 

using the training data. Then, experience extracted from observing wrongly 

classified samples can be used to modify membership functions.   

Figure 3.9. Membership functions for two inputs.

3.5.3 If-then rules

The “If-then” rule is key in mapping inputs to output. According to the label 

of samples in a cluster, some ‘if-then’ rules in the form: ‘If x1 is A and x2 is B,

then y is C’ can be summarised and then used to build a classifier, where x1,

x2 are input variables and y is the output variable; A, B and C are linguistic 

values defined by fuzzy sets on their universes of discourses. For example, a 

rule can be ‘if the alpha band power in C3 is large and the alpha band power

in C4 is small, then thinking is imaginary left hand movement’.

Each ‘if-then’ rule makes a conclusion and these conclusions are 

combined together to form a final decision, as shown in Figure 3.10. The

process of combining will be discussed in section 3.5.5 and further examples 

are shown in section 3.5.6.
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Figure 3.10. Different if-then rules are combined to make a final decision. The used feature is
the alpha bandpowers in channels C3 and C4.

3.5.4 Define output membership functions

There are two types of fuzzy inference systems to define the output 

membership functions. One is Mamdani-type, whose output membership 

functions are fuzzy sets [59]. The other is Sugeno-type, whose output 

membership functions are either linear or constant [60]. In BCI research, the 

system has only one output as the classification decision. If the Mamdani-type

is used, the number of output fuzzy sets is the same as the number of classes. 

In this research, it focuses solely on the 2-class problem and only a simple 

membership function, such as 
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(x)S1 ,                                     (3-30)

is used for each output fuzzy set. In the Sugeno-type, the constants -1 and 1 

are used as values for the output membership functions respectively. It was 

found that, in the BCI research carried out here, there is no significant 

difference between using two types of fuzzy logic classifiers, but the Sugeno-

type system was more efficient computationally.

3.5.5 Fuzzy logic classification process

Here are 4 main steps to classify a test feature using the fuzzy logic 

classifier. 

Step1: Fuzzify Inputs

The first step is to take the inputs and determine the degrees to which they 

are in each of the appropriate fuzzy sets via membership functions. It relies on 

matching the input variables to the membership functions. For example, when 

Input 1
Alpha band 
power in C3

Input 2
Alpha band 
power in C4

…
…

∑ Output

w1

w2

w3

wi

a1

a2

b1
b2

b3

a3

Rule1: if input1 is very small and input 
2 is very small, then output is class 1

Rule2: if input1 is small and input 2 is 
very small, then output is class 1

bi

ai

Rule3: if input1 is very small and input 
2 is small, then output is class 2
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the alpha band powers in channels C3 and C4 are used as inputs, the 

degrees of memberships can be looked up from the membership function

curves in Figure 3.9.

Step2: Fuzzy operation

After the inputs are fuzzified, according to the fuzzy set used in a rule, a 

degree is assigned to each input in each rule. If a rule has more than one 

input, all inputs work together toward to an output according to the rule logic. 

Subsequently, a fuzzy operator is applied to obtain a number to represent a 

weight of this rule, which is also the degree of relevant output membership. 

This is decided by both the degrees of inputs and operation method. Usually, 

there are two methods, ‘min’ and ‘prod’, which are used in the fuzzy operation. 

For example, assuming a rule is that ‘If x1 is A and x2 is B, then y is C’ and the 

degrees of ‘x1 is A’ and ‘x2 is B’ are looked up from membership functions as a

and b, respectively, with the operation method ‘prod’, the degree of output ‘y is

C’ is a×b.

Step3: Aggregate all outputs 

Usually, several rules work together to make a decision, as shown in the 

example of Figure 3.10. In this case, each rule provides a result with a weight.

The result is a fuzzy set for the Mamdani-type or a constant number for the 

Sugeno-type. Then, according to an aggregation method, these results are 

combined into a single fuzzy set or a number as an aggregate result. The 

aggregation method either uses the output with maximum degree or a sum of 

each rule’s output.

Step4: Defuzzify

After aggregation, defuzzification process translates the aggregate result 

into a single number. Some methods [64], such as ‘centroid’, ‘bisector’ and 

‘maximum possibility’, can be used. In this BCI research, the defuzzified single 

number can give expression to a classification decision. For example, for the

2-class problem of imagining left or right hand movement, the features are 

assigned to one class or the other depending on the sign of the number.

Each input membership function assigns a degree to any value in the 

universe of discourse, therefore, all the values in the feature space can be 

classified, and then, the feature space is divided by an output surface, which 

shows the mapping relationship from features to classification result. An 



48

example of the fuzzy surface based on the alpha band power feature space is 

shown in Figure 3.11. 

Figure 3.11. The alpha band power feature space is divided by an output surface. The 
classification result (imaginary left/right hand movement) depends on the sign of value 
matched on the output surface.

3.5.6 An example of the fuzzy logic classification process
In our research, different logic methods were tested in steps 2 to 4, and an 

example is used to show the classification process. Assuming the alpha band 

power in channel C3 is extracted from a test trial and denoted as XC3; the 

degrees with which to assign XC3 to all fuzzy sets {vs, s, m, l, vl} are looked up 

from membership functions (see Figure 3.9) and they are {0,0.4,0.6,0,0}

respectively. Similarly, the alpha band power in channel C4 is denoted as XC4

and the degrees of XC4 in the fuzzy sets {vs, s, m, l, vl} are {0.8, 0.2, 0, 0, 0}

respectively. The output y is in the fuzzy set {L, R}, which stand for imaginary

left and right hand movement respectively. It is assumed the rules have been 

decided in advance. After ignoring rules whose input degree of memberships 

is zero, there remains a total of 4 rules which work together to make the 

decision and they are as follow:
If XC3 is small and XC4 is very small, then the thinking is left hand movement.

If XC3 is small and XC4 is small, then the thinking is right hand movement.

If XC3 is medium and XC4 is very small, then the thinking is left hand movement.

If XC3 is medium and XC4 is small, then the thinking is left hand movement.

If the ‘min’ method is used in step 2, the ‘max’ method in step 3 and the

‘maximum possibility’ method in step 4, the classification processing is as 

follows:
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The weight of the first rule is 0.4∩0.8=0.4.

The weight of the second rule is 0.4∩0.2=0.2.

The weight of the third rule is 0.6∩0.8=0.6.

The weight of the fourth rule is 0.6∩0.2=0.2.

The degree, with which output y is in fuzzy set L, is 0.4U0.6U0.2 =0.6.

The degree, with which output y is in fuzzy set R, is 0.2.

Using the ‘max’ method, for each output variable, only the rule with the 

maximum weight is used in the aggregation, therefore the aggregated result is

‘y is in {L, R} with degree of {0.6, 0.2} respectively’. The membership functions in 

Figure 3.12 are assumed to be used for two output fuzzy sets. Then, the 

output membership mf1 is chosen, since it has larger degree (0.6>0.2). The 

defuzzied output, obtained by matching the degree of output membership 

function mf1=0.6, is equal to 0.6>0. So, the feature is assigned to class 1 

(imaginary left hand movement).

Figure 3.12. Output Membership functions. The two curves with different colours stand for the 
membership functions for class1 and 2 respectively. The green circle is the matched output in 
the example.

If the ‘prod’ method is used in step 2, the ‘sum’ method in step 3 and 

‘centroid’ in step 4, the classification processing for the same example is as 

follows:

The weight of the first rule w11 is 0.4×0.8=0.32.

The weight of the second rule w12 is 0.4×0.2=0.08.

The weight of the third rule w21 is 10.6×0.8=0.48.

The weight of the fourth rule w22 is 0.6×0.2=0.12.
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The degree, to which output y is in fuzzy set L, wL=w11 +w21 +w22 =0.92.

The degree, to which output y is in fuzzy set R, wR= w12=0.08.

Using mf1=1 and mf2=-1 as output membership functions (Sugeno-type), the 

output y=




ij

R2L1

w
wmfwmf =0.84>0, so, the feature is assigned to class 1.

The fuzzy logic classifier models a flexible nonlinear classifier. We found 

that it gets high accuracy in this BCI application and shows good tolerance to 

recording errors, which is especially useful for the dynamic EEG signals. 

Additionally,  i t  has the potential to give subjects more comprehensible

feedback and help the training of a subject. However, it is hard to make the 

fuzzy logic classifier general to different subjects and experimental

environments. The membership functions and the ‘if-then’ rules are core of the 

fuzzy logic classifier and they usually rely on a lot of training and very carefully 

tuning of parameters within the membership functions. Furthermore, the range

of features usually changes during the feature updating process, which makes 

it awkward for the fuzzy logic classifier, since the membership functions have 

to be defined again. Therefore, the fuzzy logic classifier is more suitable to 

offline analysis, otherwise, it would require a lot of effort to determine in 

advance the membership functions and the set of ‘if–then’ rules for every 

sampling time.
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Chapter 4 Application to Graz data

Following the discussions on feature extraction and classifiers, this chapter 

contains the results of their application to a publicly available dataset of BCI 

data. In order to assess and compare the different proposed features and 

classification algorithms discussed earlier, some typical classification results 

are presented in this chapter. Section 4.1 discusses the dataset used in this 

chapter, and in sections 4.2 and 4.3, the evaluation criteria for BCI 

performance and the validation method are discussed. According to the 

features used, the performance of most classifiers is listed and some related 

analysis is presented in section 4.4. Some discussions on suitable length of 

data for feature extraction, the optimal training period and computation times

are presented in section 4.5. In section 4.6, the performance of various 

classifiers are discussed and compared with published results with the same 

dataset.    

4.1 Data description

The data described in this chapter was provided by Department of Medical 

Informatics, Institute for Biomedical Engineering of the University of 

Technology Graz for the BCI competition 2003 [15]. During the experiment, a 

25 year old female subject who had been trained before was asked to imagine

left or right hand movements and feedback, in the form of a controlling bar on 

a screen, was shown to the subject. Three bipolar EEG signals were 

measured over the electrode positions of C3, C4 and Cz. The EEG was band-

pass filtered between 0.5 and 30 Hz and then sampled at 128 Hz.

In total, 280 trials were contained in this dataset and these were originally 

divided into two equal parts for training and testing (70 left and 70 right 

imaginary hand movements are in each part). Every trial lasted for 9 seconds 

and the signed amplitudes of three EEG channels were recorded as digital 

time series. In each trial, the first two seconds was quiet and an acoustic 

stimulus indicated the beginning of the trial at t= 2 s. An arrow (left or right) as 

cue was presented on the screen from t = 3 s to 9 s. At the same time, the 
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subject was asked to move a bar in the direction of the cue through imagining

hand movements and the classified bar movement was presented on the 

screen, which acts as a form of feedback to the subject [15].

4.2 Evaluation criteria of BCI performance

In order to measure and judge the performance of a BCI system, it is 

necessary to set some criteria for evaluation. Specifically, the criterion used is 

to examine how accurately the classifiers can identify the subject’s intentions. 

Different criteria have been used by different researchers, which is also one of 

the reasons why it is difficult to compare different BCI systems. For example, 

a study [7] adds a rejection criterion in the evaluation, which sets some trials 

as ‘unknown’ thus reducing the number of errors. In this way, it is hard to 

compare with the other methods without the rejection strategy, since the 

‘unknown’ trials were classified by them as well.

4.2.1 Classification accuracy

Classification accuracy is a common criterion to evaluate the performance 

of any classification algorithm, and is usually defined as the ratio of the 

number of correctly classified trials to the number of all tested trials. If the aim 

of the BCI application is to achieve some goals in a real or virtual environment, 

the classification accuracy can be measured by the ratio of the number of 

successes a subject manages to achieve against the goal to the numbers of 

attempts made. However, this ratio, termed the achievement ratio, is not the 

ideal way to measure the accuracy of the classifier, since the achievement

ratio just describes an aggregated classification result which may require a 

long time to achieve. In the research carried out in this thesis, the EEG signal 

was classified continuously at every time sample and consequently the 

classification accuracy achieved was dependent on the length of the time 

interval over which the data was observed. The key idea behind this was to 

investigate the dependence of the classification results on the observation 

interval. The highest and average accuracy during varying observation 

intervals were selected as criteria to represent the best recognition rate and 

the average ability to identify a subject’s intentions for a given feature and 
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classifier. Usually, a classification process with a high maximum accuracy was 

accompanied by a high average accuracy, but this was not always the case.

4.2.2 Other criteria

There are other criteria to measure the reliability of decision, such as 

confusion matrix [20], Cohen’s Kappa [5] and information rate [19]. These are 

briefly discussed below.

The confusion matrix Co, is that matrix whose (i,j) element, Co(i,j), is the 

number of trials that belong to the i-th class and are assigned to the j-th class. 

An example of confusion matrix is shown in Table 4.1. The confusion matrix is 

a wonderful way to describe the classification result. Not only can the 

accuracy be derived from the diagonal elements of the confusion matrix, but 

also the off-diagonal elements reflect the wrongly classified and show if the 

classification is biased. However, it is inappropriate to compare the numbers 

in two confusion matrices directly if they were obtained with different numbers

of test trials.

Class 1 2 Total
1 64 6 70
2 8 62 70

Total 72 68 140

Table 4.1. An example of confusion matrix. The result is from using the LDA classifier with 
both alpha and beta band powers feature at a time t=6.08, when it achieved accuracy of 90%. 
Class 1 and 2 are imagine left and right hand respectively.

For the 2-class problem, the observed agreement

                                                          22110 PPP  ,                                                  (4-1)

is equal to the total accuracy, where P11, P22 are the rates of correct 

classification in each category. The chance of random agreement is given by

                                                             2
2

2
1e PPP  ,                                                             (4-2)

where P1, P2 are the prior probabilities in each category and Pe is the 

hypothetical accuracy. The value of Kappa is defined as:

                                                                        
e

e0

P1
PPK




 .                                                    (4-3)

In this research, it is believed that the different classes have equal prior 
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probabilities, specifically, P1=P2= 5.0 and Pe= 5.0 , therefore, for the 2-class 

problem,
                                                               )5.0-(P2K 0 .                                             (4-4)

The information transfer rate, ITR, is defined as

                                        
1n

P1
log)-P1(PlogPnlogITR 0

200202 


 ,                              (4-5)

where n is the number of classes and the above equation is for the information 

transfer in bits/trials. When the time of trials is considered, it can be described 

as information transfer in bits/s. For the 2-class problem, n=2, therefore,

                                          )-P1( log)- P1+(Plog+ P1ITR = 020020 .                        (4-6)

The relationships of the Kappa, ITR with accuracy are shown in Figure 4.1, 

whilst the ITR is usually meaningful only for accuracies higher than the chance 

of random (e.g., in 2-class problem, for equal prior probabilities of classes,

accuracy of 0.5 can be achieved by chance). From the above formulae and 

Figure 4.1, it can be seen that both the Kappa and information transfer rate 

are functions of the classification accuracy, whilst, the kappa enlarges 

changes of the accuracy linearly and ITR display high sensitivity to small 

changes in the range of high accuracy. However, for the 2-class problem, they 

are only mapping the accuracy to different numbers but requiring more 

computations, also they are not as easily interpretable as simple accuracy. 

Therefore, their advantages are not very significant in the 2- class problem 

and so these are not used in this thesis.

Figure 4.1. Relationships of the Kappa and ITR with accuracy for the 2-class problem. 
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4.3 Cross validation

In order to test the ability of the classifiers to generalise, a randomly 

chosen subset of the trials is chosen as the validation data and whilst the 

other parts are used for training. K-fold cross validation [66] was used as the 

strategy, in this approach the dataset is divided as k subsets. Of the k subsets, 

a single subset is used for validation and the remaining k-1 subsets are used 

to train various classifiers which are then evaluated using the single validation 

subset. Two typical examples in this thesis are dividing the data into two even 

parts or the leave one out (LOO) method [66], which considers every trial as 

the validation subset and k is equal to the number of trials. During this process, 

all the trials are used for both training and validation, and each trial is used for 

validation once. 

4.4 Performance of feature and classifier pairs

The classification results achieved are shown below as a function of the 

length of the observation window for each of the features discussed earlier. 

During the classification process, analysis showed that the classification 

before 4 s was almost by chance, since the idle signals and the first one 

second of task driven EEG signal could not provide enough information for 

effective discrimination. It was also observed that the amount of discriminatory 

information contained in the signal diminishes after 8 s, perhaps due to 

subject fatigue. This can be verified by inspection of the classification 

accuracy over whole 9 seconds period. For example, the classification

accuracy when using both the alpha and beta band powers as features with 

the LDA classifier in the whole 9 seconds period is shown is Figure 4.2 and it

indicates that the main period of interest is from 4 to 8 seconds. In the 

following, only the classification accuracies in this period are discussed. 
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Figure 4.2. Classification accuracy versus time for the band power feature with the LDA 
classifer.

Features were updated and classifiers were retrained at every sample

within the 4 to 8 second period. During this process, all the previous samples 

are utilised to estimate features and the classifications were made at every 

sample. This enables continuously varying values of classification accuracy to 

be obtained. In order to compare with results in the literature, listed accuracies 

in the tables in this chapter were obtained from the arrangement of training 

and test data used in the BCI competition 2003.

4.4.1 Classification results using time series

As discussed in Chapter 3, three methods were used to build templates of 

the time series waveform. Figure 4.3 illustrates the classification accuracies

achieved by the different template building methods as functions of time. 

Figure 4.3. Classification accuracies versus time for 3 template building methods
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The first method, which averaged all time series in the same class, could 

not capture sufficient discriminative information, especially in the period after 6 

seconds. The second method of adding the nearest neighbour method to

template matching and the third method of dividing the time series into 

subgroups gave similar improvements over the first method, particularly for 

longer length data blocks. However, the combination of the nearest neighbour

and template matching method, i .e.,  method 2, entailed a much longer 

computation time. The results of using method 3 show that the idea of dividing 

the EEG signal into subgroups according to the signal intensity in idle period 

is reasonable, especially when a huge amount of EEG data needs to be 

processed but may be not be suitable for the dataset including just a few trials 

(such as the dataset in Chapter 5). In this dataset, the EEG signals were 

divided into 4 subgroups, but limited by the amount of data, the appropriate

number of subgroups and its variability for different subjects still need to be 

further investigated.

The result of template matching using the cross correlation sequence 

method discussed in section 3.1.2 is shown in Figure 4.4. In this way, a better 

classification result was obtained, but the long computation time for this 

method makes it impractical. 

Figure 4.4. Classification accuracy versus time for the correlation sequence method
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The best and average classification accuracies, and computation times of 

processing 140 training trials and 1 random test trial, for all the four methods 

discussed above are shown in Table 4.2.  

Feature Classifier(template)
Classification accuracy Computation 

timeBest 
accuracy

Average 
accuracy

Zero lag 
correlation

Simple average 
template 61% 57% 2.1 s

Nearest neighbour 
template 71% 63% 65.3 s

Subgroup template            73% 63% 5.1 s

Correlation 
sequence

Nearest neighbour 
template 81% 74% 91.5 s

Table 4.2. Classification results using template matching

4.4.2 Classification results using AR components

The EEG signal can be modelled by an autoregressive (AR) model. As 

discussed in Chapter 2, the AR coefficients and AR poles were considered as 

features separately. Figure 4.5 illustrates the classification results of using AR 

coefficients as a feature vector with different classifiers. 

Figure 4.5. Classification accuracies versus time for the AR coefficients feature with 3 
classifiers. The AR order was 4 and the AR coefficients were estimated from all the previous 
samples. k nearest neighbour, LDA, Bayesian statistical classifiers were used and denoted as 
‘KNN’, ‘LDA’and ‘Stat’ respectively.

The best and average classification accuracies, and computation times of 

processing 140 training trials and 1 random testing trial, for all the AR features 

and different classifiers are shown in Table 4.3.
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Feature Classifier
Classification accuracy Computation 

timeBest 
accuracy

Average 
accuracy

AR coefficients
KNN 75% 69% 45.0 s
LDA 91% 83% 51.7 s
Stat 87% 81% 47.3 s

AR poles
KNN 86% 77% 85.4 s
LDA 86% 78% 85.9 s
Stat 89% 77% 85.5 s

Table 4.3. Classification results using AR components

The AR model expresses the signal characteristics through AR 

coefficients, which contain information from the entire frequency band. AR 

poles are roots of the AR polynomial and are related to AR spectral peaks, so, 

they focus on the characteristics of signals in frequency bins where spectral 

peaks appear. Therefore, compared with the AR coefficients feature, the AR 

poles feature contains less but more specific information. For the LDA and 

Bayesian statistical classifiers, using the AR coefficients as features provided

better classification accuracies, whilst the k-nearest neighbour classifier

obtained better results from the AR poles feature. The AR poles are derived 

from the AR coefficients and more calculations are required during this 

process, which makes the computation time longer.

4.4.3 Classification results using spectral components

Both the total power and spectral peaks in the two most prominent 

frequency bands: alpha (7~13 Hz) and beta (14~26 Hz) bands were tested as 

features. Figure 4.6 illustrates the classification accuracies for the band 

powers feature with different classifiers. 

Figure 4.6. Classification accuracies versus time for the band power feature with 3 classifiers. 
Both of the alpha and beta band  powers were used for the LDA classifier, while only the 
alpha band power was used for the k-nearest neighbour and Bayesian statistical classifier. 
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The best and average classification accuracies, and computation times, 

including a processing of 140 training trials and 1 random test trial, for both of 

the spectral features and 3 classifiers are shown in Table 4.4. 

Feature Classifier
Classification accuracy Computation 

timeBest 
accuracy

Average 
accuracy

Band powers
KNN 90% 83% 16.7 s
LDA 92% 87% 7.2 s
Stat 91% 84% 11.6 s

Spectral peaks
KNN 89% 84% 17.5 s
LDA 89% 84% 8.0 s
Stat 89% 82% 11.7 s

Table 4.4. Classification results using spectral components

In most trials from this dataset, both the mu and central beta rhythms were 

active when movements were imagined, but the mu rhythm produced more 

discriminative information. If only the alpha band power in two channels were

combined and used as a feature vector, the classification results of all the 

classifiers were satisfactory. If both the alpha and beta band powers were 

used as features, it was found that the classification result of the LDA 

classifier was improved but not for the k-nearest neighbour and Bayesian

statistical classifiers.

To calculate a distance for the nearest neighbour classifier, the absolute 

differences in each channel between two trials are accumulated according to 

the selected metric. For example, when both alpha and beta powers in 

channels C3 and C4 are used as features, where the test feature is denoted 

as X= (PαC3, PαC4, PβC3, PβC4)T and the training feature is Q=(q1,q2,q3,q4)T, the 

Manhattan distance is   

                                            
4

1
iim ||D QX .                                 (4-7) 

However, the power variation in the beta band is not significant in some trials. 

So, two trials in the same class may have very close measures of the alpha 

band power but quite different measures of the beta power at the same time.

As shown in (4-7), a distance is obtained by summing all the differences from 2 

bands; so, a distance between features in different classes may be shorter 

than a distance between features in the same class. This makes the k-nearest 

neighbour classification less able to discriminate between classes. 
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For the Bayesian statistical classifier, using both alpha and beta band 

powers as a feature vector results in a higher dimensional feature space, 

which is harder to divide into different clusters corresponding to different

Gaussian distributions. Therefore, except for the LDA classifier, the other 

classifiers obtained better accuracies with only the power or spectral peak in 

the alpha band.

The alpha band power in channels C3 and C4 were used as input features 

to the fuzzy logic decision classifier, but the classification was just tested

using a fixed number of samples of the signal waveform, this is because it 

requires a lot of training and modifications of membership functions prior to 

classification, which makes it not suitable for a continuous classification 

process. For the given period, the fuzzy logic decision classifier achieved an 

accuracy of 90.71%. With modifications of membership functions, the fuzzy 

logic decision classifier could achieve very high accuracy any time in the 

period of 4-8 s, but it would be at a high computation cost and the classifier 

would likely not be general and applicable to other datasets. So, the fuzzy 

logic classifier is more suitable to make a judgment for a whole trial and it was 

not applied to other features.

When only the alpha band power was used as feature, the piecewise LDA 

classifier (as discussed in Chapter 3) could provide a little improvement. The 

best accuracy of the piecewise LDA classifier was 90.71%, whilst it was 

89.29% for the original LDA classifier when using the alpha band power as the 

feature. But it is not particularly helpful for the mixture of the alpha and beta 

band powers, since it is difficult to divide the mixed feature into subsections, 

which is similar to the problem encountered in the Bayesian statistical 

classifier. 

4.4.4 Classification results using eigenvector components

During the analysis of the covariance matrix of multi-channel EEG signal, 

the method of principal eigenvector obtains the dominant basis vector

associated with the covariance matrix, whilst the method of common spatial

pattern (CSP) projects the covariance matrix to a new space through the K-L 

transform. Figures 4.7 and 4.8 illustrate the classification processes for the
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principal eigenvector and common spatial pattern features with different 

classifiers respectively. 

Figure 4.7. Classification accuracies versus time for the principal eigenvector feature with 3 
classifiers.

Figure 4.8. Classification accuracies versus time for the common spatial pattern feature with 3 
classifiers.

The best and average classification accuracies, and the computation times

of processing 140 training trials and 1 random testing trial, for both the

principal eigenvector and common spatial pattern features with the different

classifiers are shown in Table 4.5.

Feature Classifier
Classification accuracy Computation 

timeBest 
accuracy

Average 
accuracy

Principal 
eigenvector

KNN 85% 79% 9.1 s
LDA 84% 80% 11.2 s
Stat 86% 79% 11.5 s

CSP
KNN 86% 81% 18.2 s
LDA 86% 82% 18.1 s
Stat 88% 82% 18.0 s

Table 4.5. Classification results using eigenvector components
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The principal eigenvector reflects the direction of the highest energy 

concentration. The distribution of the principal eigenvectors of all trials in the 

same class was found to be tightly clustered in a given region, therefore, it is 

not necessary to divide the feature space into several clusters and only one 

Gaussian model was used in the Bayesian statistical classifier. 

As discussed in section 4.4.3, the mu rhythm is the main brain wave 

motivated by imaginary hand movements. If the alpha band filter was applied 

before the analysis of the eigenvector components, the highest accuracy was 

better but the average accuracy was lower. For example, when the Bayesian 

statistical classifier was applied to the CSP feature extracted from the alpha

band filtered EEG signal, an accuracy of 89.3% was achieved at several 

samples during 7.5 to 8 seconds intervals, which is better than the highest 

accuracy of 87.86% without filtering; but the average accuracy was 80.97%, 

which is lower than the average accuracy of 82.34% without filtering. In 

particular, the classification accuracy at the beginning of observation period (4

seconds after trials started) was very low. The signal in this dataset was 

filtered with a pass band from 0.5 to 30 Hz in advance, and thus contained

information from both the alpha and beta bands. Therefore, for the 

eigenvector features, using an alpha band filter before a continuous

classification can provide higher accuracy at some samples, but it is not as 

stable as the classification without filtering. The results outlined in Table 4.4 

are from the classification without filtering.

4.5 Analysis of data length of feature extraction, optimal 

training time and computation time  

It was assumed that updating features in synchrony with the thinking 

processes, the features would be robust and helpful for classification. However,

this is a question about how many previous samples should be used for the 

feature extraction and if a fixed length of data can provide more robust features. 

This was tested by comparing the classification performances achieved by 

using a variable data block as discussed above with those obtained using a 

fixed block that is slid over the data. An example is discussed here, which uses 

the LDA classifier and features of either the AR coefficients or band powers. 
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The length of the fixed block is 200 samples. The best accuracy and average 

classification accuracies from 4 to 8 seconds are shown in Table 4.6 for these

two different feature extraction methods. Compared with the variable sample 

length method that incorporates all previous data, the fixed length signal did 

not perform as well, since it contained less information.

Features Length of 
signals

Classification accuracy
Best 

accuracy
Average 
accuracy

AR 
coefficients

Fixed 87% 77%

Variable 91% 83%

Band powers
Fixed 87% 74%

Variable 92% 86%

Table 4.6. Classification results using features extracted in two different ways

The sample by sample classification approach is an online implementation, 

which means that the classifiers can track the dynamic EEG processes well. 

However, there was still a question about the optimal training time to obtain 

the best classification accuracy. Applying the LDA classifier to both the alpha 

and beta band powers features provided very encouraging results in previous 

tests, so it was selected for a test to determine the best training and testing 

times. With the variable sample length method, the classifier was retained at 

every training sample and then applied to all the test data over varying time 

intervals separately. The best classification accuracies in every half a second 

period are shown in Figure 4.9 and it shows that the classification results tend 

to be better if the training and testing time periods are the same and that a 

longer time provides more information and achieves better results. 

Figure 4.9. Classification accuracies of all possible combinations of training and testing 
periods runs. The colorbar corresponds to classification accuracy.
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In this research, besides the classification of the test trials, the BCI system 

needed to be retrained at every sample, therefore, the computer processing 

time includes both the training and classification times. The computation times

shown in the Tables 4.2-4.5 are for processing 140 training trials and only one 

test trial. In the offline classification process, the LDA classifier could finish the 

classification of all test trials together in a matrix calculation, but the nearest

neighbour and Bayesian statistical classifiers have to analyse the test trials 

one by one. So, for the LDA classifier, the total computation time for many test 

trials is much shorter, but in an online application, one trial needs to be deal 

with at any time. That is the reason why only one test trial was chosen to 

compare the computation times.

4.6 Comparisons and discussion

During the continuous classification for the EEG signals in period 4-8 s, 

most of the features gave satisfactory results with all classifiers tested except 

the time series waveform. In particular, the band power features provided the 

highest accuracy for every classif ier. For each kind of feature, the 

performance achieved by different classifiers was also compared and the LDA 

and Bayesian statistical classifier achieved the highest accuracies for 3 kinds 

of features separately. Specifically, the best accuracies achieved by both the 

LDA and the Bayesian statistical classifiers are about 90 percent for many

features, which is on a par with the reported best accuracy in the BCI 

competition 2003 for the same dataset as 89.7 percent [34]. Figure 4.10

shows the best classification accuracies obtained during the 4-8 second 

period for each different feature and classifier combination – most of these 

results are similar or even better than reported results in the literature. 

Additionally, applying the LDA classifier to band powers feature achieved an 

accuracy of 95 percent in cross validation (its best accuracy is 90.48  2.15% 

and average accuracy is 84.10  1.85%, where the error ranges correspond to

a 95% confidence interval.).

Since the template matching algorithms were applied to the time series

waveform only and the fuzzy logic decision classifier was applied to alpha 

band power feature only they are not listed in Figure 4.10.
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Figure 4.10. The best classification accuracies for different features and classifiers. The order 
of AR model was 4 and only 1 Gaussian model was used in Bayesian statistical classifier for 
the principal eigenvector feature.

The k-nearest neighbour classifier is more suitable for low dimensional 

features, such as the AR poles and principal eigenvector but not for the high 

dimensional feature like AR coefficients, and mixed alpha and beta band 

powers. The Bayesian statistical classifier is effective and stable for all kinds 

of features. It may have more potential for the multi-class problems, but 

preliminary results indicate it does not perform well for a small quantity of 

training data, since insufficient samples in a cluster can give quite inaccurate 

estimates of parameters of the model required for the cluster.

Computation time is also an important issue if the BCI system is to 

respond to the subjects’ intention rapidly. Using 140 training trials and only 

one test trial, the computer processing time of different algorithms is shown in 

Figure 4.11. In this process, no SIMD (single instruction, multiple data)

technique was used, but the training process was achieved by using vector 

operations in Matlab. The results show that all the classifiers could finish the 

classification quickly except when they were applied to the AR features. 

Compared to other features, the band power and the principal eigenvector

features require shorter computation times. The LDA classifier finished 

classification quicker for the spectral components features, while when using 

AR components features the k-nearest neighbour classifier was the fastest.
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Figure 4.11. Computation times for different features and classifiers. The  computing includes  
extracting feature from 140 training trials and classification for a random test trial.

In addition to optimizing the code, the computation time can be further 

improved, since for practical applications, the training can be finished in 

advance if it is not updated online. In fact, training is the major computational 

burden, since a lot of data is needed to populate the feature space with good 

coverage and once the classifier has been determined, it can be re-used for 

all the test trials. This can be validated by observing the computation time of 

the classification of many trials together. An example of applying the LDA 

classifier to the band powers feature is discussed here. Using 140 training

trials and other 140 trials for test, the processing time is approximately 16 s.

Comparing with the computation time of classifying only one test trial, it can 

be seen that training is the major computational burden.

In this experiment, each trial lasts 9 s and the sampling rate is 128 Hz. 

From results shown above, the computation time of classification of one test 

trial cost is much shorter than the trial’s duration. Furthermore, the processing 

time can be made much shorter if the training can be carried out offline in 

advance. Therefore, we can conclude that the algorithms presented here have

potential for online applications, where rapid response to trials is essential.
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Chapter 5 Application to Adelaide data

The previous chapter presented the classification results from the Graz 

dataset and it was shown that most features and classification algorithms

achieved satisfactory classification performance. In order to verify the 

generality of the tested methods, the same operations were repeated on a 

dataset recorded at the University of Adelaide. Based on the experience and 

conclusions in the last chapter, some typical features, including the time 

series waveform, AR coefficients, band powers and common spatial pattern, 

and classifiers, including the template matching, LDA and Bayesian statistical 

classifiers are investigated using this dataset. Section 5.1 introduces details of 

the measurements and data recording methodology. In section 5.2, the 

performance results when using different features and classifiers are

presented. Some comparisons and analysis are discussed in section 5.3. 

5.1 Experiment and Data Acquisition

In order to obtain more data for our BCI research and to verify the previous 

research on the Graz dataset, experiments were carried out in the Human 

Sensorimotor Plasticity Laboratory at the University of Adelaide. Some 

descriptions of the experiment process are briefly reported below.

5.1.1 Experiment procedure

A subject (25 years old, male, no colour-blindness, never trained before)

was seated in a comfortable chair and was asked to look at a custom-made 3 

light indicator (yellow for ready, red for right and green for left, 3 lights are in 

different positions) placed at eye level approximately 1 meter in front of him. 

The equipment and the indicator used in the experiment are shown in Figure 

5.1. During the experiment, the subject was asked to keep his arms and 

hands relaxed and motionless, and a number of separate trials took place. 

Each trial started with 2 seconds of relaxation time, during which all lights 

were off. At t=2 s, the yellow light lit up for one second to warn the subject to 

prepare for the commencement of the trial. At t=3 s, the green or red light 

were lit as an instruction to the subject to imagine vertical movements in the



69

left or right hand, respectively. This light continued for 7 seconds and there 

was a further two seconds for the subject to relax again. This timeline of 

process is shown in Figure 5.2. The labels of trials were produced randomly 

by the EEG capture setup; a rule was set up to forbid sequences longer than 

four successive trials with the same label. The experiment consisted two runs 

(reference electrode placed at Fz and bipolar), each of 40 trials (20 left and 20 

right hand imagined movements). 

Figure 5.1. The Equipment and indicator used in the experiment

Figure 5.2.Sequence of experimental events

5.1.2 Recording methodology

Both reference and bipolar recording methods were used in the 

experiment. For the reference recording, 4 Ag-AgCI electrodes were used and

they were placed at C3, Cz, C4 and Fz positions. The signal in the Fz

electrode was used as the reference for the signals in the other three 

electrodes. This yielded three channels of signals referenced to a common 

node. For the bipolar recording, 3 pairs of Ag-AgCI electrodes are placed

approximately 3 cm on either side (anterior and behind) of C3, Cz and C4. All 

the placements of electrodes were made by a highly skilled technician with 

many years of experience in EEG measurements. The EEG signal was 

sampled at 500 Hz and amplified by a low noise specifically for EEG 

applications amplifier CED 1902 (Cambridge Electronic Design, UK), then the 

signal was fed into a computer via a CED 1401 interface and recorded in a 
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software called CED ‘signal for windows version 3’, while the dc signal was 

removed by the software (more details about the amplifier and software can 

be found in reference [36]). Care was taken to ensure electrode impedances 

do not exceed the recommended maximum of 5kohm. If the impedance 

exceeded this limit, then sufficient conducting gel was applied at the interface 

of the electrodes and the scalp until the impedance was below 5kohm. 

5.2. Classification and performance

With the previous experience of investigations using the public dataset and 

in order to limit scope to some typical features, only the best features in each 

category were selected for the processing of the data collected. These are, 

namely, the time series waveform, AR coefficients, band powers and common 

spatial pattern. The LDA and Bayesian statistical classifiers, which provided 

accurate and stable classifications in the last chapter, were applied to most 

features in this dataset, except the time series waveform as the classification 

process is simply template matching.

Only 40 trials were recorded in each dataset and in order to use as many 

trials as possible for training, the strategy of leave one out (LOO) was used for 

validation. Since the aim of this research was to compare the features and 

classifiers rather than to obtain very high classification accuracy, a simple 

method of setting test sets was used, that is, a pair of trials in different classes 

but the same order (e.g. the first trial in each class) were chosen as the test 

set, while the remaining trials were used as the training set. In this manner, 

every trial was tested only once at each sampling time and the overall 

classification accuracies were obtained from cycling through all the 20 pairs of 

the test trials and averaging the classification accuracies. 

The computation times for different features and classifiers have already 

been discussed and compared in detail in the previous chapter. With the

higher sampling rate, the number of samples in each trial is larger in this 

dataset than the Graz dataset. However, the findings for the relative 

computation times of the different feature extraction and classification 

schemes remain valid for this dataset. To avoid repetition, the computation 

time issue is not discussed again in this chapter.
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5.2.1 Classification results using time series waveform

The template matching method was used for the time series waveform 

feature. The data was recorded with the DC value removed and so some AC 

noise still existed. In order to remove some of this noise, the alpha band pass 

filter was applied to the trial time series before it was used to build a template 

or for classification. 

As only a few trials were carried out, it is difficult to divide the trials into 

subgroups. Therefore, only the method of using an average template (method 

1) and the method of combining template matching with the nearest neighbour

(method 2), as discussed in Chapter 3, were used. Except for the time series 

waveform of the trial under test, the remaining time series waveforms from 

other trials in the same class were averaged to build the template in the first 

method. In the second method, the time series waveform from each trial in the 

training set was used as a template. Then, correlations between the test data 

and the template(s)  in each class were calculated. In exactly the same 

manner as for the Graz dataset, the classification was performed as a 

continuous process in time and the classification accuracy time courses 

achieved by two methods over the 4 to 10 seconds period are shown in Figure 

5.3. Surprisingly, both template matching schemes, i.e., methods 1 and 2, 

achieved very stable classification results, even better than those for the Graz 

dataset. Additionally, for the reference dataset, method 2 did not provide 

obvious better results than method 1, which is not consistent with the 

conclusion obtained from the application to the Graz dataset. 

Figure 5.3. Classification accuracies versus time for time series waveform template(s) for the 
reference recording dataset.
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5.2.2 Classification results using AR coefficients

A 4-th order AR model was applied to the EEG signals recorded from the 

experiment. As discussed in the last chapter, whilst using the AR poles as 

features provided a low dimensional feature vector, which is welcomed by the 

k-nearest neighbour classifier,  but for the LDA and Bayesian statistical 

classifiers, using the AR coefficients as features can provide more 

discriminative information. Thus the AR coefficients were chosen as the 

feature vectors. Continuous classification accuracy time courses with the LDA 

and Bayesian statistical classifiers are shown in Figure 5.4. When compared 

with the time series waveform feature, the best classification accuracies were

higher, but as shown in the figure, the classification accuracies were more 

volatile. This is especially true in the case of the Bayesian statistical classifier, 

which produced some very low classification accuracies at several points in 

time.

Figure 5.4. Classification accuracies versus time for the AR coefficients feature with the LDA 
and Bayesian statistical classifiers for the reference recording dataset.

5.2.3 Classification results using band powers

In Chapter 4, it was shown that using the band powers as features always

provides better classification results than using the spectral peaks, regardless 

of the choice of classifier. Therefore, the band powers were selected as the 

features in this spectral approach. The LDA and Bayesian statistical classifiers

were used and based on the conclusions from Chapter 4, both the alpha and 

beta band powers were used as features for the LDA classifier but only the 
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alpha band power was chosen as a feature for the Bayesian statistical 

classifier. The classification accuracy time courses of these two approaches 

are shown in Figure 5.5. The classification accuracies over time achieved by

the two classifiers have similar trends, with the Bayesian statistical classifier 

performing demonstrably worse than the LDA classifier for t<7 s, but 

managing to achieve comparable performance to the LDA classifier in the 

period from 7 to 9 s. 

Figure 5.5. Classification accuracies versus time for the band power feature with the LDA and 
Bayesian statistical classifiers for the reference recording dataset.

5.2.4 Classification results using common spatial pattern 

In the category of eigenvector features, the common spatial pattern was 

chosen. In order to utilise the information from both the alpha and beta bands, 

the EEG data was processed by a band pass filter (7-26 Hz). The covariance 

matrix computed from every trial was updated at every sample and then 

projected onto a new feature space through the K-L transform. Both the LDA 

and the Bayesian statistical classifiers were used. Figure 5.6 shows the 

classification accuracy time course achieved by the two classifiers with the 

LDA algorithm again providing the best results.  
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Figure 5.6. Classification accuracies versus time for the common spatial pattern feature with 
the LDA and Bayesian statistical classifiers for the reference recording dataset.

All the classification results for the reference and bipolar recording 

datasets, in the period of 4-10 s are summarised in Tables 5.1 and 5.2. Both 

average and the highest accuracy scores are presented.

Feature Classifier
Classification accuracy

Best accuracy Average 
accuracy

Time series 
waveform 

Average template 75% 70%
Nearest neighbour 

template 83% 69%

AR coefficients LDA 83% 59%
Stat 85% 58%

Band powers LDA 83% 68%
Stat 78% 60%

CSP LDA 83% 67%
Stat 73% 63%

Table 5.1. Classification results for the reference recording dataset.

Feature Classifier
Classification accuracy

Best accuracy Average 
accuracy

Time series 
waveform 

Average template 73% 60%
Nearest neighbour 

template 78% 71%

AR coefficients LDA 73% 53%
Stat 70% 52%

Band powers LDA 70% 52%
Stat 68% 52%

CSP LDA 70% 57%
Stat 65% 53%

Table 5.2. Classification results for the bipolar recording dataset.

In order to further verify the classifications, a strategy was applied that any

possible pair of test trials from different classes were used as a test set, and 

each trial was tested 20 times. During the process, large variances for the 
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average classification accuracies were found. For example, to apply the LDA 

classifier to both the alpha and beta band powers feature extracted from the 

reference recording dataset, 20 iterations were carried out. Every iteration 

included 20 times classifications and the test set in each classification 

contained two trials from different classes. In the test set, the trial from class 1 

was fixed and the trial in class 2 was varied over the whole remaining (20) 

trials. The classification accuracy in each iteration was obtained by averaging 

the 20 times classifications and the variance of accuracy in the 20 iterations 

were calculated. The average accuracy in the time course was 67.92±14.06%

and the best accuracy was 91.63±3.17%, where the error ranges correspond 

to a 95% confidence interval. This result showed the classification was not 

stable and there was high variability between the recordings even in the same 

dataset but the high peak accuracy shows that the subject’s intentions can be 

identified very accurately for some periods. 

5.3 Comparisons and analysis

During the continuous classification for the EEG signals in period 4-10 s, 

the classification results when using different features were similar. The peak 

classification accuracies appeared during the period of 5.5-7.5 s and would 

decrease in the period of 7.5-8.5 s. As in the case of the Graz dataset, the 

band powers feature provided the best classification accuracy, but the 

differences between different features are less pronounced for this dataset. 

Surprisingly, the time series waveforms with the template matching classifier 

achieved very stable classifications and the result was comparable to other 

features. It was found that the Bayesian statistical classifier could not match 

the performance of the LDA classifier. It is conjectured that this is mainly due 

to the small number of trials, which meant that the parameters of the 

Gaussian prototypes could not be estimated accurately.

By comparing the results in the Tables 5.1 and 5.2, it can be seen that the 

reference recording dataset produced more reliable BCI classification results 

than the bipolar recording datasets. The only exception was the average 

results obtained using the method of template matching with the nearest 

neighbour for the time series waveform feature. The difference between the 
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results using method 1 and method 2 of template matching is very trivial for 

the reference recording dataset, whilst method 2 obtained much better 

accuracies than method 1 for the bipolar recording dataset, even better than 

the results for the reference dataset. A possible improvement in the data 

collection setup is to use more electrodes near to C3 and C4, since the peak 

EEG signal for left and right imagery may not be located exactly at C3 and C4. 

It was found that our dataset was not able to provide as high classification 

accuracies as the Graz dataset in the Chapter 4. In particularly, some very low 

values of accuracy were obtained from several trials. There could be several 

reasons for this. Firstly, the subject had not received any training prior to the 

experiments and secondly, artifact removal processing techniques were not 

used to eliminate the very noisy sections of EEG signals typically arising from 

the subject blinking. Thirdly, due to limited access to the data acquisition 

equipment, the Adelaide dataset contained a much smaller number of trials 

and also had few channels. Finally, the subject could recall several eye blinks 

and real arm movements during the experiment, and imagining the wrong 

movements in some short sections in several of the trials. In the future, it 

would be useful to record EMG (muscle activity) and EOG (eye movements) 

for identifying and rejecting invalid or contaminated data. Such steps will likely 

lead to improvements in the reliability of the BCI classification.

Despite the issues discussed above, the classification results clearly 

indicated that most of the features studied did contain some discriminative 

information with respect to the subject’s intended imaginary movements. 

Based on this information, the classifiers were able to identify the thinking 

activities with reasonable accuracy for many trials. In further experiments, 

more trials with more channels and more subjects are required. 



77

Chapter 6 Conclusion

This thesis has presented a Brain Computer Interface study based on EEG 

signals of imaginary hand movements. The BCI is considered as a pattern 

recognition system and two main parts: feature extraction and classification

were investigated and applied to a public dataset and another dataset from 

experiments conducted at the University of Adelaide.

Several features, specifically, time series waveform, autoregressive (AR)

components and spectral components, eigenvector components have been 

studied in Chapter 2. Several classifiers, such as, template matching, k-

nearest neighbor, linear discriminant analysis, Bayesian statistical and fuzzy 

logic classifiers have been studied in Chapter 3. All features and classifiers 

were applied to the public dataset from an international BCI competition and 

the results are reported in Chapter 4. Some selected features and classifiers 

were applied to the dataset recorded from the Adelaide experiment and 

results are reported in Chapter 5. These features and classifiers were 

compared in the result analysis sections in Chapter 4 and Chapter 5.

The classification was done in a continuous fashion, to match a real time 

application. In this process, the average and best accuracy, as well as the 

computation time were analysed. In the application to the public dataset, most

classifiers achieved very high accuracies and short computation times for 

most features. In particular, the band powers feature provided the highest 

accuracy for each classifier. The LDA and Bayesian statistical classifiers, 

which achieved the highest accuracies for 3 kinds of features separately, were

found to be the most reliable classifiers in this application. So, they were 

selected together with the template matching and used for the Adelaide

dataset. The results showed that the selected classifiers can work well with 

this new dataset without much additional preprocessing or modifications, but, 

for a variety of reasons the classifiers, did not achieve as high accuracies as 

was obtained using the Graz dataset. Further, the Bayesian statistical 

classifier performed significantly poorer than in the first dataset, due to the 

inaccurate parameters estimation limited by small quantity of training data. 
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Some further work needs to be done in the future. Firstly, more 

experiments will be required, since the data processing was still limited by 

size of data. In order to make the research more universal, more subjects 

should be involved, since there are significant differences between EEG 

signals from different subjects, such as the pre-stimulus signal amplitude. 

Secondly, the quality of the data from the experiment should be improved. 

The data from the experiment carried out at the University of Adelaide had not 

been preprocessed in advance, such as for artifacts removal, therefore, more

work is needed to determine how additional signal preprocessing can improve 

the classification accuracy. One important thing would be to record the EMG 

(muscle activity) and EOG (eye movements) for identifying and rejecting

invalid or contaminated data. Also, it may be beneficial to use more electrodes

for the data collection, which may provide more spatial information for further 

processing. This would be especially useful for the study of common spatial 

pattern feature. 

Additionally, the benefit of some short time averaging needs to be 

investigated. Providing classification information at the data sample rate is 

obviously at too high a rate for practical applications and the effect of 

averaging classification results over short period needs be investigated. 

Unfortunately time did not allow further investigation of this aspect.

Finally, this thesis only studied offline classification and analysis processes, 

but it is desirable in practical applications for such processing to occur in real 

time, e.g., control a robot. This requires more work to train subjects and build 

a closed loop and real time processing system. 

Brain Computer Interface can not only provide an important prosthesis to 

disabled people, but also has the potential to improve human life greatly. With 

this new communication pathway, many laborious or tedious tasks could 

become convenient. It is anticipated that more and more human thinking 

activities will be identified via BCI systems and novel applications will arrive. 

However, there are still many challenges in BCI research, and further work

should be carried out to make this technology really progress beyond 

laboratory demonstrations.
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