Low-Cost Small-Scale Wind Power Generation

David Michael Whaley

Thesis submitted for the degree of **Doctor of Philosophy**

The School of Electrical & Electronic Engineering, Faculty of Engineering, Computer & Mathematical Sciences The University of Adelaide, Australia

July, 2009

© Copyright 2009 David M. Whaley All Rights Reserved.

Dedicated to my late grandmother, Χρισούλα Ηλιάδου (Chryssoula Iliadis)

Table of Contents

Table of Contents	v
Abstract	xi
Statement of Originality	xiii
Acknowledgements	XV
List of Publications	xvii
Conventions	xix
Nomenclature	xxi
List of Figures	xxxi
List of Tables	xxxix
1 Introduction	1
1.1 Wind Energy	1
1.1.1 Electricity Usage and Conventional Generation	
1.1.2 Alternative Energy Sources	3
1.1.3 Large and Small-Scale Turbine Classification	4
1.1.4 Small-Scale Turbine Development	5
1.1.5 Technology Improvement	6
1.1.6 Market Growth \ldots \ldots \ldots \ldots \ldots \ldots \ldots	6
1.2 Principles of Wind Power	7
1.2.1 Wind and Turbine Power	7
1.2.2 Coefficient of Performance	8

	1.2.3	Principles of Turbine Operation	9
1.3	Small-	Scale Wind Turbines	11
	1.3.1	Applications	11
	1.3.2	Turbine Properties	12
	1.3.3	Generator Varieties	13
	1.3.4	Current Trends	15
	1.3.5	Inductance Classification of PM Generators	16
1.4	Stand	alone Power Converters	18
	1.4.1	Common Power Converters	18
	1.4.2	Uncontrolled Rectifier Operation	21
	1.4.3	Switched-Mode Rectifier	23
	1.4.4	Inverter Operation	25
	1.4.5	Power Comparison of Standalone Converters	27
1.5	Grid-(Connected Inverters	29
	1.5.1	Introduction	29
	1.5.2	Line-Commutated Inverters	30
	1.5.3	Self-Commutated Inverters	32
	1.5.4	Transformer Type	35
	1.5.5	Voltage Source Topologies	37
	1.5.6	Current Source Topologies	40
	1.5.7	Current Trends	42
	1.5.8	Proposed Grid-Connected Inverter	43
1.6	Thesis	o Overview	44
	1.6.1	Aim of Research	44
	1.6.2	Justification for Research	44
	1.6.3	Original Contributions	45
	1.6.4	Thesis Structure	45

I Investigation of Switched-Mode Rectifier for Standalone Power Converter 49

2	Hig	h Indu	ctance PM Generator Characteristics	51
	2.1	Introd	uction	51
		2.1.1	Ideal Machine Model and Current vs. Voltage Locus	54

		2.1.2 Inductance Classification			 		 •		 55
	2.2	Machine Characterisation			 	•		•	 57
		2.2.1 Realistic Machine Model and Effe	ect on Loc	i.	 	•		•	 57
		2.2.2 Test Arrangement			 	•		•	 58
		2.2.3 Open-Circuit Test			 	•		•	 60
		2.2.4 Short-Circuit Test			 	•			 62
		2.2.5 Machine Losses $\ldots \ldots \ldots$			 	•		•	 65
		2.2.6 Machine Properties			 	•		•	 66
	2.3	Machine Modelling			 	•			 67
		2.3.1 Analytical Model			 				 67
		2.3.2 $\operatorname{PSIM}^{\mathbb{R}}$ Model			 	•		•	 70
		2.3.3 Power Maximisation			 				 72
		2.3.4 Model Comparison			 				 73
	2.4	Resistive Load Testing			 				 74
		2.4.1 3ph Resistive Loading			 				 74
		2.4.2 DC Resistive Loading			 				 77
	2.5	Chapter Summary			 	•	 •	•	 83
3	Swi	tched-Mode Rectifier Operation							85
	3.1	Introduction			 				 85
		3.1.1 Switched-Mode Rectifier Model .			 				 86
		3.1.2 SMR Operation			 				 88
		3.1.3 SMR Properties			 				 90
	3.2	Dynamometer Testing			 			•	 92
		3.2.1 Test Arrangement			 				 92
		3.2.2 SMR Test Results			 				 92
		3.2.3 Summary of Testing			 				 99
	3.3	Wind Tunnel Testing			 				 100
		3.3.1 Test Arrangement			 				 100
		3.3.2 Turbine Coefficient of Performance	e		 				 102
		3.3.3 Open-Loop Control Mode			 				 104
		3.3.4 Comparison of Control Modes			 				 107
	3.4	Chapter Summary			 			•	 112

II Investigation of Grid-Connected Inverter based on Switched-Mode Rectifier Topology 115

4	Sim	ulatio	n and Test of 150W GC Inverter	117
	4.1	Introd	luction	. 117
		4.1.1	Inverter Requirements	. 118
		4.1.2	Desirable Features	. 120
	4.2	Propo	sed Concept	. 122
		4.2.1	Inverter Overview	. 122
		4.2.2	Constant Current Source	. 123
		4.2.3	Current Wave-Shaper	. 124
		4.2.4	Unfolding Circuit	. 126
		4.2.5	Low-Pass Filter	. 127
	4.3	Test S	Set-up, Implementation and Simulation	. 128
		4.3.1	Dynamometer Test Arrangement	. 128
		4.3.2	Constant Current Source - PM Generator	. 131
		4.3.3	Power Electronics and Control Implementation	. 133
		4.3.4	Inverter Simulation	. 135
	4.4	Exper	imental Testing	. 138
		4.4.1	Proof of Concept - Resistive Loading	. 138
		4.4.2	Constant Current Assumption	. 141
		4.4.3	Grid-Connected Testing	. 145
	4.5	Chapt	er Summary	. 153
5	Inv	erter A	Analysis and Control	155
	5.1	Analy	sis of Non-Ideal Constant Current Source	. 155
		5.1.1	Fluctuating Input Current	. 156
		5.1.2	Rectifier Ripple	. 160
		5.1.3	The Resulting Input Current	. 162
	5.2	Total	Harmonic Distortion	. 164
		5.2.1	Fluctuating Input Power	. 164
		5.2.2	Rectifier Ripple	. 166
		5.2.3	The Resulting Input Current	. 167
		5.2.4	PWM Switching Schemes	. 171
		5.2.5	The Inverter Output Current	. 175

		5.2.6	Reducing Harmonic Distortion
	5.3	Low-P	Pass Filter Analysis
		5.3.1	Filter Response
		5.3.2	Filter Damping
		5.3.3	Damped Filter Response and Configuration Comparison 184
		5.3.4	Design Considerations
		5.3.5	Harmonic Attenuation and Distortion
		5.3.6	Power Factor Requirements
		5.3.7	Power Loss
		5.3.8	Design Trade-Offs - Unipolar PWM Waveform
		5.3.9	Effect of Non-Ideal Current Source
		5.3.10	Alternative (Third-Order) Filter Configurations
	5.4	Feed-F	Forward Control
		5.4.1	Introduction
		5.4.2	Aim of Proposed Feed-Forward Control
		5.4.3	Controller 1 (FFC 1): Sample Machine Frequency
		5.4.4	Controller 2 (FFC 2): Sample Inverter Input Current
		5.4.5	Comparison of Feed-Forward and Open-Loop Control
	5.5	Chapt	er Summary
6	\mathbf{Des}	ign an	d Simulation of 1kW GC Inverter System 225
	6.1	Turbir	ne Sizing and Machine Parameter Selection
		6.1.1	System Assumptions
		6.1.2	Turbine Power and Size Calculations
		6.1.3	Generator Equivalent Circuit Parameter Selection
	6.2	Low-P	Pass Filter Design
		6.2.1	Design Criteria
		6.2.2	Component Selection
		6.2.3	Filter Simulation - Ideal Current Source
		6.2.4	Filter Simulation - PM Generator Current Source
	6.3	Demo	nstration of Feed-Forward Control
		6.3.1	Control Implementation
		6.3.2	Proof of Concept at Rated Wind Speed
		6.3.3	Current Command Variation at Rated Wind Speed
	6.4	Inverte	er Simulation for Wide Wind Speed Range

		6.4.1 Turbine Characteristics	. 252
		6.4.2 Power Control Modes	. 254
		6.4.3 Optimised Component Selection	. 255
		6.4.4 Inverter Simulations	. 256
		6.4.5 Efficiency Analysis	. 259
	6.5	Chapter Summary	. 262
7	Con	clusions and Future Work	263
	7.1	Summary and Conclusions	. 263
	7.2	Original Contributions	. 265
	7.3	Recommendations for Future Work	. 267
A	ppen	dices	269
\mathbf{A}	\mathbf{PW}	M Control Strategies and Low-Pass Filter Design Trade-Offs	269
	A.1	PWM Switching Schemes	. 269
		A.1.1 Bipolar and Unipolar Pulse-Width Modulation	. 269
		A.1.2 Selective Harmonic Elimination	. 269
		A.1.3 Current Hysteresis	. 270
		A.1.4 Space Vector Modulation	. 271
	A.2	Low-Pass Filter Design	. 272
		A.2.1 Power Loss vs. THD Trade-Off - Unipolar PWM Case	. 272
в	Rel	evant Publications	273
	B.1	Wind Turbine Control using SMR Paper	. 274
	B.2	Novel Low-Cost Grid-Connected Inverter Paper	. 284
\mathbf{C}	Mic	rocontroller Code	291
	C.1	Switched-Mode Rectifier	. 291
	C.2	Grid-Connected Inverter	. 294
Re	efere	nces	299

Abstract

This research investigates a low-cost generator and power electronics unit for smallscale (<10kW) wind turbines, for both standalone and grid-connected applications. The proposed system uses a high-inductance permanent magnet generator together with a switched-mode rectifier (SMR) to produce a variable magnitude output current. The high inductance characteristic allows the generator to operate as a current source, which has the following advantages over conventional low-inductance generator (voltage source) systems: it offers simple control, and avoids the need for bulky / costly energy storage elements, such as capacitors and inductors.

The SMR duty-cycle is controlled in an open-loop manner such that 1) maximum power is obtained for wind speeds below rated, and 2) the output power and turbine speed is limited to safe values above rated wind speed. This topology also has the ability to extract power at low wind speeds, which is well suited to small-scale wind turbines, as there is often limited flexibility in their location and these commonly see low average wind speeds.

The thesis is divided into two parts; the first part examines the use of the SMR as a DC-DC converter, for use in standalone applications. The duty-cycle is essentially kept constant, and is only varied for maximum power tracking and turbine speed / power limiting purposes. The SMR operates in to a fixed voltage source load, and has the ability to allow current and hence power to be drawn from the generator even at low wind and hence turbine speeds, making it ideal for battery charging applications. Initial dynamometer testing and limited wind-tunnel testing of a commercially available wind turbine show that turbine power can be maximised and its speed can be limited by adjusting the SMR duty-cycle in an open-loop manner.

The second part of the thesis examines the use of the SMR as a DC-AC converter for grid-connected applications. The duty-cycle is now modulated sinusoidally at the mains frequency such that the SMR produces an output current that resembles a fullwave rectified sinewave that is synchronised to the mains voltage. An additional H- bridge inverter circuit and low-pass filter is used to unfold, filter and feed the sinusoidal output current in to the utility grid. Simulation and initial resistive load and preliminary grid-connected tests were used to prove the inverter concept, however, the permanent magnet generator current source is identified as non-ideal and causes unwanted harmonic distortion.

The generator harmonics are analysed, and the system performance is compared with the Australian Standard THD requirement. It is concluded that the harmonics are caused by 1) the low-cost single-phase output design, 2) the use of an uncontrolled rectifier, and 3) the finite back-EMF voltage. The extent of these harmonics can be predicted based on the inverter operating conditions. A feed-forward current compensation control algorithm is investigated, and shown to be effective at removing the harmonics caused by the nonideal current source. In addition, the unipolar PWM switching scheme, and its harmonic components are analysed. The low-pass filter design is discussed, with an emphasis on power factor and THD grid requirements. A normalised filter design approach is used that shows how design aspects, such as cutoff frequency and quality factor, affect the filter performance. The filter design is shown to be a trade-off between the output current THD, power loss, and quality factor.

The final chapter summarises the thesis with the design and simulation of a 1kW single-phase grid-connected inverter. The inverter is designed based on the low-pass filter and feed-forward compensation analysis, and is shown to deliver an output current to the utility grid that adheres to the Australian Standards.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to David M. Whaley and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

Acknowledgements

First and foremost I wish to thank my supervisor and mentor, Dr Wen L. Soong, for his constant guidance, support, encouragement, help and advice during the course of my postgraduate studies. I also thank my co-supervisor, Associate Professor Nesimi Ertugrul, for his assistance and advice.

I am sincerely grateful to the School of Electrical and Electronic Engineering and the Adelaide Graduate Centre, at The University of Adelaide, for providing financial assistance as part of an Australian Research Council Discovery Grant, DP0342874. I would also like to thank the School of Electrical and Electronic Engineering for providing facilities to allow me to carry out this research. I am extremely grateful for the support from the School's workshop staff in the construction of the test rigs and machine set-up, in particular the assistance provided by Stuart Brand and Ian Linke. I am also thankful to Stan Woithe and Bruce Lucas from the School of Civil and Environmental Engineering in allowing the use of their wind tunnel. I would also like to thank Dr Damien Leclercq, from the School of Mechanical Engineering, for technical discussions regarding wind turbines.

I thank all the members of the School of Electrical and Electronic Engineering and especially the members of the 'Power and Control Systems' group, the administration team, and the members of the Computer Support Request team, for their friendliness and help over the years.

Finally, I wish to thank members of my family for their constant support throughout this journey, especially from my fiancè, Allison J.K. Gill. I would also like to thank my brother, Paul J. Whaley for providing financial assistance at various times throughout the course of the project. Lastly, a special thanks to my mother, Anastasia Whaley, for providing much needed financial assistance and patience during the latter stages of this research project.

List of Publications

- G. Ertasgin, D.M. Whaley, N. Ertugrul and W.L. Soong, "Implementation and Performance Evaluation of a Low-Cost Current-Source Grid-Connected Inverter for PV Application", in Proceedings of the IEEE International Conference on Sustainable Energy Technologies, Nov. 2008, Singapore.
- [2] G. Ertasgin, D.M. Whaley, N. Ertugrul and W.L. Soong, "Analysis and Design of Energy Storage for Current-Source 1-ph Grid-Connected PV Inverters", in Proceedings of the IEEE Applied Power Electronics Conference and Exposition, Feb., 2008, pp. 1229 – 1234.
- [3] G. Ertasgin, D.M. Whaley, N. Ertugrul, and W.L. Soong, "A Current-Source Grid-Connected Converter Topology for Photovoltaic Systems", in Proceedings of Australasian Universities Power Engineering Conference, 2006.
- [4] D.M. Whaley, G. Ertasgin, W.L. Soong, N. Ertugrul, J. Darbyshire, H. Dehbonei, and C.V. Nayar, "Investigation of a Low-Cost Grid-Connected Inverter for Small-Scale Wind Turbines Based on a Constant-Current Source PM Generator", in Proceedings of the IEEE Industry Electronics, Nov., 2006, pp. 4297 – 4302.
- [5] C.Z. Liaw, D.M. Whaley, W.L. Soong, and N. Ertugrul, "Implementation of Inverterless Control of Interior Permanent Magnet Alternators", in *IEEE Transactions* on *Industry Applications*, vol. 42, no. 2, Mar. - Apr., 2006, pp. 536 – 544.
- [6] D.M. Whaley, W.L. Soong, and N. Ertugrul, "Investigation of Switched-Mode Rectifier for Control of Small-Scale Wind Turbines", in Proceedings of the IEEE Industry Applications Conference, vol. 4, Oct., 2005, pp. 2849 – 2856.
- [7] C.Z. Liaw, D.M. Whaley, W.L. Soong, and N. Ertugrul, "Implementation of Inverterless Control of Interior Permanent Magnet Alternators", in Proceedings of the IEEE Industry Applications Conference, Oct., 2004.

[8] D.M. Whaley, W.L. Soong, and N. Ertugrul, "Extracting More Power from the Lundell Car Alternator", in Proceedings of Australasian Universities Power Engineering Conference, 2004.

Portions of the work presented in this thesis have been previously published. The material in Chapters 2 and 3 correspond to work in publications [6], whilst Chapter 4 corresponds to the work presented in publication [4]. Reprints of these publications are found in appendix B, for convenience.

Conventions

This thesis employs the IEEE reference style for citations, and is written using Australian English, as defined by the Macquarie English Dictionary 2005.

All voltages and currents shown in figures and equations are expressed as RMS (root-mean squared) quantities, unless otherwise stated.

The *hat* symbol is used in Chapters 5 and 6 to indicate peak value, i.e. $\hat{\alpha}$ and $\hat{\alpha}_0$ indicate the peak values of α and α_0 , respectively. Similarly, the *check* symbol is used in Chapter 6 to represent the nadir (minimum) value, e.g. $\check{\beta}$ represents the minimum value of β .

Measured data is represented by hollow points, e.g. circles, squares, diamonds etc. and is often accompanied by solid lines that correspond to the equivalent analytical or computer based simulations. Multiple cases of measured (and simulated) data commonly appear on a single figure, and are differentiated by colour and shape. In contrast, coloured / shaded points represent calculated data. These are also shown with solid lines, however, these are for aesthetic purposes, i.e. they simply join the calculated data.

The above convention is used for the majority of this thesis, i.e. Chapters 2 to 5, however, the convention is modified for Chapter 6, as the data presented in this chapter is either simulated or analytically calculated. The simulated data, of Chapter 6 is hence shown as shaded points, whilst the analytical calculations are shown by the solid lines.

Nomenclature

α	normalised rectifier voltage	pu
α_0	ratio of grid to open-circuit rectifier voltage	
α_{cu}	temperature coefficient of copper	$/^{\circ}C$
eta	normalised rectifier current	pu
\check{eta}	normalised minimum inverter input current	pu
β_{app}	normalised approximated rectifier current	pu
β_{exp}	normalised experimental rectifier current	pu
eta_{id}	normalised ideal rectifier current	pu
Δ	difference	
δ	skin depth	m
η_{gen}	generator efficiency	%
η_{inv}	inverter efficiency	%
λ	tip-speed ratio	
μ	permability	H/m
ω	machine angular speed	rad/s
ω	turbine angular speed	rad/s
ω_{cn}	normalised cutoff frequency (relative to f_1)	pu
ω_e	electrical angular frequency	rad/s

ω_g	grid angular frequency	rad/s
ω_m	mechanical angular frequency	rad/s
ϕ	filter delay	\deg
ϕ	power factor angle	deg
Ψ_m	RMS flux linkage	Wb or Vs
ρ	air density	$\rm kg/m^3$
σ	conductivity	$(\Omega m)^{-1}$
$\widehat{\alpha}_0$	peak value of α_0	
ξ	saliency ratio	
C	capacitance	F
c_p	turbine coefficient of performance	
d	duty-cycle	%
d_a	adjusted duty-cycle	%
d_i	stored duty-cycle	%
dB	decibels	
E	induced back-EMF voltage	V
f	frequency	Hz
f_1	fundamental frequency	Hz
f_{cn}	normalised cutoff frequency (relative to f_{sw})	pu
f_c	cutoff frequency	Hz
f_m	machine frequency	Hz
f_{res}	resonant frequency	Hz
f_{sw}	switching frequency	Hz

H(s)	filter transfer function	
h_1	fundamental harmonic magnitude	%
h_f	harmonic frequency	Hz
h_m	harmonic magnitude at m multiples of f_1	%
h_{tot}	total harmonic components	%
Ι	current	А
I^*	compensation current command	А
$i_{c exp}(t)$	compensated current using the experimental I-V locus	pu
$i_{c\ id}(t)$	compensated current using the ideal I-V locus	pu
I_{ch}	characteristic current	А
$i_c(t)$	time-varying compensated current	А
I_{DC}	DC current	А
I_d	damping resistor current	А
I_f	damping resistor current (from inverter)	А
I_g	grid drawn current (from grid)	А
I_{inv}	inverter output current	А
I_{in}	input current	А
I_L	line current	А
$i_{out \ (id)}(t)$	normalised time-varying ideal output current	pu
I _{out}	output current	А
I_{ph}	phase current	А
$i_{R\ (id)}(t)$	normalised time-varying ideal rectifier voltage	pu
$I_{R min}$	minimum rectifier output current	А

I_R	rectifier output current	А
$i_R(t)$	normalised time-varying rectifier current	pu
$i_{ws\ (id)}(t)$	normalised time-varying ideal wave-shaper current	pu
I_{ws}	wave-shaper current	А
j	$\sqrt{-1}$	
k	back-EMF constant	V/rpm
k_{ph}	phase back-EMF constant	V/rpm
L	inductance	Н
L_1	transformer primary inductance	Н
L_2	transformer secondary inductance	Н
L_{eq}	equivalent inductance	Н
L_{ph}	phase inductance	Н
L_s	stator inductance	Н
m	number of machine phases	
m	positive integer	
m_a	modulation index	%
n	machine / generator speed	rpm
n	positive odd integer	
n	transformer turns ratio	
n_k	machine speed	k rpm
Р	power	W
Р	real power	W
p	number of machine pole-pairs	

P_{CU}	copper loss	W
P_d	damping resistor power loss	W
P_{IFW}	machine iron, friction and windage loss	W
P _{inv in}	total inverter input power	W
P_{inv}	inverter output power	W
P_{in}	input power	W
P_{loss}	$\mathrm{SMR} /\mathrm{generator}$ power loss	W
P_L	machine power loss	W
P_{SMR}	SMR output power	W
P_{sw}	switching power loss	W
P_T	wind turbine power	W
P_W	wind power	W
pk - pk	peak to peak	
Q	quality factor	
Q	reactive power	VAr
Q_C	capacitive reactive power	VAr
Q_L	inductive reactive power	VAr
R	resistance	Ω
r	blade radius	m
R_1	transformer primary resistance	Ω
R_2	transformer secondary resistance	Ω
R_{cold}	cold resistance	Ω
R_d	damping resistance	Ω

R_{eq}	equivalent resistance	Ω
R_{hot}	hot resistance	Ω
R_L	load resistance	Ω
R_{ph}	phase resistance	Ω
R_s	stator resistance	Ω
rect(t)	normalised time-varying rectifier ripple	pu
S	apparent power	VA
S	number of stator slots	
S	$j\omega$	
Т	torque	Nm
t	time	s
t_{off}	device <i>turn-off</i> time	s
t_{on}	device <i>turn-on</i> time	S
t_q	thyristor turn-off time	S
V	voltage	V
v	wind speed	m/s
V_C	capacitor voltage	V
V_{DC}	DC link voltage	V
V_{DC}	DC voltage	V
v_{eq}	turbine equivalent wind speed	m/s
$V_{g\ pk}$	peak grid voltage	V
V_g	grid voltage	V
$v_g(t)$	normalised time-varying grid voltage	pu

v_i	internal wind tunnel wind speed	m/s
V_L	line voltage	V
$V_{ph\ pk}$	generator phase peak voltage	V
$V_{R \ pk \ OC}$	peak rectifier voltage	V
v_r	rated wind speed	m/s
$v_R(t)$	normalised time-varying rectifier voltage	pu
$v_{ws}(t)$	normalised time-varying current wave-shaper voltage	pu
X	reactance	Ω
X_{ph}	phase reactance	Ω
X_s	stator reactance	Ω
Z_{0n}	normalised characteristic impedance	pu
Z_0	characteristic impedance	Ω
Z_s	stator impedance	Ω

Acronyms

AC	alternating current
AS	Australian Standard
CCS	constant current source
CM	control modes
CSI	current-source inverter
CWS	current wave-shaper
DC	direct current
DCC	duty-cycle command

DFT	discrete Fourier transform
ESR	equivalent series resistance
F&P	Fisher & Paykel [®]
FC	filter configuration
FFT	fast Fourier transform
GC	grid connected
GCI	grid-connected inverter
HF	high-frequency
IFW	iron, friction and windage
IPM	interior permanent magnet
IR	International Rectifier [®]
ISA	integrated starter alternator
LA	Lundell alternator
LF	line-frequency
MPPT	maximum power point tracker
NEG	net energy gain
NICS	non-ideal current source
OC	open circuit
РМ	permanent magnet
pu	per-unit
PV	photovoltaic
PWM	pulse-width modulation
RMS	root-mean-squared

revolutions per minute rpm \mathbf{RR} rectifier ripple SCshort circuit \mathbf{SC} squirrel cage \mathbf{SG} synchronous generator SMR switched-mode rectifier SPM surface permanent magnet THD total harmonic distortion TLtransformerless TSR tip-speed ratio UCG uncontrolled generation VSI voltage-source inverter WF wound field WR wound rotor

Abbreviations

CLcapacitive-inductiveI-Vcurrent vs. voltageLCinductive-capacitiveLCLinductive-capacitive-inductiveP-Vpower vs. voltageRLCresistive-inductive-capacitiveSPPslots per phase per pole

SW switch

THY thyristor

List of Figures

1.1	Breakdown of worldwide electricity production for 2005	3
1.2	Typical 3-bladed wind turbine coefficient of performance	7
1.3	Coefficient of performance of various wind turbine rotors	8
1.4	Turbine power simulation	9
1.5	Turbine power, c_p , speed and torque simulation $\ldots \ldots \ldots \ldots \ldots \ldots$	10
1.6	Furling concept demonstration	13
1.7	Comparison of early and modern small-scale turbine topologies used for	
	battery charging	14
1.8	Current vs. voltage locus of low and high-inductance PM generators	17
1.9	Comparison of DC power converter equivalent circuits	19
1.10	Rectifier circuit simplified equivalent modelling	21
1.11	Rectifier phasor diagram for various generator speeds	22
1.12	Generator voltage, current and power plot	23
1.13	SMR phasor diagrams for various generator speeds	24
1.14	SMR current and power plot	25
1.15	Simplified machine phase model under inverter operation	26
1.16	Inverter phasor diagram for various generator speeds	26
1.17	SMR current and power plot	27
1.18	Comparison of power converter output powers	28
1.19	Cost comparison of standalone and grid-connected inverters $\ldots \ldots \ldots$	29
1.20	Line-commutated current-source inverter topology	30
1.21	Current-source inverter with active compensation and passive filters \ldots .	31
1.22	Comparison of voltage-source and current-source inverters	32
1.23	Comparison of bipolar and unipolar PWM output voltages / currents $\ \ . \ . \ .$	33
1.24	Three-phase voltage-source inverter	37
1.25	Voltage-source inverter topology with reverse-blocking diode $\ldots \ldots \ldots$	38
1.26	Voltage-source inverter with boost converter	38

1.27	Back-to-back PWM voltage-source inverter	39
1.28	Hybrid voltage and current source inverter	39
1.29	Three-phase current-source inverter circuit	40
1.30	Line-commutated H-bridge inverter	41
1.31	Actively-commutated PWM current-source inverter	41
1.32	Soft-switching single-phase current-source inverter	42
1.33	Proposed low-cost grid-connected inverter	43
1.34	Thesis structure	46
2.1	Fisher & Paykel surface PM machine	52
2.2	Comparison of interior and surface PM machines	53
2.3	Simplified PM machine model	54
2.4	I-V loci of surface PM, DC and interior PM machines	55
2.5	Operating regions of high and low-inductance PM machines	56
2.6	Realistic phase and equivalent delta connected model, and simplified ma-	
	chine representation	57
2.7	Effect of varying stator resistance on PM machine voltage loci	58
2.8	PM and DC machine test arrangement	59
2.9	PM machine load arrangement	60
2.10	F&P surface PM machine open-circuit characteristic	61
2.11	Generator open-circuit voltage waveform at 1000 rpm	61
2.12	F&P surface PM machine short-circuit characteristic	62
2.13	F&P surface PM machine inductance vs. phase current and generator speed	63
2.14	F&P machine stator temperature increase $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	64
2.15	Machine open and short-circuit losses	65
2.16	PM generator phase model	67
2.17	Normalised PM machine line (AC) voltage loci	69
2.18	$\operatorname{PSIM}^{\textcircled{\text{\tiny B}}}$ delta-connected PM machine model with AC and DC resistive loads	70
2.19	Normalised PM machine DC voltage loci	71
2.20	Peak normalised DC power vs. generator speed prediction, comparing the	
	analytical and $\mathrm{PSIM}^{\mathbb{R}}$ models $\ldots \ldots \ldots$	72
2.21	AC and DC I-V and P-V loci, comparing ideal analytical and $\mathrm{PSIM}^{\textcircled{B}}$ model	73
2.22	PM machine load arrangement	74
2.23	PM machine AC voltage loci	75
2.24	Measured generator efficiency vs. output power	77

2.25	PM machine DC voltage loci
2.26	Maximum DC output power vs. generator speed
2.27	DC to RMS line voltage ratio
2.28	Measured generator and rectifier efficiency vs. DC output power 81
3.1	SMR equivalent circuit
3.2	Ideal rectifier and SMR voltage and current vs. duty-cycle
3.3	PSIM [®] model for the switched-mode rectifier
3.4	Voltage, current and power of generator for various load voltages 89
3.5	SMR operating regions
3.6	SMR internal components and control circuitry
3.7	SMR test arrangement
3.8	Rectifier output voltage vs. duty-cycle for various generator speeds 93
3.9	Rectifier output current vs. duty-cycle for various machine speeds 94
3.10	SMR output current vs. duty-cycle for various generator speeds 95
3.11	SMR output power vs. duty-cycle for various machine test speeds 96
3.12	Measured torque vs. duty-cycle for various generator speeds 96
3.13	Duty-cycle corresponding to maximum SMR power and generator torque $.97$
3.14	Measured SMR efficiency vs. SMR output power for various machine speeds 98
3.15	Total efficiency vs. SMR output power characteristic for various generator
	speeds
3.16	Wind tunnel test arrangement
3.17	Equivalent wind speed calculation at blade sweep area
3.18	Estimated coefficient of performance vs. tip-speed ratio curve
3.19	Estimated equivalent vs. wind tunnel wind speed curve
3.20	Estimated turbine power vs. speed
3.21	Estimated turbine torque vs. speed
3.22	SMR output power vs. duty-cycle
3.23	Turbine speed vs. duty-cycle
3.24	Measured duty-cycle vs. wind speed comparison for both control modes 108
3.25	Turbine and SMR operating characteristics for both control modes 109
3.26	Estimated SMR and generator efficiency vs. SMR output power 110
4.1	Simple block diagram of a grid-connected wind turbine, and inverter output
	current
4.2	Lagging and leading power factors

4.3	Overview of proposed grid-connected inverter	122
4.4	Circuit diagram and input and output current for the constant current source	123
4.5	Current wave-shaper circuit	124
4.6	Comparison of SMR circuit used for the DC-DC converter, and the modified	
	SMR circuit used for the inverter	125
4.7	Comparison of constant and time-varying SMR duty-cycle	125
4.8	Unfolding circuit, and input and output currents	126
4.9	Inverter low-pass filter circuit, and input and output currents	127
4.10	Preliminary resistive / capacitive load test arrangements	128
4.11	Grid-connected inverter test arrangement	129
4.12	Grid-connected inverter test arrangement equivalent circuit	130
4.13	Measured transformer equivalent inductance and resistance	130
4.14	Photograph of an outer-rotor PM generator	131
4.15	I-V locus of PM generator	132
4.16	Photograph of power electronic components of the grid-connected inverter .	133
4.17	Microcontroller hardware, and software flow chart	134
4.18	PSIM [®] grid-connected inverter model	135
4.19	Preliminary PSIM [®] simulation proving the grid-connected inverter concept	137
4.20	Simulated effect of modulation index variation on inverter operation	137
4.21	Proof of inverter concept using an ideal current source	139
4.22	Proof of inverter concept using PM generator as current source	140
4.23	Effect of load resistance and generator speed on I-V locus	142
4.24	Inverter input and output currents for resistive load case 1	142
4.25	Inverter input and output currents for resistive load case 2	143
4.26	Inverter input and output currents for resistive load case 3	144
4.27	Inverter output current and voltage of intermediate grid-connected case	145
4.28	Inverter output current and voltage for the pure grid-connected case	146
4.29	Grid-connected inverter output current for various grid voltages	147
4.30	Filter capacitance vs. grid voltage	148
4.31	Resonant frequency and quality factor vs. grid voltage	149
4.32	Inverter output current THD vs. grid voltage	149
4.33	Grid-connected inverter output current for various modulation indices	150
4.34	Grid-connected inverter output current and voltage for various modulation	
	indices	151
4.35	Inverter output current THD vs. modulation index	152

5.1	Normalised ideal and non-ideal inverter input and output currents	156
5.2	Output voltage of various inverter stages	158
5.3	Normalised ideal and experimental generator I-V loci	158
5.4	Derivation of normalised ideal inverter input current	159
5.5	Normalised inverter input and output currents for various values of $\hat{\alpha}$, using	
	the ideal and experimental I-V loci	161
5.6	Effect of rectifier on normalised inverter input and output current	161
5.7	Effect of rectifier and fluctuating output power on the normalised ideal	
	inverter input and output currents	162
5.8	Normalised inverter input and output currents for two cases of $\widehat{\alpha}$ equal to	
	0.2pu	163
5.9	Effect of the fluctuating input power on the inverter output current and	
	the harmonics for the ideal rectifier I-V locus	165
5.10	Effect of the fluctuating input power on the inverter output current and	
	the harmonics for the experimental rectifier I-V locus	165
5.11	THD vs. $\hat{\alpha}$ comparison using the ideal and experiential locus	166
5.12	Output current distortion and FFT analysis, caused by the rectifier ripple .	167
5.13	Output current distortion and FFT analysis, caused by the rectifier ripple	
	and fluctuating input power	167
5.14	Output current THD vs. modulation index for various values of $\hat{\alpha}$, using	
	the ideal and experimental I-V loci	168
5.15	THD vs. $\hat{\alpha}$ comparison using the ideal and experiential locus	169
5.16	Turbine speed and the resulting $\hat{\alpha}_0$ vs. wind speed	170
5.17	Modulation index and the resulting $\hat{\alpha}$ vs. wind speed $\ldots \ldots \ldots \ldots \ldots$	170
5.18	Open-loop output current THD vs. wind pseed	171
5.19	Bipolar and Unipolar PWM waveforms	172
5.20	Harmonic spectra of the bipolar and unipolar PWM waveforms $\ \ldots \ \ldots$	172
5.21	Distortion, fundamental magnitude and THD vs. modulation index for	
	unipolar PWM waveform	173
5.22	Effect of the rectifier and fluctuating input power on the inverter input and	
	output currents	175
5.23	Harmonic spectrum of the inverter output current waveform	175
5.24	THD vs. modulation index for various values of $\widehat{\alpha}_0$	176
5.25	CL type low-pass filter	177
5.26	Normalised low-pass filter frequency response	178

5.27	Notch filter circuit	179
5.28	Notch filter frequency response	179
5.29	Typical voltage and current source inverter low-pass filter configurations .	182
5.30	CL filter damping, using resistance	184
5.31	Comparison of damped CL low-pass filter gain and phase margins, for two	
	damping resistances	185
5.32	LC filter gain and phase margin at the resonant frequency, for various	
	resistances	186
5.33	Filter delay at the fundamental frequency vs. quality factor for various	
	cutoff frequencies	187
5.34	Cutoff frequency and characteristic impedance plots vs. normalised induc-	
	tance and capacitance	190
5.35	Harmonic spectrum of unipolar PWM waveform and filter gains of each	
	damped low-pass filter	191
5.36	Unipolar PWM harmonic spectrum, showing the effect of varying the cutoff	
	frequency on the filter gain	192
5.37	Unipolar PWM harmonic spectrum, showing the effect of varying the filter	
	quality factor on the filter gain	193
5.38	THD vs. filter cutoff frequency and quality factor	194
5.39	Real, reactive and apparent power triangle corresponding to the grid power	
	factor limits	195
5.40	Real and reactive power flow diagram of the inverter filter	195
5.41	Low-pass filter capacitance and inductance design region	198
5.42	Damping resistor current determined by theory of superposition	199
5.43	Filter power loss vs. output current THD, for various cutoff frequencies	202
5.44	Design Regions of each filter configuration, considering THD and power los	s203
5.45	THD and power loss contours within the design region of each filter type $% \left({{{\rm{D}}_{{\rm{D}}}}_{{\rm{D}}}} \right)$.	204
5.46	THD vs. cutoff frequency and quality factor, showing the effects of fluctu-	
	ating output power and rectifier ripple	209
5.47	Third-order damped low-pass filters	210
5.48	Inverter input and compensated output current, showing concept of feed-	
	forward current compensation	212
5.49	Comparison of modulation index, and input and output currents for the	
	uncompensated and feed-forward compensation schemes	214
5.50	Approximated experimental I-V locus	215

5.51	Comparison of modulation index, and input and output currents for the
	uncompensated and feed-forward compensation schemes
5.52	Compensated output current THD vs. rectifier ripple phase angle error $~$ 218
5.53	Summary of proposed feed-forward controller
5.54	Comparison of modulation index, and input and output currents for the
	uncompensated and feed-forward compensation schemes
5.55	Inverter output current THD and fundamental magnitude vs. $\widehat{\alpha}_0$ using the
	open-loop and both feed-forward control algorithms
5.56	Comparison of inverter output current and power vs. wind speed, using
	both open-loop and feed-forward control algorithms
6.1	Turbine c_p curve used to calculate turbine operating speed $\ldots \ldots \ldots \ldots 228$
6.2	Inverter input and peak compensated output current
6.3	Designed machine I-V locus
6.4	Quality factor, THD, power loss and cutoff frequency tradeoff curves, used
	to design the 1kW grid-connected inverter $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 236$
6.5	Simulated inverter output currents and voltage using an ideal current source
	and open-loop control
6.6	THD prediction using the PM generator current source
6.7	Simulated inverter currents using the PM generator current source and
	open-loop control
6.8	Relevant part of PSIM® circuit showing feed-forward control implementation 242
6.9	Feed-forward control proof of concept
6.10	Comparison of feed-forward (compensated) and open-loop inverter output
	currents, for 4 kHz switching case
6.11	Comparison of compensated and open-loop inverter output currents, for
	$10 \mathrm{kHz}$ switching case
6.12	Apparent power vs. current command, for power less than rated 246
6.13	Inverter power factor vs. apparent power, for power less than rated 247
6.14	Inverter output current THD vs. apparent power, for power less than rated 247
6.15	Inverter input and output currents, for desired power greater than rated 248
6.16	Inverter control signals and output current, for power greater than rated $~$. 249
6.17	Apparent power vs. current command for wide power range
6.18	Inverter power factor vs. entire apparent power range
6.19	Output current THD vs. entire range of apparent power

6.20	Wind, turbine, generator and inverter output power vs. wind speed char-
	acteristic
6.21	Turbine and generator operating characteristics vs. wind speed
6.22	Generator $\hat{\alpha}$ and $\check{\beta}$ vs. wind speed
6.23	Current command vs. wind speed for both control modes $\ldots \ldots \ldots \ldots 255$
6.24	Inverter simulation using control mode 1, for various wind speeds $\ldots \ldots 257$
6.25	Inverter simulation using control mode 2, for wind speeds beyond rated $\ . \ . \ 258$
6.26	Comparison of inverter apparent power and compensated current THD
	vs. wind speed characteristic, using both control modes $\ldots \ldots \ldots \ldots \ldots 259$
6.27	Inverter power loss break-down
6.28	Inverter efficiency breakdown vs. output power
A 1	
A.1	Principle of sinusoidal pulse-width modulation
A.2	Harmonic elimination PWM control signal
A.3	Principle of current hysteresis control scheme
A.4	Filter output current THD vs. power loss vs. cut-off frequency

List of Tables

1.1	Net energy gain comparison of various renewable and non-renewable energy
	sources
1.2	Comparison of small and large scale wind turbine properties
1.3	Generator and power converter summary, used for automotive and wind
	power generation
1.4	Comparison of small-scale wind turbine generator DC power converters 20
1.5	Comparison of transformer and transformerless inverter properties 36
1.6	Comparison of inverter properties for various transformer topologies 36
2.1	Physical, measured and calculated PM generator properties
3.1	SMR component properties
4.1	Current harmonic limits of Australian Standard 4777.2
4.2	Measured PM generator properties
4.3	Semiconductor properties
4.4	Simulated and measured resistive load inverter performance
4.5	Simulated and measured inverter performance for cases 1–3
5.1	Unipolar PWM waveform harmonic analysis, for various modulation indices 174
5.2	Low-pass filter property comparison, for four damping resistor locations 187
5.3	Low-pass filter variable vs. parameter
5.4	Summary of apparent, real and reactive power, under grid power factor
	requirement extreme cases
5.5	Comparison of damping resistor current, for various filter configurations 200
5.6	Effect of varying C_n on filter design region $\ldots \ldots 206$
5.7	Effect of varying f_{sw} on filter design region
6.1	Summary of calculated turbine properties for the proposed 1kW GCI 228

6.2	Designed generator properties
6.3	Filter base quantities
6.4	Filter component values for the proposed 1kW system
6.5	Simulated inverter performance using an ideal current source
6.6	Simulated inverter performance using an the PM generator current source . 240
6.7	Current compensated inverter performance using the PM generator and
	rectifier current source
6.8	Comparison of open-loop and compensated inverter performance 245
6.9	Optimised inverter semiconductor properties
6.10	MOSFET vs. IGBT turn on and off times, and maximum * calculated losses 256