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Abstract

This thesis describes the development, modification and refinement of a

high-powered hybrid Stratospheric Tropospheric (ST)/meteor radar at the

University of Adelaide’s Buckland Park (BP) field station. This thesis also

describes the process of statistically comparing results obtained from mul-

tiple co-located independent measurement sources. Also included are sta-

tistical comparisons made between meteor radars at BP, Darwin, Northern

Territory, and Davis Station, Antarctica, with other independent sources of

measurement.

Previous meteor radar systems have generally been low powered (∼8 kW

peak) and as such could only afford low count rates at frequencies of the

order of 50 MHz. While it has been shown that the echo detection rate

is inversely proportional to frequency to the power of 1.5, the use of lower

VHF frequencies within Australia is restricted by government regulations.

As such, this has lead to the development of a high powered meteor radar

system at 55 MHz which has served to facilitate higher echo rates at this

frequency. The aim of improving the echo rate is to improve the statistical

accuracy of results generated by the meteor technique. Also presented are

descriptions of the meteor radar systems used to provide the data for this

study and the basic principles of the meteor technique. Basic descriptions of

the other systems and the techniques used to provide data for comparison

are also presented.

Two key components in the development of the high-powered meteor sys-

tem are the high-powered all-sky crossed-dipole transmit antenna and the

high-powered 1:2 splitter-combiner required to drive the antenna. The an-

tenna was designed using standard equations for Yagi-Uda antenna design

found in literature and modeled using the EZNEC modeling programe. After

successful modeling, the antenna was prototyped and refined into a low pow-

ered version to investigate the antenna’s performance characteristics. Once

the performance of the antenna was verified, the process of upgrading the

antenna to handle the full output power from a VTX transmitter was per-

formed. This upgrade also spawned the design and development of the high-

powered 1:2 splitter-combiner which would be used to feed the high-powered

version of the antenna.



The successful operation of the high-powered system over several periods

of observation has allowed for a more in-depth investigation into the sta-

tistical reliability of the meteor technique. Along with the comparison of

standard atmospheric parameters, i.e. temperatures and wind velocity, the

high-powered system has allowed for the verification of the relationship be-

tween echo rate and radar parameters found by McKinley, which is frequently

referred to in many papers dealing with meteor observations.

Along with the comparisons made with the results from the high-powered

meteor radar system at BP, comparisons of atmospheric parameters derived

from meteor observations and other techniques were made at Davis Station

and Darwin. Of particular interest is the unique comparison of atmospheric

winds made at Davis between two independent meteor radar systems and

a Medium Frequency (MF) radar. Previous comparison studies have only

enjoyed the benefit of having two independent sources of measurement to

compare and as such have not allowed for a unique solution to be obtained

for the uncertainties of the techniques using the method of Hocking et al.

[2001]. Davis Station is unique in that it has two independent meteor radars

in addition to a MF radar. This has enabled for the reduction in the num-

ber of degrees of freedom in the statistical comparison process, and as such

has allowed for unique solutions to be determined for the uncertainties when

comparing two independent techniques; i.e. meteor and MF wind compar-

isons.

Atmospheric temperatures in the Mesospheric and Lower Thermospheric

(MLT) region were determined through the use of meteor diffusion coeffi-

cients and derived atmospheric pressure models at Davis Station, BP and

Darwin. Comparisons are made between the meteor technique and other

co-located independent measurements. These include; airglow, satellite and

falling sphere measurements at Davis Station, airglow and two independent

satellite measurements at BP and two independent satellite observations at

Darwin.

This thesis as a whole demonstrates the successful operation of the high-

powered ST/meteor hybrid radar at BP. It also demonstrates the successful

comparisons of MLT winds and temperatures made between meteor radar

and other independent sources of MLT measurements. The validation of

using the high-powered meteor radar at BP coupled with the successful com-

parison of atmospheric parameters derived using the meteor technique and

other forms of MLT observations serves to re-affirm the statistical accuracy
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and benefit of the meteor technique in observations of the MLT region.
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