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Abstract

The first half of this thesis deals with the line of thought that leads to the development

of discrete games of chance as models in statistical physics, with an emphasis on anal-

ysis of Parrondo’s games.

The second half of the thesis is concerned with applying discrete games of chance to the

modelling of other phenomena in the discipline of electrical engineering. The impor-

tant features being the element of switching that is implicit in discrete games of chance

and the element of uncertainty, introduced by the random aspect of discrete games of

chance.
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Raúl Toral (Instituto de Fsica Interdisciplinary Sistemas Complejos), Assoc. Prof. Mar-

tin Bier (East Carolina University), Prof. Charles Doering (University of Michigan),

Prof. Erhard Behrends (Freie Universität Berlin) and Prof. Michael Barnsley (Australian

Page xiii



Acknowledgements

National University). I am honoured to have met these people and I feel very humble

when I claim to have extended their ideas by even a small amount.

I particularly appreciate the efforts of the long suffering editors of my open publica-

tions, who also helped me to make my ideas more logical and coherent, and fit within

the page limits. I particularly appreciate the efforts of Prof. Laszlo Kish (Texas A&M

University) Dr. Sergey Bezrukov (National Institutes of Health, NIH) and Prof. Lutz

Schimansky-Geier (Institut für Physik Humboldt, Universität zu Berlin).

I also appreciate the contributions of many of the staff and students at the School of

Electrical and Electronic Engineering at the University of Adelaide, especially my very

patient Heads of School, Dr Tony Parker, Dr Ken Sarkies and Assoc. Prof. Mike Liebelt.

I thank Greg Harmer for the use of his fabulous Smoluchowski-ratchet figure, Matthew

Berryman, Frederic Bonnet, Tze Wei Tang, Chris Illert and Pau Amengual for being

very astute and reliable co-authors. I particularly thank Matthew for the use of his

PERL code. I thank Mark McDonnell for the use of his laptop, for sharing a hotel room

(at a conference) and for many interesting and discursive conversations about noise,

correlation, and information. I thank Withawat Withayachumanankul for his tree dia-

gram of our scientific genealogy.

I am especially grateful to Associate Professor John van der Hoek (University of South

Australia) for his advice regarding stochastic differential equations. I am grateful to

Chris Illert for many fruitful discussions regarding the calculus of variations and the

application of variational techniques to problems in electronics. Finally, I thank my

partner Mei Sheong Wong, and family, for putting up with my absence (at a computer)

for very long periods of time and for help with proofs of some of the less technical

material.

“Writing a book is a horrible, exhausting struggle, like a long bout of some painful illness. One

would never undertake such a thing if one were not driven on by some demon whom one can

neither resist nor understand.” George Orwell

Page xiv



Conventions

This thesis is typeset using LATEX2e software, including the core packages tetex-base,

tetex-bin and tetex-extra. All LATEXsoftware was obtained from the Debian Archive

at: http://www.debian.org.

Numerical calculations were carried out in Matlab, and in the equivalent open-source

packages GNU Octave and Gnuplot, which were also obtained from the Debian archive.

Many of the Figures were generated in Matlab and in GNU Octave. The other figures

were drawn, or post-processed, in a number of other drawing packages, including

Corel-Draw 9 under Windows 2000, Adobe Creative Suite 3 under Mac OS-X, or in

xfig and Inkscape, under LINUX. The last two packages were downloaded from the

Debian archive. All drawings have been converted or exported to encapsulated post-

script (eps) format.

The complete editing environment, Emacs21 (Editing with MACroS, version 21.4.1)

was used as an effective interface to LATEX. The idiomatic conventions, for LATEX, con-

form to standard described in (Lamport 1994).

Harvard style is used for referencing and citation in this thesis. British spelling is

adopted, consistent with the Ispell package, using the British dictionary, in Emacs21.

Additional words have been traced back to their original sources. Where we have

needed to quote works in other languages, including works in US English, we have

used the original spelling.

Page xv



Page xvi



Publications

Book Chapters

ALLISON-A., ABBOTT-D. & AND PEARCE-C. E. M. (2005) State-space visualisation and fractal

properties of Parrondo’s games, in A. S. Nowak., and K. Szajowski. (eds.), Proceedings of the Ninth

International Symposium on Dynamic Games and Applications 2000, Advances in Dynamic Games: Appli-

cations to Economics, Finance, Optimization, and Stochastic Control., Vol. 7, The International Society of

Dynamic Games (ISDG), Birkhauser, pp. 613–633.

Journal Articles

BERRYMAN-M. J., ALLISON-A., WILKINSON-C. R. & ABBOTT-D. (2005) Review of signal processing

in genetics, Fluctuation and Noise Letters, 5(4), pp. R13–R35.

AMENGUAL-P., ALLISON-A., TORAL-R. & ABBOTT-D. (2004) Discrete-time ratchets, the Fokker-

Planck equation and Parrondo’s paradox, Proceedings of the Royal Society of London, 460(2048), pp.

2269–2284.

BERRYMAN-M. J., ALLISON-A., & ABBOTT-D. (2004) Mutual information for examining correlations

in DNA, Fluctuation and Noise Letters, 4, pp. L237–L246.

ILLERT-C. & ALLISON-A. (2004) Phono-genesis and the origin of accusative syntax in proto-Australian

language, Journal of Applied Statistics, 31(1), pp. 73–104.

TANG-T. W., ALLISON-A. & AND ABBOTT-D. (2004) Investigation of chaotic switching strategies in

Parrondo’s games, Fluctuation and Noise Letters, 4, pp. L585–L596.

BERRYMAN-M. J., ALLISON-A. & ABBOTT-D. (2003) Statistical techniques for text classification

based on word recurrence intervals, Fluctuation and Noise Letters, 3(1), pp. L1–L10.

LEE-Y., ALLISON-A. & ABBOTT-D. (2003) Minimal Brownian ratchet: An exactly solvable model,

Phys. Rev. Lett., 91(22), Art. No. 220601.

ALLISON-A. & ABBOTT-D. (2002) A MEMS Brownian ratchet, Microelectronics Journal, 33(3), pp. 235–

243.

Page xvii



Publications

ALLISON-A. & ABBOTT-D. (2002) The physical basis for Parrondo’s games, Fluctuation and Noise

Letters, 2(4), pp. L327–L341.

ALLISON-A. & ABBOTT-D. (2001) Control systems with stochastic feedback, Chaos Journal, 11(3),

pp. 715–724.

ALLISON-A. & ABBOTT-D. (2001) Stochastic resonance in a Brownian ratchet, Fluctuation and Noise

Letters, 1(4), pp. L239–L244.

ALLISON-A. & ABBOTT-D. (2000) Some benefits of random variables in switched control systems,

Microelectronics Journal, 31, pp. 515–522.

Conference Articles

PEARCE-C. E. M., ALLISON-A. & ABBOTT-D. (2007) Perturbing singular systems and the correlating

of uncorrelated random sequences, in T. E. Simos, G. Psihoyios and C. Tsitouras(eds.), Proc. AIP,

International Conference of Numerical Analysis and Applied Mathematics, 936 (1), pp. 699–699.

ALLISON-A., ABBOTT-D. & PEARCE-C. E. M. (2007) , Finding keywords amongst noise: Automatic

text classification without parsing, in J. Kertész., S. Bornholdt., and R. Mantegna. (eds.), Proc. SPIE,

Noise and Stochastics in Complex Systems and Finance, Vol. 6601, Art. No. 660113.

BONNET-F. D. R., ALLISON-A. & ABBOTT-D. (2006) Bubbles in a minority game setting with real

financial data, in A. Bender. (ed.), Proc. SPIE, Complex Systems, Vol. 6039, pp. 99–103.

ALLISON-A. & ABBOTT-D. (2005) Applications of Stochastic Differential Equations in electronics, in

L. Reggiani and C. Penneta and V. Akimov and E. Alfinito and M. Rosini. (eds.), Proc. AIP, Unsolved

Problems of Noise and Fluctuations in Physics, Biology and High Technology, Vol. 800, pp. 15–23.

BERRYMAN-M. J., ALLISON-A. & ABBOTT-D. (2005) Gene network analysis and design, in D. V.

Nicolau. (ed.), Proc. SPIE, Biomedical Applications of Micro- and Nanoengineering II, Vol. 5651, pp.

126–133.

BERRYMAN-M. J., .COUSSENS-S. W., PAMULA-Y., KENNEDY-D., LUSHINGTON-K., SHALIZI-C.,

ALLISON-A., MARTIN-J., SAINT-D. & ABBOTT-D. (2005) Nonlinear aspects of the EEG during

sleep in children, Proc. SPIE, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems,

Vol. 5841, Austin, Texas, pp. 40–48.

Page xviii



Publications

BERRYMAN-M. J., ALLISON-A. & ABBOTT-D. (2004) Optimizing genetic algorithm strategies for

evolving networks, Proc. SPIE, Fluctuations and Noise in Biological, Biophysical and Biomedical Systems,

Vol. 5473, pp. 122–130.

BERRYMAN-M. J., ALLISON-A. & ABBOTT-D. (2004) Stochastic evolution and multifractal classifica-

tion of prokaryotes, in S. M. Bezrukov., H. Frauenfelder., and F. Moss. (eds.), Proc. SPIE, Fluctuations

and Noise in Biological, Biophysical and Biomedical Systems, Vol. 5110, pp. 192–200.

BERRYMAN-M. J., SPENCER-S. L., ALLISON-A. & ABBOTT-D. (2004) Fluctuations and noise in

cancer development, in Z. Gingl. (ed.), Proc. SPIE, Noise in Interdisciplinary Applications II, Fluctuations

and Noise 2004, Vol. 5471, pp. 322–332.

BERRYMAN-M. J., ALLISON-A. & ABBOTT-D. (2004) Cellular automata for exploring gene regulation

in drosophila segmentation, Proc. SPIE, BioMEMS and Nanotechnology 2003, pp. 266–277.

BERRYMAN-M. J., KHOO-W. L., NGUYEN-H., O’NEILL-E., ALLISON-A. & ABBOTT-D. (2004) Ex-

ploring tradeoffs in pleiotrophy and redundancy using evolutionary computing, in D. V. Nicolau.

(ed.), Proc. SPIE, BioMEMS and Nanotechnology 2003, Vol. 5275, pp. 49–58.

BONNET-F. D. R., ALLISON-A. & ABBOTT-D., (2004) Path integrals in fluctuating markets, in Z.

Gingl. (ed.), Proc. SPIE, Noise in Complex Systems and Stochastic Dynamics II, Vol. 5471, pp. 595–611.

BONNET-F. D. R., ALLISON-A. & ABBOTT-D (2004) Review of quantum path integrals in fluctuating

markets, in D. Abbott., and K. Eshraghian. (eds.), Proc. SPIE, Microelectronics: Design, Technology, and

Packaging, Vol. 5274, pp. 569–580.

TANG-T. W., ALLISON-A. & ABBOTT-D. (2004) Parrondo’s games with chaotic switching, Proc. SPIE,

Fluctuations and Noise in Biological, Biophysical and Biomedical Systems, Vol. 5471, pp. 520–530.

ALLISON-A. & ABBOTT-D. (2003) Brownian ratchets with distributed charge, in S. M. Bezrukov.,

H. Frauenfelder., and F. Moss. (eds.), Proc. SPIE, Fluctuations and Noise in Biological, Biophysical, and

Biomedical Systems, Vol. 5110, pp. 302–311.

ALLISON.-A. & ABBOTT-D. (2003) Discrete games of chance as models for continuous stochastic

transport processes, in L. Schimansky-Geier., D. Abbott., A. Neiman., and C. V. den Broeck. (eds.),

Proc. SPIE, Noise in Complex Systems and Stochastic Dynamics, Vol. 5114, pp. 363–371.
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Chapter 1

Introduction and
motivation

B
ROWNIAN motors are very small devices by which are able

to transduce energy from one form into another. Electrical, or

chemical, energy can be used to produce directed motion in

space. This chapter provides a very brief introduction to Brownian motors,

and how they relate to the motivation for this thesis.
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1.1 Introduction

1.1 Introduction

1.1.1 Brownian motors

In ordinary motors, on the human scale, the dominant forms of energy storage are due

to inertia, gravity and elasticity. To this, we could also add the energy stored in the

electric and magnetic fields, for electrical machines. Mathematically, these fields are all

conservative. The associated forces are spatial gradients of a conservative work func-

tion, or field.

Energy loss, or dissipation is related to non-conservative forces. These forces cannot be

expressed as gradients of a work function (Lanczos 1949). Non-conservative forces are

examples of the second law of thermodynamics. Energy that is associated with macro-

scopic observable degrees of freedom is transferred irreversibly to numerous micro-

scopic un-observable degrees of freedom. There is mixing involved at a microscopic

scale. Once some energy has been partitioned amongst many small particles, it cannot

be un-mixed, without the expenditure of more energy. The mixing is irreversible.

If a motor, on the human scale, is well designed then the energy loss due to friction is

small and does not affect the qualitative behaviour of the machine. Fluctuations, due

to the discrete nature of the underlying phenomena, are small and may be neglected,

or added to the standard theory as a small perturbation. The situation is reversed if

we consider microscopic machines that are constructed on a similar scale to underly-

ing phenomena, to the molecules, carriers, fluxoids 1, or whatever they may be. When

we consider microscopic machines the viscous and frictional forces dominate all the

other forces and the fluctuations are more evident than any long-term time-average

changes. At first, we might expect that no machine could possibly operate under these

conditions. On closer consideration, it can be seen that the natural machinery inside

living cells, not only operates very well, but actually benefits from the presence of fluc-

tuations. A machine that makes use of microscopic fluctuations to transduce energy

from one form to another is called a Brownian motor.

Brownian motors are strongly dependent on random impacts of molecules (thermal

noise), which means that they are only feasible at the nanometer scale. At this small

1A fluxoid is a quantum of magnetic flux, Φ0 = h/ (2qe) ≈ 2.067× 10−15 Wb.
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Chapter 1 Introduction and motivation

scale, the forces due it viscosity are much greater than the forces due to inertia. The

apparently random movements due to fluctuations will be very substantial, in com-

parison with the scale of the machine. Even in a well designed device, the motion in

the required direction will be very small, compared with all the other motion due to

random forces exerted by the environment.

Some authors have speculated that protein-based molecular motors in living cells are

Brownian motors. The more detailed modelling of Brownian motors seems to have

promise in helping us to understand processes in biology. There is the possibility that

engineers could mimic the systems that are found in nature. There is the further pos-

sibility that we may discover things that we were not even expecting. The dynamics

of Brownian motors is an interesting field, which is amenable to mathematical analysis.

1.2 Motivation

Parrondo (1996b) devised a set of discrete games of chance that mimic some aspects

of Brownian motors. The main motivation for this thesis is to understand Parrondo’s

game-theoretical model and to place that model on a rigorous basis. In this thesis

the dynamics are modelled using the Fokker-Planck equation, and using the Langevin

equation.

1.3 Thesis overview

This thesis investigates transport phenomena associated with inhomogeneous systems.

To investigate all possible systems or all possible phenomena is a task that will proba-

bly never be finished. It is prudent to restrict attention to certain special cases where

progress appears to be possible. In this thesis, we have mostly used a constructive

approach to demonstrate mathematical concepts, rather than an existential approach.

Progress is made though worked examples of a general theme.

This thesis first investigates some discrete games of chance, introduced by Parrondo

(1996b) and investigated by Harmer and Abbott (1999a) and others. Parrondo’s Games
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Figure 1.1. Probability density in a flashing ratchet. This figure shows the probability density

of finding a Brownian particle within a particular type of Brownian motor, called a

flashing ratchet. This device is also known as an on-off ratchet. The x-axis, on the right,

shows spatial position, x, in metres. The y-axis, on the left, shows time, t, in seconds.

The spacing of the teeth of this ratchet is about 200 nm. the z-axis on the far left

shows probability density,p in units of m−1. If the probability density is integrated over

all positions, x, at any given time, t, then the total probability is always one. This

simulation was carried out using methods that follow in logical progression from the

Fokker-Planck equation and from Parrondo’s games. One purpose of this thesis is to

make the connection, between the Fokker-Planck equation and Parrondo’s games more

explicit.

appear to be paradoxical because playing each of the games individually is a losing

proposition, with negative expected return. Conversely, playing a mixture of the two

different games is a winning proposition, with positive expected return. The useful

thing about Parrondo’s games is that they are “simple” but not “too simple.” 2 If the

games were simplified any further then they would not adequately model actual phe-

nomena in the real physical world. If the model was more detailed then we might

not be able to solve the resulting equations analytically. Numerical solutions might

not give the insight that can be obtained from an exact solution to a slightly simplified

2Albert Einstein is purported to have said that ”We should make things as simple as possible, but not

simpler.”
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Chapter 1 Introduction and motivation

model.

In this thesis, Parrondo’s games are placed on a sound physical basis. We obtain the

equations for Parrondo’s games by sampling the Fokker-Planck equation description

of a flashing ratchet. Techniques are derived for estimating the moments of Parrondo’s

games. These are equivalent to the rates of return (or loss) of the games and the degree

of uncertainty associated with those estimates. The small-matrix representation of Par-

rondo’s games is also placed on a more rigorous basis.

The small-matrix technique, for the first moment of Parrondo’s games, is applied to a

variety of different but related discrete games, from the literature, including: (i) Par-

rondo’s original games, (ii) Parrondo’s games with natural diffusion, (iii) a pair of dis-

crete games with only two states, (iv) Astumian’s games (with boundaries at infinity),

and (v) Astumian’s original games (with absorbing boundary conditions). All of these,

apparently different, games can be analysed by applying the same mathematical meth-

ods. We analyse all of them, within the one framework that is developed in this thesis.

It is shown, by construction, that the presence (or absence) of self-transitions in dis-

crete Markov games is independent of the presence, of absence, of the paradoxical

behaviour.

Visualisation techniques are applied to the representation of the games in phase-space

and it is shown that the resulting attracting set has fractal properties. The methods

of Barnsley (1988) are extended to derive expressions of the moments of fractals, in

phase-space. The average value of the time varying probability vector (over time) is

shown to give the same result as averaging the time varying probability vector (over

phase-space). This is an important result for establishing the consistency of the two

approaches.

The equations for the time-evolution of Parrondo’s games have the same form as the

equations for the time-evolution of switched-mode electrical circuits. It is shown that

the attracting set in the phase-space for a switched-mode circuit can also be a fractal.

This is quite analogous to the case for Parrondo’s games. It is possible to construct a

version of Parrondo’s paradox for a physical switched-mode circuit, if the measure of

winning or losing is based on changes in the internal stored energy of the system. This
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1.3 Thesis overview

proof is achieved by construction. It is possible to construct a physical switched-mode

circuit that is unstable in either mode but is stable when switched between modes.

This stable situation persists, even if the modes are selected at random. These results

are analogous to the paradoxical behaviours that are exhibited by Parrondo’s games.

The winning and losing regions of Parrondo’s games are considered. In Parrondo’s

games, the act of choosing games, at random, forms an equivalent game that is a linear

convex combination of the other, more basic games. This is a strictly linear process

but the reward function that is applied to determine whether the games are winning

and losing is non-linear, and the winning and losing regions of the parameter space are

non-convex3. Viewed in this way it can be seen that paradoxes of the Parrondo type are

possibly very common, and will be found in a number of different problem domains.

Parrondo’s games are shown to have models of the form

pm+1,n = ∑
∀v

pm,v · qv,n. (1.1)

which can be written using the standard notation of linear algebra:

pm+1 = pm · [q]. (1.2)

This is very concise, and has the same mathematical form as discrete-time state-space

models for dynamical systems, including switched-mode electrical circuits. The con-

sideration of random switching policies, in Parrondo’s games, naturally leads to the

consideration of random switching policies in other dynamical systems governed by

equations with the same form, as Equation 1.2.

Parrondo’s games exemplify,interesting behaviour brought about by a switching pro-

cess. This simple model inspires us to generalise this behaviour in the areas of stochas-

tic control, and stochastic switching. This naturally leads to questions of random

switching policies, in Markov systems and in electrical circuits.

3Any subset, M, of real linear space, L, is either convex or non-convex. A set, M, is convex if,

whenever it contains two points x ∈ M and y ∈ M, it also contains all points in the finite line segment

joining x and y. The convex set, M must contain all points of the form z = γ · x + (1 − γ) y are in

M, where γ ∈ R and 0 ≤ γ ≤ 1 (Kolmogorov and Fomin 1970). Sets that are not convex are called

non-convex, rather than concave.
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Chapter 1 Introduction and motivation

The limiting case, for a switched-mode electrical circuit, as the switching time becomes

very small τ → 0 is examined. The state variable of the circuit seems to undergo a ran-

dom walk that is reminiscent of Brownian motion. It is postulated that that a more

elegant way to analyse problems of this type would be to take the limiting case of

a continuous-time stochastic process, which should include idealised Brownian mo-

tion, as a standard part of the model. Viewed from this point of view, fast switching is

only one of many methods of introducing Gaussian white-noise into a circuit. The new

method of analysis should be able to incorporate all possible sources of Gaussian white

noise in the circuit and to formulate Stochastic Differential Equations that describe the

time evolution of the circuit. This goal is achieved by applying the Stochastic Calculus

of Itô to devise one consistent method for analysing all linear electrical circuits that

include sources of Gaussian white noise.

The stochastic analysis of circuits is introduced. This includes models for resistors,

capacitors and inductors. The method is tested by applying it to a couple of well

known circuits, and comparing the results with the more orthodox result, obtained

using Power Spectral Density. A functional mapping between electrical and mechan-

ical systems is demonstrated and it is shown that the equations obtained by the new

method are equivalent to the Langevin equations, from statistical mechanics. Finally

some of the issues that arise from the noise model for a Junction Field Effect Transistor

are discussed.

1.4 Original contributions

This thesis makes a number of important contributions to the application of models

of the type used in Parrondo’s games. Firstly in the development of the games them-

selves, and secondly in the application of these models to electrical circuits.

In Chapter 3 we establish the physical basis for Parrondo’s games. This is based on

our earlier work (Allison and Abbott 2002) where the results were published for the

first time. These results were later followed up and verified in Toral et al. (2003b). This

work places the work of earlier authors, including Harmer et al. (2000b) on a more

rigorous basis. We establish conditions for realistic simulations of Brownian ratchets,

Page 7



1.4 Original contributions

which we refer to as Parrondo’s games with natural diffusion. This extends our earlier

work in Amengual et al. (2004), where the results were established for the first time.

We also show, for the first time, how to evaluate the moments of Parrondo’s games

using a discrete transform method. This can be carried out without explicitly solving

the difference equations represented by Parrondo’s games.

In Chapter 4 we establish a unified small-matrix technique for evaluating expected

return from all sets of games in the same class as Parrondo’s games. This extends

our earlier work in Allison et al. (2005), where the method was developed for the first

time. By construction, we establish that Parrondo’s games still manifest their appar-

ently paradoxical behaviour, even if self-transitions are included. We also examine the

conditions for the minimum number of states and develop a set of games with only

two states, which demonstrates the same paradoxical behaviour as Parrondo’s games.

We reveal that fractals are generated in the phase-space for Parrondo’s games, this

extends our earlier work in Allison et al. (2005), where the result was published for

the first time. These results were later independently confirmed by Behrends (2006).

We devise methods for evaluating all the moments of fractals, including second and

higher moments. These results appear to be new to the literature. They extend the

work of Barnsley (1988).

In Chapter 5, the concepts embodied in Parrondo’s games are applied to electrical cir-

cuits. We extend our earlier work in Allison and Abbott (2001), where we showed, for

the first time, that a form of Parrondo’s paradox exists for electronic circuits.

In this chapter we also extended the methods of Middlebrook and Ćuk (1976) and use

stochastic differential equations (SDEs) to model switching noise in switched-mode

circuits, in the case where there is a random aspect in the switching rule. This re-

sult appears to be new to the literature. We show fractals exist in the phase spaces of

switched mode circuits, where there is a random, or stochastic, aspect in the switching

rule. It then becomes possible to use the methods developed in Chapter 4, to evaluate

the mean values and variances of state variables.
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In Chapter 6, we develop methods to model electrical circuits using stochastic differen-

tial equations (SDEs). In order to make these rigorous, we also develop new differen-

tial forms for Kirchhoff’s laws and for the device laws. This chapter extends our earlier

work in Allison and Abbott (2005), where the results were established for the first time.

1.5 Chapter summary

In this introductory chapter we have introduced the concept of a Brownian motor, as

a motivation for the consideration of discrete models of transport processes, such as

Parrondo’s games. We provide an overview of the thesis and a statement of original

contributions.
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Chapter 2

Background for Parrondo’s
games

T
HE historical background and important features of Brownian

motion, Maxwell’s demon, the ratchet and pawl machine and

flashing ratchets, are presented and discussed. We describe the

physical construction of a flashing Brownian ratchet and cite some success-

ful artificially-constructed Brownian ratchets. We provide an overall histor-

ical time-line for the subject and give an outline of the motivations for using

discrete games of chance as models for stochastic transport processes.
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2.1 Brownian motion

Feynman et al. (1963) begin their famous series of books with a statement that the most

important fact that we need to know about the physical world is that it is made out of

atoms. This is now the standard paradigm for chemistry, but this truth was not always

universally acknowledged. The history of the atomic theory of matter is interesting.

There are ancient sources that refer to atoms. Democritus, Lucretius and Epicurus all

expounded theories regarding atoms. The first modern European reference to atoms

appears to be by Gassendi (1649), who cites Epicurus. Gassendi lived from 1592 to

1655, and after his death, number of other scientists write about atoms, including Boyle

(1627–1691), Newton (1642–1727) and Lémery (1645–1715). Boyle (1661) refers to the

ancient sources and explicitly discusses the particles and corpuscles of matter that have

shapes and properties and are immutable. Newton (1704) was an active chemist and

personally carried out a great number of chemical and alchemical experiments. He

writes at length about particles of matter in his book on optics (Newton 1704), Book

Three, Part I, Quest. 31:

Have not the small Particles of Bodies certain Powers, Virtues, or Forces, by which they act at

a distance, not only upon the Rays of Light for reflecting, refracting, and inflecting them, but

also upon one another for producing a great part of the Phænomena of Nature?”

Certainly the particle view of matter was common, as early as, Newton (1704), but

was not necessarily the majority view until Dalton (1808) was able to present the case

for atoms, based on evidence from quantitative experiments in chemistry and physics.

Specifically, Dalton refers to the gas laws (Boyle’s law, Gay-Lussac’s law, Charles’ law

and Dalton’s law of partial pressures). He also refers to the fact that in quantitative

chemical experiments, the reagents of binary chemical reactions always combine in

fixed proportions. After Dalton, there is a period of about a hundred years where

the issue is vigorously debated, but the atomic view seems to be the majority opin-

ion, amongst scholars. The atomic view of matter was not universal though. We

should not forget that Boltzmann had to endure criticism of his theories in his own

lifetime (Bryan 1906). The debate is completed with the theoretical contributions of

Page 12



Chapter 2 Background for Parrondo’s games

Einstein (1905), the practical observations of Perrin (1909)4, and the complete victory

of the atomic view of matter.

One difficulty with the acceptance of the atomic view of matter is that atoms are so

small. It is difficult to observe them directly. One measure of scale is given by Avo-

gadro’s number NA, being the number of atoms, in 12 grams of Carbon 12. Max-

well (1888) obtained a value of NA = 4.1 × 1023. Perrin (1909) obtained a value of

NA = 7.15 × 1023. The currently accepted value of Avogadro’s number is NA =

6.0221367(36) × 1023. The correct value of the exponent has been known since the

time of Maxwell and Boltzmann. Avogadro’s number is a very large number, in human

terms. Most people cannot visualise a number as large as 1023, and cannot form a dis-

tinct mental picture of the difference between 1023 and 1022 or 1024. Any physical object

that is large enough to be seen by a human being, without the aid of instruments, will

contain an enormous number of atoms.

The numbers are so large that it that it is quite infeasible to track the course of each

and every particle, in most physical systems. Statistical methods have to be used. This

was understood and stated by Laplace (1814), Maxwell (1888) and Gibbs (1902), and

is clear in the thinking of Boltzmann and his students, who pointed out the statistical

nature of the laws of thermodynamics (Bryan 1906). An important aspect of statistical

laws, as opposed to deterministic laws, is that measurements will not always yield the

same result. If we consider the equation of state for an ideal gas, pV = NkT, as an ex-

ample. This law will not always hold exactly. There will always be fluctuations about

the mean values. Any attempt to measure the pressure, p, or the temperature T, will

be subject to fluctuations. These are not due to experimental error they are fundamen-

tal aspects of the quantities being measured. These fluctuations lead to some difficult

problems. Maxwell is clearly aware that a world composed of atoms would appear

to be very different to a sentient being who could perceive individual atoms. Without

the aid of instruments, human beings, can only perceive the bulk average properties

of matter, but it would be possible, in principle, for a sentient being to track the paths

of some individual molecules, given the right instruments. This leads to an interesting

philosophical problem.

4This work appears in English, translated by F. Soddy, as Perrin (1910).
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2.2 Maxwell’s demon

In his book about the theory of heat, Maxwell (1888) proposes a thought experiment

that still concerns scientists today: “if we conceive of a being whose faculties are so sharpened

that he can follow every molecule in its course, such a being, whose attributes are as essentially

finite as our own, would be able to do what is impossible to us. For we have seen that molecules

in a vessel full of air at uniform temperature are moving with velocities by no means uniform,

though the mean velocity of any great number of them, arbitrarily selected, is almost exactly

uniform. Now let us suppose that such a vessel is divided into two portions, A and B, by a

division in which there is a small hole, and that a being, who can see the individual molecules,

opens and closes this hole, so as to allow only the swifter molecules to pass from A to B, and only

the slower molecules to pass from B to A. He will thus, without expenditure of work, raise the

temperature of B and lower that of A, in contradiction to the second law of thermodynamics.”

This thought-experiment is shown in Figure 2.1.

Maxwell’s being was christened as Maxwell’s demon by Lord Kelvin. Smoluchowski

(1912) points out that the door-mechanism and the demon are also subject to bom-

bardment from the surrounding molecules. This means that they will also be subject to

Brownian motion and will not be able to operate reliably. This means that the demon

will not be able to reliably carry out the operations required to violate the second law

of thermodynamics.

Szilard (1929) adds a new point of view to the discussion. He points out that the de-

mon is acting on detailed information that he has collected about the motion of the

particles of the gas. He establishes that there is a fundamental relationship between

the information collected by the demon and the reduction of entropy5 caused by the

demon’s activities. The second law of thermodynamics requires that the total entropy

5Entropy, S, is a term proposed by Clausius in 1868. It is an extensive state variable of a thermody-

namic system. It is an exact differential. Clausius’ original expression was dS = dQrev/T, where dQrev

is the heat that is exchanged reversibly into a system and T is the temperature. The more modern defini-

tion, following Gibbs and Boltzmann is that entropy is the logarithm of the number of micro-states in a

macro-state. This leads to Boltzmann’s famous equation S = k × log Ω, where k is Boltzmann’s constant

and Ω is the probability of a micro-state, given a certain macro-state. This approach ultimately leads

to the work of Nyquist and Shannon regarding information. The quantity −S is called negative entropy

or negentropy. Szilard’s result is that the negentropy generated by the demon is equal or less than the

information collected by the demon.
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A B

Figure 2.1. Maxwell’s demon. This figure is an artist’s impression of Maxwell’s being with sharp-

ened faculties. He can follow every molecule in its course and allows the fast molecules

to pass from region “A” on the left to region “B” in the right. In principle the door

can be opened and closed without net expenditure of work. After a period of time the

being will, without expenditure of work, raise the temperature of region B and lower

that of region A. This is in apparent contradiction to the second law of thermodynamics.

Maxwell considered this to be a limitation of the range of applicability of the second

law of thermodynamics, which is only statistical in nature and may not apply to each

and every molecule in a large mass of matter. Maxwell correctly perceived that the dif-

ference between the imaginary being and us is due to a state of information. The being

is presumed to be able to collect information about the trajectories of the individual

molecules, whereas we cannot. This approach to the problem, based on information,

was carried further by Szilard (1929) and Brillouin (1956). It is also important to note

that the demon is enclosed within the system and will be subject to collisions with the

molecules, which will interfere with his attempt to undermine the laws of thermody-

namics. The demon cannot remain at at different temperature than his surroundings,

without the expenditure of energy. This is Smoluchowski’s argument.

of a closed system cannot diminish, dS
dT ≥ 0. The apparent reduction of entropy in re-

gions A and B, dS, is balanced by the need, of the demon, to obtain a certain amount

of information, dI, which must be paid for by an increase in entropy within the demon

and his surroundings, dSd. This means that the total change in entropy, d(S + Sd) ≥ 0,

even if dS < 0.

Brillouin (1956) argues that the demon will not actually be able to see the individual

atoms, because at thermal equilibrium he will be immersed inside a black-body and
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will only see black-body thermal-radiation in all directions. The demon cannot see the

molecules in order to operate the door at the right times. If the demon is equipped

with some other apparatus, such as a torch, then this will consume energy, which is

shared amongst the molecules of region A, which will, in turn, generate more entropy

than the reduction that is generated by the demon’s other activities.

A final and important stage in the study of Maxwell’s demon results from the work of

Landauer (1961), who argued that “Computing machines inevitably involve devices which

perform logical functions that do not have a single-valued inverse. This logical irreversibility

is associated with physical irreversibility and requires a minimal heat generation, per machine

cycle, typically of the order of kT for each irreversible function.” This means that if the de-

mon collects information, about the trajectories of particles, then he must collect and

carry out computations in order to make a decision, as to whether the door should be

opened or not. This computation is associated with a minimum energy cost. The work

of Bennett (1982) established that the irreducible cost for the demon is not in opening

and closing the door, nor in deciding whether to open and close the door. The irre-

ducible cost lies in restoring the demon’s computational machinery to a default state,

before performing the next computation.

2.3 The ratchet and pawl machine

Gabriel Lippmann discussed a ratchet and pawl device, shown in Figure 2.2, as early

as 1900 (Smoluchowski 1912). The basic idea is that the vanes (labelled “V”) in the

heat-bath on the right, at temperature T1, are agitated by numerous collisions with

molecules in the bath. If the vanes are not constrained then they undergo a rotational

form of Brownian motion. The ratchet mechanism consists of a ratchet wheel (marked

“R”), a pawl (marked “P”), and a spring and damper mechanism (marked “S”). The

ratchet provides a constraint that allows rotation in one direction and not the other.

In principle, this motion may be used to raise the weight (marked “W”) and hence to

perform mechanical work. Naı̈vely, it seems possible to use the ratchet to cool down

the heat bath, T1 and to perform mechanical work on the weight, W, but Smoluchowski

(1912) correctly argued that at thermal equilibrium, with (T1 = T2), it is impossible for

the machine to perform work.

Page 16



Chapter 2 Background for Parrondo’s games

The general aim of this thought experiment is to investigate whether, or not, a micro-

mechanical version of Maxwell’s demon could be constructed in order to harness the

thermal Brownian fluctuations of gas molecules, by a process of rectification. If such

a device could be constructed, for T1 = T2, then it would violate the second law of

thermodynamics and it would be a perpetual motion machine of the second kind.

Marian von Smoluchowski, who had worked with Gabriel Lippmann in 1896, dis-

cussed the ratchet and pawl device (Smoluchowski 1912). This machine was also dis-

cussed by Feynman et al. (1963), who added the refinement that the ratchet and pawl

mechanism and the vanes can be visualised as being immersed in different heat baths,

at different temperatures. The vanes are at temperature T1 and the ratchet mechanism

is kept at temperature T2. The essential scenario painted by Smoluchowski and Feyn-

man is that when the pawl, P, responds to the impulse from the ratchet wheel, R, it

acquires some energy. If this energy is not dissipated then the pawl will vibrate and

bounce and will not be able to perform the necessary locking function. This means that

it cannot prevent rotations in the wrong direction unless pawl is damped and cooled in

the second heat bath at temperature T2. Feynman et al. (1963) state that the mechanism

does not produce the required motion unless T2 < T1, in which case the ratchet and

pawl machine is just a heat engine, and Maxwell’s demon is exorcised, when T1 = T2.

Of course, if we wanted to build a microscopic heat engine then it might be sensible

to build a machine like the ratchet in Figure 2.2, but we would have to provide energy

to maintain T2 < T1. This is essentially the same issue as erasing the mental state of

Maxwell’s demon, as discussed by Bennett (1982). A heat engine that uses energy to

reset a selection mechanism, like the pawl, is a Brownian motor.

Parrondo (1996a) states that there are errors in the analysis in Feynman et al. (1963).

Parrondo argues that Feynman incorrectly invokes the quasi-static assumption, result-

ing in an incorrect expression for the engine efficiency. The efficiency issue does not

affect the question of detailed balance, that is whether the motor can have net rota-

tion in the required direction when T2 = T1. Abbott et al. (2000) have mathematically

shown that will work as a motor when T1 > T2, and that the ratchet will work as a

motor in reverse when T1 < T2, and that no net motion will occur when T1 = T2. This

establishes that the ratchet and pawl machine is only a heat engine, and conforms to
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Figure 2.2. The ratchet and pawl machine. The machine consists of vanes, V, a ratchet wheel, R,

and a weight, W, all connected to a common axle. The pawl mechanism, P, is connected

to a spring and damper, S, which should only allow movement in one direction. Any

movement in this direction should lift the weight, W, and perform mechanical work.

The energy-cost of this work has to be paid for by a reduction in the mean energy of

the molecules in the heat bath, T1. This should cause T1 to reduce. At first sight this

appears to be a perpetual motion of the second kind, which violates the second law of

thermodynamics. Closer analysis reveals that the ratchet and pawl machine is a heat

engine and that it can only operate as required if T2 < T1 (Feynman et al. 1963). This

figure is reproduced, with permission, from Harmer (2001).

the laws of thermodynamics.

2.4 Flashing ratchets

Another important line of development, that intersects with the ideas of Brownian

ratchets and Maxwell’s demon, is the idea of the molecular motor. The earliest ma-

jor development, is the identification of the roles of actin, myosin and adenosine-

triphosphate in movement in muscles (Guba and Györgyi 1946) 6. It becomes clear

that stored energy in the form of chemicals can be transduced into mechanical work

and that this is a normal part of animal physiology. The molecules of myosin and

adenosine-triphosphate are rather like molecular machines and the molecule adenosine-

triphosphate is like fuel. This metaphor is developed further and the term molecular

6A. Szent Györgyi won the Nobel Prize in Medicine and Physiology in 1937.
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motor appears literature, in the late 1980s (Warrick and Spudich 1987). Simon et al.

(1992) propose a mechanism for driving the trans-location of proteins and the term

Brownian ratchet is used. Quite detailed analyses of the structures and mechanics of

molecular motors are later carried out by Bier (1997) and by Astumian and Derényi

(1998). Molecular motors and pumps can be driven by molecular fluctuations, as long

as energy is provided, from an external source7. The details of very large molecules,

like proteins, are complicated and this is still an area of active research.

Ajdari and Prost (1992) and Magnasco (1993) are generally considered to have pro-

posed the idea of a Brownian ratchet, as a method of performing chemical separation,

similar to electrophoresis (Seader and Henley 2006). Further early analysis of Brow-

nian ratchets was carried out by Doering (1995). The Brownian Ratchet idea was in-

fluential, and motivated Parrondo (1996b) to formulate discrete games of chance, to

model the essential features of Brownian ratchets.

The interaction between fluctuating potentials and Brownian motion are important

factors in Brownian ratchets and in molecular motors and the term Brownian motor is

coined. The mechanism described here is for a flashing Brownian ratchet, although

some of these principles are applicable to molecular motors and to Brownian motors.

The basic operation of a flashing ratchet is shown in Figure 2.3. When the field is turned

on, the particles accumulate at positions of lowest electric potential. The distribution

will approach a time-invariant equilibrium. This is shown at position “d” in part (ii)

of the figure. When the field is turned off, the distribution will approach a different

time-invariant equilibrium. This is shown at position “e” in part (iii) of the figure. If

the field were left off for long enough the distribution of particles would reach a state

of maximum entropy, a flat uniform distribution. This is the relevant time-invariant

equilibrium when the field is off.

We consider the probability density of a charged Brownian particle near the reference

plane (b) in the ratchet. While the field is turned off the distribution, shown at position

“d” relaxes and spreads out to form a broader distribution at position “e”. The result-

ing flux across reference plane (a) is J1 and the resulting flux across reference plane (c)

is J2. The bulk of the distribution is near reference plane (b), which is closer to reference

7Typically this energy is provided in chemical form, such as Adenosine-Tri-Phosphate (ATP).
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Figure 2.3. The flashing ratchet. This figure shows the flashing ratchet, as proposed by Ajdari

and Prost (1992). Part (i) shows the electric field, as a function of position. This

field can be turned on and off, or flashed as required. Part (ii) shows the distribution

of mobile charged particles if the field is turned on. The distribution will approach a

time-invariant equilibrium, if the field is kept on for long enough. Part (iii) shows what

happens to the distribution of the particles when the field is turned off, for a short time.

Please note that there is a net drift of particles to the right. When the sloped edges are

turned on, they impart energy to the particles. There is a net movement to the right,

simply because the longer slope on the right has a greater capture cross-section, and

thus ‘wins’ over the shorter slope.

plane (c) than it is to reference plane (a). It is intuitively plausible that the resulting flux

across reference plane (c) will be larger than the flux across reference plane (a). We ex-

pect J2 − J1 > 0. The net flow should be positive. More accurate analysis, based on

the Fokker-Planck equation shows that this is correct. The result of flashing the ratchet

is that the Brownian particles will move more frequently to the right than to the left.

This gives rise to a net flow or transport effect. This effect depends on the charge and

mobility of the particles and can be used for chemical separation.

Possible physical construction

The structure described here is loosely based on an actual device built and tested

by Bader et al. (1999). Many other structures are possible but this particular one maps
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neatly onto the mathematical structure required for a flashing ratchet of the type de-

scribed by Doering (1995).

Figure 2.4. Top view of an inter-digital flashing ratchet. Part (a) shows comb-shaped elec-

trodes connected to a voltage source that can be turned on or off according to any

desired pattern, in time. Part (b) shows the electric potential, or voltage, V0(z), gen-

erated by the ratchet when it is turned on, as a function of position, z. Part (c) shows

the electric field, E0(z) generated by the ratchet when it is turned on, as a function of

position, z. For the quasi-static case E0 and V0 are related by E0 = −∇V0. Please

note that the electric field, E0(z), is sometimes positive (when the voltage is rapidly

sloping downwards) and sometimes negative (when the voltage is more gradually sloping

upwards). Sometimes the electric field is more or less zero (in the spaces where the

voltage is constant). For a real ratchet with finite depth, there will be fringing effects

and the profiles of the fields may not be quite as described, with straight lines and

sharp corners. There would be some rounding of the curves. This figure does give a

reasonable view of the effect of the field though, which will be asymmetrical. The lack

of spatial symmetry is important.

In most analyses of Brownian ratchets, only a single charged particle is considered, an

otherwise neutral medium. This is not always very realistic. The effectiveness of the

transport process depends strongly on how we model the effect of ion to ion interac-

tions. At high local ion concentrations the effect of the crowding of charge is significant.

It is necessary to include this effect in the models. If we are interested in average ion

currents then we can replace the complicated many-body problem with a time-average

mean-field for the distribution of charge. It is necessary to make use of Poisson’s equa-

tion. To date, most analyses of artificial, human-made, ratchets require us to neglect

the effect of distributed charge. This means that the standard analysis is only strictly
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Figure 2.5. Side view of an inter-digital flashing ratchet. Part (a) shows a side view of the

ratchet. For more symmetrical fields it would be desirable to place electrodes above

and below the channel containing the Brownian particles. Ideally the channel should be

very shallow. The depth h should be as small as the manufacturing process would allow.

Ideally the electrodes should be isolated from the fluids in the channel. Otherwise it

would be possible for electrolysis to occur. At the very least, the electrodes could be

subjected to corrosion and the resulting chemical changes could affect the contents of

the channel. For any given MEMS fabrication process there will be a minimum feature

size, w. For maximum ratchet effect the electrodes, shown, should be minimal width

with minimum separation. The length between pairs of teeth, l, is the spatial period

of the ratchet. In general this will be larger than the minimum feature size, w. This

asymmetry is important. Part (b) shows the resulting electric field, V0(z), generated by

the ratchet when it is turned on, as a function of position, z. For the one dimensional

ratchet we can write down the approximate value for the electric field as E0 ≈ −∆V/∆z.

valid for dilute solutions.

There is some evidence, from simulations (Allison and Abbott 2003a), that the presence

of oppositely charged mobile ions in the channel, reduces the ability of the ratchet to

transport ions, of either charge. This should not be too surprising since the ratchet

will have to carry out work in order to separate the oppositely charged ions from each

other, even if that work is recovered later when the ions recombine with other oppo-

sitely charged ions. To date, this area is still relatively undeveloped.

2.5 Constructed Brownian ratchets

Faucheux et al. (1995) constructed a physical device, using optical tweezers to mod-

ulate the potential around a single Brownian particle. Since then a number of other
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Figure 2.6. Charge separation in a Brownian ratchet. The positive and negative ions are shown

with vastly exaggerated scale. They will congregate near the electrodes of opposite

charge. This gives rise to the crowding of charge in a distributed fashion through space.

The presence of the crowded charge gives rise to an electric field that will counteract the

effect of the field from the electrodes. If the device were turned on long enough for the

charges to reach equilibrium positions then no further flow would occur. The Brownian

particles would experience no electric field and would undergo normal Brownian motion.

The ratchet can still operate, however, away from equilibrium.

physical devices have been constructed, including (Slater et al. 1997, Ertas 1998, Duke

and Austin 1998, Bader et al. 1999). The work of Bader et al. (1999) is particularly inter-

esting, in that it realised the ideas of Ajdari and Prost (1992) and Magnasco (1993) by

achieving chemical separations of large molecules. The geometry of their device had

the general form, shown in Figure 2.4.

The brief history and overview presented, up to this point, concentrates on systems

that can be modelled using continuous functions, on scales that are large, compared

with molecules or carriers. The bulk of this thesis deals with discrete models of con-

tinuous systems. The use of discrete models has its own history, which we now sum-

marise.

2.6 A brief history of finite discrete games of chance

The subject, stochastic transport, has a history that can be traced back for over ninety

years. It is clear that many people made important contributions, and there are many
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different lines of thought. There is not enough space to cover them all here. We concen-

trate mainly on the ideas that lead to discrete games of chance as models for stochastic

processes. We present a brief summary as follows:

1905 Einstein (1905) proposes the use of Brownian motion to estimate Avogadro’s

number and verify some predictions of the atomic theory of matter.

1905 Pearson (1905) invents the term random walk and applies it to the problem of

mosquito population. Lord Rayleigh solves the problem within a week (Pearson

1905).

1909 Perrin (1909) verifies Einstein’s results and establishes a more accurate estimate

for Avogadro’s number.

1916 Smoluchowski (1916) uses discrete time and discrete space to model Brownian

motion of a single particle. The concept of the random walk is used to solve prob-

lems in physics.

1946 Guba and Györgyi (1946) establish the roles of actin, myosin and adenosine-

triphosphate in movement in muscles. This is an important step along the path

to the development of molecular motors.

1956 King and Altman (1956) use structures that are equivalent to Markov chains,

with discrete states and continuous time, to devise a schematic method for deriv-

ing the rate laws for enzyme-catalysed reactions.

1977 Hill (1977) extends (King and Altman 1956), an uses the techniques to investigate

free energy transduction and biochemical cycle kinetics.

1986 Westerhoff et al. (1986) show that enzymes can capture and transmit free energy

from an oscillating electric field. Their model follows King and Altman (1956)

and uses discrete states, and continuous time. Reaction rates, rather than proba-

bilities of transition, are used and a game setting is not explicitly used.

1992 Simon et al. (1992) propose a mechanism for driving the trans-location of pro-

teins. The phrase Brownian ratchet is used.

1992 Ajdari and Prost (1992) propose the flashing ratchet mechanism.

1996 Reimann et al. (1996) analyse molecular motors, driven by temperature oscilla-

tions. The phase Brownian motor is used.
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1996 Parrondo (1996b) proposes games that are intended to provide a simple model

for a Brownian ratchet. A game setting is explicitly used. The model uses discrete

time and discrete space. Harmer et al. (2000a) refer to these games as Parrondo’s

games.

2001 Astumian (2001) publishes a set of games, which translate the essential features

of the model used in Westerhoff et al. (1986) and in Astumian et al. (1987) into

a discrete time and discrete space model. A game setting is explicitly used.

The system has five states. These games have become known as Astumian’s

games (Piotrowski and Sladkowski 2004).

2002 Allison and Abbott (2002) show an explicit mapping between Brownian ratchets

and Parrondo’s games. This mapping is independently confirmed by Toral et al.

(2003b). These two approaches are brought together and systematised by Amen-

gual et al. (2004).

2004 Astumian (2004) points out that Parrondo’s original games do not include self-

transitions. He also makes the mapping between the model of Westerhoff et al.

(1986) and the model of Astumian (2001) explicit.

2005 Amengual et al. (2004) publish a generalised version of Parrondo’s games, which

includes self-transitions. This game only has three states.

2009 Ethier and Lee (2009) establish formulae for the mean rate of return, and vari-

ance, of nearly all scenarios of the Parrondo type, using an approach based on

the Central Limit Theorem (CLT).

It could be argued that Smoluchowski (1916) carried out the first use of discrete games

of chance to the model stochastic processes in physical chemistry. In one sense the

technique is very old. What makes this technique very useful today, is that we have

the advantage of many other developments that have occurred since the technique

was invented. We have much more powerful computers and we have access to ef-

ficient numerical methods that make the best use of the available computing power.

Discrete games of chance are naturally suited to solution on digital computers. It is

our belief that is an old tool that will find new life in the years ahead.

Page 25



2.7 Chapter summary

2.7 Chapter summary

In this chapter we have described the background and context for for Parrondo’s games.

We begin with a consideration of Brownian motion, Maxwell’s demon and the ratchet

and pawl machine. This then leads on to a consideration of flashing ratchets and the

possible physical construction, of a flashing ratchet. We discuss some physical Brown-

ian ratchets that have been constructed, and tested. Finally, we give a brief history of

finite discrete games of chance, and how this relates to the thesis. In the next chapter

we establish the relationship between Brownian ratchets and Parrondo’s games with

more rigour.
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Chapter 3

The physical basis of
Parrondo’s games

T
HIS chapter contains detailed material regarding two groups

of transformation that have proved to be useful in the study

of Brownian ratchets and Parrondo’s games. One group of

transformations is the use of finite differences, which has a long tradition

that can be traced back to Newton and Gregory. The other group trans-

formations is made up from integral transformations, including those of

Fourier and Laplace. We accept the result from Kolmogorov (1931), that

the dynamics of a Brownian particle can be represented using a Partial

Differential Equation (PDE) called the Fokker-Planck Equation. The use

of finite differences allows us to transform the PDE into a system of

finite-difference equations, which have the same form as the equations for

Parrondo’s games. This places Parrondo’s games on a sound physical basis.

We do not have to solve the resulting equations directly, though. if our

main interest is to calculate moments, such as rates of flow, then we can use

transform techniques to solve directly for the z-transform of the solutions.

We show that it is possible to estimate the moments of Parrondo’s games

by working directly with gradients of the z-transforms of the solutions.

Parrondo’s games are multiplexed in space and we investigate the effect

of multiplexing on the z-transforms, and devise formulae to evaluate

the moments of multiplexed functions. Finally we examine the effect of

randomised or periodic sequences of Parrondo’s games.
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3.1 Discrete transformations of continuous functions

We seek a method to model the behaviour of a one-dimensional Brownian ratchet. Sev-

eral physical devices have been constructed, and have worked and are described in

the literature, including work by Faucheux et al. (1995), Slater et al. (1997), Ertas (1998),

Duke and Austin (1998) and Bader et al. (1999). The performance has been compared

against fairly simplified theories. In the analysis by Bader et al. (1999), for example, it

is assumed that the off time of the ratchet is small, in the sense that a Brownian particle

will typically only diffuse at most from one tooth of the ratchet to the next in that time.

Some of the other approximations assume that the off time is large in that sense. We

seek a method of simulation, which could be useful in the design, and optimisation,

of flashing Brownian ratchets for a wide range of different possible parameter values,

under a uniform set of assumptions. The two obvious practical effects that need to

be modelled are the transport effect, where particles are transported through the de-

vice, and a spreading or deviation8 effect, where identical particles travel through the

device at different speeds. Any useful method of simulation should be able to model

transport and deviation over a wide range of different possible parameter values.

Sampling of smooth functions of space and time

The behaviour of Brownian motors and Brownian ratchets can be accurately described

in terms of a partial differential equation called the Fokker-Planck equation (Gardiner

1983, Risken 1996). This takes the form:

∂

∂x

(

D(2) (t, x) · ∂

∂x
p (t, x)

)

− ∂

∂x

(

D(1) (t, x) · p (t, x)
)

− ∂

∂t
p (t, x) = 0. (3.1)

The formulation of this equation is given in Risken (1996). One important approach to

the derivation, is to assume that the process is Markov and to begin with the Chapman-

Kolmogorov equations. The conditional density function can be approximated using

a Taylor expansion (in space) and the result can be integrated (in time) to yield the

Kramers-Moyal expansion. This is the approach devised by Einstein (1905). It has

been summarised in Wang and Uhlenbeck (1945) and also in Reif (1965), Pauli (1973)

8Reif (1965) refers to mean square displacement, due to diffusion, as dispersion. We prefer the term

deviation to refer to the amount of spread that can occur due to a physical process, such as diffusion.
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3.1 Discrete transformations of continuous functions

andRisken (1996). In the case of a linear diffusion law (Fick’s law) and Gaussian condi-

tional density function, the Kramers-Moyal expansion only requires spatial differen-

tiation to the second degree. The Kramers-Moyal reduces to the Fokker-Planck Equa-

tion 3.1. The solution to this equation will be a real function of two real variables,

p(t, x). If we were to attempt to solve these equations numerically on a computer,

without some form of approximation, then the amount of information to be stored and

processed would be infinite, which is clearly not feasible. We must accept some degree

of approximation in order to make progress. The aim is to make an initial approxima-

tion, which leads to some error, and then to take precautions to guarantee that the error

is within acceptable limits. The approach used here is to sample the partial differential

equation and to re-formulate the time-evolution of a system in terms of discrete partial

difference equations. This approach has been widely used to solve diffusive transport

problems since the early work of von Neumann. It is still a standard approach for

solving parabolic partial differential equations (Press et al. 1995, Iserles 1996, Scheisser

and Silebi 1997, Korn and Korn 2000, Chapra 2006). The main alternative approaches

are solution by spectral methods (Trefethen 2000) and solution by the finite element

methods (Buchanan 1995, Iserles 1996, Chapra 2006). Trefethen (2000) points out that

the finite difference approach is not the most computationally efficient method. On the

other hand, it is simple to visualise and to formulate. It has a long history. It is well

understood and, as we shall see, leads directly to Parrondo’s games.

A description of the important variables and operators

The names and purposes of the most important variables for this section are sum-

marised in Table 3.1. There are two types of transformation to be discussed: transfor-

mation from continuous time and space, t and x, to discrete time and space, m and n,

and the further transformation to generating functions, in terms of z and w.

In order to calculate finite differences, the function, p(t, x), must be sampled and the

simplest method for sampling a continuous function is to collocate the sampled points

with the underlying physical function, at certain specified points:

pm,n = p(mτ, nλ). (3.2)

The main issue arising from this approach is how to account for variations in p(t, x)

in between the sampling points. This is related to the problems of approximation and
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Chapter 3 The physical basis of Parrondo’s games

Physical Concept Time variable Position variable

Natural variable t x

Frequency f = 1/t ν = 1/x

Angular frequency ω = 2π f k = 2πν

Laplace variable s = jω r = jk

Sampling interval τ λ

Sampled integer variable m = floor (t/τ) n = floor (x/λ)

Translation operator z = esτ w = erλ

Table 3.1. Notation for discrete transformation and associated calculations. The names and

purposes of the most important variables needed for transformation. There are two

important classes of independent variables, time-like and space-like.

interpolation. There is a very large literature regarding these topics (Atkinson 1985,

Maron and Lopez 1990, Press et al. 1995, Chapra 2006). The usual approach is to as-

sume that p(t, x) is sufficiently smooth and that Taylor’s theorem, with remainder,

applies up to some finite order of differentiation. It is then possible to manipulate the

finite Taylor series algebraically to obtain expressions for the degree of error involved

in the sampling process. It is assumed that the sampling intervals, τ and λ, are small

enough to allow the errors of sampling to be neglected. If this is not sufficiently accu-

rate then it will be necessary to decrease the sampling intervals, τ and λ. In principle,

it is always possible to improve accuracy by reducing the sampling intervals.

Choice of sampling method, operators and basis functions

Sampling at an exact point is equivalent to convolution with Dirac delta functions, as

follows:

pm,n = p(mτ, nλ) =
∫ +∞

−∞

∫ +∞

−∞
δ(t − mτ) · δ(x − nλ) · p(t, x) dt dx. (3.3)

In this case the inner kernel function for sampling is κ(t, n, x, m) = δ(t − n · τ) · δ(x −
m · λ). This particular choice of sampling kernel yields information about the value

the function at the sampling points, but does not give us complete information about

what happens in-between the sampling points. Our point estimates of p(t, x) may be

in error at points in-between the sampling points.
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3.1 Discrete transformations of continuous functions

The situation becomes more complicated if there is the possibility of error, noise or

round-off in the evaluation of p(t, x). Various trade-offs between the different types of

error are made possible by choosing a different kernel function. An early reference to

this appears in Lanczos (1954), where he points out that numerical differentiation takes

the form of integration with respect to a specially chosen kernel function. He notes that

expressing the derivative in integral form could establish a derivative even at points

where a derivative does not exist, in the ordinary sense. He points out that this would

be true, even in the presence of noise. Lanczos’ kernel functions were constructed by

inverting Taylor’s formula and making certain assumptions about the analytic nature

of the function and the ability to neglect the effect of higher derivatives. No specific

rules were offered for constructing an optimal kernel for any specific family of func-

tions or any given level and distribution of noise. It should be noted that differentiation

is equivalent to sampling a function at specified points, together with taking limits as

finite differences approach zero. We could write, for example:

f ′(x) = lim
∆X→0

f (x + ∆X) − f (x − ∆X)

2∆X
(3.4)

=
∫ +∞

−∞
lim

∆X→0

(

1

2∆X
δ (x + ∆X) +

1

2∆X
δ (x − ∆X)

)

· f (x) dx. (3.5)

In this case, the kernel function is a generalised function, or distribution in the sense

defined by Soboleff and Schwartz (Zemanian 1965). Ideal sampling and ideal differ-

entiation are singular functionals. More complicated operators, such as differentiation

depend on the simpler operation of sampling.

Differentiation, multiple differentiation, and sampling can all be expressed in terms of

integration with respect to a suitably chosen kernel function. They can all be expressed

as integral functionals. Given this, it is possible to formulate the problems of sampling,

differentiation, integration, and integral transformation within the framework of func-

tional analysis (Simmons 1963, Zemanian 1965). Classes of possible solution functions,

p(t, x), are equivalent to multi-dimensional vectors in a topological space. The space

can be defined to have inner-products and a metric. We can also consider possible

solution functions, p(t, x), as limits of sequences of sums of basis functions, Cauchy

sequences. We could, if the situation required, choose those basis functions to be or-

thogonal or to be eigenfunctions or Green’s functions of the underlying equations that

we seek to solve or we could choose some other complete set of basis functions. If
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Chapter 3 The physical basis of Parrondo’s games

we take the standpoint of functional analysis then variables of interest, such as the ex-

pected value of the flow (the first moment) or the variance (the central second moment)

can also be expressed as integral functionals, which map functions in function space

to real numbers. The overall aim of this approach is to reduce the problem of solving

Ordinary Differential Equations (ODEs) and Partial Differential Equations (PDEs) to a

generalised problem in linear algebra.

The purpose of integral transforms is to make the problem of the linear algebra sim-

pler, because differential operators have a simpler representation in the transformed

domain. One reason for using transforms of a discrete (sampled) functions is to re-

duce the amount of information to be processed and hopefully to make the problem

tractable. The aim is to make the formulation of the problem reasonably accurate and

yet simple enough to allow the idealised problem to be solved analytically. This is con-

sistent with Richard Hamming’s maxim that the aim of simulation is not just numbers

but insight. The aim is to arrive at algebraic expressions, which show (at least approx-

imately) how the solutions vary with the choice of parameters.

One important application of functional analysis is to approximate a function, such

as the postulated solution to a differential equation, with a finite sum of basis func-

tions. Under certain circumstances it is possible to reduce the difference between the

unknown function and the approximation to arbitrarily small levels. This difference

is based on the metric for the topological space. Accurate representation is generally

possible if the space is constructed in such a way that it is complete, in the sense that

all Cauchy sequences of functions in the space converge (Simmons 1963). It is gen-

erally possible to construct the space so that it includes all linear sums of a set of a

set of basis functions. The Cauchy sequences are sequences of sums of basis func-

tions. These sequences can be indefinitely long. There is a very large literature regard-

ing the choice of basis functions and very common choices include the use of com-

plex exponential functions (Bracewell 2000, Press et al. 1995), or orthogonal polynomi-

als (Press et al. 1995, Maron and Lopez 1990), or even wavelets (Hubbard 1998). The

choice of basis functions does affect whether the operators have simple representations

or whether they appear to be complicated. Ideally, the operators and basis functions

should be matched in order to make the resulting equations easy to manipulate. If we

use finite differences then the sampling kernel functions are effectively delta functions
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3.1 Discrete transformations of continuous functions

and the basis functions are polynomials, which are considered to be locally equivalent

to the truncated Taylor series for the underlying function. This is a common and well

accepted choice but it is only one of a great multitude of possible choices.

The idea that each sample may include contributions from more than a single ide-

alised point suggests that we should use a kernel function of non-zero width, σ. A

Gaussian function is a good example. We could choose a kernel function of κ(x, µ) =

exp
(

−(x − µ)2/(2σ2)
)

/(σ
√

2π) . This function has a mean square width of σ and is

centred in space at a position x = µ. We can write a formula for sampling the function

p(t, x) in the region near x = µ:

p(t, µ) ≈
∫ +∞

−∞

1

σ
√

2π
e
− (x−µ)2

2σ2 · p(t, x) dx. (3.6)

The definition of the word “near” depends in the choice of σ. This type of sampling

sacrifices some accuracy, regarding the value of the function at the point to be sampled,

x = µ, in order to make the result less sensitive to noise and to obtain information

about the behaviour of the function p(t, x) at points near the sampling point. This at-

titude to sampling has some aspects in common with wavelet theory (Hubbard 1998),

where wavelet functions can be localised in space. The approach also has aspects in

common with the idea of a fuzzy set here all points near the point to be sampled, x = µ,

share some degree of membership if the fuzzy set labelled µ. We could choose µ = nλ

and regard the kernel κ(x, nλ) as a membership function, which expresses the degree

to which the number x belongs to the fuzzy set centred at the discrete spatial position

labelled n. There are signal processing applications where Gaussian functions or other

fuzzy-kernels have been used to good effect (Bezdek and Pal 1992).

In summary, we can represent the sampling of a function using a convolution:

pm,n =
∫ +∞

−∞

∫ +∞

−∞
κ(t, n, x, m) · p(t, x) dt dx. (3.7)

In general, the optimal choice of kernel function κ(t, n, x, m) should allow a trade-

off between errors due to noise and errors due to variation of the function between

the sampling points. For the present discussion, it is assumed that κ(t, n, x, m) =

δ(t− nτ) · δ(x−mλ), which is optimal in the absence of errors due to noise of measure-

ment, or round-off error. The underlying basis functions will be polynomials, which

can be expanded locally around the sampling points, and can be related back to the
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Chapter 3 The physical basis of Parrondo’s games

underlying function, p(t, x), using Taylor’s theorem.

Discrete transforms in time and in space

Equation 3.3 shows that the act of sampling a function, p(t, x), to obtain discrete sam-

ples, pm,n is equivalent to an integral transform. More conventional integral trans-

forms, such as the Laplace integral transformation, have the same general form:

F(s) =
∫ +∞

0
e−st · f (t) dt (3.8)

where the kernel function is κ(t, s) = e−st. The Laplace transform has been devel-

oped into a widely used and very practical tool for engineering and applied mathe-

matics (Fodor 1965, Doetsch 1974, LePage 1980, Zemanian 1965, Kreyszig 2006). If we

then take a Laplace transform of a sampled function, then we obtain a discrete version

of the Laplace transform called the z-transform. This is the approach used by many

authors (Jury 1964, Fodor 1965, Blackman 1975, LePage 1980), including Jury who is

widely credited with development of the z-transform. We can write a one-sided z-

transform, in time, in terms of a one-sided Laplace transform, in time, as follows:

F(s) =
∫ +∞

0
e−st

(

+∞

∑
m=0

δ(t − mτ) · f (t)

)

dt, (3.9)

which reduces to the sum of a series

F(s) =
+∞

∑
m=0

(

e+st
)−m · f (mτ) (3.10)

=
+∞

∑
m=0

z−m · fm, (3.11)

which is a standard one-sided z-transform in time, where z = esτ and fm = f (mτ). The

equations for the shifting, and derivative, theorems for two-sided transforms do not in-

clude an explicit reference to the initial value of a function, in time (Bracewell 2000).

In contrast, the same theorems for one-sided transforms do include explicit references

to initial values (Ogata 1987, Kuo 1992, Proakis and Manolakis 1992, Ersoy 1997). This

makes initial-value problems easier to formulate initial-value problems, using a one-

sided transform.

The use of two-sided Laplace transforms leads to a two-sided z-transform, provided

that the relevant integrals and sums converge absolutely. The z-transform is a widely
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3.1 Discrete transformations of continuous functions

used and contemporary version of the older concept of the generating function (Knuth

1978, Papoulis 1991, Wackerley et al. 1996, Yates and Goodman 1999). Theorems, prop-

erties and tables of transform pairs appear in many engineering textbooks (Ogata

1987, Kuo 1992, Proakis and Manolakis 1992, Ersoy 1997). It is a well understood tech-

nique and the standard results are used when needed, without proof. Two forms of

the z-transform are required. To process distributions in space, which are potentially

unbounded, above and below, one needs to use a two sided transform. The two-sided

spatial Laplace transform can be defined as:

F(r) =
∫ +∞

−∞
e−rx · f (x) dx. (3.12)

This leads to a two-sided discrete transform based on a spatial shift operator, w = erλ.

The w-transform can be written as:

Pm (w) = W [pm,n] =
+∞

∑
n=−∞

w−npm,n. (3.13)

All the usual theorems of the two-sided z-transform also applies to the w-transform, if

we perform a suitable change of variables.

In order to manipulate functions of time, with initial values at t = 0, it is more appro-

priate to use one sided z-transform in time, which is defined in terms of the temporal

shift operator, z = esτ , as follows:

P (z)n = Z [pm,n] =
+∞

∑
m=0

z−n pm,n. (3.14)

Of course a dual transform, in space and time, is possible:

P(z, w) = Z [W [pm,n]] = W [Z [pm,n]] . (3.15)

The transforms commute as long as the sums converge absolutely, for some non-empty

region of convergence. The effects of applying one or other, or both transforms are

described in Table 3.2.

It is possible to distinguish the various types of function, in Table 3.2 by making a

note of the types of arguments and subscripts. Some aspects of this notation should

be stated explicitly. Certain symmetries have been used in constructing the notation

in Table 3.2. Lower-case function names, such as p, refer to natural functions of time
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time vs space n w

m pm,n Pm(w)

z P(z)n P(z, w)

Table 3.2. Notation for transformed version of pm,n. The same dependent variable, p(t, x),

appears differently in different domains. When it is sampled it appears as a discrete

function of discrete time and space, pm,n. With two different transforms, there are

four different types of discrete transformed function, which are listed in the table. It is

possible to distinguish which transforms have been applied by referring to the typeface,

arguments and subscripts.

function identifier semantic interpretation

p(t, x) p(t, x) is the probability density function, as a function of time, t, and space, x.

It is a real function of real variables

pm,n pm,n is the discrete sampled probability mass function,

of integer variables: discrete time, m, and discrete space, n.

It is a real function of integer indices.

Pm(w) p(t, x) has been transformed in space.

Discrete space, n has been replaced with the spatial shift operator w = erλ

Pm(w) is a complex function of an integer index and a complex argument.

P(z)n p(t, x) has been transformed in time.

Discrete time, m has been replaced with the temporal shift operator z = esτ

P(z)n is a complex function of a complex argument and an integer index.

P(z, w) p(t, x) has been transformed in space and time

P(z, w) is a complex function of two complex arguments.

Table 3.3. Semantic interpretations of variously transformed versions of pm,n. The symbol p

can be overloaded in a number of ways. The semantic interpretation depends on the use

of typeface, subscripts, and arguments.
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and space or to sampled functions of discrete-time and discrete-space. Upper-case

function names, such as P, refer to sampled functions that have been transformed in

either discrete-space or in discrete-time. The use of arguments and subscripts indicates

which transforms have been performed. The first function argument, or subscript, is

always temporal and the second function argument, or subscript, is always spatial.

The subscripts, m and n, are always integers and represent discrete time and discrete

space respectively. The function arguments, x and t, are always real and represent time

and space respectively. The function arguments, z and w, are always complex and rep-

resent transformed discrete-time and transformed discrete-space respectively. All of

these mathematical objects in Table 3.2 represent the same physical situation. They just

represent the same processes with different parametrisation.

3.2 Finite difference equations and Parrondo’s games

Parrondo’s games were devised by J. M. R Parrondo in 1996 as a simplified didac-

tic model for flashing Brownian ratchets. Harmer and Abbott published early papers

confirming that Parrondo’s insight was correct (Harmer and Abbott 1999a, Harmer

and Abbott 1999b, Harmer et al. 2000a). Pearce also undertook early work on the anal-

ysis of the games (Pearce 2000a, Pearce 2000b). Parrondo’s games have been studied

and simulated by a number of other authors and Harmer et al. have published exten-

sive reviews of the early work on Parrondo’s games (Harmer et al. 2000b, Harmer and

Abbott 2001, Harmer and Abbott 2002). The first work to show that show that Par-

rondo’s games can be obtained by sampling the Fokker-Planck Equation can be found

in Allison and Abbott (2002) and Allison and Abbott (2003b). The approach here is

to re-formulate the equations that govern flashing ratchet in the form of a set of par-

tial difference equations, which are shown to be equivalent to the rules for Parrondo’s

games, in certain limiting cases. Toral and Amengual et al. verified and extended these

results (Toral et al. 2003b, Toral et al. 2003a). Most existing work, on Parrondo’s games,

concentrates on the expected value of the possible return from playing the games. The

expected value is the first moment of the sample paths. Very few authors have consid-

ered or calculated the second, or higher, moments of the sample paths of Parrondo’s

games.
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It is practically important to know at least the first two moments. As an illustration,

we may consider the similar and well understood process of chromatography, which is

governed by a partial differential equation formulated by Carta (1988) and is described

in Seader and Henley (2006). This PDE is analogous to the Fokker-Planck Equation,

which governs the dynamics of Brownian ratchets. In chromatography, the compo-

nents of a mixture are separated by the transport effect caused by a flow of eluting

solvent. The overall rate of movement of molecules from the sample is a function of

the relative affinities of the molecules to the stationary phase and to the moving phase.

This is beneficial because it allows analytic separation and chemical analyses to be per-

formed, based on different rates of adsorption. This transport effect can be expressed

in terms of the first moment. On the other hand, identical molecules from the sam-

ple will diffuse, as they are transported. They will disperse, relative to the position of

the bulk of the sample. This effect is related to the second moment. The separation

effect, represented by the first moment, could be completely ruined if the components

were to disperse into each other. Examples of this are described in Seader and Henley

(2006). In short, physical devices with very large second moment are not very useful

for separation, even if the first moment appears to be very favourable. The same prob-

lem arises for chromatography, electrophoresis, Brownian ratchets, Brownian motors,

or any form of separation that includes diffusion.

At the present time, there does not seem to be any complete analysis of the second

moment of transport in Brownian ratchets, which is analogous to Carta’s analysis of

chromatography. The second moment does not seem to have been considered very

extensively. To his credit, Toral (2001) considered second moments when he calculated

the numerical variances for his cooperative Parrondo’s games. There is, presently, no

reference in the existing literature to any algebraic expression for the second, or higher,

moments of Parrondo’s games. To derive algebraic expressions for these moments,

it is necessary to directly evaluate some rather complicated infinite series or to find

some indirect method for performing the summation. The traditional approach to this

type of problem, in mathematical statistics, is to use a generating function (Muth 1977,

Papoulis 1991, Wackerley et al. 1996, Yates and Goodman 1999, Bracewell 2000). This

fits in very well with the fact that Parrondo’s games can be represented as difference

equations and the fact that these difference equations can be solved using generating

functions. This suggests the following approach to evaluating all of the moments of

Parrondo’s games:
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3.3 Finite partial difference equations

1. Sample the relevant Fokker-Planck Equation to obtain a set of partial-difference

equations, which are equivalent to Parrondo’s games.

2. Use a generating-function approach to derive expressions for transforms of the

solution to the partial difference equations.

3. Differentiate the transforms to obtain expressions for the moments of Parrondo’s

games. These will be exact expressions for the moments of Parrondo’s games and

should provide approximate numerical estimates for the corresponding moments

of the true solution to the original Fokker-Planck equations.

One of the most powerful aspects of this approach is that it is not necessary to evalu-

ate to inverse transform and write the solution in closed-form. It is possible to work

directly with the transforms to obtain the moments. The expressions for the moments

are generally more simple that the expressions for the complete solutions in time and

space. The first step in the procedure, outlined above, is to sample the Fokker-Planck

equation. This is described in the next section.

3.3 Finite partial difference equations

We consider a problem, discussed by Einstein (1956), of a Brownian particle. We con-

sider a small microscopically-visible particle suspended in a liquid. The huge numbers

of molecules in the liquid are in constant thermal motion. They frequently strike the

Brownian particle at random intervals giving rise to small random variations in the

motion of the Brownian Particle. The course of the Brownian particle appears to be

very irregular. The number of parameters in such a system are enormous. The value

of the Avogadro number tells us that there are about 6 × 1023 atoms in a single mole

of substance. Even if we knew the correct equations of motion, there is no way that

we could collect enough data to specify the initial conditions of an Avogadro num-

ber of particles. We are forced to follow the approach of Boltzmann, Maxwell and

Gibbs. We must use probability models and statistics to describe the essential fea-

tures of the process. Information is lost in the process. As Maxwell put it: “And here

I wish to point out that, in adopting this statistical method of considering the average num-

ber of groups of molecules selected according to their velocities, we have abandoned the strict
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kinetic method of tracing the exact circumstances of each individual molecule in all of its en-

counters” (Maxwell 1888). This actually echoes the earlier statement by Laplace: “The

curve described by a single molecule [of] air or vapour is regulated in a manner just as cer-

tain as the planetary orbits; the only difference between them is that which comes from our

ignorance” (Laplace 1814)9. In summary, we use probability in order to partially com-

pensate for our ignorance. We are fully aware that something is lost in the process.

According to Pauli (1973), Langevin, Lorenz, and Einstein each used statistical meth-

ods to arrive at expressions for the mean square displacement of a Brownian par-

ticle. Einstein (1905) showed that the probability density function for the Brown-

ian particle at any given instant in time, p(t, x) was governed by the diffusion equa-

tion (Gardiner 1983):

D(2) · ∂2p (t, x)

∂x2
− ∂p (t, x)

∂t
= 0, (3.16)

where we denote the probability of finding a Brownian particle at a certain point in

space, x, and time, t, by p = p (t, x). The diffusion equation becomes modified if the

Brownian particle is charged and an external field is applied. It can be shown that the

time-evolution of p (t, x) is then governed by a partial differential equation called the

Fokker-Planck Equation (Gardiner 1983, Risken 1996):

∂

∂x

(

D(2) (t, x) · ∂

∂x
p (t, x)

)

− ∂

∂x

(

D(1) (t, x) · p (t, x)
)

− ∂

∂t
p (t, x) = 0 . (3.17)

There are many ways to obtain the Fokker-Planck Equation, see Risken (1996) or Gar-

diner (1983) for example, but one simple approach is to begin with the law for diffu-

sion, derived by Graham and Fick (Cussler 1997):

J (t, x) = −
(

D(2)(t, x) · ∂

∂x
p(t, x)

)

+
(

D(1)(t, x) · p(t, x)
)

, (3.18)

where J(t, x) is the probability flow and p(t, x) is the probability density. Fick’s law

can be combined with the law of continuity,

∂p(t, x)

∂t
+

∂J(t, x)

∂x
= 0, (3.19)

to yield the Fokker-Planck Equation 3.17. The functions D(1) (z, t) and D(2) (z, t) are

referred to as the infinitesimal first and second moments of diffusion. In practice,

the infinitesimal second moment does sometimes depend on concentration of the so-

lute, p (z, t), but is usually regarded as constant and is called the Fick’s law constant.

9The essay (Laplace 1814) is also reproduced in Hawking (2005).
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A typical value (e.g. for a hydrated sodium ion in water) is of the order D(2) ≈
1.3 × 10−9 m2s−1 (Bird et al. 1960, Atkins 1994). The probability flow, J(t, x), is some-

times called the convective flux, because the flux is equivalent to an externally applied

convective flux (Atkins 1994). Some other authors refer to this flow as the Kolmogorov

flow.

Further simplification of Equation 3.17 is possible if D(2)(t, x) and D(1)(t, x) are piecewise-

constant. In fact, Equation 3.17 becomes separable under those conditions. The proce-

dure is very similar to that for the standard diffusion equation (Farlow 1982), and there

are analytic solutions in any closed sub-domain where D(2)(t, x) and D(1)(t, x) are

piecewise-constant. If the fundamental solutions have the form p(t, x) = F(x) · G(t)

then the Fokker-Planck Equation separates out as:

D(2) · ∂2F

∂x2
− D(1) ∂F

∂x
− C1F = 0 (3.20)

∂G

∂t
− C1G = 0, (3.21)

(3.22)

where C1 is a constant, to be determined by the boundary conditions. The complete

and general solution for the sub-domain must be written as an infinite sum of funda-

mental solutions:

p(t, x) =
∞

∑
v=0

Av · Fv(x) · Gv(t) (3.23)

where Av are a series of constants to be determined by the constraints imposed by

the initial condition and the continuity requirements at the sub-domain boundaries.

There are nontrivial technical issues associated with solving for the undetermined co-

efficients Av and C1 within each sub-domain. There are an infinite number of equa-

tions to be solved. Another problem with this method is that D(1)(t, x) can, in general,

change rapidly and the piecewise-constant approximation may not be physically rea-

sonable.

It seems easier to make the sub-domains very small and to make the computation for

each sub-domain very simple. We assume that D(2)(t, x) is constant, which is physi-

cally reasonable, and to allow D(1)(t, x) to take arbitrary form. This is required in order

to realistically analyse the behaviour of Brownian ratchets and leads to the following
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form of the Fokker-Planck Equation:

D(2) (t, x) · ∂2

∂x2
p (t, x) − ∂

∂x

(

D(1) (t, x) · p (t, x)
)

− ∂

∂t
p (t, x) = 0 . (3.24)

The infinitesimal first moment, or drift, D(1)(t, x), depends on the magnitude of exter-

nally imposed forces and on the mobility, u, of the Brownian particle that is given by

u =
Ze

6πηa
(3.25)

where Ze is the electrical charge on the particle, η is the kinematic viscosity of the sol-

vent and a is the effective radius of the particle.10

It is easy to become lost in mathematical abstraction, and to forget the physical pro-

cesses that are involved here. A physical example to give an idea of scale is helpful in

this regard. A typical value for the mobility (of a hydrated sodium ion in water) is

u ≈ 51.9 × 10−9m2s−1volt−1. (3.26)

Sodium is a good choice because it is such a common ion, on the planet Earth, and in

living tissue. The mobilities of ions depend on their state of charge, Ze, and their phys-

ical size, a, as described in Equation 3.25. A range of different molecules will have a

range of different mobilities. Further descriptions and numerical data may be found in

books on physical chemistry and statistical physics (Bird et al. 1960, Reif 1965, Atkins

1994, Cussler 1997).

If we apply an electrical potential, or voltage, of V (z, t) then the infinitesimal first

moment is given by

D(1) (t, x) = −u
∂

∂x
V (t, x) . (3.27)

The speed of drift is proportional to the applied force. The theory behind Equations 3.25

and 3.27 is due to Stokes and was used by Einstein (Atkins 1994).

When we take into account the functional forms of D(2) and D(1) then we can rewrite

the Fokker-Planck equation as:

D(2)(t, x) · ∂2p(t, x)

∂x2
− ∂D(1)(t, x)

∂x
· p(t, x)− D(1)(t, x) · ∂p(t, x)

∂x
− ∂p(t, x)

∂t
= 0 . (3.28)

10The symbol, u, is used here in accordance with the notation used by Atkins (1994). Some authors

use the symbol, µ, to refer to mobility, but we prefer not to overload the use of this symbol. We use the

symbol, µk, to refer to non-central moments.
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This can be written more concisely as

D(2) · ∂2p

∂x2
− ∂D(1)

∂x
· p − D(1) · ∂p

∂x
− ∂p

∂t
= 0 (3.29)

provided that we remember that all the functions depend on t and x. This is the form

of the Fokker-Plank equation that we sample at regular intervals in time and space, to

yield finite difference equations.

3.4 Sampling the Fokker-Planck Equation

Many Partial Differential Equations, or PDEs, including Equation 3.28, can be very

difficult to solve analytically. One well established approach to this problem is to sam-

ple possible solutions to a PDE at regular intervals, called mesh points (Lapidus 1962,

Press et al. 1995, Iserles 1996, Scheisser and Silebi 1997, Korn and Korn 2000, Chapra

2006). The true solution is approximated locally by a collocating polynomial. The

values of the derivatives of the true solution are approximated by the corresponding

derivatives of the collocating polynomial. This is the approach outlined in the previous

section.

We can define local coordinates, expanded locally about a point (t0, x0) we can map

points between a real space (t, x) and an integer or discrete space (m, m). Time, t, and

position, x, are modelled by real numbers, t, x ∈ R and the corresponding sampled

position, m, and sampled time, n, are modelled by integers m, n ∈ Z . We sample the

space using a simple linear relationship

(t, x) = (t0, x0) + (△m · τ,△n · λ) (3.30)

= (t0 + (△m · τ) , x0 + (△n · λ)) (3.31)

where λ is the sampling length and τ is the sampling time.

In order to map Equation 3.28 into discrete space, we need to make suitable finite

difference approximations to the partial derivatives. The notation is greatly simplified

if we define a family of difference operators:

∆△m,△n · p = p (t0 + (△m · τ), x0 + (△n · λ))− p (t0, x0) . (3.32)

Page 44



Chapter 3 The physical basis of Parrondo’s games

This allows us to calculate finite differences of P in terms of small integer offsets in

time and space, △m and △n. In principle, this is a doubly infinite family of operators

but in practice we only use a small finite subset of these operators. This is determined

by our choice of sampling points. This choice is not unique and is not trivial. The set of

sampling points is called a computational molecule (Lapidus 1962). Some choices lead to

over-determined sets of equations with no solution. Some other choices lead to under-

determined sets of equations with infinitely many solutions. We chose a computational

molecule that leads to what is called called explicit computation with the following

sample points: (△m,△n) ∈ {(0, 0), (−1,−1), (−1, 0), (−1, +1)}. We also need to make

a choice regarding the form of the local collocating polynomial. This is not unique and

inappropriate choices do not lead to unique solutions. A polynomial that is quadratic

in x and linear in t is the simplest feasible choice:

p (t, x) = p (t0, x0) + A1 · (x − x0) + A2 · (x − x0)
2 + B1 · (t − t0) (3.33)

where A1, A2 and B1 are the real coefficients of the polynomial. Equations 3.31, 3.32 and 3.33

imply a simple system of linear equations that can be expressed in matrix form:









−λ +λ2 −τ

0 0 −τ

+λ +λ2 −τ

















A1

A2

B1









=









∆−1,−1 · p

∆−1, 0 · p

∆−1,+1 · p









. (3.34)

These can be solved algebraically, using Cramer’s method to obtain expressions for A1,

A2 and B1:

A1 =
p (t0 − τ, x0 + λ) − p (t0 − τ, x0 − λ)

2λ
(3.35)

and

A2 =
p (t0 − τ, x0 − λ) − 2p (t0 − τ, x0) + p (t0 − τ, x0 + λ)

2λ2
(3.36)

and

B1 =
p (t0, x0) − p (t0 − τ, x0)

τ
. (3.37)

These are all intuitively reasonable approximations but their choice is not arbitrary.

Equations 3.35, 3.36, 3.37 form a complete and consistent set. We could not change

one without adjusting the others. We can evaluate the derivatives of Equation 3.33 to

obtain a complete and consistent set of finite difference approximations for the partial

derivatives:
∂p

∂x
|t=t0,

x=x0

≈ A1 =
p (t0 − τ, x0 + λ) − p (t0 − τ, x0 − λ)

2λ
(3.38)
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and

∂2p

∂x2
|t=t0,

x=x0

≈ 2A2 =
p (t0 − τ, x0 − λ) − 2p (t0 − τ, x0) + p (t0 − τ, x0 + λ)

λ2
(3.39)

and
∂p

∂t
|t=t0,

x=x0

≈ B1 =
p (t0, x0) − p (t0 − τ, x0)

τ
. (3.40)

We can apply the same procedure to D(1) (z, t) to obtain

∂D(1)

∂z
|t=t0,

x=x0

≈ A1 =
D(1) (t0 − τ, x0 + λ) − D(1) (t0 − τ, x0 − λ)

2λ
. (3.41)

Equations 3.38, 3.39, 3.40 and 3.41 can be substituted into Equation 3.28 to yield the

required finite partial difference equation:

p (t0, x0) = qn−1,n · p (t0 − τ, x0 − λ) + qn,n · p (t0 − τ, x0) + qn+1, · p (t0 − τ, x0 + λ)

(3.42)

where

qn−1,n =
D(2)τ/λ2 + D(1) (t0, x0) τ/2λ

(

D(1) (t0 − τ, x0 + λ) − D(1) (t0 − τ, x0 − λ)
)

τ/(2λ) + 1
(3.43)

and

qn,n =
−2D(2)τ/λ2 + 1

(

D(1) (t0 − τ, x0 + λ) − D(1) (t0 − τ, x0 − λ)
)

τ/2λ + 1
(3.44)

and

qn+1,n =
D(2)τ/λ2 − D(1) (t0, x0) τ/2λ

(

D(1) (t0 − τ, x0 + λ) − D(1) (t0 − τ, x0 − λ)
)

τ/(2λ) + 1
. (3.45)

The coefficients qv,n are conditional single-step probabilities of transition, which are lo-

cally expanded about the position, [t0, x0]. The meaning of the subscripts is more clear

if we note that t0 = mτ and x0 = nλ. The precise semantic interpretation of the prob-

abilities of transition is qv,j = P [ n = j at time m + 1 | n = v at time m ] . Equation 3.42

can be written more concisely in terms of sampled quantities with discrete subscripts:

pm,n = pm−1,n−1 · qn−1,n + pm−1,n · qn,n + pm−1,n+1 · qn+1,n (3.46)

=
n+1

∑
v=n−1

pm−1,v · qv,n, (3.47)

which is a system of difference equations in the real variable p, indexed by strictly

integer time and space coordinates, m ∈ Z and n ∈ Z , respectively. We can write

pm,n =
+∞

∑
v=−∞

pm−1,v · qv,n, (3.48)
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provided that all the non-essential probabilities of transition are defined to be zero.

Equation 3.48 is consistent with the laws of conditional probability. The process is

clearly Markovian, since pm,n depends only on values of pm−1,v and not on probabil-

ities at earlier times. This is consistent with the fact that the Fokker-Planck Equation

describes a Markov process (Risken 1996). Equation 3.48 is linear and can be written

using the standard notation of linear algebra, in matrix form. Finally, Equation 3.48 is

a set of Partial Difference Equations (PDEs), and has precisely the form required for

Parrondo’s games.

3.5 Parrondo’s games, as a set of PDEs

In the original formulation, the conditional probabilities of winning or losing depended

on the state, n, but not on any other information about the past history of the games.

The definitions of Parrondo’s games are essentially statements about the conditional

discrete probabilities of transition:

qv,j = P [ n = j at time m + 1 | n = v at time m ] . (3.49)

We can define the games as follows:

• Game A is a toss of a biased coin:

qn,n+1 = P [win] =
1

2
− ǫ (3.50)

qn,n−1 = P [loss] =
1

2
+ ǫ, (3.51)

where ǫ is an adverse external bias that the game has to overcome. This bias, ǫ, is

typically a small number such as ǫ = 1/200 = 0.005, for example. These values

were used in many of the early papers (Harmer and Abbott 1999a, Harmer and

Abbott 1999b, Harmer et al. 2000a).

• Game B does depend on the discrete position of the particle, n:

If (n mod 3) = 0 , then the probability of increase is high.

qn,n+1 = P [win] =
1

10
− ǫ (3.52)

qn,n−1 = P [loss] =
9

10
+ ǫ (3.53)
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If (n mod 3) 6= 0 , then the probability of increase is low.

qn,n+1 = P [win] =
3

4
− ǫ (3.54)

qn,n−1 = P [loss] =
1

4
+ ǫ. (3.55)

For all of these games, all transition probabilities, qn,v, not listed explicitly above, are

zero. The language being used here is taken from games of chance, where the aim

is to win. An increase in the value of the discrete position, n, is regarded as a “win”

and a decrease is regarded as a “loss.” The typical game of this type is called Gam-

bler’sruin (Ross 1970, Taylor and Karlin 1998).

The conditional probabilities defined in Parrondo’s games are forward probabilities,

qn,n+1 and qn,n−1 at discrete time m. The difference equations are easier to formulate

and solve as reverse equations in terms of qn−1,n and qn+1,n at discrete time m − 1. The

transformation between the two points of view is essentially a shift of origin. It is a

detail, of notation, to be carefully handled but it does not lead to any new physics, or

mathematics. It is straightforward to simulate a randomised sequence of Parrondo’s

games on a computer using a very simple algorithm (Harmer and Abbott 2001). The

simulations are easiest to code in terms of forward conditional probabilities. An exam-

ple is shown in Figure 3.1.

3.5.1 Game A, as a partial difference equation

The immediate aim is to determine the relationship between the physical process, de-

fined by the Fokker-Planck Equation and the definitions of Parrondo’s games. We can

write the requirements for game A in the form of Equation 3.48, as

pm,n =

(

1

2
− ǫ

)

· pm−1,n−1 + 0 · pm−1,n +

(

1

2
+ ǫ

)

· pm−1,n+1 . (3.56)

This implies a constraint that qn,n = 0, which implies that D(2) · τ/λ2 = 1/2, which

defines the relative scales of λ and τ so we can give it a special symbol, β, where

β =
D(2) · τ

λ2
. (3.57)

The constraints on qn−1,n and qn+1,n imply a value for Parrondo’s bias parameter:

ǫ =
−λ · D(1)(t0, x0)

4D(2)
, (3.58)
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Figure 3.1. A single sample path of Parrondo’s original process. The original process, described

by Harmer and Abbott, was encoded in Matlab and simulated, one discrete time-step

at a time. The results were recorded and are displayed in the graph. It can be seen

that the general drift is upwards, towards larger values of discrete position, n, but this

is not established, beyond reasonable doubt. The mean path, or trend, is hidden within

a large amount of deviation. If a ensemble average is formed from a large number of

sample paths, then the amount of deviation is greatly reduced and the upward trend is

more apparent. It is possible to use probability models to re-formulate the notions of

drift and deviation. We can make these ideas more precise by reformulating them in

terms of the moments of the games. For Parrondo’s original games, we note that the

first moment is positive but this is partially concealed because the second moment is

large.

which can be related back to an externally imposed electric field, E = −∂V/∂z using

Equations 3.25 and 3.27:

ǫ =

(

λ

4D(2)

)(

Ze

6πηa

)(

−∂V

∂z

)

= −
(

λ

4D(2)

)(

Ze

6πηa

)

· E. (3.59)

The small bias, ǫ, is proportional to the applied external field which, justifies Par-

rondo’s original intuition.
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3.5.2 Game B, as a partial difference equation

The further aim is to determine the relationship between the physical process, defined

by the Fokker-Planck equation and the definition of Parrondo’s game B. Game B, as de-

fined here, is quite general and actually includes game A as a special case. There is still

zero probability of remaining in the same state, which implies a constraint that qn,n = 0,

which implies that we still have the same scale, β = 1/2. If we are in state n then we

can denote the probability of winning by qn,n+1 = P (win | initial position is n). We

can write the difference equations for Game B in the form:

pm,n = qn−1,n · pm−1,n−1 + 0 · pm−1,n + qn+1,n · pm−1,n+1, (3.60)

which, together with Equations 3.43, 3.44 and 3.45, gives

qn+1,n

qn−1,n
=

1 − D(1)·λ
2D(2)

1 + D(1)·λ
2D(2)

, (3.61)

which implies that

D(1)
m,n =

2D(2)

λ
· qn−1,n − qn+1,n

qn−1,n + qn+1,n
. (3.62)

This can be combined with Equation 3.27 and then directly integrated to calculate the

required voltage profile. We can approximate the integral with a Riemann sum:

Vm,n =
−2D(2)

u

n

∑
v=0

qv−1,v − qv+1,v

qv−1,v + qv+1,v
, (3.63)

so we can construct the required voltage profile for the ratchet. Given the values of

qv,n, at time m, it is always possible to calculate the required voltage profile, Vm,n. Con-

versely, given the voltage profile, we can use Equation 3.27 to calculate the infinitesimal

first moment, D(1) and then use Equations 3.43, 3.44 and 3.45 to calculate the proba-

bilities of transition, qv,n. There is a one to one and onto mapping between voltage

profile of a hypothetical physical device, Vm,n, and probabilities of transition, qv,n. We

can conclude that Parrondo’s games are literally a finite difference model of a flashing

Brownian ratchet.

3.5.3 Conditions for convergence of the solution

We need to know the conditions under which the solution to the finite partial difference

Equation 3.48 converges to the true solution of the partial differential Equation 3.28, as
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the mesh size, λ goes to zero. There is a theorem due to O’Brien et al. (1951) that es-

tablishes the numerical integration of a parabolic PDE, in explicit form, converges to

the correct solution as λ → 0 and τ → 0 provided β = D(2) · τ/λ2 ≤ 1
2 . We see that

Parrondo’s choice of diffusion operator, with β = 1
2 is at the very edge of the stable

region.

3.5.4 An appropriate choice of scale

There is a possible range of values for β. As β → 0 we require the time step τ → 0.

The only way to achieve this is to make the number of time steps required to simulate

a given time interval, to increase without bound Nsteps = T/τ → ∞. It is computa-

tionally infeasible to perform simulations with extremely small values of β → 0. On

the other hand, the value of β = 1
2 implied in original Parrondo’s games is at the very

limit of stability. In fact, the presence of small round-off errors in the arithmetic could

cause the discrete simulation to diverge significantly from the continuous solution.

In defence of Parrondo’s original choice of diffusion operator, it is fortuitous that Par-

rondo’s diffusion operator lies just inside the convergent region. Parrondo was not the

first scientist to make that choice. Lapidus (1962) points out that the case with β = 1
2

leads to a standard numerical method called the Schmidt formula. Taylor and Karlin

(1998) point out that Ehrenfest’s model of diffusion involves a change of state by ±1,

for each time tick, and does not allow a null or self-transition. On the other hand, a

model of diffusion that excludes self-transitions is not very realistic. At one moment,

we have a group of particles confined in a small region. Then we have a vacuum and

then particles move back in that region again, and so on. Boltzmann argued that fluc-

tuations do occur but extreme fluctuations, which leave a vacuum behind are extremely

improbable. There is something very non-physical about Parrondo’s original choice of

diffusion operator.

We propose that choosing β = 1
4 , in the middle of the feasible range, is much more ap-

propriate. If we consider the case of pure diffusion, with D(1) = 0, then Equation 3.48

reduces to

pm,n = β · pm−1,n−1 + (1 − 2β) · pm−1,n + β · pm−1,n (3.64)
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and if we choose β = 1/4 then this reduces to

pm,n =
1 · pm−1,n−1 + 2 · pm−1,n + 1 · pm−1,n+1

4
, (3.65)

which is the same as Pascal’s triangle with every second row removed. This is essen-

tially a half-period, or double frequency, Bernoulli process. The solution to the case

where the initial condition is a Kronecker delta function, pi,0 = δi,0 is easy to write

down, using Binomial coefficients:

pm,n =
C2m,m+n

22n
=
(

2m
m+n

)

· 1

22n
=

(2m)!

(n + m)! · (n − m)!
· 1

22n
, (3.66)

which is a half period, or double frequency binomial, with position in the range −m ≤
n ≤ +m. Outside this range, we have pm,n = 0. We can apply Stirling’s approxima-

tion to the factorial11 and arrive at the Laplace and De Moivre form of the Central

Limit Theorem which, establishes a correspondence between Binomial (or Bernoulli)

distribution and the Gaussian distribution to obtain

pm,n =
1√
πm

exp

(−n2

m

)

. (3.67)

This expression is only approximate but is true in the limiting case as m → ∞. This

approximation is sometimes known as the Normal approximation to the Binomial dis-

tribution (Wackerley et al. 1996).

In the case where D(1) = 0; the Fokker-Planck Equation 3.28 reduces to a diffusion

equation:

D
∂2p

∂x2
− ∂p

∂t
= 0. (3.68)

Einstein’s solution 12 to the diffusion equation is a Gaussian probability density func-

tion:

p (t, x) =
1

σ
√

2π
exp

(−x2

2σ2

)

(3.69)

where the variance, σ2, is a linear function of time:

σ2 = 2D(2)t . (3.70)

This last result is referred to as the Einstein-Smoluchowski equation (Atkins 1994) and

appears in Einstein’s original papers (Einstein 1905, Einstein 1956, Pauli 1973). Max-

well (1888) attributes the solution in Equation 3.69 to Fourier. Wannier (1966) points

11Reif (1965) uses a Taylor expansion of Equation 3.66, and Stirling’s formula, to arrive at Equa-

tion 3.67.
12Einstein applied Fourier’s solution (Maxwell 1888) to the heat equation in a new context.

Page 52



Chapter 3 The physical basis of Parrondo’s games

out that Equation 3.70 is also implicit in the Nernst equation, and that this result was

probably known before it was used by Einstein (1905) and Smoluchowski (1916). It is

possible to verify that Equation 3.69 is a solution to Equation 3.68 by direct substitu-

tion:

D(2) · ∂2p

∂x2
=

∂p

∂t
(3.71)

=

(−1

2t

)

·
(

1 −
( x

σ

)2
)

· p (t, x) . (3.72)

If we sample this solution in Equation 3.69 using the mapping in Equation 3.31 then

we obtain Equation 3.67 again. This is an exact result. We also obtain a result regarding

the variance, 2D(2) · t = λ2

2τ · t and hence, β = D(2)τ
λ2 = 1

4 , which was the original scaling

assumption. We conclude that the choice of β = 1
4 is very appropriate for the solution

to the diffusion equation. We suggest that this would also be true for the Fokker-Planck

Equation, in the case where D(1) is small. The appropriate choice of β, given arbitrar-

ily large, or rapidly varying, D(1) is still an unsolved problem. In general, we would

expect that much smaller values, β → 0, would be needed to accommodate more ex-

treme choices of D(1).

3.5.5 Mean position and mean velocity of drift

We can define the mean position of a Brownian particle in terms of expected value,

with respect to position x:

µ (t) = Ex [p (t, x)] =
∫ +∞

−∞
xp (t, x) dx. (3.73)

The mean velocity of drift can be calculated as follows:

∂µ

∂t
=

∂

∂t

∫ +∞

−∞
xp dx (3.74)

=
∫ +∞

−∞
x

∂p

∂t
dx (3.75)

(3.76)

and, making use of the law of continuity, in Equation 3.19, we obtain

∂µ

∂t
= −

∫ +∞

−∞
x

∂J

∂x
dx. (3.77)
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We can apply integration by parts to obtain

∂µ

∂t
= − [J(t, x) · x]+∞

−∞ +
∫ +∞

−∞
J(t, x) dx (3.78)

and since the boundary conditions at infinity are assumed to be zero, we obtain:

∂µ

∂t
=
∫ +∞

−∞
J(t, x) dx, (3.79)

so the mean velocity of drift is related to the flow of probability, J(t, x), integrated over

space. If we have sampled the solution to the Fokker-Planck Equation then we can

approximate the integral in Equation 3.73 using a Riemann sum:

µm = En [pm,n] = λ ·
+∞

∑
n=−∞

npm,n. (3.80)

This can be used to evaluate the mean position of a Brownian particle in computer

simulations.

3.5.6 An example of a simulation, including null-transitions

We simulated a physically reasonable ratchet with a moderately large modulo value,

L = 8. (The value for the original Parrondo’s games was L = 3.) We used the value

of β = 1/4. The simulation was based on a direct implementation of Equation 3.48 in

Matlab. We chose an example sampling time of τ = 12 µs and a sampling distance of

λ ≈ 0.25 µm. The result is shown in Figure 3.2, where we indicate how the expected

position of a particle can move within a Brownian flashing ratchet during four cycles

of the modulating field. We can see a steady drift of the mean position of the particle

in response to the ratchet action.

This simulation includes a total of 500 time samples. Note that the average rate of

transport quickly settles down to a steady value, even after only four cycles of the

ratchet. It is worth noting that this is a discrete simulation. It is an example of a gen-

eralised version of Parrondo’s games. It is a version of Parrondo’s games with null

transitions, with β = 1
4 . This result was first published by Allison and Abbott (2002)

and shows that Parrondo’s games can produce a non-zero transport effect even when

null transitions are included. This establishes that Parrondo’s paradox does not depend

on the absence of null-transitions.
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Figure 3.2. Time-evolution of the mean of the distribution p(t, x). When the field is asserted,

the mean position of the particles moves in a generally downward direction. There is

some relaxation towards the end of that part of the cycle. When the field is turned off,

the mean remains constant although diffusion causes the distribution to disperse. The

total shift in mean position of this ratchet is very modest, about 0.005 µm, compared

with the spacing between the teeth of the ratchet, of 2.0 µm. Part of the motivation

of this work is to optimise the transport effect of the Brownian ratchet, subject to

constraints.

3.5.7 A more realistic simulation

Parrondo’s games can be used to simulate the operation of a Brownian ratchet, by

simply including more samples in the simulation. For example, a one dimensional

Brownian ratchet device is tested with the following parameters: There are 11 teeth

either side of the initial condition with 11 samples per tooth, in the spatial dimension.

The spatial period is L = 2.0 × 10−6 m. The temporal period is T0 = 1.5 × 10−3 s. The

maximum , on , voltage is Vmax = 60.0 × 10−3 V. This is deliberately kept low enough

to avoid significant heating or electrolysis effects. The physical constants for diffusion

are chosen to be diffusion coefficient: D(2) = 1.3 × 10−9 m2s−1 and particle mobil-

ity u = 51.9 × 10−9 ms−1V−1, which are the typical values for a hydrated sodium ion

in water (Atkins 1994). The duty cycle is chosen to be D = 1 − γ = 1/2. The ratchet
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is on and off for equal periods of time. The value of the scaling variable, β, defined in

Equation 3.57, is chosen as β = 1/4 in order to be consistent with the recommendation

for Parrondo’s games with natural diffusion. The results of this simulation are shown

in Figures 3.3 and 3.4.
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Figure 3.3. The time-evolution of p(t, x). The coordinate system is a right-handed Cartesian

system,x, y , z. The x-axis shows position x in metres. The y-axis shows time t in

seconds and the z-axis shows probability density p(t, x). The units of probability density

are m−1. The probability density is normalised to a total probability of one, at each

point in time, t. The grouping of particles in the teeth of the ratchet can clearly be

seen during the on times and the relaxation of the particles during the off can also be

clearly seen. The over all drift is present but may be hard to see in this figure. This

entire simulation of a ratchet is quite realistic and yet is is really only a special case

of Parrondo’s games. It differs from Parrondo’s original games in that there are null-

transitions, more samples in time and in space, and the scale has been adjusted to be

realistic for hydrated sodium ions in water.
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Figure 3.4. The mean position of a Brownian particle in a ratchet. The distributions, calculated

in Figure 3.3 are averaged to give an estimate of the mean position of a Brownian

particle in the ratchet. The shift in mean position can clearly be seen. Once again, this

simulation is really only a special case of Parrondo’s games. It differs from Parrondo’s

original games in that there are self-transitions, more samples in time and in space,

and the scale has been adjusted to be realistic for hydrated sodium ions in water. The

change in mean position is positive, indicating that the games would be winning if the

simulation had been formulated as a game of chance, rather than a physical simulation

of a Brownian process.

These are simulations of a Brownian ratchet but they are also instances of Parrondo’s

games with natural diffusion. It is clear that we could include more and more sam-

ples into the simulation and make the simulation more and more realistic, as required.

The limit theorem of Kaplan guarantees convergence. Parrondo’s games with natural

diffusion would be useful for simulating a proposed ratchet device. Alternatively, we

could simplify the games down to a minimal case, where the games could be solved ex-

actly using mathematical techniques. The purpose of analysis is to gain some insight,

which might not be clear amongst the large amounts of data generated by brute-force

simulations. The analytical approach is the one pursued by Parrondo.
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3.6 Summary of results, regarding the sampling process

We acknowledge the similar, but independent, work of Heath et al. (2002). The focus

here different; we seek to establish the physical, and mathematical, basis of Parrondo’s

games and to derive a practical numerical technique for simulation.

We conclude that Parrondo’s games are a valid finite-element simulation of a flashing

Brownian ratchet, which justifies Parrondo’s original intuition. We have established

that Parrondo’s ǫ parameter is a reasonable way to simulate a gradual externally im-

posed electric field, or voltage gradient. We have established that Parrondo’s implied

choice of the β parameter does lead to a stable simulation, but we suggest that the

choice of β = 1/4 is more appropriate from a mathematical point of view. The trans-

port effect does not depend on the absence of null-transitions.

Finally, we have generalised Parrondo’s games, in the form of a set of finite difference

equations and we have shown that these can be implemented on a computer. This

justifies the claim that Parrondo’s games are a discrete-time, discrete-space version of

a flashing Brownian ratchet. Parrondo’s games are, in effect, a particular way of sam-

pling a Fokker-Planck Equation.

3.7 Estimating the moments of Parrondo’s games

The aim is to design a Brownian ratchet device to produce a transport effect. Devices

of this type could be used to amplify signals, in a manner similar to the way that the

diffusion of minority carriers amplifies a signal in a bipolar transistor. The transport ef-

fect could also be used for sorting (Bader et al. 1999) or to perform analytic separations,

in a manner similar to chromatography (Seader and Henley 2006). In order to produce

a workable design, we must have a model that allows us to estimate the magnitude of

the transport or drift effect. It can be seen, in Figure 3.1, that calculating the effective

drift is not sufficient for practical purposes. We must also measure the amount of de-

viation involved.

Calculation of the higher moments should not be necessary. This follows from the cen-

tral limit theorem. The disordered or random part of the motion of a Brownian particle
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tends to have infinitesimal increments that are Gaussian and the Gaussian distribution

is completely determined by the first two moments, so the immediate aim is to deter-

mine the first two moments of a Brownian ratchet process.

We assume that the process has been sampled in discrete time and space, as suggested

in the last section and that we have arrived at a set of Parrondian games that approx-

imate the device under enquiry. These games can be written as a set of partial dif-

ference equations in point probabilities, pm,n. There is a large literature on the use

of z-transforms to solve ordinary difference equations (McEliece et al. 1989, Kuo 1992,

Proakis and Manolakis 1992, Jerri 1996, Ersoy 1997). In fact this motivation was present

in the earliest works on the z-transform, such as those of Jury (1964), who considered

the problem of electrical ladder circuits. More recently, Proakis and Manolakis (1992)

considered the well-known problem of the Fibonacci sequence, using the z-transform

and Kuo (1992) considered the problem of regular repayments on a loan, under com-

pound interest, using the z-transform.

Many of the results, obtained using the z-transform, were anticipated using an earlier

technique called the generating function. Knuth (1978) attributes the invention of gen-

erating functions to de Moivre (1730) who used the technique to solve the difference

equations for the Fibonacci sequence. Goldberg (1986) used the generating function

technique and extended it to apply to partial difference equations in two independent

variables. He used the technique to solve the problem of Bernoulli trials, to derive the

standard expression for the Binomial distribution, pm,n = Cm,n qn (1 − q)(m−n). This

example problem contains the essential features required to solve the partial difference

equations that arise in the analysis of Parrondo’s games. The analysis is presented

here, using the z-transform and the notation from Tables 3.1, 3.2 and 3.3.

3.7.1 Evaluation of the discrete transforms of the solution function

It is possible to derive an expression for the z-transform of the solution to a system of

difference equations directly from the difference equations. This is clearly seen if we

examine the recurrence relationship for Bernoulli trials, which is shown graphically in
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Figure 3.5. Point probabilities and probabilities of transition for the Bernoulli process. The

probability that the system is at discrete state n at discrete time m is pm,n. If we are

given the fact that system is in state n at time m then there are two possible transitions

from that state. The probability of transition to state n at time m + 1 is 1 − q and the

probability of transition to state n + 1 at time m + 1 is q. All other transitions have

a conditional probability of zero. If we know that the system has arrived at state n at

time m + 1 then there are two possible pathways by which the system can have reached

that state. There could have been a transition from state n − 1, with probability of q,

or a self-transition from state n, with probability of 1 − q. All other transitions have a

conditional probability of zero.

Figure 3.5 and algebraically as follows:

pm+1,n = q · pm,n−1 + (1 − q) · pm,n. (3.81)

This recurrence relationship is a partial difference equation. It can be derived by sum-

ming over all the possible histories, using the laws of conditional probabilities. The

probability that the system is at discrete state n at discrete time m is pm,n. We can recall

that the single-time-step conditional probability of transition is

qv,j = P [ n = j at time m + 1 | n = v at time m ] . (3.82)

It then follows from the laws of conditional probability that

pm+1,n =
+∞

∑
v=−∞

pm,v · qv,n. (3.83)

For the case of Bernoulli trials, we can define qv,n = (1 − q) · δv,n + q · δv+1,n, where

δ refers to the Kronecker delta operator. Note that q (without subscripts) refers to the

probability of success in the original Bernoulli trials scheme and that qv,n (with sub-

scripts) refers to a more general conditional probability of transition. In the case of
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Parrondo’s games the transition probabilities qv,n can depend on the values of the ini-

tial position, v, the final position n, and the time, m. In the case of Bernoulli trials, these

transition probabilities are stationary and qv,n = q = constant.

If we take the two-sided spatial w-transform of Equation 3.81 then we obtain

Pm+1 (w) = q · w−1 · Pm (w) + (1 − q) · Pm (w) . (3.84)

We can then take the one-sided temporal z-transform of Equation 3.84 to obtain

z+1 · P (z, w) − z+1 · P0 (w) = q · w−1 · P (z, w) + (1 − q) · P (z, w) (3.85)

and hence

P (z, w) =
1

1 − z−1 · ((1 − q) + q · w−1)
· P0 (w) . (3.86)

If we use the initial condition, that the system is in state zero at time zero then po,n =

δ0,n and hence P0 (w) = 1. This gives:

P (z, w) =
1

1 − z−1 · ((1 − q) + q · w−1)
. (3.87)

This is the dual transform of the solution to the difference Equation 3.81. This trans-

form is simple enough to invert. We can take the inverse w-transform, W−1, to obtain

Pm (w) =
(

q · w−1 + (1 − q)
)m

. (3.88)

If we then apply the inverse z-transform, we obtain

pm,n = Cm,n · qn · (1 − q)m−n (3.89)

where Cm,n = m!/(n!(m − n)!) is a binomial coefficient. Equation 3.89 is the standard

result for Bernoulli trials and is called the Binomial distribution (Papoulis 1991). In this

simple case, the inverse transformations from Equation 3.87 to Equation 3.89 are sim-

ple enough the be performed in closed form. The problem with solutions of the form

of Equation 3.89 is that there is too much detail. It is not possible to make general state-

ments about the expected value of a transport effect or about the amount of deviation

without calculating moments. This would require us to evaluate further sums over the

probabilities in Equation 3.89. This can be quite tedious and time consuming. A far

more elegant and direct approach is to work with transforms of the solutions, such as

Equations 3.87 or 3.88, and to regard these transforms as modified moment generating

functions.
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time vs space n w

m pm,n = Cm,n qn (1 − q)(m−n) Pm(w) =
(

qw−1 + (1 − q)
)m

z P(z)n = qn z−n

(1−(1−q)z−1)
n+1 P(z, w) = 1

1−z−1(qw−1+(1−q))

Table 3.4. Transforms of solutions to the Bernoulli process. It is fairly easy to write down the

solutions to the equations for the Bernoulli process, in all the different domains. After

careful consideration, it turns out that the solution in the time domain, pm,n, is not the

easiest starting point for calculating the spatial moments of the process, µ1
′(m) and

σ2(m). The easiest starting point for calculating the moments is Pm(w).

3.7.2 Evaluation of first and second moments, of the solution

We make use of the differentiation properties of the w-transform. It is possible to show

by direct substitution, and by swapping of the order of differentiation and summation

that:
∂Pm (w)

∂w
|w=1= −E [n]m = −µ1

′
m , (3.90)

which gives an expression for the first moment, in space, as a function of time

µ1
′
m = E [n]m = −∂Pm (w)

∂w
|w=1 . (3.91)

The corresponding expression for the non-central second moment can be obtained in

the same way

µ2
′
m = E

[

n2
]

m
= +

∂2Pm (w)

∂w2
|w=1 +

∂Pm (w)

∂w
|w=1 . (3.92)

These are the relevant formulae for the z-transform. The corresponding results for the

Fourier transform are given in Leon-Garcia (1994). Equations 3.91 and 3.92 are valid as

long as the relevant sums converge absolutely for some non-empty region of conver-

gence, which justifies the swapping of the order of summation and differentiation. It

is possible that some distributions for actual real-world random variables have an un-

bounded second moment. Clearly, Equation 3.92 does not apply in those cases, where

the infinite sums do not converge. For example, we cannot sample a Cauchy distri-

bution and then evaluate the moments using this technique, since the sums do not

converge. On the other hand, we could sample a Gaussian function and evaluate the

moments using Equations 3.91 and 3.97. Equations 3.91 and 3.92 can also be evaluated

in the doubly transformed, {z, w}, domain. We can write

µ1
′ (z) = E [n] (z) = −∂P (z, w)

∂w
|w=1 (3.93)
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and the second moment follows in a similar way

µ2
′ (z) = E

[

n2
]

(z) = +
∂2

P (z, w)

∂w2
|w=1 +

∂P (z, w)

∂w
|w=1 . (3.94)

This follows from the linearity of the operators. The central second moment, or vari-

ance, can be calculated from the non-central second moments using the parallel axis

theorem13, for moments,

σ2 [n] = E
[

(n − E [n])2
]

= E
[

n2
]

− E [n]2 (3.95)

= µ2
′ −
(

µ1
′)2

. (3.96)

Equation 3.95 is sometimes referred to, by engineers, as Steiner’s theorem (Apostol and

Mnatsakanian 2003). We can use this result to calculate the variance of the sample

paths, as a function of discrete time:

σ2
m = E

[

n2
]

m
− (E [n]m)2 (3.97)

=
∂2Pm (w)

∂w2
|w=1 +

∂Pm (w)

∂w
|w=1 −

(

∂Pm (w)

∂w
|w=1

)2

. (3.98)

The last term in Equation 3.95 involves a square, which is a non-linear operation. This

means that there is no simple expression, corresponding to Equation 3.97, in the doubly

transformed, {z, w}, domain. The squared term can be transformed, using a convolu-

tion integral in the z-plane, but the result can be complicated. It would usually be easier

to take the inverse z-transform of Equations 3.93 and 3.94 to use Equation 3.97 to eval-

uate the variance as a function of time. We should note that the inverse z-transform

can also be expressed as a convolution integral, so taking the inverse z-transform is

usually less complicated than taking the z-transform of the square of a function.

In summary; if we can evaluate the transform of the solutions, P (z, w), then we can

easily evaluate the non-central first and second moments, as functions of z, using Equa-

tions 3.93 and 3.92. If we take inverse z-transforms of those non-central moments then

we can evaluate the non-central moments as functions of m and use Equation 3.95 to

evaluate the central second moment, or variance. Alternatively we can take the inverse

z-transform of P (z, w) to obtain Pm (w) then we can use Equation 3.97 to evaluate the

variance.

13This is described in Weisstein (1999), page 1190, Equation (6).
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3.7.3 The Bernoulli process, a simple worked example

Derivatives of Pm(w) and the moments of pm,n

The transforms of the solutions to the Bernoulli process are already evaluated in Equa-

tions 3.87 and 3.88. These can be differentiated and transformed, or inverse trans-

formed. These results are summarised below. The derivatives of Pm(w) are as follows:

Pm(w) =
(

qw−1 + 1 − q
)m

(3.99)

and
∂Pm(w)

∂w
= −mqw−2

(

qw−1 + 1 − q
)m−1

(3.100)

and

∂2Pm(w)

∂w2
=
(

m(m + 1)q2w−4 + 2mq(1 − q)w−3
) (

qw−1 + 1 − q
)m−2

. (3.101)

This leads to some special cases. The zeroth derivative, at w = 1, is

Pm(w) |w=1= 1, (3.102)

which implies a total probability of one for all values of m, which is a requirement for

any feasible probability mass function. We must have
(

+∞

∑
n=−∞

pm,n

)

= 1 (3.103)

for all feasible values of discrete time, m ∈ Z and m ≥ 0. The higher derivatives are:

∂Pm(w)

∂w
|w=1= −mq (3.104)

and
∂2

Pm(w)

∂w2
|w=1= m(m + 1)q2 + 2mq(1 − q). (3.105)

If we then apply Equations 3.91 and 3.97 to Equations 3.104 and 3.105 we can derive

expressions for the first two moments of the Bernoulli process:

µ1
′
m = mq, (3.106)

and

µ2
′
m = mq (1 − q + mq) (3.107)

and hence

σ2
m = mq (1 − q) , (3.108)
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which are consistent with the standard results for the Bernoulli process (Reif 1965,

Abramowitz and Stegun 1970, Wackerley et al. 1996, Taylor and Karlin 1998, Korn and

Korn 2000). It is also possible in the doubly-transformed domain, {z, w}.

Derivatives of P(z, w) and the moments of pm,n

The calculation of the moments is easier with the single transform, Pm(w), than the

dual transform, P(z, w) but it is possible to work in the other domain, without the need

to immediately perform the inverse z-transform. The derivatives of the dual transform

are listed below. The zeroth derivative is simply the dual transform

P (z, w) =
1

1 − z−1 · ((1 − q) + q · w−1)
. (3.109)

This is the same as Equation 3.87. The higher derivatives are

∂P(z, w)

∂w
=

−qz−1w−2

(1 − z−1 · ((1 − q) + q · w−1))
2

(3.110)

and
∂2

P(z, w)

∂w2
=

2qz−1w−3
(

1 − (1 − q) z−1
)

(1 − z−1 · ((1 − q) + q · w−1))
3

. (3.111)

These equations lead to some results for the special case when w = 1,

P (z, w) |w=1= P (z, 1) =
1

1 − z−1
, (3.112)

which is the z-transform of Equation 3.102. The first derivative becomes

∂P(z, w)

∂w
|w=1= −q

z−1

(1 − z−1)
2

, (3.113)

which is the z-transform of Equation 3.104.

The second derivative is

∂2P(z, w)

∂w2
|w=1=

2qz−1
(

1 − (1 − q)z−1
)

(1 − z−1)
3

, (3.114)

which is the z-transform of Equation 3.105. The equation for the first moment is linear

so the corresponding equation in the dual transformed domain is not surprising,

µ1
′ (z) = +q

z−1

(1 − z−1)
2

, (3.115)
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which follows from Equation 3.110 and is consistent with Equation 3.106. The second

non-central moment is calculable in the same way,

µ2
′ (z) =

qz−1 + q (2q − 1) z−2

(1 − z−1)
3

, (3.116)

which is the z-transform of Equation 3.107. The equation for the variance cannot be

obtained directly from Equations 3.110 and 3.111 because of the non-linear squared

term in Equation 3.95. In order to obtain an expression for the second moment, it is

necessary perform the inverse z-transforms on Equations 3.115 and 3.116 and then ap-

ply Equation 3.95. Of course, that result is consistent with Equation 3.108.

3.7.4 Stochastic processes with stationary probabilities of transition

It can be seen that the equations for the Bernoulli process begin with a very simple

expression for the difference equation, in Equation 3.81. The expression for the dual

transform, in Equation 3.87, is also quite simple. The expressions for the derivatives,

such as Equation 3.111, are more complicated and yet the final results for the mo-

ments, Equations 3.106 and 3.108 are very simple. One might suspect that there is

a simple symmetry in the problem, which can be exploited, to reduce the amount of

effort required to calculate the moments. One important key to this is to note that the

probabilities of transition, qv,n, are stationary with respect to time and that they do not

depend on position either. This means that there are constant repeated terms, which

appear in the recurrence relations. This can be readily seen in Equation 3.87 where all

the dependency on space appears in a single instance of the spatial shift operator, w,

and all the dependency on time appears in a single instance of the temporal shift op-

erator, z. This suggests that further simplification is possible. It should be possible to

find a simpler method for obtaining expressions for the moments of the Bernoulli pro-

cess and a large class of processes that are related to the Bernoulli process, including

Parrondo’s game A.

Suppose that we are analysing a process that has stationary probabilities of transition

and that the dual transform has the form

P (z, w) =
1

1 − z−1 · α (w)
. (3.117)
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The function α (w) plays the role of a generator. If we take the inverse z-transform of

Equation 3.117 then we obtain

Pm (w) = α (w)m , (3.118)

which confirms what we had already suggested, that the spatial generating function,

at time m, can be obtained by raising a generator, α (w), to a power, m. If the probabil-

ities of transition are stationary then the process essentially convolves the same set of

transition probabilities with each other, over and over gain. This gives rise to powers

of the generator in the transformed, w, space. If we take the w-transform of Equa-

tion 3.83 then we can write down an expression for the generator, α (w), in terms of the

transition probabilities, qv,n:

α (w) =
+∞

∑
v=−∞

qv,n · wv−n. (3.119)

In the case of the Bernoulli process, we have

qv,n = (1 − q) δv,n + qδv+1,n, (3.120)

which gives the generator

α (w) = (1 − q) w0 + qw−1 (3.121)

and if we substitute this into Equation 3.117 then we obtain Equation 3.88. This is a

very systematic way to derive the generator and the dual {z, w}, transform of the solu-

tion to the partial difference equation. It is possible to directly evaluate the derivatives

of Equation 3.117 and to show that the non-central moments can be evaluated in terms

of the derivatives of the generator α (w). The first moment is given by

µ1
′
m =

(

−∂α (w)

∂w
|w=1

)

· m, (3.122)

and the second central moment, or variance, is given by

σ2
m =

(

∂2α (w)

∂w2
|w=1 +

∂α (w)

∂w
|w=1 −

(

∂α (w)

∂w
|w=1

)2
)

· m, (3.123)

which is an elegant result. This also proves that the variance always expands linearly

with time, as long as the sum for the generator in Equation 3.119 converges. There

might be certain fat-tailed distributions, such as the ones found in financial time se-

ries, where the variance does not scale linearly with time, but the infinite-sums for the
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generators for these functions will not converge. This is clear if one examines Equa-

tions 3.12 and 3.13 and considers how the w-transform is derived from the two-sided

spatial Laplace transform. The integral for the two-sided Laplace transform generally

diverges for large negative values of x, unless the density function diminishes to zero

very quickly. For example, the two-sided transform converges for a Gaussian func-

tion but diverges for a Cauchy distribution. For most practical situations, the sum for

the generator, in Equation 3.119 does converge and the variance does increase linearly

with time, according to Equation 3.123.

Equation 3.123 has the same form as the Einstein-Smoluchowski equation 3.70. We can

estimate an effective diffusion coefficient, D
(2)
eff , for the whole macroscopic distribution

given the detailed, microscopic, probabilities of transition, embodied in the generator

α(w),

D
(2)
eff = D(2) · 1

2β

(

∂2α (w)

∂w2
|w=1 +

∂α (w)

∂w
|w=1 −

(

∂α (w)

∂w
|w=1

)2
)

. (3.124)

This is an interesting equation because it relates the macroscopic effective diffusion

coefficient, D
(2)
eff , to the actual diffusion coefficient, in the physical medium of the

ratchet, D(2), through the scaling factor, β, and the minute detailed probabilities of

transition, embodied in the generator, α (w). It should be noted that the probabilities

of transition depend on the first infinitesimal moment, D(1), which depends on the ap-

plied voltage, V (t, x). It follows that the effective diffusion coefficient depends on the

applied voltages and well as the actual diffusion coefficient of the medium. We can al-

ter the rate of diffusion by applying fields and the magnitude of this effect is described

by Equation 3.124. Being able to alter the rate of diffusion, by applying external fields

suggests a number of useful applications. The Parrondo transport effect, would only

be one of these.

3.7.5 The w-transforms of some well known distributions

Any theory that is developed as a result of a long sequence of supposedly logical de-

ductions is always subject to challenge because these deductions are carried out by

fallible human beings. Mistakes are always possible. We are fortunate to have oppor-

tunities to test the theory from the last section against practical examples, where the

results are known in advance. A summary of our results is shown in Table 3.5. All
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Distribution and Properties Mass Function, pn W transform mean, µ1
′ variance σ2

Geometric (1 − q)qn 1−q
1−qw−1

q
1−q

q
(1−q)2

Poisson e−µ µn

n! eµ(w−1−1) µ µ

Binomial Cm,n qn (1 − q)(m−n)
(

(1 − q) + qw−1
)m

mq mq(1 − q)

Sampled Gaussian 1
ξ
√

2π
e

(

−(nλ−µ)2

2ξ2

)

w
−µ
λ · e

(

1
2 (

ξ
λ)

2
ln(w)2

)

µ
λ

(

ξ
λ

)2

Delta function δn,µ/λ w
−µ
λ

µ
λ 0

Table 3.5. Transforms of some one-dimensional probability mass functions. The discrete

W transform can be used to solve partial difference equations and then to calculate

the moments of the resulting distributions, without having to explicitly determine the

inverse transform, W−1. The common distributions have been extensively studied, are

well understood and provide a means of testing the theory from the last section.

the moments were calculated using the methods in the previous section. They agree

with the standard results in the literature (Abramowitz and Stegun 1970). An inter-

esting feature of the sampled-Gaussian distribution is that the sampling process does

not affect the value of the mean or the variance. All the small errors introduced by

the sampling process cancel out, in the case of the Gaussian function, at least as far

as the moments are concerned. This is not generally true of all functions. In general,

the Riemann sum of a sampled function differs from the true indefinite integral. This

is evident if one studies the error formulae for the rectangle rule for integration, for

example (Chapra 2006). There is no a priori reason to expect that the moments of the

discrete sampled-Gaussian would be identical with the moments of the original real

Gaussian function, especially if the sampling length, λ, were very large. This invariant

property suggests that Gaussian functions might be useful as basis functions, espe-

cially where the intention is to calculate moments.

3.7.6 Parrondo’s Game A

If we play a uniform sequence of Parrondo’s Game A then the generator method can

be applied. The definition of the generator for Parrondo’s Game A is determined by

the rules of the game:

α(w) =

(

1

2
− ǫ

)

· w−1 +

(

1

2
+ ǫ

)

· w+1. (3.125)
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The moments of a uniform sequence of Parrondo’s game A can be calculated by apply-

ing Equations 3.123 and 3.122 to obtain

µ1
′(m) = −2ǫm (3.126)

and

σ2(m) = 4 ·
(

1

2
+ ǫ

)

·
(

1

2
− ǫ

)

· m, (3.127)

which are consistent with numerical simulations of Parrondo’s Game A.

3.7.7 Taleb’s game, a game with highly asymmetrical rewards

The Bernoulli process and Parrondo’s Game A are examples of a more general process

where there is chance involved and there are rewards. More generally, these rewards

are outcomes, which can be positive or negative. An interesting case is a game described

by Taleb (2004), where the probabilities and rewards are highly asymmetrical.

Using the same language that was used to define Parrondo’s games, we can define

Taleb’s game as:

qn,n+R1
= P [Reward R1] = q (3.128)

qn,n+R2
= P [Reward R2] = 1 − q, (3.129)

where R1 and R2 are the rewards. Taleb’s original game required that q = qn,n+R1
=

999/1000, R1 = +$1, (1 − q) = qn,n+R2
= 1/1000 and R2 = −$10, 000. The issue

is that the investor may become accustomed to the small rewards presented by R1 and

forget about the large, but infrequent, penalty, or negative reward14, represented by

R2. This game was surprisingly prescient. It was devised long before the sub-prime

mortgage crisis15. Of course, Taleb’s game is an extremely simplified model but it does

describe certain key aspects of asymmetrical investment situations. Taleb’s game can

14Taleb refers to this infrequent but catastrophic event, which cannot be logically deduced from past

experience, as a black swan event. This is a reference to the writings of John Stuart Mill.
15Kiviat (2007) described the essence of the sub-prime crisis as follows: “At its core, the entire pro-

cess is based on using borrowed money (home mortgages) as collateral to borrow more money (mortgage-backed-

securities) to borrow yet more money (CDOs [Collateralized-Debt-Obligations]), and hoping that the payment

chain doesn’t break. Once home mortgage defaults rise, the whole system can unravel.” A scholarly, although

less concise description is found in (Krinsman 2007). Soros (2008) provides a very philosophical view of

the credit crisis of 2008, and what it probably means for the future of financial markets.
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Process Generator

Bernoulli α (w) = q · w−1 + (1 − q) · w0

Parrondo’s Game A α (w) =
(

1
2 − ǫ

) · w−1 +
(

1
2 + ǫ

) · w+1

Taleb’s game α (w) = q · w−R1 + (1 − q) · w−R2

Table 3.6. The generators for some stationary stochastic processes. The Bernoulli process,

Parrondo’s Game A, and Taleb’s game are really just re-scaled versions of the same

process. The same method of analysis can be used to calculate the moments for all of

these processes.

be analysed using the techniques given in the previous section, even though is an ex-

tremely asymmetrical game. The generators for various stationary stochastic processes

are given in Table 3.6. Equations 3.123 and 3.122 can be applied to obtain

µ1
′(m) = (q · R1 + (1 − q) · R2) · m, (3.130)

which is as expected. The variance is given by

σ2(m) = q · (1 − q) · (R1 − R2)
2 · m. (3.131)

These results are consistent with numerical simulations of Taleb’s game. The relation-

ship to the Bernoulli process is clear. In fact, The Bernoulli process is Taleb’s game

with R1 = +1 and R2 = 0. Parrondo’s Game A is Taleb’s game with R1 = +1, q =

1/2 − ǫ, R2 = −1 and (1 − q) = 1/2 + ǫ, so Taleb’s game generalises the Bernoulli

process and Parrondo’s game A. The moments of all of these stationary stochastic pro-

cesses can be calculated using Equations 3.130 and 3.131.

If we use Taleb’s original values, and units16, then we obtain µ1
′ = −9.001 · m $

and σ2 = 99, 919.980999 · m $2. In terms of powers of ten we have approximately

µ1
′ ≈ −101 · m $ and σ2 ≈ 105 · m $2. Taleb pointed out that the process is losing and

that a typical player might have to play for a long time before discovering this fact.

This is true. Another way of looking at the same situation is that the process is also ex-

tremely volatile. The sample paths may stray a very large distance from the mean line

16The units of discrete position, n, for a sampled Brownian ratchet device are dimensionless. The SI

units for the sampling length, λ, are in metres. If the games are used to represent games of chance,

played for money, then the units of discrete position, n, are still dimensionless, but the units of the

sampling length are now those of currency. For Taleb’s game, this is US dollars, $, or equivalently, $1.

The units of variance in Taleb’s game will be the units of the square of the sampling length, $2.
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of expectation, described by Equation 3.130. This divergence may be very positive, and

lure investors into a sense of false optimism or it may be very negative, which would

be disastrous for the individual investor. It would be very easy to lose a lot of money

by playing Taleb’s game, even if the coefficients were adjusted to make the mean rate

of return slightly positive. It is possible to overcome this volatility, by creating an

ensemble of many thousands of independent sample paths of Taleb’s game. This is

effectively what large insurance companies and investment trusts attempt to do. The

key problems are adjusting the coefficients to make the expected return positive and

ensuring that the individual sample paths are truly independent. A correlated down-

turn in all of the sample paths at the same time would be a disaster, like the great crash

of 1929 (Galbraith 1954). Taleb’s point is that, every now and then, disasters do happen.

3.7.8 Difference equations with periodic coefficients

Parrondo’s Game B differs significantly from Game A because it is not uniform in

space. This makes the generator, α(w), harder to calculate, even if we apply a strictly

uniform sequence of Game B in time, which makes the process stationary, in time.

Some new fundamental theory has to be developed, to deal with spatially-periodic

stochastic processes, such as Parrondo’s Game B. Fortunately, discrete transforms have

symmetries, which can be exploited in the case of periodic functions. This capability

was known from the earliest application of discrete transform (Jury 1964).

Multiplexed spatial functions

The function of multiplexing is widely used in electrical engineering for compiling

a single sequence of sampled values from some other set of less-frequently sampled

signals (Proakis and Manolakis 1992). Mathematical analysis of the process of multi-

plexing led Shannon to arrive at his celebrated sampling theorem (Lüke 1999).

For our immediate purpose, we shall use other symbols to indicate the functions, to be

multiplexed. We can imagine a function of discrete-position, pn, which is composed

from multiplexed copies of another function of discrete-position, fn. The simplest form

of multiplexing is to space the function out, fn, modulo L and to pack the intervening

spaces with zeros. We can write:
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pn = fn if (n mod L) = 0

pn = 0 if (n mod L) 6= 0.

We could say that pn is a re-packing of fn with a spatial period of L, and with zero

packing, in between. This can be more formally written in terms of the Kronecker

delta tensor, δn,v:

pn =
+∞

∑
v=−∞

δfloor (v/L),0 · ffloor (v/L). (3.132)

The delta function selects the appropriate elements of fn and inserts it in the correct

position in the sequence for pn. If we take the W transform of Equation 3.132 then we

obtain:

P(w) =
+∞

∑
v=−∞

w−L.v fv = F(wL) (3.133)

so the W transform of the interleaved function pv is the W transform of the original

function, evaluated at wL. Suppose now that we have a finite set of base functions,

fu,v, where 0 ≤ u ≤ L − 1, and u is an index to select the required base function and

v is a dummy variable to stand in for the spatial variable. We can multiplex these

base functions by spacing, zero-padding, shifting and then adding. The multiplexing

function is best described in terms of the mod and floor functions. Of course, we can

express any integer, n, in terms of a quotient and a remainder, n = L · floor (n/L) +

mod(m, L). The formula for the multiplexed function then takes on the form:

pn = fu,v = fmod(n,L), floor(n/L) (3.134)

and if we take the W transform of this form, we obtain

P(w) =
L−1

∑
u=0

w−u · Fu(wL), (3.135)

which is just a sum of functions of the type used in Equation 3.133.

The moments of multiplexed spatial functions

To evaluate the moments of the multiplexed function, we need to evaluate the deriva-

tives of the W transform of the multiplexed function. We can explicitly write:

∂P(w)

∂w
=

L−1

∑
u=0

∂

∂w

(

w−u · Fu(wL)
)

(3.136)
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and conclude that

E [n] = −∂P(w)

∂w
|w=1= −L ·

L−1

∑
u=0

∂Fu(w)

∂w
|w=1 +

L−1

∑
u=0

u · Fu(1). (3.137)

The expected values, evaluated with respect to the base functions, Fu(w), are expanded

by a factor of L and there is a correction term, which allows for the effects of the off-

sets, u.

The formula for the non-central second moment is similar but more complicated

E
[

n2
]

=
∂2P(w)

∂w2
|w=1 +

∂P(w)

∂w
|w=1 (3.138)

=
L−1

∑
u=0

L · ∂2
Fu(w)

∂w2
|w=1

+
L−1

∑
u=0

(

L2 − 2Lu
)

· ∂Fu(w)

∂w
|w=1

+
L−1

∑
u=0

u2 · Fu(1) (3.139)

and if we are given the W transforms of the base functions, Fu(w) = W [ fu,n] then we

can calculate the moments of the composite function, pn.

3.7.9 Parrondo’s game B

The question that remains is whether we can use the equations for Parrondo’s games

to arrive directly at transforms for the multiplexed function components, fu,v in Equa-

tion 3.134. We could then apply Equations 3.137 and 3.138 to obtain the moments.

Once we allow that Parrondo’s Game B has different probabilities of transition, which

vary with a spatial modulo of L = 3, then we obtain three coupled sets of difference

equations,

pm+1,3l =

(

3

4
− ǫ

)

· pm,3l−1 +

(

1

4
+ ǫ

)

· pm,3l+1 (3.140)

pm+1,3l+1 =

(

1

10
− ǫ

)

· pm,3l +

(

1

4
+ ǫ

)

· pm,3l+2 (3.141)

pm+1,3l+2 =

(

3

4
− ǫ

)

· pm,3l+1 +

(

9

10
+ ǫ

)

· pm,3l+3. (3.142)
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If we take the W transform of these equations and choose the notations, n = 3l + u and

W [ pm,3l+u ] = Fm,u ( w ), to avoid overloading the symbol Pm (w), which has already

been used in earlier sections. We arrive at a matrix equation

[Fm+1,0(w), Fm+1,1(w), Fm+1,2(w)] = [Fm,0(w), Fm,1(w), Fm,2(w)]

×G(w), (3.143)

where G(w) is given by

G(w) =











0
(

1
10 − ǫ

)

(

9
10 + ǫ

)

· w+1

(

1
4 + ǫ

)

0
(

3
4 − ǫ

)

(

3
4 − ǫ

)

· w−1
(

1
4 + ǫ

)

0











. (3.144)

This can be written in a more concise form17

Fm+1 (w) = Fm (w) · G(w). (3.145)

If we allow an initial condition F0 (w) = [1, 0, 0], which is appropriate for an initial

condition of a delta function then we can write down the solution explicitly

Fm (w) = F0 (w) · G(w)m. (3.146)

It should be clear that the transition matrix G (w) in Equation 3.146 plays an analogous

role to the generator α (w) in Equation 3.118. The effect of multiplexing is to replace

the original 1 × 1 generator with an L × L array. We can refer to G (w) as a generating

matrix. It is also worth noting that the generating matrix, G (w), has a very similar

format to the one-step transition matrix, defined by Pearce (2000b),

P =









0 r1 1 − r1

1 − r2 0 r2

r3 1 − r3 0









. (3.147)

17Here we use bold characters, G, to represent matrices, bold double-stroke characters, F, to represent

discrete transforms of functions of position and/or time. We could represent vectors as degenerate cases

of matrices, where one dimension is collapsed to a single row, but this would tend to be ambiguous. We

use an underscore, Fm (w), to indicate a row vector. The double-stroke bold font indicates that the objects

in the vector are transforms. The subscript, m, indicates that these spatial transforms were evaluated

at discrete-time m. The complex argument, w, indicates that discrete space, n, has been transformed

out and has been replaced with the complex variable, w. We can use an underscore and a transpose

superscript uT to indicate a column vector.
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This is a stochastic matrix, with unit row sums (Meyer 2000). All the matrix elements

are one-step probabilities of transition. The matrices, G (w) and P, are very similar if

we allow r1 = 1
10 − ǫ, r2 = 3

4 − ǫ and r3 = 3
4 − ǫ. The generating matrix, G (w), dif-

fers from P because it contains the operator, w, which ranges over the entire complex

plane. Pearce’s transition matrix, P, is only relevant to Parrondo’s games under cer-

tain asymptotic conditions but the generating matrix, G (w), describes the evolution

of the system at all positions, although position appears indirectly, as operator w. The

presence of the operator, w, in the generating matrix, G (w), accounts for the indefinite

periodic extension of the matrix in discrete space, n.

If we keep to the convention of using the symbol, q, to represent probabilities of transi-

tion, and we use the format suggested by Pearce in Equation 3.147, then this suggests

the following general form for the generating matrix for Parrondo’s games:

G (w) =









0 q1 (1 − q1) · w+1

1 − q2 0 q2

q3 · w−1 1 − q3 0









. (3.148)

Of course, we reproduce Parrondo’s game B by choosing, q1 = 1
10 − ǫ, q2 = q3 = 3

4 − ǫ

and ǫ = 1
200 . Parrondo’s game A can also be represented within this framework, using

q1 = q2 = q3 = 1
2 − ǫ and ǫ = 1

200 .

Equation 3.146 can be solved by taking the temporal Z-transform and performing some

algebraic simplification,

F (z, w) = F0 (w) ·
(

I − z−1 · G(w)
)−1

. (3.149)

This is the matrix extension of the one-dimensional Equation 3.117, for functions that

have not been multiplexed. The more complicated matrix form, in Equation 3.149, is

needed when the transition probabilities are periodic in space and we are using mul-

tiplexed functions to represent the solution. We can solve explicitly for the transforms

of the base functions

F (z, w) = [1, 0, 0]× H (z, w) , (3.150)

Page 76



Chapter 3 The physical basis of Parrondo’s games

where H = H (z, w) is defined by

H =











+1 −z−1 ·
(

1
10 − ǫ

)

−z−1w+1 ·
(

9
10 + ǫ

)

−z−1 ·
(

1
4 + ǫ

)

+1 −z−1 ·
(

3
4 − ǫ

)

−z−1w−1 ·
(

3
4 − ǫ

)

−z−1 ·
(

1
4 + ǫ

)

+1











−1

.(3.151)

This can also be written in the concise form

F (z, w) = F0 (w) · H . (3.152)

This relates the transforms of the solutions, F (z, w), to the initial conditions, F0 (w),

through the operator matrix, H (z, w) =
(

I − z−1 · G(w)
)−1

. Equation 3.152 describes

the evolution of the system at all times and at all positions, although time and position

appear indirectly, as operators, z and w. Equation 3.152 is a more generalised matrix

version of the special case described in Equation 3.117.

The next step is to explicitly solve Equation 3.150 for the W transforms of the base func-

tions, Fu (z, w) and then to apply Equations 3.137 and 3.138 to evaluate the moments

of the process, for Parrondo’s Game B, explicitly.

3.7.10 The small-matrix representation of Parrondo’s games

At time m, the time varying probabilities are a function of spatial position, n, and are

denoted by by pm,n. At one time-step earlier, the time varying probabilities are pm−1,k,

where the discrete time is m − 1 and the discrete position is k. The laws of conditional

probability imply that

pm,n =
+∞

∑
k=−∞

pm−1,k · qm−1,k,n (3.153)

where qm−1,k,n is the conditional probability from discrete position k to discrete posi-

tion n at discrete time m − 1.

Our immediate purpose is to study the effect of aggregation of states, modulo-L. In

Parrondo’s original games, this parameter is L = 3. In order to avoid the excessive use

of subscripts, we will use the convention that time subscript on the left-hand side of

the equations is m and the subscript on the right hand side is m − 1. In order to pre-

serve this convention, we refrain from swapping terms across the equals sign, during
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algebraic manipulations. This means that we can re-write Equation 3.153 as

pn =
+∞

∑
k=−∞

pk · qk,n. (3.154)

Reduction modulo-L requires us to consider the structure of the transition probabili-

ties, qk,n. For Parrondo’s original games, with L = 3, this structure has a tri-diagonal

form. The first three rows, with 0 ≤ k ≤ 2 appear as follows:

q0,−1 q0,0 q0,1 0 0

0 q1,0 q1,1 q1,2 0

0 0 q2,1 q2,2 q2,3.

(3.155)

After reduction modulo-3, the matrices should take the form, indicated by the one-step

transition matrix, defined by Pearce (2000b), shown in Equation 3.147. We reproduce

the structure here:

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3.

(3.156)

We expect relationships to exist between r1,1 and q0,0, and r1,2 and q0,1, and r2,1 and q1,0,

and r2,2 and q1,1, and r2,3 and q1,2, and r3,2 and q2,1, and r3,3 and q2,2. These follow the

fairly simple rule that relationships exist between rk+1,n+1 and qk,n. The offset of +1

in the subscripts is for historical reasons, because of the way that they were chosen in

(Pearce 2000b). After reduction, modulo-3 we also expect a relationship between r1,3

and q0,−1, which is of the form rk + 1, n + 1 and qk,n+3. The additional increment, of 3,

is due to reduction modulo-3. This reduction also assumes that q0,2 = 0, which is true

for Parrondo’s original games. After reduction, modulo-3 we also expect a relationship

between r3,1 and q2,3, which is of the form rk+1,n+1 and qk,n−3. The additional decre-

ment, of 3, is due to reduction modulo-3. This reduction also assumes that q2,0 = 0,

which is true for Parrondo’s original games.

In consideration of these requirements, there are three important factors to be consid-

ered in the reduction of a general structure qk,n to a reduced matrix ri,j:

• reduction modulo-3

• the historical offsets in subscripts , k + 1 and n + 1
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• The tri-diagonal aspect of the games |k − n| > 1 ⇒ qk,n = 0, so some terms do

not enter into the summation.

To achieve a reduction modulo-L, we can re-write the subscript n to take the form,

n = L · u + j − 1, where L is the modulo base, and u and j, 0 ≤ j ≤ L − 1 are integers.

This leads to a summation formula of

ri,j =
+∞

∑
u=−∞

qi−1,L·u+j−1 , (3.157)

together with the rule that most terms in the summation make no contribution, because

|k − n| > 1 ⇒ qk,n = 0. We can also sum the probability vectors, pn, modulo-L to

obtain a reduced row vector,

si =
+∞

∑
u=−∞

pL·u+i−1 . (3.158)

This reduces the probability vector, modulo-L, subject to the subscript convention,

1 ≤ i ≤ L.

The next important question to resolve, is whether (or not) the reductions defined in

Equations 3.157 and 3.158 are consistent with the requirements for matrix multiplica-

tion. Given We need to show that Equations 3.157 and 3.158 and Equation 3.154 are

consistent with the requirement that

sj =
L

∑
i=1

si · ri,j. (3.159)

If we begin with Equation 3.159 and directly substitute Equation 3.157,and swap the

order of summation then we obtain

sj =
L−1

∑
v=0

+∞

∑
u=−∞

pL·u+v · rL·u+v+1,j. (3.160)

Normally, these summations cannot be separated, but for L ≥ 3, the tri-diagonal na-

ture of rL·u+v+1,j implies that only one element is present in the entire sum, so the

summations can be split, to yield

sj =

(

L−1

∑
v=0

pL·u+v

)

·
(

+∞

∑
u=−∞

rL·u+v+1,j

)

, (3.161)

which then takes the form

sj =
L−1

∑
v=0

sv+1 · rv+1,j (3.162)
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and since v is only a dummy summation variable we can re-write this as

sj =
L

∑
i=1

si · ri,j. (3.163)

which is of the required form for reduced matrix multiplication, In Equation 3.159 as

used in (Pearce 2000b), provided that L ≥ 3x.

We have shown that it is possible to represent the large tri-diagonal games of the

form in Equation 3.153 in the reduced form of Equation 3.162. The important fac-

tors that make this reduction possible are, the periodic (modulo-L) spatial structure of

the games, careful choice of subscript conventions and the tri-diagonal structure of the

transition probabilities |k − n| > 1 ⇒ qk,n = 0.

3.8 Chapter summary

In this chapter, Parrondo’s games (which are a set of Partial Difference Equations) are

placed on a sound physical basis, by relating the difference equations to the diffusion

of Brownian particles. We obtained the equations for Parrondo’s games by sampling

the Fokker-Planck equation description of a flashing ratchet. Techniques were derived

for estimating the moments of Parrondo’s games. These techniques can be applied

to difference equations with periodic coefficients, which reduce to functions that are

multiplexed in space, or in time. Finally, the small-matrix representation of Parrondo’s

games has been placed on a more rigorous basis. In the next chapter, these ideas are

applied to a number of discrete games of chance that appear in the literature.
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I
T can be shown that if we allow the diffusive system, represented

by Parrondo’s original games, to evolve for a very long time, as

m → ∞, then the solution has a periodic factor, both in space and

in time. If the only interest is to calculate asymptotic behaviour of the sys-

tem, as m → ∞, then it is possible to make use of the periodicity to sim-

plify the way in which the problem is formulated. It is possible to reduce

the difference equations, modulo L, in the spatial dimension. This means

that it is no longer necessary to manipulate arbitrarily large matrices, or to

transform the problem, leading to matrices that contain operators. It is only

necessary to manipulate L by L matrices, containing real numbers. These

reduced, L by L, matrices have the form of finite discrete games of chance.

Parrondo’s original formulation of the games was written in this modulo L

form. The finite discrete games of Parrondo and Astumian are discussed,

analysed and compared. The history of these games, and their analysis, is

also documented.
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4.1 Some definitions of terms

We review the relevant properties of Markov transition operators and then introduce

some terminology and visualisation techniques from the theory of dynamical systems.

We will then use these tools, later in the chapter, to define and investigate some inter-

esting properties of Parrondo’s games. We must first discuss and introduce the terms

and notation that we will use. The key concepts are :

state A state contains all of the information that we need to specify what is happening

in the system at any given time. It has a strict and well defined meaning in the

study of Markov chains. This is described in the text book Karlin and Taylor

(1975) and we preserve their meaning here. In the case of a sampled Brownian

ratchet, such as Parrondo’s games, the state is indexed as the discrete position in

space, n.

state-space Karlin and Taylor (1975) refer to state-space as the set of all possible values

of the state. In the case of a sampled Brownian ratchet, this is the set of all possible

values of n, which is contained in the set of all integers, Z , unless boundary

conditions are imposed, or the Markov chain is reduced by aggregating states.

transition probabilities are the probabilities of transition from one state to another in

a Markov chain. We follow the notation used in Meyer (2000),

qv,j = P [ n = j at time m + 1 | n = v at time m ] .

transition matrix contains the probabilities of transition expressed in matrix form and

[q] refers to the complete set of transition probabilities, qv,j, written in matrix

form. The usual subscript conventions for matrix indices, v ∈ Z , and j ∈ Z
apply (Meyer 2000). The matrices are operators and can be referred to as Markov

transition operators. If the matrices represent a Markov transition operator then

they will be stochastic matrices, with row sums of unity and they will have all the

standard properties of stochastic matrices (Meyer 2000).

probability distribution vector is the vector of probabilities,

pm = pm,n = [ · · · p−1, p0, p+1, p+2, · · · ], which specifies the probabilities that

the system will be in various states, n ∈ Z , at a given discrete-time, m (Meyer

2000). In general, this is time varying and can be called the time-varying probabil-

ity vector. Strictly speaking, this vector only describes our degree of knowledge

about the state of a particle, not the actual state of the particle. Probability is only
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needed because we have limited information about the state. This limitation can

arise in a number of ways. We may be considering a large ensemble of Brownian

particles. This is the case for a colloidal suspension. There are many individual

states, one for each particle. There are too many individual states for us to be

able to track each one individually. It is sensible to think in terms of a probability

distribution for these states. Alternatively, we may be considering the possible

motions of a single particle and it may have been a long time since the last direct

observation of the state of that particle. In this case it is sensible to consider the

actual sample path of the single particle as belonging to an ensemble of possible

sample paths. This attitude is expressed eloquently by Gibbs (1902) who wrote:

“It is in fact customary in the discussion of probabilities to describe anything which is

imperfectly known as something taken at random from a great number of things which

are completely described.”

initial probability distribution vector describes our initial degree of knowledge about

the state of the system, p0. If we initially have complete information about the

system then this will be a Kronecker delta function. For example, if the particle

was at position n = 0 at time m = 0 then the initial probability distribution vector

would be p0 = δn,0.

phase-space is the abstract space that contains all possible probability vectors, pm.

Since all probabilities lie in the closed interval, [0, 1], the phase space will always

be embedded within the larger space [0, 1]L which is the Cartesian product of L

independent intervals, where there are a total of L states. It should be noted that

L can be very large and still be finite. It is sometimes convenient to ignore the

constraints and embed the phase-space within the Euclidean vector space, RL.

time evolution The laws of conditional probability result in a very simple form for the

time-evolution of the Markov chain pm+1 = pm · [q]. The case where the Markov

transition operator is constant has been extensively studied and is described in

text books, such as Karlin and Taylor (1975). The case where the Markov tran-

sition operator is a function of discrete time, [q] = [q]m is less well understood.

There is some recent work by Douc et al. (2004), where bounds are placed on

rates of convergence. The main application here is the simulated annealing al-

gorithm. Unfortunately, the results are very complex and it is difficult to see
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how these results could be applied to the rates of return or moments from time-

inhomogeneous Markov chains.

4.1.1 Phase space

The phase-space, contains the time-varying probability-vectors, and the stable limiting

probability vector, if it exists. It is a vector space in the sense that it satisfies all the

axioms for a linear Euclidean vector, as stated in the standard texts, such as space Kol-

mogorov and Fomin (1970) and Apostol (1974). In this sense, this space resembles

state-space that is widely used in control theory (Levine 1996). Yates and Goodman

(1999) use the term state probability vector to refer to the probability vector. This is

presumably a passing reference to the analogies between state-space and the space of

probabilities in a Markov chain. The use of the word state has a special meaning in the

theory of Markov chains. Karlin and Taylor (1975) reserve the term state-space to refer

to the set of all possible values of a random variable. We prefer to avoid confusion

and not to overload the use of the word state. In classical dynamics there is a space,

called configuration space, which is used to define the configuration of a mechanical sys-

tem at any given instant of time. This is summarised in texts such as Lanczos (1949)

and Greenwood (1977). This space has some similarities to state-space but it may not

be topologically identical with a Euclidean space (Penrose 2004) and may not obey all

of the laws required for it to be a vector space, in the strict mathematical sense. There

is another abstract vector space, which is widely used in mechanics and statistical me-

chanics, due to Gibbs (1902) (Perrot 1998) and to Poincaré (Diacu and Holmes 1996).

It is called phase space and is widely used in text books, such as Reif (1965) and Diacu

and Holmes (1996). We propose the use of the term phase-space to refer to the space that

contains all possible probability vectors for a Markov chain.

Strong analogies exist between the phase-space of physics and the phase-space of

Markov chains, but we must be careful not to press these analogies too far since the

transition operators are different and they obey different conservation laws.

The set of reachable points, for any system, can be embedded within a larger space

such as RL. For Markov chains, the law of total probability, ∑
+∞
n=−∞ pm,n = 1, repre-

sents a constraint. This reduces the dimension of the of the set of reachable points, by
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one. For example, an L dimensional Markov chain with one constraint can be repre-

sented within an L − 1 dimensional phase-space, which is naturally embedded within

the first, L dimensional space, RL. In general, the set of reachable points must lie

within the phase-space and we can be embed the phase-space within a larger space,

if this makes the analysis, or visualisation, easier. We will refer to any larger space,

which contains the phase-space as a subspace, as an embedding space. For exam-

ple we can embed the L − 1 dimensional phase-space for an L-dimensional Markov

chain within the real Euclidean space RL. This is a very convenient representation,

both for numerical calculations and for visualisation. For example, Parrondo’s origi-

nal games had three states and the set of reachable points lies on a two dimensional

plane, p1 + p2 + p3 = 1. Sometimes it is convenient to use the embedding space R3

and sometimes it is convenient to represent the phase-space as a subset of a two di-

mensional space R2

4.1.2 Limiting fixed-points in phase-space

Time-homogeneous sequences of regular Markov transition operators have unique sta-

ble limiting state-probabilities. This was first shown by Erdős et al. (1949) and this

result appears in many of the standard texts, including Karlin and Taylor (1975), Tay-

lor and Karlin (1998), Norris (1997) and Yates and Goodman (1999). In phase-space

this means that the sequence of probability vectors pm converges to a unique value,
lim
m→∞pm = π. This steady-state or stationary value is referred to as the stationary prob-

ability vector. The phase-space representations of the probability-vectors converge to

unique points.

In contrast, if the sequence of Markov transition operators is not homogeneous in time

then the sequence probability-vectors generated by the products of different opera-

tors need not converge to a single point, in the phase-space. The conditions for the

fixed-point are violated. It is possible to show, by construction, that this is the case for

Parrondo’s games.
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This is a different issue from periodicity. An operator of the form

A =









0 1 0

0 0 1

1 0 0









(4.1)

is periodic. If we apply a homogeneous sequence of periodic operators then the prob-

ability vector may not converge to a single unique value. There is a fixed point, with

p = [1/3, 1/3, 1/3]T, but that fixed point cannot be reached just by iterating, with

pm+1 = pm · A.

The time varying probability vectors for Parrondo’s games do not converge either, but

this lack of convergence has a different cause. Parrondo’s games are inhomogeneous,

not necessarily periodic.

4.1.3 Parrondo’s games

In Parrondo’s games, the apparently paradoxical situation occurs where individually

losing games combine to win. The basic formulation and definitions of Parrondo’s

games are described in Harmer and Abbott (1999a), Harmer and Abbott (1999b),

Harmer et al. (2000a), Harmer et al. (2000b), Pearce (2000a), Pearce (2000b), Harmer

and Abbott (2001) and Toral (2001). A wide range of applications have been suggested.

Some of these are described in McClintock (1999), Moraal (2000a) Davies (2001) Reed

(2007). A good summary is included in Harmer and Abbott (2002).

Parrondo’s games were originally described as games of chance, played for money.

This approach to probability has a long history that can easily be traced back as far as

De Ludo Aleae in 1565, by Cardano (Todhunter 1865, Jaynes 2003). The early work by

Pascal and Fermat was motivated by consideration of a problem posed by the Cheva-

lier De Mere, in 1654, regarding gambling on the outcomes of throwing dice (Todhunter

1865). In Parrondo’s original formulation, the state variable, n, was the amount of cap-

ital a gambler had accumulated, which fluctuates in analogy to the physical position

of a particle. Parrondo’s games were later shown to be rigorously related to Brow-

nian ratchets (Allison and Abbott 2002, Allison and Abbott 2003b, Toral et al. 2003b,

Toral et al. 2003a), but the language of games and gambling still predominates, in much
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of the literature, due to game-theoretic applications.

4.1.4 A definition for Parrondo’s games

The games have been formally defined in the previous chapter. A different way of

presenting the same ideas is to represent the games as rule-sets or decision trees. This

is the logical way to think about the games if one needs to code them for simulation in

the time domain. Parrondo’s original parameters for the games were a1 = a2 = a3 =

Figure 4.1. The decision tree for Game A. One of the main branches is chosen, depending on the

value of v = n mod 3. A further branch is then taken at random with P [win] = av and

P [lose] = 1− av. The corresponding action is then taken. In the case of a win, n is re-

placed by n + 1 and in the case of a loss, n is replaced with n− 1. The parameters for this

game are essentially the conditional probabilities of a win, [a1, a2, a3]. More formally,

we can write av,j = P [ n = j mod 3 at time m + 1 | n = v mod 3 at time m ].

1
2 − ǫ, and ǫ = 1

200 , for Game A, as shown in Figure 4.1. The values for for Game B

were b1 = 1
10 − ǫ, b2 = b3 = 3

4 − ǫ and ǫ = 1
200 , as shown in Figure 4.2. The rules for

choosing Game A or Game B, for each trial, are left open to choice. Most studies have

selected games at random with P [Game A] = γ and P [Game B] = 1 − γ, where γ is

a probability, or mixing parameter, in the range 0 ≤ γ ≤ 1. Another popular scheme

for choosing the games it to repeat them according to a periodic pattern, rather like

a refrain in music. We could, for example, repeat the pattern [A, B, B, A, B], to get an

indefinite sequence [A, B, B, A, B, A, B, B, A, B · · · ].
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Figure 4.2. The decision tree for Game B. The semantics for Game B are the same as for

Game A, in Figure 4.1 excepting that the parameters, [a1, a2, a3 ] are replaced with

different parameters [b1, b2, b3 ].

4.2 The unconstrained or large-matrix formulation

We assume that the physical process has been sampled. The point probabilities at time,

m, and position, n, are represented by pm,n. The one-step probabilities of transition,

from position v to position n at the same time, are represented by, qv,n, for a general

game18. It then follows from the laws of conditional probability that

pm+1,n = ∑
∀v

pm,v · qv,n. (4.2)

In principle, the spatial indices can span over the entire set of integers. They can be

positive or negative and they can be arbitrarily large in magnitude. We can avoid prob-

lems with the infinite limit by regarding the number of dimensions as being potentially

very large but still finite, so the symbol ∀v can be interpreted as vmin ≤ v ≤ vmax, for

some large, but finite limits, vmin ∈ Z and vmax ∈ Z .

The probabilities of transition would be in a matrix of two potentially indefinitely large

dimensions. For example, the Bernoulli process would have a one-step transition ma-

trix of the form:

[q] =





















. . .
. . .

1 − q q

1 − q q

1 − q q
. . . . . .





















, (4.3)

18We could have qv,n = av,n, for Game A or qv,n = bv,n, for Game B. The choice of letters, a, b, or the

more general q, should be clear from the context.
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where the elements on the leading diagonal, 1 − q, represent the conditional probabil-

ities of no change of state; the the elements the the right of the leading diagonal, q,

represent the conditional probabilities that the state will be advanced by one; and the

elements to the left of the leading diagonal, in this case, qn,n−1 = 0, are the probabili-

ties of the state being diminished by one. This type of notation is used by Kac (1947)

and Feller (1967), for example. Using this notation, the one-step transition matrices for

Parrondo’s games have the form:

[A] =



















































. . .
. . .

. . . 0 q1

1 − q2 0 q2

1 − q3 0 q3

1 − q1 0 q1

1 − q2 0 q2

1 − q3 0 q3

1 − q1 0 q1

1 − q2 0
. . .

. . .
. . .



















































, (4.4)

where the conditional probabilities of a win are [ q1, q2, q3 ], depending on the value of

the state, n. The probability of a win from state n is q(n mod 3)+1. The use of the offset

in the subscript, of +1, is due to the fact that we adopt the counting convention used

by Pearce (2000b).

The principal advantage of this matrix approach is that the time evolution of the system

can be written, using the standard notation of linear algebra:

pm+1 = pm · [q], (4.5)

which is very concise. This makes the process fairly easy to evaluate, numerically on a

computer.

The state transitions associated with the original form of Parrondo’s games are shown

in Figure 4.3.

The problem of manipulating infinitely large matrices would seem to present an im-

possibly difficult problem. In practice, this problem can be solved by using very large,

but not infinite, matrices. The matrices have to be so large that they are greater than

the scale of the problem under consideration. One might suspect that this approach

would be very wasteful of computer memory, but this is not always the case. Some
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Figure 4.3. State transitions of Parrondo’s games, with no limits on position. The values of

n are enclosed within the circles that represent states of a discrete Markov process. The

arrows represent the transitions between states. The rewards are indicated by Rv,n. The

probabilities of transition are represented by qv,n. In general, a transition from state v to

state n would have a probability of qv,n, and the transition would be associated with a

reward of Rv,n. Indefinitely long state-transition graphs are associated with indefinitely

large state-transition matrices, of the type in Equation 4.3.

numerical computing programs, such as Matlab and Octave, have special features for

sparse matrices, which require only non-zero matrix elements to be stored. There is

also the issue that if the matrices are not actually large enough then errors could occur

at the boundaries. This is not really a practical problem either, since it is possible to

test the boundary elements after each time-step to check whether or not they are still

zero. If a problem is about to occur then the matrix can be re-packed, inside a matrix

with greater dimensions, to avoid the problem. The results from a simulation with

large matrices is shown in Figure 4.4.

Throughout this discussion, it should be understood that the matrices may be very

large, but not infinite. It might be thought that we could approach infinite matrices,

by using sequences of finite matrices and taking a limit. Unfortunately there is no

guarantee that the limits will exist. A further problem is that the laws that apply for fi-

nite matrices, such as the associative law, do not necessarily apply to infinite operators.

A practical issue with the manipulation of large matrices is that it is very difficult to

perform algebraic manipulations when the matrices become very large. The individual

elements inside the vectors and the matrices quickly become very long and compli-

cated. Even if we used a computer-algebra package, such as Maple or Axiom, then the

expressions could rapidly expand to the point where they are beyond human compre-

hension. The longer term aim of analysis must be to seek a symmetry, which allows the

problem to be simplified to the point where some human insight can be gained. Exact

numerical simulation gives answers but no insight regarding functional forms. Exact
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Figure 4.4. Results form a simulation based on the large matrix approach. The horizontal

axes represent discrete position, n. The vertical axes represent the point probabilities,

pn of finding a particle at each given position, n. The result for Game A was produced

using 40 successive trials of identical copies of Game A. The result for Game B was

produced using 40 successive trials of identical copies of Game B. The result for Game

C was produced using a periodic mixing of Game A and Game B. This was achieved

by repeating the sequence of games [A, B, B, A, B ] eight times, giving a total of 40

games in the simulation, which matches the numbers of games in the other simulations.

It can be seen that the mean position of the distribution produced by the mixed sequence

of games is further to the right than the mean position of the distributions produced

by Games A and Game B, individually. This is verified by numerical calculations and by

more exact analysis of the asymptotic behaviour of the games.

algebraic expansion of a model can give an answer that is too unwieldy and gives no

insight. Our aim is to find a useful approximation that can be solved exactly, and there-

fore gives insight regarding functional forms. On the other hand, we do not want this

approximation to be so coarse that the results are physically unrealistic.

One useful approach is to consider the asymptotic case where the system has been

evolving for a long time, m → ∞. In this case, the modulo 3, spatial symmetry of

Parrondo’s games is crucial. It is possible to aggregate probabilities of transitions and

point probabilities, modulo 3. This results in a smaller set of games, where the number
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states of reduced to just three.

4.3 The spatially-periodic case, reduced modulo L

In their original form, Parrondo’s games spanned unbounded domains of all integers

or all non-negative integers (Harmer and Abbott 1999a). If our interest is to examine

the asymptotic behaviour of the games as m → ∞ and to study asymptotic rates of re-

turn or moments then it is possible to reduce these games by aggregating states of the

Markov chain modulo three. Surprisingly, we can do this without losing any informa-

tion about the asymptotic rate of return from the games, as m → ∞. After reduction,

the transition operators for Parrondo’s games take the form :

[A] =









0 q1 1 − q1

1 − q2 0 q2

q3 1 − q3 0









, (4.6)

where q0, q1 and q2 are the conditional probabilities of winning, given the current state,

n, which has been reduced to n mod L, where L = 3. This is the reduced form of

the games used by Pearce (2000b). The probability vector also has to be reduced by

aggregating all probabilities, pn, into a finite vector of probabilities, pn mod L. This is

the small-matrix formulation of Parrondo’s games. The equations for the time-evolution

of this system have the same mathematical form as Equation 4.5, for the time-evolution

of the large-matrix version of Parrondo’s games:

pm+1 = pm · [q]. (4.7)

The main difference is that, with the aggregated approach, the matrices and vectors

are smaller. This means that they are easier to manipulate but some information is lost

in the process. Information about the short term transient behaviour is lost. It is not

possible to recover information about the higher moments of Parrondo’s games, unless

the small matrices include operators, such as the w and z operators, from the last chap-

ter. A rather surprising result is that the small-matrix version of the games does capture

enough information for us to make statements about the first moment of Parrondo’s

games. This is useful because it allows us to calculate the rate at which we are winning

(or losing) money in a game of chance, or to calculate the rate of drift of a particle in

a Brownian ratchet. If we could calculate the first moment, without having to use the
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cumbersome mathematical machinery of discrete w and z transforms, or the need to

manipulate extremely large matrices, then we would be making progress. It is useful

to be able to estimate the first moment of a set of games, without having to engage in

very long or very large calculation.

The state transitions associated with this reduced form of the games are shown in Fig-

ure 4.5

Figure 4.5. State transitions of Parrondo’s games, (reduced modulo L). The reduced discrete

spatial values, n mod L, are enclosed within the circles that represent states of a

discrete Markov process. The arrows represent the transitions between states. The

rewards are indicated by R, without subscripts. The probabilities of transition are

represented by q, without subscripts. The absence of subscripts is intended to simplify

the figure. In general, a transition from state v to state n has a probability of qv,n,

and the transition is associated with a reward of Rv,n. The procedure of reducing the

Parrondo’s games from the indefinitely large process in Figure 4.3 requires states to

be aggregated into equivalence classes, modulo L, and probabilities of transition and

rewards have to be averaged. In the case of Parrondo’s games there is no particular

difficulty in evaluating the averages, since all the rewards and probabilities of transition

are identical, modulo L.
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4.4 Asymptotic value of the first moment of the games

4.4.1 Markov Chains with Rewards

Parrondo’s games can be represented as games of chance, played for rewards. Par-

rondo’s games are Markov chains with rewards. These rewards can be represented in

matrix form:

Rv,j = reward if [ n = j at time m + 1 | n = v at time m ] . (4.8)

There is a specific reward associated with each specific state transition. We can think

of Rv,j as the reward that we earn when a transition occurs from state v to state j. For

Parrondo’s original games we have Rv,j = (j − v) mod 3.

If we play a mixed game, composed from Game A and Game B, then we can represent

this mixture as an equivalent game, which we call Game C. In the case of a randomised

choice, the matrix for Game C is a linear convex combination of the matrices for Game

A and Game B:

C = γA + (1 − γ) B, (4.9)

where 0 ≤ γ ≤ 1, and γ represents the proportion of the mixing 19. In the case of

a deterministic periodic sequence, such as [A, B, B, A, B ], then the matrix for the

equivalent Game C would have to satisfy:

C = A · B · B · A · B (4.10)

or more generally

C =
L

∏
m=1

Qm, (4.11)

where Qm ∈ {A, B}. The more general Q matrices are chosen from the matrices for

the available games, A or B, and the matrix for the equivalent game. Game C, is an

aggregate games that replaces L of the previous Game A or Game B.

Each application of the matrix C now replaces the application of L of the previous op-

erators, A or B. This means that the time axis becomes re-scaled. For this reason it is

19A formal definition of convex combination can be found in Trustrum (1971). A vector x is a con-

vex combination of uk, for 1 ≤ k ≤ N, if x = ∑
N
k=1 λkuk, where λk ≥ 0, and ∑

N
k=1 λk = 1.
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easier to simulate in time steps of L · τ at each step of the simulation. It is then possible

to step forwards by single steps, using Equation 4.7, one game at a time.

The state transition diagrams for Game A and Game B and the time averaged Game

C would have identical topology and have identical reward structure, although the

probabilities of transition between states would be different. Systems of this type have

been analysed by Howard (1960) although we use different notation to perform the

necessary multiplications and summations. The essence of his approach is that rewards

have to be averaged over transitions between all recurrent states, in proportion to their

rate of occurrence. In our notation, the expected reward from each transition of the

time-averaged homogeneous process is :

̺v,j = E
[

Rv,j · Cv,j

]

. (4.12)

This is a scalar equation in the real numbers, Rv,j and Cv,j.

4.4.2 A matrix notation for the first moment

If we wish to calculate the mean expected reward, for the whole process, then we

must sum over transitions from all recurrent states in proportion to their probability

of occurrence. This will be a function of the transition matrix, C, and the relevant

stationary probability-vector, ΠC:

̺ [C] = ∑
v,j

̺v,j = ΠC · ([R] ◦ [C]) · UT (4.13)

where “◦” represents the Hadamard, or element by element, product and UT is a unit

column vector of dimension N. Post-multiplication by UT has the effect of performing

the necessary summation. We recall that ΠC represents the steady-state probability-

vector for matrix C. The function ̺ (C) represents the expected asymptotic return, in

units of reward, per unit time when the games are played. If we include the definition

of C in Equation 4.130 in Equation 4.12 then we can write :

̺ [γ[A] + (1 − γ)[B]] = E
[

Ri,j ·
(

γAi,j + (1 − γ) Bi,j

)]

(4.14)

= γE
[

Ri,j · Ai,j

]

+ (1 − γ) E
[

Ri,j · Bi,j

]

. (4.15)

We can also define :

̺[A] = ΠA ([R] ◦ [A]) UT (4.16)
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and

̺[B] = ΠB ([R] ◦ [B]) UT. (4.17)

We make use of Equations 4.16, 4.17, and 4.13 to calculate the asymptotic rates of return

from a number of standard games, described in the literature. These equations lead

directly to a matrix technique, for calculating the asymptotic value of the first moment.

4.5 The matrix technique for the first moment

4.5.1 Parrondo’s original games

We can adopt the notation of Pearce (2000b), and generalise the small-matrix forms for

Game A and Game B as follows:

[A] =









0 a1 1 − a1

1 − a2 0 a2

a3 1 − a3 0









(4.18)

and

[B] =









0 b1 1 − b1

1 − b2 0 b2

b3 1 − b3 0









. (4.19)

We recall that Parrondo’s original parameters were a1 = a2 = a3 = 1/2 − ǫ, b1 =

1/10 − ǫ, b2 = b3 = 3/4 − ǫ and ǫ = 1/200. These parameters define a special case of

the more general problem, which we consider here.

One form of Parrondo’s games is to mix the two games by selecting them at random,

with fixed probabilities:

Choose Game A with probability P [C′ = A] = γ

Choose Game B with probability P [C′ = B] = 1 − γ,

where C′ is the step by step choice, made for the transition matrix for the stochastic

process. Since γ is a probability it must be a real number in the range, 0 ≤ γ ≤ 1. We

can define a mixed time-average game

C = E[C′] =









0 c1 1 − c1

1 − c2 0 c2

c3 1 − c3 0









, (4.20)
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where c1 = γ · a1 + (1 − γ) b1, c2 = γ · a2 + (1 − γ) b2 and c3 = γ · a3 + (1 − γ) b3. We

can express this linear convex combination more concisely as:

C = γ · A + (1 − γ) B. (4.21)

The matrix, C, is a stochastic matrix, with row-sums of one. This matrix will always

have at least one eigenvalue of unity and there will always be a stationary distribution

vector, πC, satisfying πC = πC · C.

We can use standard techniques (Meyer 2000) to evaluate the stationary distribution

vector for the mixed game:

πC =
[1 − c2 + c2c3, 1 − c3 + c1c3, 1 − c1 + c1c2]

3 − (c1 + c2 + c3) + (c1c2 + c1c3 + c2c3)
, (4.22)

which is consistent with the formulae derived by Pearce (2000b). The reward matrix is:

R =









0 +1 −1

−1 0 +1

+1 −1 0









, (4.23)

so the weighting vector for the rewards is

[R ◦ C] uT =









2c1 − 1

2c2 − 1

2c3 − 1









. (4.24)

We can then apply Equation 4.13 to calculate the expected rate of reward:

̺ =
3 · (c1c2c3 − (1 − c1) (1 − c2) (1 − c3))

c1c2c3 + (1 − c1) (1 − c2) (1 − c3) + 2
, (4.25)

which is consistent with the formula in Harmer et al. (2000a).

The coefficients, cn, in Equation 4.25 are dependent on the mixing fraction, γ. If we

choose γ = 1 then the mixed game reduces to a pure sequence of Game A, and if we

choose γ = 0 then the mixed game reduces to a pure sequence of Game B. Games A

and B are chosen to be slightly losing, due to the ǫ parameter. In contrast, the mixed

game with an intermediate value of γ can be winning, with ̺ > 0. The results, for

various choices of γ are shown graphically in Figure 4.6. It is clear that ̺ is a non-
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Figure 4.6. Expected rates of return ̺ for various choices of the mixing fraction γ. The

parameters for Game A and Game B are fixed, using Parrondo’s original values. The

parameters for the mixed game, C, are derived as a linear convex combination of the

parameters for Game A and Game B according to Equation 4.21. The rate of return for

Game C is calculated according to Equation 4.25 and plotted in Matlab.

linear function of the mixing parameter, ̺(γ). Changes of sign are possible because

the reward function, ̺ is nonlinear. For example, ̺(0) < 0, ̺(1) < 0 and ̺(0.5) > 0.

This change of sign in the rate of return, ̺(γ) , with changes in the mixing fraction, γ ,

has been referred to as Parrondo’s paradox in the literature (Harmer and Abbott 1999a).

The zero-gain surface

The numerator of Equation 4.25 can be written as

numerator = 3 · (c1 · c2 · c3 − (1 − c1) · (1 − c2) · (1 − c3)) , (4.26)

which gives rise to a condition for zero-gain, or zero-return, from the games,

c1c2c3 = (1 − c1) (1 − c2) (1 − c3) . (4.27)

This is shown graphically in Figure 4.7. The denominator of Equation 4.25 is always

positive. Equation 4.27 is not entirely new to physical chemistry. Onsager (1931) de-

rived an equivalent condition for detailed balance in a cyclic chemical reaction. It is an

interesting coincidence that the reaction, which was considered had three quasi-stable
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Figure 4.7. The zero-gain surface for Parrondo’s games. The condition for zero-return, or zero-

gain, from Parrondo’s original games is given by c1c2c3 = (1 − c1) (1 − c2) (1 − c3).

This condition defines a surface in the parameter-space, [c1, c2, c3]. This surface is

contained entirely within the cube, defined by 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1 and 0 ≤ c3 ≤ 1.

Even a cursory visual inspection reveals that the surface is not a plane. It would be

possible to choose points on one side of the surface and the line connecting these points

would pass through to the other side of the surface. This is a geometric representation

of Parrondo’s paradox.

states, A, B and C, as reproduced in in Figure 4.8.

Onsager (1931) assumes that a substance can exist in a homogeneous phase in three dif-

ferent forms, labelled A, B and C. He further assumes that any one of these forms can

spontaneously transform itself into either of the others, according to the scheme shown

in Figure 4.8. It is assumed that simple laws of mass action apply. This gives rise to

a system of linear ordinary differential equations in the total numbers of molecules in
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A

C
B

Figure 4.8. The quasi-stable forms in Onsager’s model. Onsager (1931) assumes that a sub-

stance can exist in a homogeneous phase in three different forms, labelled A, B and C.

He further assumes that any one of these forms can spontaneously transform itself into

either of the others, according to the scheme shown in this figure.

each phase, nA, nB and nC. These continuous-time differential equations are analo-

gous to the discrete-time difference equations that appear in Parrondo’s games. On-

sager uses the system of ODEs to derive a condition for equilibrium, which he writes

in terms of reaction-rate coefficients:

kAC · kCB · kBA = kAB · kBC · kCA. (4.28)

If equilibrium is to be possible, then the products of the forward and reverse rates must

be equal. This is the condition for detailed balance. The similarity of Equation 4.28 to

Equation 4.27 is clear. This is also reflected in the similarity between Figures 4.5 and

4.8. The connection between Onsager’s work and Parrondo’s games was first pointed

out by Van den Broeck et al. (1999).

In summary, the condition for zero-return from Parrondo’s games is analogous to the

condition for detailed balance in a cyclic chemical reaction. If we could vary the rates

of reaction by varying some physical parameter then we could possibly disrupt the

condition for detailed balance, in the same way that switching between games, in Par-

rondo’s games, can produce a change in the expected return from the games.

4.5.2 The apparent paradox of Parrondo’s games

Some commentators have claimed that there is nothing paradoxical about Parrondo’s

games (Philips and Feldman 2004). Harmer and Abbott (2002) point out that some

claims of the absence of paradox are based on a straw-man argument. They also point

out that Parrondo’s games were never meant to be more than an apparent paradox, and
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state that Parrondo’s paradox is in the same category as Simpson’s paradox, the Braess

paradox, and the renewal paradox.

Parrondo et al. (2000) state that the counterintuitive aspect of Parrondo’s games is that

“Two losing games can yield, when combined, a paradoxical tendency to win.” In this

case, combination is mathematically represented by forming a linear convex combina-

tion of the parameters, which are the conditional probabilities of winning (Harmer and

Abbott 2002). Moraal (2000b) points out that the counterintuitive aspect of Parrondo’s

games is essentially a statement about the convexity, or concavity, of the losing region

in the parameter space.

We argue that Parrondo’s games are apparently paradoxical because the expected re-

wards from the games differ from what we would expect for games that are composed

from completely independent memory-less random events. The apparent paradox is

possible, in Parrondo’s games, because the conditional probabilities, of winning or los-

ing, depend on the current state of the player. This introduces memory into the process.

We represent the long-term expected return from the games using a reward function,

̺. There are two aspects of the reward function that have been used to describe the

apparent paradox:

Non-linear reward function The parameters embedded within the games specify a

manifold that can be referred to as parameter space. For completely independent

random games, the reward function is a linear function of the parameters. Our

human intuition has taught us to rely on this as a heuristic rule, because indepen-

dent random events are common in daily life. Situations that violate the heuristic

rule are apparently paradoxical. We will show that a non-linear reward function

is a necessary but not sufficient condition for Parrondo’s paradox to exist.

Non-Convex winning and losing regions The reward function, ̺, partitions the pa-

rameter space into three disjoint subsets: the winning region with ̺ > 0, the

losing region with ̺ < 0 and the the zero gain region, with ̺ = 0. For inde-

pendent memory-less games, and for Parrondo’s games, the zero gain region is a

surface, with the winning region on one side and the losing region on the other.

The difference between independent memory-less games and Parrondo’s games

is that in Parrondo’s games: the zero gain surface is not a flat plane, the losing
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region is non-convex, and the winning region is non-convex. This lack of con-

vexity is the essential feature that gives rise to the apparent paradox.

A possible source of confusion

In his famous Tractatus, Wittgenstein (1918) writes:

4.003 Most of the propositions and questions to be found in philosophical works are not false

but nonsensical. Consequently we cannot give any answer to questions of this kind, but can

only point out that they are nonsensical. Most of the propositions and questions of philosophers

arise from our failure to understand the logic of our language. (They belong to the same class

as the question whether the good is more or less identical than the beautiful.) And it is not

surprising that the deepest problems are in fact not problems at all.

The misuse, misunderstanding, or overloading, of words can lead to great confusion.

In Wittgenstein’s view20, it is the main task of philosophers to clear up these misunder-

standings. This is not science, but it is necessary preparation before science can proceed.

In the humble case of Parrondo’s games the use of the word “convex” seems to raise

pseudo-philosophical issues of the type that Wittgenstein was keen to dispel. This is

our attempt at clarification of a few key technical terms:

Convex set: Given a real linear space L, Kolmogorov and Fomin (1970) define a con-

vex set as follows “A set M ⊂ L is said to be convex if and whenever it contains the

points x and y, it also contains the straight line segment joining x and y.” For our

present purpose the losing region, with ̺ > 0 would be convex if, given any

points in the parameter space, cA and cB, with ̺
(

cA

)

< 0 and ̺
(

cB

)

< 0 then

̺
(

γ · cA + (1 − γ) · cB

)

< 0, for 0 ≤ γ ≤ 1. An equivalent definition appears

in Trustrum (1971).

Convex functional: Kolmogorov and Fomin (1970) define a convex functional as fol-

lows “A functional p defined on a real linear space L is said to be convex if (1) p(x) ≥ 0

20It should be noted that Wittgenstein often changed his views, but his opposition to the inconsistent

use of language was constant throughout his career (Monk 1991).

Page 102



Chapter 4 Rates of return from discrete games of chance

for all x ∈ L (nonnegativity), and (2) p(α · x) = α · p(x) for all x ∈ L and for all α ≥ 0

and (3) p(x + y) ≤ p(x) + p(y) for all x, y ∈ L. ” Kolmogorov and Fomin (1970)

go on to prove a theorem that “if p is a convex functional on a linear space L, and k is

any positive real number then the set {x : p(x) ≤ k} is convex.”

Linear convex combination: Trustrum (1971) defines a linear convex combination as

follows ”A vector x is a convex combination of
{

uk

}

, for 1 ≤ k ≤ N, if x = ∑
N
k=1 λkuk,

where λk ≥ 0, and ∑
N
k=1 λk = 1.” He goes on to state that “The convex hull of a set

X ⊂ Rn, written 〈X〉, is the set of all convex combinations of points in X. If X is a finite

set then the convex hull is called a convex polytope.” Using this definition, the convex

hull of a finite set of vectors,
{

uk

}

, is a convex set.

Concave functional: A functional p defined on a real linear space L is said to be con-

cave if −p is convex. Using this definition, there are functionals that are neither

convex, nor concave. The use of the word “concave” when we really mean “non-

convex” is a source of confusion and we have avoided this usage. If a set is

non-convex then it can be said to lack the property of “convexity.”

These definitions are relevant to Parrondo’s games, as follows:

• The winning region in Parrondo’s games is a non-convex set.

• The losing region in Parrondo’s games is a non-convex set.

• Game C is a linear convex combination of Game A and Game B, within the space

of parameters.

• The reward functional, ̺, is neither convex nor concave, within the parameters

space.

We illustrate these concepts, further, with the aid of worked examples.
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Parameter space

Parameter space is an abstract manifold, constructed by using the parameters of a sys-

tem as generalised coordinates. For Parrondo’s games, the parameter space is a subset

of R3, with generalised coordinates, c1 , c2 and c3 that represent the three conditional

probabilities of winning under various circumstances (Pearce 2000a). Since the gen-

eralised coordinates are probabilities, there are additional constraints, 0 ≤ c1 ≤ 1,

0 ≤ c2 ≤ 1 and 0 ≤ c3 ≤ 1. The entire parameter space is a unit cube, embedded

within R3. The three parameters for any given instance of Parrondo’s games can be

written as a vector c = [c1, c2, c3], which is called the parameter vector.

A special two-dimensional case

In Parrondo’s original games the parameters have certain symmetries. Game A has the

symmetry, c1 = c2 = c3, and Game B has the symmetry c2 = c3. These symmetries have

led some investigators to consider only the special two-dimensional case with c2 = c3.

This restricted two-dimensional version of Parrondo’s games has a two-dimensional

parameter space, spanned by vectors of the type [c1, c2], with 0 ≤ c1 ≤ 1 and 0 ≤
c2 ≤ 1. The restricted two-dimensional parameter space is shown in Figure 4.9. A

very similar figure, based on spin models, appears in Moraal (2000b). The set of points

[c1, c2] in the parameter space that corresponds to losing games is called the losing

region. The set of points [c1, c2] in the parameter space that corresponds to winning

games is called the winning region. The statement, that two losing games can combine

to win, is equivalent to saying that the losing region is non-convex. This has been stated

in various ways in several papers, (Moraal 2000a, Harmer and Abbott 2001, Allison

and Abbott 2001, Harmer and Abbott 2002, Costa et al. 2005).

To prove that the losing region is non-convex in the parameter space, we only need to

show that it is not convex. We only need one counter-example, to the rules for con-

vexity. Parrondo’s original example is sufficient. The rate of return from the games

is given by the reward function in Equation 4.25. We can simply evaluate ̺, for the

various parameter sets. For Game A the parameter vector is [c1, c2, c3] = [a1, a1, a1] =

[99/200, 99/200, 99/200] and the corresponding return from the games is ̺ = −1/100 =

−0.01, which is losing. For Game B the parameter vector is [c1, c2, c3] = [b1, b2, b2] =

[19/200, 149/200, 149/200] and the corresponding return from the games is given by,
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Figure 4.9. The winning and losing regions in the 2D version of Parrondo’s games. If we

restrict the choice of parameters, by enforcing the constraint, c2 = c3, then the pa-

rameter space only has two dimensions and can be represented using a unit square,

shown in this figure. The zero-gain surface collapses to a zero-gain curve with condi-

tion c1 · (c2)
2 = (1 − c1) · (1 − c2)

2. The zero-gain curve connects the top left corner,

[c1, c2] = [0, 1], and bottom right hand corner, [c1, c2] = [1, 0], of the figure. The

region above the curve, near [c1, c2] = [1, 1] is the winning region, with ̺ > 0. The

region below the curve, near [c1, c2] = [0, 0] is the losing region, with ̺ < 0. The

parameters for Parrondo’s original Game A are represented as the point marked “A” on

the figure. The parameters for Parrondo’s original Game B are represented as the point

marked “B” on the figure. The mixed game C is constructed using equal proportions of

Games A and B, with a mixing fraction of γ = 1/2. Game C is marked as point “C”

in the figure. The entire figure, including points A, B and C, is drawn to scale. Points

A and B are in the losing region, with ̺ < 0. This corresponds to the fact that Games

A and B are losing, on average. Point C is in the winning region with ̺ > 0. This

corresponds to the fact that Game C is winning, on average. It can be seen that the

losing region of the parameter space is non-convex, since some points on the finite line

segment joining A and B, such as point C, are not in the losing region. The apparently

paradoxical behaviour of Parrondo’s games is only possible because the losing region is

non-convex. This is one of the issues first discussed by Moraal (2000b).

̺ = −73, 443/8, 446, 300 ≈ −0.0086953, which is also losing. Both of these points

lie below the zero-gain surface in Figure 4.12. The returns associated with these pa-

rameters are negative, ̺ [a] < 0 and ̺ [b] < 0. We can create a version of Game C,
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which is an average of Game A and Game B, in the parameter space, c = 1
2 (a + b),

which evaluates to [c1, c2, c3] = [118/400, 248/400, 248/400] and the corresponding re-

turn from the games is ̺ = +223/14, 200 ≈ +0.015704, which is winning. This lies

above the zero-gain surface. The return associated with these, mixed, parameters is

positive ̺
[

1
2 (a + b)

]

> 0. This single counter-example is sufficient to prove that the

losing region, with ̺ < 0, is non-convex. To prove the same result for the winning

region, ̺ > 0, we only need to exchange all probabilities with their complements a′ =

[a′1, a′2, a′3] = [101/200, 101/200, 101/200], b′ = [b′1, b′2, b′3] = [181/200, 51/200, 51/200]

and c′ = [c′1, c′2, c′3] = [282/400, 152/400, 152/400]. Equation 4.49 is anti-symmetric

with respect to complementary exchange. The corresponding returns are the negative

of the former gains ̺ [a′] = −̺ [a], ̺ [b′] = −̺ [b] and ̺ [c′] = −̺ [c]. This establishes

an anti-Parrondo effect, which proves that the winning region is non-convex. For Par-

rondo’s games, both the winning and losing regions are non-convex. This can also be

seen, intuitively by inspecting Figure 4.9.

In summary, Parrondo’s games do combine two losing games to create a winning game.

In more formal mathematical language, the losing region of Parrondo’s games, in the

parameter space, is non-convex. There is also an anti-Parrondo effect.

Linear and non-linear reward functions

We investigate the rôle of linearity. A reward function is linear if we can write

̺
(

γ1 · c1 + γ2 · c2

)

= γ1 · ̺
(

c1

)

γ2 · ̺
(

c2

)

, (4.29)

for any vectors c1 and c1 in the parameter space and for any real numbers γ1 ∈ R and

γ1 ∈ R. This places a very strong constraint on the form of the function. It must be

possible to re-write all linear reward functions in the form

̺ (c) = N · c, (4.30)

where N is a normal vector. The components of N are the values reward function for

each of the unit vectors of the coordinate system. For a three dimensional coordinate

system, this is N =
[

̺
(

u1

)

, ̺
(

u2

)

, ̺
(

u3

)]

.
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The proof that all function of the form of Equation 4.30 are linear is fairly straightfor-

ward,

̺
(

γ1 · c1 + γ2 · c2

)

= N ·
(

γ1 · c1 + γ2 · c2

)

(4.31)

= γ1 · N · c1 + γ2N · c2 (4.32)

= γ1 · ̺ (c1) + γ2 · ̺ (c2) , (4.33)

which establishes linearity.

If ̺ (c) = ̺C is constant then this places a constraint on the possible values of c,

N · c = ̺C, (4.34)

which is the equation for a flat plane in three dimensional space21. The planes de-

scribed in Equation 4.34, are surfaces of equal reward.

In conclusion, any function of the form of Equation 4.30 is linear and all linear functions

can be written in this form. The surfaces of equal reward, for linear reward functions,

always have the form of Equation 4.34.

Linear reward functions and convex winning and losing regions

Once the linearity property, in Equation 4.33, is established it it is possible to show that

the winning region is convex. Suppose that the vectors, a and b are in the winning

region, then

̺ (a) > 0 (4.35)

̺ (b) > 0. (4.36)

If we choose a mixing fraction in the range 0 ≤ γ ≤ 1 then we can place limits on γ

and (1 − γ),

γ ≥ 0 (4.37)

1 − γ ≥ 0. (4.38)

21This would be a straight line in two dimensional space, or a flat hyperplane in higher dimensional

spaces.
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The linearity property , in Equation 4.33, now gives

̺ (c) = ̺ (γ · a + (1 − γ) · b) (4.39)

= γ · ̺ (a) + (1 − γ) · ̺ (b) . (4.40)

All the quantities in Equation 4.40 are non-negative. In the case where, 0 < γ < 1 then

all the constants are strictly positive

γ > 0 (4.41)

1 − γ > 0, (4.42)

and all the constants in Equation 4.40 are positive, which leads to a strictly positive

outcome, ̺ (c) > 0.

The cases where γ = 0 and 1 − γ = 0 can be treated separately. When γ = 0, we have

̺ (c) = ̺ (b) > 0. When 1 − γ = 0, we have ̺ (c) = ̺ (a) > 0. This means that in

all cases, for all possible values of γ, we have ̺ (c) > 0. This can be written, using the

formalism of predicate logic, as:

(̺ (a) > 0) ∧ (̺ (b) > 0) ⇒ (̺ (c) > 0) . (4.43)

If a and b are in the winning region then the mixed game, c, must also be in the winning

region.

If the reward function, ̺, is linear then the winning region is a convex set. Similar

arguments applies to the losing and zero-gain regions, as well. The linearity property,

in Equation 4.33, places such a strong constraint on the functions that all the regions

are convex:

̺ > 0: The winning region is convex. (̺ (a) > 0)∧ (̺ (b) > 0) ⇒ (̺ (c) > 0).

̺ = 0: The zero-gain region is convex. (̺ (a) = 0) ∧ (̺ (b) = 0) ⇒ (̺ (c) = 0).

̺ < 0: The losing region is convex. (̺ (a) < 0) ∧ (̺ (b) < 0) ⇒ (̺ (c) < 0).

In summary, if the reward function, ̺, is linear then all the regions are convex and

there is no paradoxical behaviour. If we wish to construct systems that exhibit appar-

ent paradoxes of the Parrondo type then we must use a non-linear reward function, ̺,

to do this. Non-linearity is a necessary condition before an apparent paradox can be

constructed.
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Some linear and non-linear reward functions

Some two dimensional worked examples can make the rôle of linearity more clear. A

good example of a linear function in two dimensional space is

̺1 (c) = c2 − c1, (4.44)

over the unit square, 0 ≤ c1 ≤ 1 and 0 ≤ c2 ≤ 1. This function can be written as

̺1 ([c1, c2]) =
[

−1 +1
]

·
[

c1

c2

]

, (4.45)

which is of the form of Equation 4.30. This proves that the function is linear, and that

the contours of this function are straight lines. This is shown in Figure 4.10.

A different but closely-related and non-linear function is

̺2 (c) =
c2 − c1

(

c1
2 + c2

2 + 1
2

)2
, (4.46)

over the same range. This is shown in Figure 4.11.

The plots in Figure 4.11 indicate but do not prove that ̺2 is nonlinear. The easiest proof

is by counterexample. We can evaluate ̺2 at three points along a straight line, in the

parameter space. ̺2 ([1/2, 1/2]) = 0 and ̺2 ([0, 1]) = 2/3 and ̺2 ([1/4, 3/4]) = 4/9,

so
1

2
̺2

([

1

2
,

1

2

])

+
1

2
̺2 ([0, 1]) =

1

3
6= 4

9
= ̺2

([

1

4
,

3

4

])

, (4.47)

which contradicts Equation 4.29 and demonstrates that the function ̺2 in Equation 4.46

is nonlinear. An interesting feature of the functions ̺1 and ̺2 is that they have the same

winning, losing and zero-reward regions. All of these regions are convex. This is easy

to understand if we consider that the denominator in Equation 4.46 is always positive.

Dividing by this nonlinear denominator causes ̺2 to be nonlinear, but the signs of ̺1

and ̺2 will always be identical. This means that the winning and losing regions for the

two functions will be identical. The linear function must have a convex winning re-

gion, as indicated in Equation 4.43. This means that we have constructed a non-linear

function with a convex winning region.
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Figure 4.10. An example of a linear reward function, ̺1. The left half of the figure shows

a contour plot of ̺1 (c). The x-axis represents c1. The y-axis represents c2. The

contours are straight and equally spaced. These are indications of linearity. The right

half of the figure shows a mesh plot of ̺1 (c). The x and y axes represent c1 and c2

respectively. The z-axis represents the value of the function, ̺1 (c). The surface is a

flat plane. This is an indication of linearity. The line of zero return is c2 − c1 = 0.

The region of zero return is the line segment that satisfies 0 ≤ c1 = c2 ≤ 1. The

triangular region with 0 ≤ c1 < c2 ≤ 1 is the winning region. The triangular region

with 0 ≤ c2 < c1 ≤ 1 is the losing region.

In summary, non-linear functions can give rise to convex winning and losing regions

in parameter space. Non-linear reward functions, ̺, do not guarantee that the winning

or losing regions are non-convex.

Alternatively, we can state that non-linearity is a necessary but not sufficient condition

to generate a paradox of the Parrondo type. A necessary and sufficient condition is that

the winning region should be non-convex in the parameter space.
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Figure 4.11. An example of a non-linear reward function, ̺2. The left half of the figure shows a

contour plot of ̺2 (c). The x-axis represents c1. The y-axis represents c2. Most of the

contours are not straight. The contours are not equally spaced. These are indications

of nonlinearity. The right half of the figure shows a mesh plot of ̺2 (c). The x and y

axes represent c1 and c2 respectively. The z-axis represents the value of the function,

̺2 (c). The surface is not a flat plane. This is an indication of nonlinearity. The line of

zero return is c2 − c1 = 0. The region of zero return is the line segment that satisfies

0 ≤ c1 = c2 ≤ 1. The triangular region with 0 ≤ c1 < c2 ≤ 1 is the winning region.

The triangular region with 0 ≤ c2 < c1 ≤ 1 is the losing region.

Summary of linearity results

• Linear reward functions always give rise to convex winning and losing regions

in the parameter space. There is nothing, even apparently, paradoxical about lin-

ear reward functions.

• Nonlinear reward functions can give rise to either convex or non-convex, win-

ning or losing regions in the parameter space. A nonlinear reward function is a

necessary but not sufficient condition to guarantee a non-convex losing region.

• The apparent paradox of Parrondo’s games where “two losing games combine to

win” is equivalent to the statement that the losing region for Parrondo’s games,
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in the parameter space, is non-convex. The apparent paradox is made possible

by a nonlinear reward function, but not all nonlinear reward functions give rise

to apparent paradoxes.

Independent games without memory

Suppose that we play a simple dichotomous game of chance. We call it Game A. For

example, we could draw a card from a shuffled but suitably weighted deck. There is a

probability of a win of qA and a reward of wA > 0. The probability of a loss is 1 − qA

and the reward, in this case, is lA < 0. The parameter for this Game A is a single real

number 0 < qA < 1. Simple application of the laws of expectation reveals that the

expected return from a round of Game A is ̺A = qA · wA + (1 − qA) · lA.

Suppose that we also set up another similar game called Game B. We could draw a

card from a different shuffled, and differently weighted, deck. There is a probability of

a win of qB and a reward of wB > 0. The probability of a loss is 1− qB and the reward, in

this case, is lB < 0. The parameter for this Game B is a single real number 0 < qB < 1.

Application of the laws of expectation reveals that the expected return from a round of

Game B is ̺B = qB · wB + (1 − qB) · lB.

These games, Game A and Game B are simple chance events of the type encountered

in casino games such as cards or dice. Suppose now that some enterprising casino

operator offers a new game, which plays Game A at random with probability of γ,

or plays Game B at random with probability of 1 − γ. This is precisely the type of

mixture that has been used for Parrondo’s games. We can refer to this new combined

game as Game C. The probabilities for Games A and B are independent, so the laws of

probability allow us to write ̺C = γ · qA · wA + γ · (1 − qA) · lA + (1 − γ) · qB · wB +

(1 − γ) · (1 − qB) · lB. This can be reduced to the simpler form

̺C = γ · ̺A + (1 − γ) · ̺B, (4.48)

which is the condition for linearity.

The losing region for this Game C has to be convex in the parameter space because the

reward function is linear. This is the usual situation for games of chance, which are

independent and have no memory. If we were playing games at a casino and we were
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losing money on the dice and we were losing money at cards then we could not reverse

our fortune by playing a mixture of dice and cards. This is because the outcome from

our mixed game is a linear combination of the outcomes of the component games, as

described in Equation 4.48.

Summary: Independent memoryless games of chance always lead to linear reward

functions and to convex winning and losing regions in the parameter space. The fact

that independent memoryless events are so common in our everyday experience has

conditioned us, at least subconsciously, to expect linear reward functions. Parrondo’s

games appear to be paradoxical, or counterintuitive, because they violate one of the

consequences of linearity. The winning and losing regions are non-convex and, linear

combinations of games can lead to reversals of fortune. This would never happen with

independent memoryless games.

Properties of the reward function for Parrondo’s games

The reward function for Parrondo’s original games can be written in terms of the pa-

rameters. For Parrondo’s original games the expected return from a mixed set of games

is given by

̺ (c) =
3 · (c1c2c3 − (1 − c1) (1 − c2) (1 − c3))

c1c2c3 + (1 − c1) (1 − c2) (1 − c3) + 2
, (4.49)

which is a re-statement of Equation 4.25. If we plot the zero gain surface, with ̺ = 0,

then the result is a smooth surface, as shown in Figure 4.12. Analysis of Equation 4.49

reveals a few interesting properties:

• The function ̺ (c) is invariant to permutations of c1, c2 and c3.

• The function ̺ (c) is anti-symmetric with respect to complimenting, if c1
′ = 1 −

c1, c2
′ = 1 − c2 and c2

′ = 1 − c1 and we construct a complementary parameter

vector, c′ = [c1
′, c2

′, c3
′] then ̺ (c) = −̺ (c′).

• The function ̺ (c) an be written in simplified form as

̺ =
3 · (G − H)

G + H + 2
, (4.50)
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where

G = c1 · c2 · c3 (4.51)

H = (1 − c1) · (1 − c2) · (1 − c3) , (4.52)

which are the products of the forward and reverse probabilities that appear in

Equation 4.27. The numerator of Equation 4.50 is identical with Equation 4.27.

• The function ̺ (c) is smooth and differentiable everywhere in the parameter space.

• The partial derivatives of ̺ can be written in closed form

∂̺

∂c1
= 6 ·

(

(1 + H) · G

c1
+

(1 + G) · H

1 − c1

)

/ (G + H + 2)2 (4.53)

∂̺

∂c2
= 6 ·

(

(1 + H) · G

c2
+

(1 + G) · H

1 − c2

)

/ (G + H + 2)2 (4.54)

∂̺

∂c3
= 6 ·

(

(1 + H) · G

c3
+

(1 + G) · H

1 − c3

)

/ (G + H + 2)2 (4.55)

All the quantities in these equations are positive.

• The function ̺ (c) is monotonic with respect to all of the coordinates:

∂̺

∂c1
> 0 (4.56)

∂̺

∂c2
> 0 (4.57)

∂̺

∂c3
> 0, (4.58)

which means that the reward function, ̺, does not have any internal local max-

ima or minima.

• The maximum and minimum values occur at the boundaries

̺min = ̺ ([0, 0, 0]) = −1 (4.59)

̺max = ̺ ([1, 1, 1]) = +1. (4.60)

The extreme cases represent a certain win or a certain loss.
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• The zero gain surface, ̺ = 0, divides the parameter space into two regions, the

losing region, near [0, 0, 0], with ̺ < 0 and the winning region, near [1, 1, 1], with

̺ > 0.

• The zero gain surface satisfies Equation 4.27 and is not a flat plane.

The function ̺ (c) is displayed in Figure 4.12. It is possible to appreciate the non-

convex winning and losing regions, and also the symmetries of the function by consid-

ering the geometry of Figure 4.12.

4.5.3 Parrondo’s games, with natural diffusion

Allison and Abbott (2002) pointed out that the diffusion operator used in Parrondo’s

original games was not optimal. A simulation of a flashing ratchet, using a discrete

set of games, with a more realistic model for diffusion, was first published by Allison

and Abbott (2002). These ideas where further developed in Amengual et al. (2004) and

the term “natural diffusion” was used to describe discrete games that employed more

realistic models for diffusion. We present a simple set of games here. They entail min-

imal change to Parrondo’s original games, and use a more realistic model for diffusion.

In Parrondo’s games, with natural diffusion, Game A is represented as:

A =









1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2









. (4.61)

This corresponds to a half-period or double-frequency Bernoulli process and converges

to the same result as the diffusion equation in the asymptotic limit over long times, as

m → ∞. The leading diagonal elements are nonzero and these correspond to self-

transitions. This results in a more physical choice of diffusion operator than in the

original version of Parrondo’s games. Game B includes some biases, [η1, η2, η3], which
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Figure 4.12. A stereo-pair plot of the winning and losing regions of Parrondo’s games.

This figure shows the zero gain surface for Parrondo’s games, within the parameter

space [c1, c2, c3], where the ck values are the probabilities in the reduced matrices for

Parrondo’s games. The losing region is below the surface and the winning region is

above the surface. The complete parameter space is three dimensional. The zero-gain

surface that divides the two regions has a topological dimension of two. It is possible

to mentally reconstruct a three-dimensional image of the surface by viewing the stereo

pair in the appropriate way. The left image should be viewed with the left eye and

the right image should be viewed with the right eye. Some people can reconstruct

these images by just looking at them. This works quite well if the eyes are kept about

300 mm from the page and the orientation of the page is adjusted until the images

merge. Some people may need optical assistance, such as a stereoscope. Some readers

may find the task of stereo reconstruction to be too difficult, even with a stereoscope.

It is still possible to gain some idea of the three dimensional structure of the surface,

by viewing one half of this figure, or by studying Figure 4.7, which is larger.

are small offsets in probability that are induced by the fields in the ratchet device,

B =









1
2

1
4 + η1

1
4 − η1

1
4 − η2

1
2

1
4 + η2

1
4 + η3

1
4 − η3

1
2









. (4.62)

Of course all the probability offsets must lie in the range −1/2 < ηi < +1/2, for

i = 1, 2, 3. Game B reduces to Game A in the special case when all the offsets are zero,

η1 = η2 = η3 = 0. Game B corresponds to the case when the field is turned on and

Game A corresponds to the case when the field is turned off. Any time average game
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Figure 4.13. The state transitions of Parrondo’s games, with natural diffusion. The reduced

discrete spatial values, n mod L, are enclosed within the circles that represent states

of a discrete Markov process. The arrows represent the transitions between states.

The rewards are indicated by R, without subscripts. The probabilities of transition are

represented by q, without subscripts. The absence of subscripts is intended to simplify

the figure.

C = γ · A + (1 − γ) · B, will still have the form of Game B, in Equation 4.62, with dif-

ferent offsets, [η1, η2, η3].

The steady state probabilities are

πB =

[

3
16 − 1

4 η2 + 1
4η3 + η2η3, 3

16 − 1
4 η3 + 1

4η1 + η1η3, 3
16 − 1

4η1 + 1
4η2 + η1η2

)

η1η2 + η1η3 + η2η3 + 9
16

. (4.63)

If we apply the theory to Game C, which is really a modified form of Game B, then we

obtain

̺ =
6
(

16 (1 − γ)3 η1η2η3 + (1 − γ) (η1 + η2 + η3)
)

16 (1 − γ)2 (η1η2 + η1η3 + η2η3) + 9
. (4.64)

This gives the expected rate of return from a randomised sequence of Parrondo’s games

with natural diffusion, as a function of the mixing parameter, γ. The result of this cal-

culation is shown in Figure 4.14. The change of sign in the rate of return, ̺ with change

in γ, can be clearly seen. The significance of this result is that it shows how Parrondo’s
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Parrondo’s games with natual diffusion: Rate of drift as a function of the mixing fraction

Figure 4.14. The expected rates of return ̺ for various choices of the mixing fraction γ. The

parameters for Game A and Game B have been fixed at values that are more realistically

represent the natural process of diffusion, with scaling parameter of β = 1/4. The

parameters for the mixed game, C, are derived as a linear convex combination of the

parameters for Game A and Game B. The expected rate of return for Game C is

calculated and plotted. The y-axis represents the expected asymptotic rate of return,

̺. The x-axis represents the mixing fraction, γ.

games can be modified in a way that includes a more natural model for diffusion. The

use of a natural model for diffusion does not prevent us from demonstrating the Par-

rondo effect. It is possible to demonstrate a Parrondo effect, using games that include

self-transitions, as shown in Figure 4.13.

4.5.4 A pair of discrete games with only two states

The previous two examples involved games with three states. The question arises,

whether we can construct games with less than three states that can still generate a

Parrondo effect. It turns out that it is possible to construct games of this type, only if

one is prepared to adopt a rather unusual reward structure that is not skip-free. The

state transitions, rewards and probabilities of transition, for Game A are shown in

Figure 4.15.
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Figure 4.15. Definitions for a simple two-state game. The probability of transitions are given

by Av,j = P [ n = j at m + 1 | n = v at m ] . There are only two states n = 1

and n = 2. The rewards associated with these transitions are given by Rv,j =

reward if [ n = j at m + 1 | n = v at m ] The probabilities and rewards are indicated

next to the line arcs, which represent the transitions. In this sense, the Markov chain

resembles a type of Finite State Automaton (FSA) called a Mealy machine (Hopcroft

and Ullman 1979), where the output from the system is associated with the state-

transitions, rather than the states themselves. The reward matrix is indicated in

Equation 4.67. The probabilities of transition may vary depending on the game that

is being played at the time. The game in the figure is labelled as Game A and the

probabilities of transition for Game A are indicated in Equation 4.65. If Game B is

being played then the relevant probabilities of transition are given in Equation 4.66.

We can show that Parrondo’s paradox does exist for this simple example by working

through the same method as for Parrondo’s original games. We can define Game A as

[A] =

[

5
6

1
6

1
2

1
2

]

(4.65)

and Game B as

[B] =

[

1
2

1
2

1
6

5
6

]

. (4.66)

The stationary probability-vectors are: ΠA =
[

3
4 , 1

4

]

and ΠB =
[

1
4 , 3

4

]

. We can define

the reward matrix as:

[R] =

[

−2 +5

+5 −2

]

, (4.67)

and we can apply Equations, 4.16, 4.17 and 4.12 to obtain :

̺(A) =
[

3
4

1
4

]

([

−2 +5

+5 −2

]

◦
[

5
6

1
6

1
2

1
2

])[

1

1

]

= − 1 (4.68)
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and

̺(B) =
[

1
4

3
4

]

([

−2 +5

+5 −2

]

◦
[

1
2

1
2

1
6

5
6

]) [

1

1

]

= − 1 . (4.69)

If we mix Games A and B in strictly equal proportions then we obtain the following

value for the return from the games:

̺ (C) =
[

1
2

1
2

]

([

−2 +5

+5 −2

]

◦
[

2
3

1
3

1
3

2
3

]) [

1

1

]

= + 1 . (4.70)

Games A and B are losing and the mixed time-average game, C = 1
2(A + B), is win-

ning, and so we have Parrondo’s paradox for the two-state games, A and B, as defined

in Equations 4.65 and 4.66. We can simulate the dynamics of this two-state version of

Parrondo’s games. Some typical sample paths are shown in Figure 4.16.
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Figure 4.16. Simulation of a two-state version of Parrondo’s games. The sample paths for

Game A and for Game B, are both generally sloping downwards or are losing. Game C

is a combination of Games A and B in equal proportions. The sample path for Game

C is generally sloping upwards and is wining.

The results from the simulations are consistent with the algebraic results. If we re-

fer back to Figure 4.15 then an intuitive explanation for this phenomenon is possible.

The negative or punishing rewards are associated with transitions that do not change
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state. The good positive rewards are associated with the changes of state. If we play

a homogeneous sequence of Games A or B then there are relatively few changes of

state and the resulting weighted sum of all the rewards is negative. If we play the

mixed game then the rewarding changes of state are much more frequent and the re-

sulting weighted sum of rewards is positive. These results show that it is possible to
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Two−state games: Rate of drift as a function of the mixing fraction

Figure 4.17. The expected rates of return ̺ for various choices of the mixing fraction γ.

The parameters for Games A and B are fixed, using the values given in the text. The

parameters for the mixed game, C, are derived as a linear convex combination of the

parameters for Games A and B. The rate of return for Game C is calculated and

plotted.

demonstrate a Parrondo effect, using games that only have two states, and include

self-transitions, if we are prepared to accept a complicated reward structure that is not

skip-free.

4.5.5 Astumian’s games

Dean Astumian22 described a set of games, played on a checker board, and using

dice (Astumian 2001). The probabilities of various outcomes were defined in terms

of sets of outcomes, in a manner similar to the game of “craps.” The moves, forward,

22The family name ‘Astumian’ is pronounced as ‘osterman.’
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Action From White From Black

Forward q = 4/36, R = +1 q = 2/36, R = +1

Backward q = 4/36, R = −1 q = 5/36, R = −1

No change q = 24/36, R = 0 q = 29/36, R = 0

Table 4.1. Rule-set number one, for Astumian’s games. This table defines the probabilities of

transition, q, and the rewards, R, associated with rule-set number one, from Astumian’s

games, as described in Astumian (2001). Moves are described as forward (with a certain

probability, q), backward (with a certain probability, q) or stationary (by default). The

probabilities of the stationary moves are calculated using the law of total probability.

Action From White From Black

Forward q = 2/36, R = +1 q = 8/36, R = +1

Backward q = 5/36, R = −1 q = 4/36, R = −1

No change q = 29/36, R = 0 q = 24/36, R = 0

Table 4.2. Rule-set number two, for Astumian’s games. This table defines the probabilities of

transition, q, and the rewards, R, associated with rule-set number one, from Astumian’s

games, as described in Astumian (2001). Moves are described as forward (with a certain

probability, q), backward (with a certain probability, q) or stationary (by default). The

probabilities of the stationary moves are calculated using the law of total probability.

backward or stationary, on the checker-board were defined in terms of rule-sets. These

are recorded in concise form in Tables 4.1 and 4.2.

It has been claimed (Astumian 2001, Astumian 2005) that these games have only two

states, white and black, but this over-simplifies the analysis. If we define a state in the

sense used by Karlin and Taylor (1975) then more states will be required.

In the original version, of Astumian’s games, there were absorbing states. If our only

interest is to demonstrate a transport effect and to estimate rates of flow, as functions

of the probabilities of transition, then the absorbing boundary conditions are a non-

essential detail. We leave them out, for the time being. These versions of the games are

sometimes called generalized Astumian’s games (Astumian 2005).
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In order to correctly represent the transport effect it is necessary to distinguish between

moving forward from a white square (to a black square) or moving backward from a

white square (to a black square). Alternatively, it is necessary to store some information

about past history. Given that the present position of the checker is on a black square,

it is necessary to record whether the transition was forward (from a white square) or

backward (from a white square). If we do not do this then it is not possible to allocate

rewards of R = +1 or R = −1 to the transition, since we do not know which transition

actually occurred. If we insist on regarding the process as a Markov process then the

information about history has to be stored in the states of the system. This means that

Astumian’s games, without absorbing boundary conditions, require four states: {W1,

B1, W2, B2}, two white states and two black states.

The state transition diagrams for Astumian’s Game A and Game B, corresponding to

rule-set 1 and rule-set 2, are shown in Figures 4.18 and 4.19.

The state transition matrix for Game A is:

A =
1

36















24 8 0 4

5 29 2 0

0 4 24 8

2 0 5 29















. (4.71)

The state transition matrix for Game B is:

B =
1

36















29 2 0 5

4 24 8 0

0 5 29 2

8 0 4 24















. (4.72)

The reward matrix is the same for both games:

R =















0 +1 +2 −1

−1 0 +1 +2

−2 −1 0 +1

+1 −2 −1 0















. (4.73)

We can use Equation 4.13, with C = γ · A + (1 − γ) · B, to calculate the return from

Astumian’s games. The only difficulty, in calculating ΠC, is the increased amount
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Figure 4.18. State transitions for Astumian’s rule-set number 1. There are two white states,

W1 and W2, and two black states, B1 and B2. Without this duplication of states,

the state transition diagram would reduce to a two-state diagram. There would be

no way to detect the difference between clockwise transition about the state-diagram

(winning) and anti-clockwise progression around the state-diagram (losing). There

would be no way to allocate the correct reward, from the limited set of possible

rewards {−1, 0, +1}, for each different transition. In the true two-state game the set

of possible rewards is much more complicated, {−2, +5}, and the process is not skip

free.

of computation required. The Markov chain has four states and the polynomials are

fourth order. A numerical approach would seem to be more appropriate here. This

is achieved in Matlab. The vector ΠC is calculated from the eigenvector associated

with the dominant eigenvector, λ = 1. The results from the calculation are shown in

Figure 4.20. The change of sign is clearly evident. Parrondo’s games and Astumian’s

games both exhibit a change of sign with change in the mixing fraction, γ. They both

combine losing games to win.
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Figure 4.19. State transitions for Astumian’s rule-set number 2. This is really the dual of

Figure 4.18. The topology of the state-diagram is not changed. The probabilities have

not changed, but some of the numbers have been transposed to other branches in the

state-diagram. It is the alternation between these two state-diagrams that generates

an equivalent state-diagram, with different weights, and demonstrates the required

change of sign in the mean direction of probability flow.

4.5.6 Astumian’s games, with absorbing boundary conditions

In the original version of Astumian’s games (Astumian 2001) there were a total of five

states. The system did not extend indefinitely, but had absorbing states at the upper

and lower boundaries. In this sense, Astumian’s games resemble a two-sided gam-

bler’s ruin problem. This is shown schematically in Figure 4.21. We shall refer to these

games as Astumian’s Original Games. These games are Markovian because the proba-

bilities of transition, at any given moment in time, do not depend on past history. It is

sufficient to know which state the system is in and which set of rules is being followed

at that moment in time, m. The system jumps stochastically between five different

states, in the range 1 ≤ n ≤ 5, as indicated in Figure 4.21.
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Astumian’s games : Rate of drift as a function of the mixing fraction

Figure 4.20. The expected rates of return ̺ for various choices of the mixing fraction γ. The

parameters for Games A and B are fixed, using Astumian’s original values, for rule-set

1 and rule-set 2, respectively. The parameters for the mixed game, C, are derived as

a linear convex combination of the parameters for Games A and B. The rate of return

for Game C is calculated and plotted. The change of sign, with mixing fraction, is

clear.

The transition matrices for both rule-sets take the form:

A =



















1 0 0 0 0

ψ2 1 − ψ2 − φ2 φ2 0 0

0 ψ3 1 − ψ3 − φ3 φ3 0

0 0 ψ4 1 − ψ4 − φ4 φ4

0 0 0 0 1



















. (4.74)

Astumian’s original parameter values for the two rule-sets are given in Table 4.3. The

initial state was specified as n = 3, this is known with certainty at the start of the game,

when discrete-time is, m = 0, so the initial time-varying probability vector is

P0 = [0, 0, 1, 0, 0] . (4.75)

The laws of conditional probability apply and after m time steps, the time-varying

probability vector is given by:

Pm = P0 · Am. (4.76)
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ϕ 2 ϕ 3 ϕ 4

ψ2 ψ3 ψ4

ψ2 ϕ 2−1− ψ3 ϕ 3−1− ψ4 ϕ 4−1−

1 2 3 4 51 1

Figure 4.21. A rule-set for Astumian’s games. Both rule-sets, 1 and 2, can be represented

in this form. The symbols written above and below the arrows are the probabilities

of transitions between neighbouring states. Winning moves are represented by right

facing arrows with labels φn. Losing moves are represented by left facing arrows,

with labels ψn. Null moves are self-transitions, and are represented by arrows that

originate and terminate at the same state. Null transitions have probabilities of the

form 1 − ψn − φn. This choice of notation avoids the use of redundant symbols and

automatically takes account of the fact that the total conditional probability must be

1. In a typical Monte Carlo simulation of a kinetic network, with appropriate choices

of spatial and temporal scales, the transition probabilities out of a state should be

much less than 1. That is ψn + φn ≪ 1. In any given time tick, or iteration, at most

one, and more often zero, transitions will occur. The initial state is state n = 3. The

game is declared to be won if state 5 is reached. It is declared to be lost if state 1 is

reached. The action of reaching state 1 is analogous to gambler’s ruin, and the action

of reaching state 5 is analogous to breaking the bank, at a casino.

Because there are absorbing states, it is not very useful to calculate expected values

for the asymptotic rates of return, since they will always be zero. Astumian’s games,

with absorbing states, will either end up in absorbing state 1 or absorbing state 5, with

probability of one. We only have to wait long enough for this to happen. After a

short period of transition, with reward of ±2, there would be no further change, and

no reward. The weighting from an indefinitely long sequence, with zero reward, will

always overwhelm any contribution from the initial transitions, where the reward is

finite. In either case, win or lose, the mean asymptotic rate of return would be zero.

It is more sensible to calculate the asymptotic values of the probabilities of occupancy

of the various states. For some stochastic matrices, this can be carried out by consider-

ing the eigenvector associated with the dominant eigenvalue, which will always be 1.

Unfortunately, this cannot be carried out for the stochastic matrix in Equation 4.74, be-

cause the dominant eigenvalue is repeated. There are two dominant eigenvectors, each
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Rule-set ψ2 φ2 ψ3 φ3 ψ4 φ4

1 4/36 8/36 5/36 2/36 4/36 8/36

2 5/36 2/36 4/36 8/36 5/36 2/36

mixed 9/72 10/72 9/72 10/72 9/72 10/72

Table 4.3. Parameters for the rule-sets, for Astumian’s games. This table defines the proba-

bilities of transition, for both rule-sets, for Astumian’s games, as described in Astumian

(2001). The mixed rule-set is the result of choosing rule-set 1 or rule-set 2, at random,

each with a probability of 1/2. The probabilities of transition were calculated by aggre-

gating individual events over the event space of two die, which is a Cartesian product of

two integer sub-ranges, [1, 2, 3, 4, 5, 6] × [1, 2, 3, 4, 5, 6]. There are 36 individual events.

They are all independent, so the probabilities can be calculated by adding the probabil-

ities of the events, as specified by Astumian. The probabilities in rule-sets 1 and 2 are

multiples of 1/36. The parameters of rule-sets 1 and 2 are averaged to give parameters

for the mixed rule-set. The probabilities in the mixed rule-set are multiples of 1/72.

with eigenvalues of 1. There is one eigenvector for each absorbing state:

Λ1 = [1, 0, 0, 0, 0] (4.77)

Λ2 = [0, 0, 0, 0, 1] . (4.78)

This means that there is a linear sub-space of possible stable states. This space is

spanned by the two dominant eigenvectors. In fact, the sub-space is composed of all

linear convex combinations of the two dominant eigenvectors. All vectors of the form

Π = [ζ, 0, 0, 0, 1− ζ] (4.79)

= ζ · Λ1 + (1 − ζ) · Λ2 (4.80)

are stable states. They can be reached, given suitable initial conditions, provided,

0 ≤ ζ ≤ 1.

The final asymptotic value of the time-varying probability vector could lie anywhere

within the subspace of stable states, depending on the initial conditions. The final sta-

ble value depends strongly on the initial conditions, and involves contributions from

all of the modes in the response, not just the dominant ones.

In order to calculate the final value of the time varying probability vector, Π, it is nec-

essary to solve Equation 4.76, for the limiting case as m → ∞. We can define a limit as:

Page 128



Chapter 4 Rates of return from discrete games of chance

Π = lim
m→+∞

(

P0 · Am
)

, (4.81)

given the initial probability vector, in Equation 4.75, associated with state n = 3. It is

possible to solve this problem using the z-transform and the final-value theorem. This

leads to an expression for the limit

Π = lim
z→1

(

(

1 − z−1
)

· P0 ·
(

I − z−1A
)−1

)

. (4.82)

The matrix inverse can be calculated using Gauss reduction, or using Cramer’s rule. If

we apply this technique to Equation 4.74 then we obtain an exact closed-form expres-

sion for Π. All the components of Π are zero, excepting for the first and last compo-

nents, Π[1] and Π[5]. We have

Π [1] =

ψ2
ψ2+φ2

· ψ3
ψ3+φ3

1 − φ2
ψ2+φ2

· ψ3
ψ3+φ3

− φ3
ψ3+φ3

· ψ4
ψ4+φ4

(4.83)

and

Π [5] =

φ3
ψ3+φ3

· φ4
ψ4+φ4

1 − φ2
ψ2+φ2

· ψ3
ψ3+φ3

− φ3
ψ3+φ3

· ψ4
ψ4+φ4

. (4.84)

These results are equivalent to formulae published by Behrends (2004). He refers to

matrices containing the coefficients, of the form ψk/(ψk + φk) or φk/(ψk + φk), as re-

duced matrices. The individual coefficients could be called reduced or normalised proba-

bilities. It is possible to calculate a likelihood ratio, using these reduced probabilities:

pw

pl
=

p (win)

p (lose)
=

(ψ2 + φ2) · φ3 · φ4

ψ2 · ψ3 · (ψ3 + φ3)
. (4.85)

This has simpler form and is possibly more informative than the raw probabilities in

Equations 4.84 and 4.84. The games are winning if p (win) /p (lose) > 1, or equiva-

lently, the games are winning if

(ψ2 + φ2) · φ3 · φ4 > ψ2 · ψ3 · (ψ3 + φ3). (4.86)

The system has detailed balance if (ψ2 + φ2) · φ3 · φ4 = ψ2 · ψ3 · (ψ3 + φ3). Astumian’s

rule-sets 1 and 2 and the mixed rule-set all follow the same pattern and the steady state

probabilities are given by Equations 4.83 and 4.84, using different ψ and φ values. If

we use Astumian’s original values, from Table 4.3, then we obtain the corresponding

values for the steady-state probabilities. These are listed in Table 4.4.
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Rule-set Π[1] Π[5] Most Frequent Outcome

1 5/9 4/9 losing

2 5/9 4/9 losing

mixed 81/181 100/181 winning

Table 4.4. Steady state probabilities, for Astumian’s games. The steady state probabilities for

the various rule-sets prove that Astumian’s games exhibit the same change of sign that

was shown in Parrondo’s games. Rule-sets 1 and 2, individually, are losing. The mixed

rule-set, composed of a mixture of rule-sets 1 and 2, is winning. The numbers in this

table are confirmed by numerical evaluations of Equation 4.76.

There are a few points that follow from this work, on Astumian’s games with absorbing

states:

• Our analysis is independent of Astumian, but we do confirm his calculations

regarding the probabilities of transition (Astumian 2005, Astumian 2004). These

are further supported by Behrends (2004). These values were challenged by Pi-

otrowski and Sladkowski (2004), but these claims have not been widely accepted.

Our values for the probabilities of transition are summarised in Table 4.3.

• Our analysis is independent of Behrends (2004), but we do confirm his result

regarding the probability of a win, for Π[5] = 100/181, which we present in

Equation 4.84. We present a summary of our results in Table 4.4.

• We confirm that the probabilities of occupancy are shifted in the way that was

suggested in the original articles (Astumian 2001, Astumian 2004, Astumian 2005,

Behrends 2004). This point has been challenged in the past by Piotrowski and

Sladkowski (2004), but our analysis confirms that of Astumian and Behrends. We

assert that the probability of winning is increased when the rule-sets are mixed.

4.5.7 Summary of common features of the discrete games

The following games have been analysed:

• Parrondo’s original games,

• Parrondo’s games with natural diffusion,

Page 130



Chapter 4 Rates of return from discrete games of chance

• Discrete games with only two states,

• Astumian’s generalised games,

• Astumian’s original games.

These games all have certain features in common.

• They all discrete Markov processes.

• They were all developed in order to simulate aspects of Brownian motors (or

Brownian ratchets).

• They can all be reduced to some finite number of states, modulo L, in the spatial

dimension.

• The probabilities of transition can be represented using stochastic matrices, such

as A and B.

• The rewards associated with the transitions can be written using some reward

matrix, R.

• Mixed games can be represented using an equivalent transition matrix, C, which

is a linear convex combination of A and B.

• The expected rates of return, from the games is given by Equation 4.13.

• The rate of return is a non-linear function of the component games, A and B.

• It is possible to choose the coefficients in the matrices in such a way that ̺ [A] < 0

and ̺ [B] < 0 and ̺ [C] > 0.

All of these games show that the essential transport properties of Brownian motors can

be demonstrated using greatly simplified discrete models.

In order to function correctly, Astumian’s games require four, or five, states. Parrondo’s

games require only three states. Allison et al. (2005) published a set of games with two

states, but strictly speaking, this is only two states, modulo 2, and the full spatial struc-

ture is not skip-free, which does not seem to be very realistic from a physical point of

view. The minimum number of states in any useful model would seem to be three. This
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confirms the earlier work of Lee et al. (2003).

In conclusion, we believe that Parrondo’s games with natural diffusion and three, or

more, states leads to the best simulation.

Parrondo’s games and Astumian’s games can both be analysed using the same mathe-

matical machinery.

Parrondo’s games are also simple enough to serve as pedagogic models for Brownian

ratchets, since they can be solved analytically.

4.6 Visualisation of the process

4.6.1 Time-homogeneous Markov chains and notation

Finite discrete-time Markov chains can be represented in terms of matrices of condi-

tional transition probabilities. These matrices are called Markov transition operators.

We denote these by capital letters in brackets, eg: [A] where Ai,j = Pr {Kt+1 = j|Kt = i}
and K ∈ Z is some measure of the state of the system. The Markov property requires

that Ai,j cannot be a function of K but it can be a function of time, m. In Parrondo’s

original games, K, represents the amount of capital that a player has. There is a one-

to-one mapping between Markov games and the Markov transition operators for these

games. We will refer to the games and the transition operators interchangeably.

The probability that the system will be in any one state at a given instant of time can be

represented by a distribution called the time-varying probability vector. We shall also

refer to this as the probability-vector. We represent this probability mass function, at

time m, using a row vector, pm. We can represent the evolution of the Markov chain in

time using a simple matrix equation,

pm+1 = pm+1 · [A] . (4.87)

This can also be viewed as a multi-dimensional finite difference equation.
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As a simple example, we can consider the regular Markov transition operator

[A] =

[

13
16

3
16

1
16

15
16

]

(4.88)

using the initial condition

pm = [p0, p1] =

[

3

4
,

1

4

]

when m = 0. (4.89)

A fundamental question in the study of dynamical systems is to classify how they

behave in the long-time limit, as m → ∞ and all transient effects have decayed. The

evolution of the probability-vector of a discrete-time Markov chain generally traces out

a sequence of points or trajectory in the phase-space. The natural technique would be

to draw a graph of this trajectory. As an example of this, we can consider the trajectory

of the time homogeneous Markov chain, described by Equations 4.88 and 4.89, which

is shown in Figure 4.22.

The probability-vector, pm, always satisfies the constraint, p0 + p1 = 1. This follows

from the law of total probability. The probability-vector is always constrained to lie

within an L− 1 dimensional subspace of the L dimensional phase-space. The dynamics

of the system all occur within this sub-space. This is clearly visible in Figure 4.22. We

can think of the set

M = {[p0, p1] | (0 ≤ p0 ≤ 1) ∧ (0 ≤ p1 ≤ 1) ∧ (p0 + p1 = 1)} , (4.90)

as a phase-space for the dynamical system defined by Equations 4.88 and 4.89. The

phase-space has a dimension, which is smaller than the embedding-space. This is a re-

sult of the fact that there is a conservation law23, which constrains the dynamics of the

system. For this example, the sequence converges to a stable fixed-point at Π =
[

1
4 , 3

4

]

.

It can be shown that sequences of this type always converge to single stable fixed-

points as long as the Markov transition operators are regular and time-homogeneous.

The convergent points are the representations, in phase-space, of the limiting station-

ary probabilities for the Markov chain.

23the law of total probability.
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Figure 4.22. The phase-space of a simple Markov chain. The points on the graph represent

the trajectory of the probability-vector within the phase space. These points do not

represent the physical state of a system. They represent our state of knowledge about

the system, given an initial state of knowledge, followed by several iterations of a

discrete Markov game. The time-varying probability vector has the components p =

[p0, p1]. After many iterations of the game and no further direct observations of the

actual state , n, our entire knowledge about the state is summarised by the numbers

in the steady-state probability vector, Π =
[

1
4 , 3

4

]

. There will be a probability of 1/4

that the player is in the first state and a probability of 3/4 that the player in the

second state.

4.6.2 Time-inhomogeneous Markov chains

The existence, uniqueness and dynamical stability of the fixed-point are important

parts of the theory of Markov chains, but we must be careful not to apply these the-

orems to systems where the basic premises are not satisfied. If the Markov transition

operators are not homogeneous in time then there may no longer a single fixed-point in

phase-space. The probability-vector can perpetually move through two or more points

without ever converging to any single stable value. To demonstrate this important

point, we present a simple example, using two regular Markov transition operators :

[S] =

[

3
4

1
4

3
4

1
4

]

(4.91)
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and

[T] =

[

1
4

3
4

1
4

3
4

]

. (4.92)

The rows of these matrices are all identical. This indicates that the outcome of each

game is completely independent of the initial state. The limiting stable probabilities

for these regular Markov transition operators are ΠS =
[

3
4 , 1

4

]

and ΠT =
[

1
4 , 3

4

]

respec-

tively. The time-varying probability vector immediately moves to the stable limiting

value after even a single play of each game.

[Q] · [S] = [S] (4.93)

and

[Q] · [T] = [T] (4.94)

for any conformable stochastic matrix [Q]. This leads to some interesting corollaries:

[T] · [S] = [S] (4.95)

and

[S] · [T] = [T] . (4.96)

If we play an indefinite alternating sequence of these games, {STST · · · }, then there

are two simple ways in which we can associatively group the terms:

p2m = p0 ([S] [T]) ([S] [T]) · · · ([S] [T]) (4.97)

= p0 [T] (4.98)

⇒ Π = ΠT (4.99)

and

p2m+1 =
(

p0 [S]
)

([T] [S]) ([T] [S]) · · · ([T] [S]) (4.100)

= p0 [S] (4.101)

⇒ Π = ΠS . (4.102)

If we assume that there is a unique probability limit then we must conclude that ΠS =

ΠT and hence 1
4 = 3

4 , which is a contradiction. We can invoke the principle of excluded

middle, reductio ad absurdum, to conclude that the assumption of a single limiting sta-

ble value for limm→∞

(

pm

)

is false. In the asymptotic limit as m → ∞, the probability-

vector alternately assumes one of the two values ΠS or ΠT. We refer to the set of all
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recurring probability-vectors of this type, {ΠS, ΠT}, as the attractor of the system. In

more general terms an attractor is a set of points in the phase-space, which is invariant

under the system dynamics in the asymptotic limit as m → ∞.

4.6.3 Reduction of the periodic case

In the last section, we considered a short sequence of length 2. This can be gener-

alised to an arbitrary length, L ∈ Z . It is possible to associatively group the operators

into sub-sequences of length L. As with the sequences of length two, the choice of

time origin is not unique. We are free to make an arbitrary choice of time origin with

the initial condition at m = 0. We can think of the operators as having an offset of

k ∈ Z , where 0 ≤ k ≤ L − 1 within the sub-sequence. We can also calculate a new

equivalent operator to represent the entire sequence, Aeq = ∏
L−1
k=0 Ak. We can then

calculate the stationary probabilities associated with this operator, Πeq = Πeq · Aeq.

We can refer the asymptotic trajectory of the probability-vector to this fixed-point,

p(m (mod L)) = Πeq · Π
(m (mod L))−1
k=0 Ak. In the periodic case, there is generally not a

single fixed-point in the original phase-space but the probability-vector settles into a

stable limit cycle of length L. If we aggregate time, modulo L then we can re-define

what we mean by state and we can define a new phase-space in which the probability-

vector does converge to a single point.

If we allow the length of the period, N, to become indefinitely long N → ∞ then our

new definition of state becomes extremely complicated. We would have to contem-

plate indefinitely large offsets, n, within the very long cycle. It is not clear whether

limits will exist. If we wish to avoid the many paradoxes that infinity can introduce

then we should only consider the case with finite period, N.

4.7 Long sequences of operators

If we allow the sequence to become indefinitely long then the amount of memory re-

quired grows without bound. It is still possible, in principle, to define these indefinitely

long periodic sequences as a homogeneous Markov process although the definition,
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and encoding, of the states would require some care. We can consider any one in-

definite sequence of operators as being one of many possible indefinite sequences of

operators. If we do this then most of the possible sequences will appear to be random.

We can learn something about the general case by studying indefinitely long random

sequences.

If the sequence of operators is chosen at random then the probability-vector, as defined

in the original phase-space, does not generally converge to a single unique value. Sim-

ulations show that the time-varying probability vector assumes a distribution in the

original phase-space, which is self-similar, or fractal, in appearance. The existence of

fractal geometry is established, with rigour, for some particular Markov games. We

establish a transcendental equation, which allows the calculation of the Hausdorff di-

mensions of these fractal objects.

If state-transitions of the time-inhomogeneous Markov chains are associated with re-

wards then it is possible to show that even simple two-state Markov chains can gener-

ate a Parrondo effect, as long as we are free to choose the reward matrix. Homogeneous

sequences of the individual games generate a net loss over time. Inhomogeneous mix-

tures of two games can generate a net gain.

We show that the expected rates of return, or moments of the reward process, for the

time-inhomogeneous games are identical to the expected rates of return from a homo-

geneous sequence of a time-averaged game. This is a logical consequence of the law of

total probability and the definition of expected value.

Two different views of the time-inhomogeneous process emerge, depending of the

viewpoint that one takes:

• If you have access to the history of the time-varying probability vector and you

have a memory to store this information and you choose to represent this data in

phase-space then you will see distributions with fractal geometry. This is more

or less the view that a casino, with many players, might have if they were to

visualise the states of all of their players. (This would be the case if we had a real

ensemble of many players playing this game.)
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• If you do not compute the time-varying probability vector, or you have no mem-

ory in which to store the history of this information, then all that you can see

is a sequence of rewards from a stochastic process. The internal details of this

process are hidden from you. You have no way of knowing precisely how this

process was constructed (ie. from an inhomogeneous sequence of Markov oper-

ators). There is no experiment that you can perform to distinguish between the

time-inhomogeneous process and the time-averaged process. The time-averaged

process is a homogeneous sequence of a single operator. We can calculate a single

unique limiting value for the time-varying probability-distribution vector, which

we could also refer to as the stationary probability-vector. This is more or less

the view that a single, mathematically inclined, casino patron might have if they

were playing against some elaborate poker machine, over a long period of time.

The internal workings of the machine would be hidden from the player, but it

would be possible to perform some analysis of the outcomes and form an esti-

mate of the parameters for the time-averaged model.

We show that the time inhomogeneous process is consistent in the sense that the casino

and the player will always agree on the expected winnings or losses of the player.

In more technical terms, the time-average, which the player sees, is the same as the

ensemble-average over phase-space, which the casino can calculate.

4.8 Phase-space visualisation and fractal properties

4.8.1 Two Markov games that generate simple fractals

We construct a simple system in which operators are selected at random and we will

use the standard theories regarding probability and expected values to derive some

useful results. If we modify the system specified by Equations 4.91 and 4.92, as follows:

[S] =

[

5
6

1
6

1
2

1
2

]

(4.103)

and

[T] =

[

1
2

1
2

1
6

5
6

]

(4.104)

and select the sequence of transition operators at random, then the attractor becomes

an indefinitely large set. If we were to play a homogeneous sequence of either of these
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games then they would have the same stable limiting probabilities as before, ΠS and

ΠT, and the dynamics would be similar to those shown in Figure 4.22. In contrast, if we

play an indefinite random sequence of the new games S and T, [S, T, T, S, T, S, T, S · · · ],
then there are no longer any stable limiting probabilities and the attractor has a fractal

or self-similar appearance, as shown in Figure 4.23.

Figure 4.23. A fractal attractor generated by games S and T. These points were generated by

the trajectory of a probability vector, operated on by a long, but finite, set of Markov

operators, S, and T. They clearly approximate the Cantor set, on a line segment

between, [1/4, 3/4] and [3/4, 1/4], which are the fixed points for the two individual

operators, S and T. The coverage is only approximate due to the finite resolution of

the graphing process. These two operators form an Iterated Function System (IFS) in

the sense used by Barnsley (1988).

4.8.2 The Cantor middle-third fractal

Games S and T have been constructed in such a way that they approach the Cantor

middle-third set. This was described by Cantor (1883) and has been described by a

number of text books (Simmons 1963, Kolmogorov and Fomin 1970). The set is also

discussed in the context of its self-similar fractal properties, by Mandelbrot (1977),

who calls it Cantor dust. The construction of the Cantor set, using an Iterated Function

System (IFS) is described by Barnsley (1988).
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We note that the Cantor set is uncountable. Kolmogorov and Fomin (1970) points out

that the Cantor set has the same power 24 as the interval, [0, 1], which has the same

power as the entire real line, c. Any countably infinite, sequence of operators only has

power of ℵ0, and will ever generate enough points to cover the entire Cantor set. The

points generated by a random sequence of games cling to the boundaries of the Cantor

set, but do not generate the entire set.

If we choose p0 = [1/2, 1/2] then the initial condition lies outside the Cantor set. The

operators never map the point pm into the Cantor set. There is always a slight gap. The

distance between the point pm and the nearest point in the Cantor set will be 3−m/6

and this will tend inexorably towards zero with increasing time, as m → ∞, but the

point pm will always lie outside of the Cantor set.

Ergodic properties

Perhaps the best solution to the problem of coverage is to show that the quasi-ergodic

hypothesis of Ehrenfest applies to our system: “During the course of time, the path of [the

system in phase space] goes as near as desired to any point in the surface.” (Perrot 1998). In

this case the ‘surface’ is understood to mean the set of points that is invariant under

transformation by the transition operators that is the fractal attracting set. If the sys-

tem were quasi-ergodic then the countable set of points, generated by the sequence of

operators, will contain points that are within any given finite distance, ǫ > 0, of any

given point in the attractor. As long as we are prepared to wait long enough, and con-

sider the effects of very many operators. This should apply, even if ǫ is very small, as

ǫ → 0+.

Hartfiel (2002) states a sufficient condition for a series of matrix operators, Pv to be er-

godic, where P1 = A1, P2 = A1 · A2, Pm = ∏
m
v=1 Av. The sequence, P1, P2 · · · Pv · · · is

ergodic if, and only if, lim
v→∞τB (Pv) = 0, where τB is the Birkhoff contraction coefficient.

24The word power can mean several different things in physics and mathematics. We use the word

here in the sense used by Cantor, and later by Kolmogorov and Fomin (1970). Power is an extension of

the idea of cardinality, the number of elements in a set. Finite sets have cardinality. For example, the

set {1, 2, 3, 4, 5, 6} has a cardinality of 6. The set of all integers Z = {1, 2, 3 · · · } does not have any finite

cardinality. It has a power, defined as ℵ0. The set of all real numbers, R, has a greater power than the

integers. This was indicated by Cantor, using his diagonal argument. The power of the real numbers is

defined as c, or sometimes as ℵ1. There is a theorem, due to Cantor, that c = 2ℵ0 .
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For matrices S and T in Equations 4.103 and 4.103, we have τB (S) = τB (T) = 1/5,

and also τB (A · B) ≤ τB (A) τB (B), for all operators, A and B, including all choices

from the set {S, T}. It then follows that 0 < τB (Pv) < 1/5v and hence lim
v→∞τB (Pv) = 0,

so a random sequence of matrices S and T will be ergodic in the sense defined by

Birkhoff (Hartfiel 2002).

Alternatively, the complete Cantor set is generated if we consider the set of all possible

initial conditions (that is the line segment, [0, 1]) and all possible sequences of operators

and take the union of the resulting sets. We operate on complete sets, rather than single

points. This is essentially what Barnsley achieves with his iterated function systems.

The set of all possible sequences of operators maps neatly onto the binary representa-

tions of all real number in the interval, [0, 1].

We can construct probability measures on the Cantor set. and then we can calculate

probabilities and expected values. It is also reasonable to talk about the probability

density function, of the probability-vector, within the phase-space. Our way forward

can be guided by Figures 4.23 and 4.24. These were constructed using discrete approx-

imations, and standard histogram, or bin-counting, techniques in Matlab. In order to

stimulate intuition, we can simulate the process and generate a histogram, showing

the distribution of the probability-vector. The result is shown in Figure 4.24.

If the process, in Figure 4.24 could be taken to an infinite limit then then we might

expect the histogram to converge to the Probability Density Function (PDF) for the

probability vector in phase space. If the limit exists and it is self-similar under the

mappings S and T, then it would also be a fractal.

The property of self-similarity can be established by construction. The function can

be explicitly constructed as a limit of a sequence of rectangular functions. This self-

similar sub-division of the histogram, into rectangles, is included in the recursion rule,

in Equation 4.119. The resulting PDF would not be a function, in the usual sense. It

would be a generalised function, in the sense described by Schwartz (Zemanian 1965).

The issue of existence, of the PDF, requires us to show that the sub-division into self

similar rectangular functions has a limit. Rectangular functions have zero derivatives

everywhere, excepting at the edges of the rectangles. It is clear that there is no problem

with convergence within the constant parts of the rectangular functions. This is no
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Figure 4.24. A histogram of a distribution in phase-space. This figure shows a histogram of the

distribution of pm, in phase-space. The position along the diagonal of Figure 4.23 can

be represented by x = p0 − p1, which can be regarded as a random variable, and can

be subjected to a standard bin-counting technique. This can be used to generate a

histogram. It is intuitively clear that this process is building up a picture of a probability

density function and that this function is self-similar.

more complicated than the process of allowing a single rectangle to converge to a Dirac

delta function.

On the other hand, in the limit there are a potentially infinite number of rectangles,

each with singularities at the boundaries. It is reasonable to ask whether these singu-

larities prevent the process from converging to a stable limit. Fortunately, there is a

proof, due to Lighthill (1958) that generalised functions can be re-constructed as limits

of sequences of good25 functions (Lighthill 1958), and the problem of supposedly in-

finite derivatives at boundaries can be avoided. One way to approach this would be

construct nearly rectangular functions which are still good. We could construct these

functions in such a way that the difference, in measure, between these good functions

and the rectangles diminishes to zero in the limit.

25A good function is one which is everywhere differentiable any number of times and such that all of

its derivatives are O
(

|x|−N
)

as |x| → ∞ for all positive values of N.
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For the x-axis, of Figure 4.24, we could have chosen the first element of the probability-

vector, p0 but this would not have been the easiest way to analyse the dynamics. It

is better if we choose another parametrisation. If we examine the eigenvectors of the

matrices in Equations 4.103 and 4.104 then we find that a better re-parametrisation is:

x = p0 − p1 (4.105)

and

y = p0 + p1 . (4.106)

Of course, we always have y = 1 and x is a new variable in the range −1 ≤ x ≤ +1.

The Cantor fractal lies in the unit interval − 1
2 ≤ x ≤ 1

2 , which is the x interval shown

in Figure 4.24. The transformation for matrix [S], in Equation 4.103 reduces to:
(

+
1

2
− xm+1

)

=
1

3
·
(

+
1

2
− xm

)

(4.107)

and the transformation for matrix [T], in Equation 4.104 reduces to:
(

−1

2
− xm+1

)

=
1

3
·
(

−1

2
− xm

)

. (4.108)

The transformation S has a fixed-point at x = + 1
2 and the transformation T has a fixed-

point at x = − 1
2 . If we choose these transformations as random then the recurrent

values of x lie in the interval between the fixed-points, − 1
2 ≤ x ≤ 1

2 . This is precisely

the iterated function system for the Cantor set (Barnsley 1988).

Fractal dimension, with uniform scale factors

The most elementary analysis that we can perform is to calculate the dimension of this

set. If we assume the Iterated Function System (IFS), which generates the fractal is

non-overlapping, then there will be conservation of measure.

Every time we perform a transformation, we reduce the diameter by a factor of λ = 1
3

but the transformed object is geometrically half of the original object, µ = 1
2 . In general,

we can write

µ = λD, (4.109)

where λ is the linear scaling factor and µ is the factor by which the measure is scaled

and D is the fractal dimension. This is the law of conservation of measure for this par-

ticular system. The special cases for line-segments µ = λ , squares µ = λ2 and cubes
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µ = λ3 are well known and not very controversial. The case where D is not an integer

had been widely discussed by many authors, including Mandelbrot (1977) and Barns-

ley (1988), and is now widely accepted. For the case of the Cantor set, Equation 4.109

evaluates to

1

2
= (

1

3
)D, (4.110)

so we can solve this equation, to give D =
log(2)
log(3)

≈ 0.630929 · · · .

The fact that the Cantor set has 0 < D < 1, gives insight into an apparent paradox,

in Kolmogorov and Fomin (1970). The total length of the Cantor set must be zero. After

m steps of substitution, (removing the middle third of the set) the resulting set has

length of (2/3)n, so the total length of the Cantor set must lie in the interval, 0 ≤ l ≤
(2/3)n. If we take the limit as n → ∞ then it follows that the Cantor set has zero length.

On the other hand Kolmogorov and Fomin (1970) has established a 1 to 1 mapping

between points in the Cantor set and points along the real line. How can a set of zero

length can have the same number of points as a set of unit length? The answer is that

length is a measure with dimension of 1. It is only appropriate to apply it to sets with

a capacity dimension of 1, such as line segments. If we measure a set with dimension

of less than one, such as a point, or the Cantor set, then we will obtain a total length of

zero. On the other hand, if we attempt to measure the total length contained in a set

with a dimension of greater than one, such as a unit square then there will be no upper

limit to the process. A square effectively contains infinite length.

Following Mandelbrot (1977), the correct units for measuring line segment, with di-

mension of D = 1, will have dimensions of [L]1. The correct units for measuring an

element of area, with dimension of D = 2, will have dimensions of [L]2. The correct

units for measuring a Cantor set, with dimension of D = log(2)/ log(3), will have

dimensions of [L]log(2)/ log(3). Sets with different dimensions must be measured using

units with different dimensions. If we attempt to use units with a different dimension

then we will get a result of zero or infinity, which is not very informative. Measures

with dimensions of [L]D are the natural extensions of length, area, and volume. The

powers of sets, such as c, are natural extensions of the concept of cardinality, to infinite

sets. These are different concepts.

In the sense that word was used by Cantor, the line segment, the area and the Cantor

set all have the power, of c. The fact that the Cantor set has no length is not more re-

markable than the fact that the line segment has no area. What is interesting is that all

Page 144



Chapter 4 Rates of return from discrete games of chance

of these sets have the same power as the entire real line, c.

Fractal dimension, with matrix operators

If the transformations are carried out using linear operators, represented by an L by

L, square matrix, A, then it is necessary to calculate the linear scaling factor, λ asso-

ciated with the transformation, A. This is discussed in Barnsley (1988), and in Meyer

(2000), but is stated more explicitly in Doran and Lasenby (2003), where the results

for matrices are stated in terms of more general Clifford geometric algebras26. If we

consider an L by L, square matrix, A then the ratio of the measures of small elemen-

tary of L-dimensional hypervolumes, before and after transformation, are given by the

determinant of the transformation matrix,

µhypervolume = det A. (4.111)

If we do not consider orientation, then the linear scaling factor is simply

λ = |det A| 1
L . (4.112)

Fractal dimension, with two matrix operators

If we construct an Iterated Function System (IFS) using two L by L, square matrices, A

and B, then the form of 4.109 has to be changed,

λA = |det A|1/L (4.113)

λB = |det B|1/L . (4.114)

These two mappings transform the entire fractal set into a subset of itself, with linear

scaling factors of λA and λB. The two subsets both have the same fractal dimension as

the whole set and the union of these two subsets reconstruct the whole fractal set.

If the IFS is non-overlapping then we can use conservation of measure to write

1 = λA
D + λB

D (4.115)

= |det A|D/L + |det B|D/L . (4.116)

26Clifford algebras are useful because they maintain all of their properties in higher dimensional

spaces.
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Formulae of this type appear in Barnsley (1988). Equation 4.116 is applicable to Par-

rondo’s original games since there are only two operators, A and B. This could easily

be generalised to the case with more operators by including more terms in the sum.

The case where the IFS is self-overlapping can be treated in this way, but additional

terms need to be subtracted to account for the measure of the overlap. The transforma-

tions in Parrondo’s original games were non-overlapping.

Moments in phase-space

We can invert the rules described in Equations 4.107 and 4.108 giving:

xt = 3xt+1 − 1 (4.117)

and

xt = 3xt+1 + 1 . (4.118)

If we consider these equations, together with the law of total probability, then we get a

self-similarity rule for the PDF (Probability Density Function), p(x), of the probability-

vector, pm:

3

2
p (3x − 1) +

3

2
p (3x + 1) = p (x) . (4.119)

The function p(x) is the density function towards which the histogram in Figure 4.24

converges if we collect enough samples. If the time varying probability vector has a

distribution in phase-space then it is reasonable to calculate moments of this distribu-

tion. A direct approach leads to infinite sums or infinite products. The self-similarity

rule in Equation 4.119 allows a useful simplification. We propose an approach based

on generating functions, of the type defined in (Papoulis 1991):

Φ (Ω) = E
[

ejΩx
]

=
∫ +∞

−∞
e+jΩx · p (x) dx. (4.120)

Generating functions are integral transforms of probability density functions. We can

make use of the shifting properties of the transform to prove that

∫ +∞

−∞
ejΩx · p (3x − 1) dx =

1

3
e−j Ω

3 · Φ (Ω/3) , (4.121)

and
∫ +∞

−∞
ejΩx · p (3x + 1) dx =

1

3
e+j Ω

3 · Φ (Ω/3) . (4.122)
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If we combine Equations 4.121, 4.121 and 4.120, then we can a simple recursion rule for

the Moment Generating Function (MGF):

Φ

(

Ω

3

)

· cos

(

Ω

3

)

= Φ (Ω) . (4.123)

We can evaluate the derivatives at Ω = 0 and calculate as many of the moments as

we wish. The probability density function must be normalised to one, so it follows

that Φ (0) = 1. The other derivatives can be obtained by successively differentiating

Equation 4.123,

1

3
sin

(

Ω

3

)

Φ

(

Ω

3

)

+ Φ′ (Ω) +−1

3
cos

(

Ω

3

)

Φ′
(

Ω

3

)

= 0, (4.124)

which leads to the special case of Φ′ (0) = 0, as Ω → 0. A second differentiation leads

to

1

9
cos

(

Ω

3

)

Φ

(

Ω

3

)

+
2

9
sin

(

Ω

3

)

Φ′
(

Ω

3

)

+ Φ′′ (Ω) − 1

9
cos

(

Ω

3

)

Φ′′
(

Ω

3

)

= 0,

(4.125)

which leads to the special case of Φ′′ (0) = −1/8, as Ω → 0. We can then use Equa-

tions 4.125 and 4.125 to derive expressions for the first two moments; the mean, µ, and

the variance σ2 :

µ = jΦ′ (0) = 0 (4.126)

σ2 = −Φ′′ (0) + Φ′ (0) =
1

8
. (4.127)

These algebraic results are consistent with results from the numerical simulations that

were used the generate the histogram in Equation 4.24. It is interesting to compare

the second moment with the result for a uniform distribution, which would have a

variance of σ2 = 1/12. The variance of the cantor set is larger than the variance of a

uniform distribution, over the same domain.

In summary, it is possible to calculate moments of the distributions in phase space

using symmetry considerations. These results were published in Allison et al. (2005),

although some aspects of this result appear to have been anticipated by Elton and Yan

(1989). This last paper was communicated by Barnsley and deals with moments and

cumulants of sets generated by Iterated Function Systems. There is an unpublished

pre-print by Jorgensen et al. (2007), which deals with the case of an overlapping IFS.

They also include formulae for the moments in terms of infinite products of trigono-

metric functions. These formulae do not make explicit use of the self-similarity im-

posed by the IFS and are more complicated than the result in Equation 4.123.
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4.8.3 Iterated Function Systems (IFS)

The cause of the fractal geometry is best understood if we realise that Markov tran-

sition operators perform affine transformations on the phase-space. An indefinite se-

quence of different Markov transition operators is equivalent to an indefinite sequence

of different affine transformations, which is called an iterated function system, or IFS. We

refer the reader to Barnsley (1988) showing that fractal geometry is general property of

a system of randomly selected affine transformations. Barnsley’s work is given further

support by Hartfiel (2002), who describes how non-homogeneous products of matrices

give rise to fractal geometry. He presents an approach to the construction of the Cantor

set that is very similar to the one presented in Figure 4.23.

4.8.4 Parrondo’s fractal

The construction in the last section was deliberately kept simple:

• The operators only have two dimensions, so visualisation on paper is easy.

• Uniform sequences of regular Markov operators have known unique stationary

probability vectors.

• A mixed sequence of operators is isomorphic to a known iterated function sys-

tem (IFS).

• The IFS generates a known attracting set in phase space, the Cantor set.

• This attractor is known to be a fractal.

• The points generated by the mixed sequence of operators adhere closely to the

boundaries of the attractor, in phase space, as m → ∞.

We can relax some of these conditions and the result will still be similar:

• The operators can have many dimensions.

• A mixed sequence of operators can still constitute an iterated function system

(IFS).
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• The IFS still can still generate an attracting set in phase space.

• The attractor can still be a fractal.

• The points generated by the mixed sequence of operators will adhere closely to

the boundaries of the attractor, as m → ∞.

This is the case with Parrondo’s original Games A and B. The resulting attractor, in

phase space, is shown in Figure 4.25. The similarity to Figure 4.23 is clear.

The matrices for Games A and B, for Parrondo’s original games, are three dimensional,

L = 3. We can apply the methods described in Barnsley (1988), and summarised in

Equation 4.116, to obtain an expression for the dimension, D, of Parrondo’s original

games, in phase-space

|det (A)|D
3 + |det (B)|D

3 = 1, (4.128)

where A and B are the reduced matrices for Parrondo’s games, as described in Equa-

tion 4.6. If we use Parrondo’s original parameters then the equation for the dimension,

D, reduces to:
(

10003

40000

)( D
3 )

+

(

4463

40000

)( D
3 )

= 1, (4.129)

and the numerical solution is D ≈ 1.18314737032. The theory, from Barnsley, can be

tested against numerical simulations of Parrondo’s games. It is possible to estimate

the dimension of a fractal, using the standard box-counting technique. This can be

compared with the result from the theory. The correspondence is shown in Figure 4.26.

The results agree to about 3 decimal places, which is quite reasonable given the number

of points in the simulation.

4.9 Equivalent representation

It is not immediately obvious that expected values calculated over time will always

agree with expected values calculated by summing over phase space. We prove that

this true, by direct evaluation. If this were not so then we would suspect that the

process is not ergodic, which would lead us to doubt some of our earlier results.
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Figure 4.25. The fractal object generated by Parrondo’s original games. Parrondo’s origi-

nal games had three states and the probability vector had three dimensions, p =

[p1, p2, p3]. The embedding space is R3. The law of total probability requires

p1 + p2 + p3 = 1. This constraint implies that the phase-space is actually the plane

specified by the equation, p1 + p2 + p3 = 1. The phase space is actually two dimen-

sional and can be accurately represented on a printed page. We use a translation, by

[−1/3,−1/3,−1/3], followed by rotations in space that preserve length and angle

measure. The y-axis of this figure is the projection of the p3-axis of the embedding

space, denoted by ∆p2. The other coordinate, the x-axis in this figure is a linear

combination of p1 and p2, and is denoted by ∆p1. The figure represents a true and

un-distorted view of the phase-space. There are further constraints on probabilities

p1, p2, and p3 since 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1 and 0 ≤ p3 ≤ 1. This means that the

feasible or reachable region of the phase-space is actually a convex polytope within the

phase space. In this case, the boundary is an equilateral triangle, which is shown in

the figure. If Parrondo’s games are played at random then the probability vector traces

out parts of an attracting set. This is the set of all recurrent points in the phase-space.

For Parrondo’s games, where the games are chosen at random, the attracting set is

a fractal, which we call Parrondo’s fractal. This is self-similar and is a fractal, in the

sense defined by Barnsley. It is also a fractal, in the same sense that the Cantor set

is a fractal. This was first proposed by Allison et al. (2005). This fractal was later

independently confirmed by Behrends (2006) and in Behrends (2008).
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Figure 4.26. The scaling properties of the attractor generated by Parrondo’s games. The

habitual use of fixed-point theorems has led some mathematicians to query whether

or not the attracting set, generated by Parrondo’s games is truly a fractal, or whether

it is just a transient phenomenon. If the true attractor is just a single fixed-point

then it has a fractal dimension of zero, the dimension of a single point. Then any

attempt to measure the dimension of the attractor dies not converge to a stable value

above zero. We use the standard box-counting technique to estimate the capacity

dimension of the attracting set for Parrondo’s games. This figure shows the results of

simulations of more than a billion trials of Parrondo’s games. The analysis covers over

six orders of magnitude in scale. The horizontal axis represents the size of the boxes,

in phase space. The vertical axis represents the number of boxes that enclose one

or more points from the simulation. The line of best fit is very clear with very little

variation. If the apparent-fractal were only a transient effect, then the slope of the

line should change as the number of simulations increased. What we actually observe

is a very clear straight line. The slope implies a capacity dimension of 1.18315, which

agrees very well with the result from Barnsley’s theory, 1.18224. Of course, the true

proof depends on the logic of Barnsley’s approach, but the simulation does support

the argument and suggests that there are no grave errors, or fallacies, in the logic.

4.9.1 The average probability vector, over time

At each individual time step, the process is Markov. We do not need to consider past

history. We only need to consider the present sate, n, or our knowledge of the present
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state, pm. If we average the transitions over time then they will be averaged in propor-

tion to their rate of occurrence. This leads to a time averaged game, with transition

probabilities,

Ci,j = Ai,j · γ + Bi,j · (1 − γ) . (4.130)

The process described in Equation 4.130 has no memory beyond the present sate, or

our knowledge of the present state. There is a useful thought experiment27 that we

can consider, in order to clarify the meaning of this result. We can imagine a casino

that owns two game machines. Inside one machine, the algorithm generates a random

event, with probability of γ and then plays Game A or Game B depending on the out-

come. Inside the other machine, the other algorithm always plays Game C. As players,

we do not have access to the detailed mechanisms or algorithms inside the machines.

We only have access to the results that come out of the machines, where we receive

positive or negative rewards. The key question is: Is there any analysis that we can per-

form on the sequences of rewards from these two machines that would allow us to determine

which machine was an inhomogeneous random sequence of Games A and B, and which ma-

chine was playing an homogeneous sequence of Games C? The previous result shows that

there is no experiment that we can perform to distinguish between the two machines.

We refer to Game C as the time-average model. This is analogous to the state-space av-

eraged model found in the theory of control (Middlebrook and Ćuk 1976, Levine 1996).

The stationary probability vector, π, has to satisfy the relationship

π = π · C, (4.131)

together with a normalisation condition,

3

∑
n=1

πn = 1. (4.132)

These are necessary and sufficient conditions for the complete specification of π, pro-

vided C is regular. These were the conditions used to derive Equation 4.22. Once

the stationary probability vector has been specified then the rates of reward from the

games can be calculated using Equation 4.13.

27Gedankenexperiment.
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Chapter 4 Rates of return from discrete games of chance

4.9.2 The average probability vector, over phase-space

We would like to know whether the stationary probability vector, calculated by av-

eraging over time, in Equation 4.131, is the same as the stationary probability vector,

calculated by averaging over the attracting set in phase space, as shown in Figure 4.25.

This requires changes of variable of the type described in Equations 4.117 and 4.118,

and leads to a self-similarity rule, similar to Equation 4.119. This can be manipulated,

using an integral transform to yield a recursion rule for the multi-dimensional Moment

Generating Function (MGF), similar to the one in Equation 4.123. Finally, it is possible

to take the vector gradient of the MGF, to obtain an expression for the mean value of

the time varying probability vector, in phase space, similar to the expression in Equa-

tion 4.127. Under conditions, which apply to Parrondo’s original games, it is possible

to show that the two averages must satisfy the same equations and therefore must

have the same values. It then follows that the rates of reward are the same, whether

we average over time or over phase-space.

Linear transformations of phase-space

If we play Game A, for example, then we perform a linear transformation on the phase-

space and we map the entire attracting set onto a subset of itself. We denote the vector

in phase space by pm, at time m. We denote the density function over the phase space

as P
(

p
)

. The fonts are intended to be significant here. Also, the density function has a

vector argument, P (· · · ), and the probability vector has an , pm, and does represent a

row vector. After transformation by Game A, the new density function will be related

to the old one though the relationship

P
(

p′
)

=
1

det (A)
P
(

A−1p
)

. (4.133)

The factor of 1/ det (A), is to account for the change in ratio of volumes, before and

after transformation. This expression would work in higher (or lower) dimensions, but

in these cases we would be dealing with elements of hyper-volume (or area) rather than

elements of volume, when the density functions are integrated. The corresponding rule

for Game B is

P
(

p′
)

=
1

det (B)
P
(

B−1p
)

. (4.134)
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The self-similarity rule for Parrondo’s games

If we play Games A and B, at random, with probability of γ, then the self-similarity

rule for the density function becomes

γ

det (A)
P
(

A−1p
)

+
1 − γ

det (B)
P
(

B−1p
)

= P
(

p
)

. (4.135)

This is a generalisation of the rule in Equation 4.119, and would apply for Parrondo’s

Games, or any system that could be written using an inhomogeneous sequence of

Markov operators. There are only two terms on the left hand side of Equation 4.135.

This is because the IFS for Parrondo’s games is non-overlapping. If overlap did occur

then additional terms would have to be included, to account for the overlap. The use

of the determinants in the denominators, and the use of inverse matrices assumes that

the operators are non-singular. If we use the notation in Equation 4.6, then the deter-

minant of a transition matrix, for the original form of Parrondo’s Games has the form

det (A) = (1 − q1)(1 − q2)(1 − q3) − q1q2q3, (4.136)

which is nonzero for Parrondo’s original values, for Games A, B and C.

The moment generating function for the distribution of the probability vector

The multi-dimensional Moment Generating Function (MGF) has to be integrated over

the entire phase-space. It should be understood that the bounds of integration are the

entire phase-space. An infinitesimal element of volume is represented by

dV = dp1 · dp2 · dp3 =
3

∏
n=1

dpn. (4.137)

For Parrondo’s original games we had, L = 3, for three dimensions. This result can

be readily generalised to higher numbers of dimensions, L > 3, by altering the upper

limit of the sum in Equation 4.137. We can define the multi-dimensional MGF for a

multi-dimensional density function as

Φ (Ω) =
∫ ∫ ∫

ejΩ·pT · P
(

p
)

dV. (4.138)

This is a volume integral of a scalar function, which is defined over the multi-dimensional

phase-space. The vector form, Ω · pT, is an inner vector product. The moment gener-

ating function is an integral transform, similar to the Fourier Transform, and has a

Page 154



Chapter 4 Rates of return from discrete games of chance

general scaling property of
∫ ∫ ∫

ejΩ·pT · P
(

pE
)

dV = det
(

E−1T
)

· Φ
(

ΩE−1T
)

, (4.139)

where E is an general non-singular linear transformation of the phase-space. This es-

sentially is a multi-dimensional version of the scaling property of the Fourier Trans-

form. If we take the MGF of Equation 4.135 and apply the rule for re-scaling then we

obtain

γ · Φ
(

ΩAT
)

+ (1 − γ) · Φ
(

ΩBT
)

= Φ (Ω) . (4.140)

This is the generalisation of Equation 4.123.

The average probability vector, in phase-space

To calculate the moments of the vector p in phase space, we need to take gradients of

the MGF, in the Ω, or frequency, space.

Using standard manipulations of vector calculus, it can be shown that

∇Ω (Φ (0)) = lim
Ω→0

(

∇Ω (Φ (Ω))
)

= j
∫ ∫ ∫

p · P
(

p
)

dV. (4.141)

If we apply this result to the recursion rule in Equation 4.140, and apply the distributive

law, we can show that

∇Ω (Φ (0)) (γA + (1 − γ) B) = ∇Ω (Φ (0)) . (4.142)

It is also necessary to make use of the lemma, ∇Ω (ΩA) = AT, for a general linear

transformation, A.

4.9.3 Consistency of the two averages

Expected values and gradients of multi-dimensional moment generating functions are

related by

E
[

p
]

= −j∇Ω (Φ (0)) , (4.143)

which follows from Equation 4.141. We evaluate the gradient of Φ (Ω) with respect to

Ω and take the limit as Ω → 0, and multiply the result by the inverse of the square

root of minus-one, −j. We also recall that we defined a time-average game as C =

γA + (1 − γ) B. Equation 4.142 now reduces to

E
[

p
]

C = E
[

p
]

, (4.144)

Page 155



4.10 An optimised form of Parrondo’s games

which is identical to Equation 4.131. This means that π = E
[

p
]

. The stationary proba-

bility vector is identical with the expected value of the time-varying probability vector,

evaluated over the phase-space.

4.10 An optimised form of Parrondo’s games

Simulations reveal that periodic inhomogeneous sequences of Parrondo’s games have

the strongest Parrondo effect. It can be shown that a powerful (locally optimal) form

of the games is a set of three games that are played in a strict periodic sequence

{G0, G1, G2, G0, G1, G2, · · · }. The transition probabilities are as follows :

Game G0 : [a0, a1, a2] = [ξ, (1 − ξ), (1 − ξ)]

Game G1 : [a0, a1, a2] = [(1 − ξ), ξ, (1 − ξ)]

Game G2 : [a0, a1, a2] = [(1 − ξ), (1 − ξ), ξ]

where ξ is a small probability, 0 < ξ < 1. We can think of ξ as being a very small,

ideally microscopic, positive number, ξ → 0. These matrices can be written out in the

form of Equation 4.6 as follows:

[G0] =









0 ξ 1 − ξ

ξ 0 1 − ξ

1 − ξ ξ 0









, (4.145)

and

[G1] =









0 1 − ξ ξ

1 − ξ 0 ξ

1 − ξ ξ 0









, (4.146)

and

[G2] =









0 1 − ξ ξ

ξ 0 1 − ξ

ξ 1 − ξ 0









. (4.147)

Page 156



Chapter 4 Rates of return from discrete games of chance

The rate of return form any pure sequence of any one game is approximately

̺ ≈ 1

2
· ξ, (4.148)

which is close to zero and yet the return from the cyclic combination of these games is

approximately

̺ ≈ 1 − 3 · ξ, (4.149)

which is close to a certain win. We can engineer a situation where we can deliver an

almost certain win every time using games that, on their own, would deliver almost

no benefit at all! These games clearly work better as a team than on their own. Just as

team players may pass the ball in a game of soccer, the games {G0, G1, G2} carefully

pass the probability-vector from one trial to the next as this sequence of Parrondo’s

games unfolds.

4.10.1 An interesting fractal object

It is possible to de-rate these games by increasing ξ. In the limit as ξ → 1
2 the Parrondo

effect vanishes and the attractor collapses to a single point in phase-space. Just before

this limit, the attractor takes the form of the very small and exquisite fractal shown in

Figure 4.27.

This fractal is embedded in a two dimensional sub-space of the three dimensional

phase-space of the games {G0, G1, G2}. The two dimensional sub-space has been pro-

jected onto the page in order to make it easier to view. The projection preserves dot

product, length, and angle measure. The coordinates x and y are linear combinations

of the components of the original probability-vector, pm = [p0, p1, p2]. The orientation

of the image is such that the original p2-axis is projected onto the new y-axis. (The

orientation of the upward direction is preserved.) The negative numbers on the axes

represent negative offsets rather than negative probabilities. This is the same concept

that is used when we write down a probability (1 − p). If p is a valid probability then

so is (1 − p). The number −p is an offset that just happens to be negative.

The dimension of this fractal is D ≈ log(9)
log(4)

≈ 1.585. We define the amount of Parrondo

effect, ∆p, as the difference in rate of return, ̺, between the mixed sequence of games

{G0, G1, G2} and the best performance from any pure sequence of a single game. For
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Figure 4.27. Fractal attractor generated by a limiting case of Parrondo’s games. In the

limiting case as lim
ξ→ 1

2

, the fractal attractor becomes very small in size and adopts

a very symmetrical, even beautiful, mathematical object. This figure shows a two-

dimensional, greatly enlarged, projection of the attracting set. It is possible to see that

this is a fractal, even without any formal proof that the fractal dimension D ≈ 1.5849

is not an integer. The quantity, dp ≡ ∆p ≈ 1.8691 × 10−7 is the difference in

rate of return, ̺, between the mixed sequence of games {G0, G1, G2} and the best

performance from any pure sequence of a single game. This fractal can be poetically

described as the “last-gasp” of the Parrondo effect as lim
ξ→ 1

2

.

this limiting case, ∆p ≈ 0. There are some interesting qualitative relationships between

the Hausdorff dimension and the amount of Parrondo effect, which deserve further in-

vestigation to see if it is possible to formulate general quantitative law.

4.11 Chapter summary

In this chapter we have analysed Parrondo’s games in terms of the theory of Markov

chains with rewards. We have illustrated the concepts constructively, using a simple

two-state version of Parrondo’s games and we have shown how this gives rise to frac-

tal geometry in phase-space. We have arrived at a simple method for calculating the

expected value of the asymptotic rate of reward from these games and we have shown
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that this can be calculated in terms of an equivalent time-averaged game. We have

used graphic representations of trajectories and attractors in phase-space to motivate

some of the arguments.

The use of phase-space concepts opens up new lines of enquiry. Simulation and vi-

sualisation encourage intuition and help us to grasp the essential features of a new

system. This would be much more difficult if we were to use a purely formal algebraic

approach at the start. We do not propose visualisation as a replacement for rigorous

analysis. We see it as a guide to help us to decide, which problems are worthy of more

detailed attention, and which problems might later yield to a more formal approach.

We believe that phase-space visualisation will be as useful for the study of the dynam-

ics of Markov chains as it has already been for the study of other dynamical systems.

Finally, we conclude that the apparent paradox of Parrondo’s games arises because the

reward process is a nonlinear function of the Markov transition operators, whereas our

naı̈ve common sense tells us the reward process ought to be linear. When we combine

the games by selecting them at random, we perform a linear convex combination of

the operators, but the expected asymptotic value of the rewards from this combined

process is not a linear combination of the rewards from the original games.

Much of the earlier work used models with discrete states and continuous time. This

is apparent in Westerhoff et al. (1986) and in Simon et al. (1992), for example. If would

be natural to ask whether there are other systems, with discrete states and continuous

time, which also exhibit paradoxical behaviour. Allison and Abbott (2001) showed that

this is the case for switched circuits, as shown in the next chapter.

Page 159



Page 160



Chapter 5

switched-mode circuits and
switched Markov systems

I
N this chapter we use an analogy with Parrondo’s games to

design a second order switched mode circuit, which is unstable

in either mode but is stable when switched. We do not require

a sophisticated control law. The circuit is stable, even if it is switched at

random. We use a stochastic form of Lyapunov’s second method to prove

that the randomly switched system is stable with probability of one.

We perform state-space simulations of our system, with a randomised

discrete-time switching policy. The limiting case where switching is very

rapid, but random, is examined. This leads to a consideration of Stochastic

Differential Equations (SDEs).
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5.1 Switched-mode circuits and switched Markov sys-

tems

In this section we suggest that deep similarities exist, between systems governed by

randomly selected Markov operators, such as Parrondo’s games (Harmer and Abbott

1999b, Harmer and Abbott 1999a, Pearce 2000b, Pearce 2000a, Harmer et al. 2000a),

systems governed by time-varying transition matrices, such as switched-mode circuits

(Middlebrook and Ćuk 1976, Billings 1989, Gottlieb 1992) and physical systems with

randomised control laws (Lai 1977, Hui et al. 1997, Wu and Tse 1996, Skafidas et al.

1999). The defining property of Parrondo’s games is that it is possible to combine two

losing games to achieve a winning result.

5.1.1 Switched-mode circuits

Firstly, we work though a simple and specific example of a switched-mode circuit, in

order to demonstrate the method of the state-space28 time-average model developed

by Middlebrook and Ćuk (1976).

A very simple switched-mode circuit is shown in Figure 5.1. The source of energy is

modelled as a general Thévenin linear source, with source impedance of Rs and open-

circuit voltage of Vs. The load is modelled as a linear load, with an impedance of Rl .

This energy conversion-circuit only contains one energy-storage element, the capaci-

tor, C. We can denote the voltage across the capacitor by Vc. The capacitor is switched

back and forth between the input side of the circuit and the output side of the circuit,

using switching devices. In this case, the switching devices are Metal Oxide Field Ef-

fect Transistors (MOSFETs). These switching elements are turned on and off by control

voltages, Q and Q. It us usual for only one of Q or Q to be high at any one time. This

means that only one switching device is turned on at any one time. The other device

should be turned off. If this condition is not maintained then it is possible for the load

to be directly connected to the source. This can lead to waste of energy, loss of control

28We note that electrical engineers regularly use the term state-space to refer to what physicists and

mathematicians might prefer to call phase-space. We prefer to use the term phase-space in order to avoid

ambiguity with the other use, in the theory of Markov chains. We are occasionally constrained to use the

words state-space in the sense that engineers use the term, when we quote existing works by engineers.
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or even damage to the switching elements. The mutually-exclusive aspect of Q and Q

can be maintained by controlling MOSFETs using outputs from a toggle flip-flop, which

will toggle every time a pulse is fed into it. The output of this circuit is generally con-

sidered to be the voltage across the load Rl . This depends on the average current in Rl

and can be controlled, within certain limits, by varying the duty cycle, that is the frac-

tion of the time, for which Q is high and Q is low. The switching devices are usually

designed to switch from fully OFF to fully ON in a very short time, because the circuit

wastes energy when the switching devices are in a half-on and half-off condition. If we

know the value of Vc as well, as the input, Vs and the modes of the switching devices, Q

and Q then it is possible to specify all the voltages and currents in the entire circuit. In

the parlance of the theory of state variables, this is enough to establish that Vc is a state-

variable and is the only state-variable for this circuit. More formally Dorf and Bishop

(1998) state that “The state of a system is a set of variables such that the knowledge of these

variables and the input functions will, with the equations describing the dynamics, provide the

future state and output of the system.” The choice of state variables is not unique. The

total stored energy in this circuit can be deduced from the state-variable. In particular,

we have U = 1
2 CVc

2.

Figure 5.1. A simple switched capacitor energy converting circuit. The capacitor is switched

back and forth between the input side of the circuit and the output side of the circuit,

using switching devices. The average voltage at the output depends on the average

current in Rl and can be controlled, within certain limits, by varying the duty cycle,

that is the fraction of the time, for which Q is high and Q is low.
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Equivalent circuits in the two modes

When the circuit is in the ON mode is equivalent to the circuit shown in Figure 5.2.

When the circuit is in this mode then the state variable, Vc, is controlled by an Ordinary

Differential Equation (ODE):

∂Vc

∂t
+

1

RsC
Vc =

1

RsC
Vs. (5.1)

The time constant for this circuit is RsC. The inverse of the time constant has the value,

ω1 = 1/ (RsC), and is called the angular corner frequency, in radians per second. The

source voltage, Vs, is understood to be constant, or very nearly so. The solution, to

Equation 5.1, is given by

Vc(t) = Vs − (Vs − Vc(t0)) · exp (−ω1 · (t − t0)) . (5.2)

This equation can be used to explicitly calculate the value of the state variable, Vc, at

the end of a switching period, where the circuit was in the ON state, with Q being high.

When the circuit is in the OFF mode, it is equivalent to the circuit shown in Figure 5.3.

When the circuit is in this mode then the state variable, Vc, is controlled by a different

ODE:
∂Vc

∂t
+

1

RlC
Vc = 0. (5.3)

The constant RlC is the new time constant for the circuit when it is in this mode and the

inverse of this, ω2 = 1/ (RlC), is called the angular corner frequency, in radians per

second for the circuit, when it is in this mode. More general circuits will have many

time constants. The source voltage, Vs, does not affect Vc when the circuit is in this

mode. The solution, to Equation 5.3, is given by

Vc(t) = Vc(t0) · exp (−ω2 · (t − t0)) . (5.4)

This equation can be used to explicitly calculate the value of the state variable, Vc, at

the end of a switching period, where the circuit was in the OFF state, with Q being

high.

Equilibrium, steady-state value for Vc

We denote the period of time, for which the circuit is in the ON state by T1 and the

period of time, for which the circuit is in the OFF state by T1. We consider the case
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Figure 5.2. Switched-capacitor, equivalent circuit, during the ON mode. We designate the

time periods when the capacitor is connected to the source as being in the ON mode.

This will be the case when Q is high and Q is low. In this mode, the capacitor is charged

up, from the source. Please note that Rs is the source impedance associated with the

linear source, Vs. The “ON” resistance of the left hand transistor, in Figure 5.1, is

represented by a short circuit. If this resistance is nonzero then it will be necessary to

modify the value of Rs. The open circuit on the right, approximates the off resistance

of the right hand transistor, of Figure 5.1. If this resistance is not actually infinite then

it will be necessary to include a modified value of Rl, in parallel with the capacitor,

C. It is possible to apply Thévenin’s theorem to eliminate the parallel value of Rl and

incorporate it with the linear source, leading to modified values of Vs and Rs. These

details have been left out of the figure because they add complicating detail and do not

introduce any essential new features to the circuit.

Figure 5.3. Switched-capacitor, equivalent circuit, during the OFF mode. We designate the

time periods when the capacitor is connected to the load as being in the OFF mode.

This will be the case when Q is low and Q is high. In this mode, the capacitor is

discharged into the load. The left hand transistor is approximated by an open circuit

and the right hand transistor is approximated by a closed circuit.

of strictly periodic switching , ON for T1, OFF for T2, ON for T1, OFF for T2, etc.. The

total switching period is T = T1 + T2. If we consider one entire switching cycle then

Equations 5.2 and 5.4 will determine the value of Vc and this is shown schematically in

Figure 5.4. In this case, the ON mode applies for a period of time T1 = DT, where D is
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the duty cycle. The OFF mode applies for a period of time T2 = (1 −D) T.

We can apply Equations 5.2 and 5.4 to obtain

V2 = Vs − (Vs − V1) · exp (−ω1 · T1) (5.5)

and

V3 = V2 · exp (−ω2 · T2) , (5.6)

which leads to

V3 = (Vs − (Vs − V1) · exp (−ω1 · T1)) · exp (−ω2 · T2) . (5.7)

Now the condition for equilibrium is δV = V3 − V1 = 0, so the equilibrium, or steady-

state voltage, for V1 is

V1 =
1 − exp (−ω1T1)

exp (−ω2T2) · exp (−ω1T1)
· Vs. (5.8)

For very small switching times, that is T1 ≪ RsC and T1 ≪ RlC and T2 ≪ RsC and

T2 ≪ RlC, Equation 5.8 reduces to

V1 =
ω1T1

ω1T1 + ω2T2
· Vs, (5.9)

which can be further reduced to

V1

Vs
=

ω1D
ω1D + ω2 (1 −D)

, (5.10)

where D is the duty cycle. It should be noted that V1 is a lower bound for Vc. Equa-

tion 5.10 shows how the steady state voltage, across the capacitor, is controlled by the

corner frequencies and by the duty cycle.

The switched capacitor is equivalent to an admittance

For general switching times, T1 and T2, the switched capacitor transfers charge in a

manner that is equivalent to an admittance of

Y =
C

T1 + T2
· 1 − exp (−ω2T2)

1 − exp (−ω1T1) · exp (−ω2T2)
. (5.11)

This result follows from calculating the total charge transferred during a switching cy-

cle and regarding the charge transferred per unit time as being equivalent to a current.
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Figure 5.4. A sketch of Vc as a function of time. This figure shows the effect of one full switching

cycle on the value of the capacitor voltage Vc. The initial voltage is V1 at time t = 0.

This climbs to a voltage V2 at time t = T1, during the ON mode. The voltage then falls

to a value of V3 at time t = T1 + T2 = T, during the OFF mode. In general, voltages

V1 and V3 do not have to be identical. The final voltage, V3, may be higher or lower

than the initial voltage V1. In general, if V3 < V1 then the medium-term average value

of Vc is getting smaller. If V3 > V1 then the medium-term average value of Vc is getting

larger. We define medium-term to refer to time intervals that are long compared with

the period of the switching cycle, T1 + T2, but short compared with the time constants

in the circuit RsC and RlC. The circuit has to be switched at a high enough speed to

make this possible, T = T1 + T2 ≪ min (RsC, RlC).

The ratio of mean current to the applied voltage, Vs, is the equivalent admittance. If

the switching times, which are large in relation to the time constants, that is T1 ≫ RsC

and T1 ≫ RlC and T2 ≫ RsC and T2 ≫ RlC, then Equation 5.11 reduces to

Y =
C

T1 + T2
. (5.12)

This last result is reported in many textbooks, including (Sedra and Smith 2004), where

R = 1/Y = T/C. If the switching is very fast, in relation to the time constants, that is

T1 ≪ RsC and T1 ≪ RlC and T2 ≪ RsC and T2 ≪ RlC, then Equation 5.11 reduces to

Y =
C

T
· ω2 (1 −D)

ω1D + ω2 (1 −D)
, (5.13)

so the equivalent admittance depends on source impedance, Rs, and the load impedance,

Rl , and on duty cycle, D, as well as capacitance C and the period of switching T =

T1 + T2.
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It may seem paradoxical that a completely lossless component, such as a capacitor, C,

behaves like a dissipative component, such as a resistor, R = 1/Y. How does the loss-

less component manage to dissipate energy? The answer to this apparent paradox is

that the switching of the capacitor induces losses in the surrounding components, Rs

and Rl .

Switching noise, or ripple

Even if the switching is very fast, there will still be a certain amount of switching noise

∆V = V2 − V1. We can use Equations 5.5, 5.6 and 5.7, to show that

∆V =
(1 − exp (−ω1T1)) · (1 − exp (−ω2T2))

1 − exp (−ω1T1) · exp (−ω2T2)
· Vs, (5.14)

which further simplifies to

∆V =
Vs

1
2 tanh( 1

2 ω1T1)
+ 1

2 tanh( 1
2 ω2T2)

. (5.15)

For the case of very small switching times, T1 and T2, this reduces to

∆V =
Vs

1
ω1T1

+ 1
ω2T2

. (5.16)

It is possible to predict how much switching noise will be observed, given various

corner frequencies and switching times.

A finite difference model for transient behaviour

We can still write δV = V3 − V1, even when the system is not in equilibrium. Using

Equation 5.7, we can write

δV = V3 − V1 = (Vs − (Vs − V1) · exp (−ω1 · T1)) · exp (−ω2 · T2) − V1, (5.17)

so a finite difference estimate for the rate of change of V1 is:

δV

δT
≈ (Vs − V1) · exp (−ω2T2) · (1 − exp (−ω1T1))− V1 · (1 − exp (−ω2T2))

T1 + T2
. (5.18)

For small values of T1 and T2, we can ignore the higher order terms in the Taylor series

to obtain
δV

δT
≈ (Vs − V1) · ω1 ·

T1

T1 + T2
− V1 · ω2 ·

T2

T1 + T2
, (5.19)
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which reduces to
∂V1

∂t
+ (Dω1 + (1 −D) ω2) · V1 ≈ Dω1Vs. (5.20)

If we define some new time averaged angular corner frequencies, of ω3 = Dω1 +

(1 −D) ω2 and ω4 = Dω1 + 0, then we obtain a much more simple ODE for the tran-

sient behaviour of the switched-mode circuit

∂V1

∂t
+ ω3 · V1 ≈ ω4Vs. (5.21)

This ODE describes the transient behaviour of V1, which is a lower bound for Vc. This

lower-bound aspect is seen in Figure 5.4. On the other hand, Equation 5.21 is based on

a finite difference approximation. This leads to an accumulation of small errors, if the

equation is integrated over a long time. This means that V1 may not remain a lower

bound for Vc, unless the initial conditions are reset at some stage. This can be seen if

we compare the solution to Equation 5.21 with the results from a detailed simulation,

as shown in Figure 5.5. It is clear that the solution to Equation 5.21 is similar to the

exact solution to within an error margin of about the size of to ripple, ∆V. If we are

prepared to accept errors of about that magnitude then we can use the estimate of V1,

from Equation 5.21, to estimate Vc.

A numerical simulation of the switched-capacitor circuit

In order to estimate the magnitudes of the errors involved in Equation 5.21, and in or-

der to check the general validity of the model, we will need to perform more detailed

and exact simulations of the process using Equations 5.2 and 5.4. The result is shown

in Figure 5.5.

The essential features, of the medium-term transient behaviour and the switching noise

can be clearly seen. The broken lines, using the symbol ×, are generated using the exact

equations of state, 5.2 and 5.4. The solid line shows the solution to Equation 5.21, which

is equivalent to the state-space time-average model of Middlebrook and Ćuk (1976). It

can be seen that the over all medium-term dynamics of the circuit are described quite

well by the state-space time-average model. Towards the end of the simulated time in-

terval, near t = 0.016 s, the circuit reaches a steady-state equilibrium condition, which

resembles the detailed balance condition, of Markov chains. There is switching noise

and the actual value of Vc varies up and down in a sawtooth fashion around the equilib-

rium value. The total amount of variation about the equilibrium voltage, ∆V is called
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Detailed Simulation of the Switched Capacitor Circuit

Figure 5.5. A detailed numerical simulation of the switched-capacitor circuit. This figure

shows the results from a direct numerical simulation of the switched-capacitor circuit.

The broken lines, using the symbol ×, were generated using the exact equations of state,

appropriate each of the two modes, ON an OFF. The solid line shows the solution to

the state-space time-average model of Middlebrook and Ćuk (1976) is shown by the

solid line. The numerical values of the parameters were D ≈ 0.6180, Rs = 1 Ω,

Rl = 15 Ω, C = 1000 µF and f = 1/ (T1 + T2) = 1 kHz. The similarities and

differences between the two functions are interesting to consider. The overall effect of

a time-average model is to retain the lower frequency components of the signals and to

discard the higher frequency components. This means that time-average models ignore

the detailed dynamics within a switching cycle.

ripple or switching noise. The state-space time-average model allows us to determine:

the general form of the transient response of the circuit (in the medium-term), the equi-

librium or steady-state values of the state-variable, and the amount of switching noise

that we will expect to observe. This can all be carried out with a lot less effort than the

complete and detailed simulation, shown in this figure. In addition, the solutions to

the state-space time-average model are often simple enough to be solved analytically,

which gives insight into the general form of the transient response for a wide range of

different parameters. This gives better insight into the behaviour of the circuit than a

large number of purely numerical simulations.
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The ODE that governs the transient response, Equation 5.21, can be used to identify

the modes of response of the switched-mode circuit. These can then be used to carry

out stability analysis. This is an important feature of the time-average model.

The time-average switched state-space model

The key insight of the time-average switched state-space approach is that if we switch a

circuit rapidly between two modes then we can create an ODE, to describe the transient

behaviour of the switched mode circuit, by forming an average of the different ODEs

that apply for each mode. We can weight Equation 5.1 by D to obtain

D ∂Vc

∂t
+Dω1Vc = Dω1Vs. (5.22)

We can weight Equation 5.3 by 1 −D to obtain

(1 −D)
∂Vc

∂t
+ (1 −D) ω2Vc = 0. (5.23)

If we add Equations 5.22 and 5.23 then we obtain

∂Vc

∂t
+ (Dω1 + (1 −D) ω2) Vc = Dω1Vs. (5.24)

This is a time weighted average of the ODEs for each of the modes and is identical

with Equation 5.21. Time-averaging is less effort, and less susceptible to error, than

the more complicated finite-difference argument. Time-averaging is widely used as a

general and unified approach for modelling switched-mode circuits (Middlebrook and

Ćuk 1976).

The time-average switched state-space approach can be used to calculate equilibrium

values for state-variables by setting ∂/∂t = 0. For the switched-capacitor circuit, Equa-

tion 5.24 leads directly to

Vc0 =
Dω1

Dω1 + (1 −D) ω2
· Vs, (5.25)

which is identical with Equation 5.9. Once again, time-averaging arrives at the same

result, but with less effort and less opportunity for error.
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If the equations are weighted in a slightly different way then it is also possible to use

a time averaged model to estimate the switching noise, or ripple, in the circuit. The

increase in voltage during the ON mode is approximately

+∆V ≈ T1 ·
∂Vc

∂t
= −ω1T1Vc + ω1T1Vs. (5.26)

The decrease in voltage during the OFF mode is approximately

−∆V ≈ T2 ·
∂Vc

∂t
= −ω2T2Vc. (5.27)

We can average Equations 5.26 and 5.27 to obtain

2∆V = (ω2T2 − ω1T1) · V1 + ω1T1Vs (5.28)

and if we combine this with the equilibrium condition of Equation 5.25 then we obtain

∆V =
Vs

1
ω1T1

+ 1
ω2T2

, (5.29)

which is identical with Equation 5.16.

In summary, The time-average switched state-space approach can be used to predict

the transient response of a switched-mode circuit, to carry out stability analysis and to

predict the amount of switching noise. The analysis is fairly easy and the results are rig-

orous. It is a widely used tool in the analysis of switched-mode circuits (Levine 1996).

5.1.2 Switched state-space and switched Markov systems

The results in the previous subsection assumed a periodic switching regime. This is

analogous to the periodic choice of Parrondo’s Games, [A, B, A, B, · · · ]. We could press

this analogy further, if we could establish a homomorphism between the two types of

system.

In Parrondo’s games, we have discrete time, m, and discrete space, n and time-varying

probability vector in phase-space, pm. The time evolution of Parrondo’s games is given

by

pm+1 = pm · [A], (5.30)
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for Game A, or

pm+1 = pm · [B], (5.31)

for Game B.

Fortunately it is possible to represent the dynamics of switched-mode systems in vec-

tor and transition-matrix formalism, by using the method of homogeneous coordi-

nates (Graustein 1930, Harrington 1987). In this system, points at infinity, with fixed

directions, are included as points with finite coordinates, within the homogeneous sys-

tem. For electrical systems it is possible to include independent voltage sources or cur-

rents into the homogeneous coordinate system. For the switched capacitor circuit, in

Figure 5.1, the fixed source voltage, Vs, appears in the state-vector. This means that the

state-vector has two coordinates

V = [Vc, Vs] . (5.32)

We can regard the coordinate with n = 1 as the voltage across the capacitor, Vc, and

the coordinate with n = 2 as the source voltage Vs. The discrete coordinate, n, must lie

in the range 1 ≤ n ≤ 2. In general finite lumped-component switched-mode circuits

have only a finite number of state-variables.

We can use Equations 5.5 and 5.6 to represent the time evolution of the switched mode

system over a sampling interval of τ. The equation for the ON mode is

[Vc (t + τ) , Vs (t + τ)] = [Vc (t) , Vs (t)] ·
[

exp (−ω1τ) 0

1 − exp (−ω1τ) 1

]

, (5.33)

which can be written more concisely as

Vm+1 = Vm · B, (5.34)

where Vm+1 is the state-vector at discrete time m + 1, Vm is the state-vector at discrete

time m and B is the state transition matrix, for the ON mode. In a similar fashion we

can write the equation for the OFF mode as

[Vc (t + τ) , Vs (t + τ)] = [Vc (t) , Vs (t)] ·
[

exp (−ω2τ) 0

0 1

]

, (5.35)

which can be written more concisely as

Vm+1 = Vm · B, (5.36)
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where Vm+1 is the state-vector at discrete time m + 1, Vm is the state-vector at discrete

time m and A is the state transition matrix, for the OFF mode.

Written in this form, the time evolution for the switched mode circuit has the same

form as the time evolution of a sequence of Parrondo’s games. If we turn the field

of a Brownian ratchet on and off in a certain pattern, say [OFF, ON, ON, OFF, ON],

then this will correspond to a sequence of Markov transition matrices, [A, B, B, A, B],

and the effect of this sequence of matrices on the time varying probability vector is the

same as an equivalent matrix, C = ABBAB. In a similar way we can choose Q and Q

in such a way that the switched capacitor circuit has a certain sequence of modes, say

[OFF, ON, ON, OFF, ON]. The effect of this sequence, on the state vector, will corre-

spond to sequence of transition matrices , [A, B, B, A, B], and the effect of this sequence

of transition matrices on the state vector, V, is the same as one equivalent transition

matrix, C = ABBAB.

The time-average switched state-space model takes a particularly simple form, if ma-

trix notation is used. We can represent the average effect of the various modes on the

state-vector by using a time-average transition matrix. We have

Vm+1 = Vm · C, (5.37)

where

C = DB + (1 −D) A (5.38)

and if we define the compliment of the duty cycle as γ = 1 −D then we can write

C = γA + (1 − γ) B, (5.39)

which has exactly the form required for the time-average form of Parrondo’s games.

It is interesting to note that a duty-cycle is the fraction of time, for which a system is in

the ON mode. For historical reasons, Parrondo’s games are parametrised in terms of

a factor, γ, which corresponds to the fraction of the time, for which Game A is played

and this corresponds to the fraction of time, for which the field of the Brownian ratchet

is turned off. The selection parameter, γ, is effectively a complementary duty cycle,

γ ≡ 1 −D.
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In summary, it can be seen that the time evolution of switched state-space and switched

Markov systems have the same form, if we choose to use appropriate notation.

5.1.3 Fractals in the phase-space of switched-mode circuits

We defer the question of what we might mean by return, or gain or loss until later.

The issue that we address here is that of geometry in phase space. Parrondo’s games

generate a fractal set in phase-space. We show that it is possible for the switched ca-

pacitor circuit to generate a fractal set in phase space. It is fairly easy to show this

by construction. We can, for example consider special cases of the transition ma-

trices described in Equations 5.33 and 5.35. A very simple case is the one where

exp (−ω1τ) = exp (−ω2τ) = 1/3. This would require us to choose Rs = Rl = 1

and to choose τ = ln(3)RC, but these are not difficult constraints and we could build

a practical circuit to do this. Under these constraints, the transition matrices reduce to

B =

[

1/3 0

2/3 1

]

(5.40)

and

A =

[

1/3 0

0 1

]

. (5.41)

If we perform a change of variable on Vc The the effects of these transitions can be more

clearly shown.

If we choose x = Vc/Vs − 1/2 and denote the value of x at discrete time m as xm then

we can write
(

+
1

2
− xm+1

)

=
1

3
·
(

+
1

2
− xm

)

(5.42)

for time intervals with the ON state and
(

−1

2
− xm+1

)

=
1

3
·
(

−1

2
− xm

)

. (5.43)

If these transformations are chosen at random then they form an Iterated Function

System (IFS) and they are known to generate the Cantor set (Barnsley 1988). This

means that it would be possible to generate a fractal, the Cantor set, in the phase space

for the capacitor of the switched capacitor circuit by selecting ON and OFF modes at

random. This is simulated in Figure 5.6.
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Figure 5.6. A histogram of the scaled voltage, x = Vc/Vs − 1/2. The process in Equations 5.42

and 5.43 is simulated in GNU Octave 2.9. The number of points in the sample is Ns =

217 = 131, 072 and the number of bins in the histogram process is Nb = 362 ≈ √
Ns.

The resolution of the x-axis is 1/Ns ≈ 0.028. This is the relative error in the x-axis.

Using a Poisson approximation for the number of samples in each bin, the relative

error between the number of samples in a bin, xB, and the expected value E [xB], is

σB/µB = 1/
√

NB ≈ 1/19.026 ≈ 0.053. This is the relative error in the y-axis. The

resemblance to the Cantor set in Barnsley (1988) is clear but not exact. Unfortunately,

the Cantor set is a fractal and has detail at all levels of scale. This means that no

finite representation on the page can ever represent it completely. A simulation, and

histogram, does not prove the results of Barnsley (1988), but it is an indication that

the argument is plausible.

The process in Equations 5.42 and 5.43 could be realised in a physical circuit by driving

the switching elements using a Pseudo Random Binary Sequence (PRBS), which could

be generated using a shift register and some XOR gates. This is described in the text-

books (Horowitz and Hill 1991) and (Proakis and Manolakis 1992), for example.

We have shown that vectors can be used to represent the present condition or state

of an electrical system and that the time evolution of this state can be represented us-

ing a transition matrix. This type of model is called a state-space model and is quite
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general. State-space models can be used to represent a wide variety of different elec-

trical systems. This is covered in quite a wide range of references and texts, includ-

ing (DeRusso et al. 1965, Pierre 1986, Stengel 1986, Levine 1996, Dorf and Bishop 1998,

Karnopp et al. 2000). It should also be clear that state-space models are appropriate for

a variety of different types of system, including translational-mechanical, rotational-

mechanical mechatronic and hydraulic, as well as electrical (Karnopp et al. 2000).

5.1.4 The limiting case of fast switching as τ → 0

We consider the case where the switching is very fast, so τ is much less than the time

constants in the circuit, τ ≪ RsC and τ ≪ RlC. We can use Equation 5.25 to calculate

the equilibrium or steady state value of the capacitor voltage, Vc0. Suppose that instead

of using a periodic switching function, the mode is chosen at random with a probability

of γ = 1 − D for the OFF mode, and 1 − γ = D for the ON mode. We can employ

Equations 5.5 and 5.6 to show that the changes in Vc, associated with each of the two

modes. for finite time-steps, are as follows:

ON: The capacitor voltage increases:

∆Vc = (1 − exp (−ω1τ)) · (−Vc + Vs) . (5.44)

OFF: The capacitor voltage decreases:

∆Vc = − exp (−ω2τ) · Vc. (5.45)

This means that Vc undergoes a random walk, but it is not uniform, like the Bernoulli

process, because the changes in Vc are functions of Vc. In the limiting case of fast

switching, as τ approaches zero, this will lead to an equation that has a differential

aspect and a stochastic aspect. It will be a Stochastic Differential Equation (SDE). A

direct simulation of Equations 5.44 and 5.45 is shown in Figure 5.7. This shows a case

where τ ≈ 5 µs, which is small compared with the time constants but is still finite. The

output from this circuit gives some qualitative insight into the type of output that we

can expect from a randomly switched switched-capacitor circuit.

In the case of Parrondo’s games, by choosing operators, A or B, at random, the the

discrete spatial state, n, undergoes a random walk that is similar to the Bernoulli pro-

cess. If we switch modes of a switched-mode circuit at random then the value of the
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Figure 5.7. The output from a switched-capacitor circuit. If the switched-capacitor is switched

very quickly and the modes of OFF or ON are chosen at random then the voltage across

the capacitor is not constant. It follows a stochastic process. The equilibrium voltage

across the capacitor is Vc0 and is shown by the horizontal line. The actual voltage across

the capacitor at any given instant of time is Vc and is shown as a set of calculated points.

The fluctuations, due to switching, can easily be seen. The capacitor voltage is a unique

valued function of time, Vc (t), but it is a very rapidly varying function of time. It may

assume many values within a short time interval, ∆T. It is not clear whether certain

limits will exist. For example, it is not clear whether Vc (t) is rectifiable. Here, Vc is

a generalised function and needs to be handled according to certain special rules, that

differ from the rules for ordinary real functions.

state variable, Vc, also undergoes a random walk that is similar to the Bernoulli pro-

cess. The process differs from a Bernoulli process because the size of the steps depends

on the value of the state variable. In the Bernoulli process, the steps are uniform in size.

The time average for Equations 5.44 and 5.45 is

∆Vc ≈ (D · (Vs − Vc) · ω1 − (1 −D) · Vc · ω2) · ∆t. (5.46)

This is the time-average model for the stochastically-switched case. It is analogous

to Equation 5.24, which applies to the periodically switched case. Equation 5.46 does

accurately represent the medium-term dynamics of the randomly switched system but
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the equation is incomplete because it does not represent fluctuations, due to the ran-

dom switching.

The process, shown in Figure 5.7 is a non-uniform random walk, where the step lengths

are functions of the state variable. Analysis would be easier if we could represent this

by a more uniform, infinitely-divisible process, such as Brownian Motion, Bt. In order

to complete this model, we need to match up the moments of the non-uniform random

walk with the moments of a scaled version of Brownian motion. If we evaluate Brow-

nian motion at time, t, then the result is a Gaussian random variable with mean, µ = 0,

and variance, σ2 = t. This is the key to deriving equivalent expressions for µ and σ.

If the important parameters of the process do not vary significantly during the switch-

ing time, τ, then we can regard the non-uniform random walk as quasi-uniform and

we can apply the earlier results for a Bernoulli process with asymmetric rewards,

called Taleb’s game. In particular, the variance for Taleb’s game is given by σ2 (m) =

q · (1 − q) · (R1 − R2)
2 · m, where q is the probability of a win, and 1 − q is the proba-

bility of a loss, and R1 is the reward in the case of a win and R2 is the reward in the

case of a loss. Using this result in the present context, and re-writing the notation, we

obtain

σ2 = D · (1 −D) · ((Vs − Vc) · ω1 + Vc · ω2)
2 · τ2. (5.47)

We consider the case as τ approaches zero, but has not yet reached zero, and obtain a

Stochastic Differential Equation (SDE) which approximately represents the dynamics

of the circuit,

dVc = µ (Vc, t) dt + σ (Vc, t) dBt, (5.48)

where dBt is an infinitesimal increment of Brownian motion, dt is an infinitesimal in-

crement of time, and dVc is a corresponding infinitesimal increment of Vc. This model

is an idealisation of the full simulation, shown in Figure 5.7, in a similar sense to the

time-average model shown in Figure 5.5. The solutions will differ in detail but they

have the same measure. The explicit equations for µ and σ are are:

µ (Vc, t) = D · (Vs − Vc) · ω1 − (1 −D) · Vc · ω2 (5.49)

and

σ (Vc, t) =
√

D · (1 −D) · |(Vs − Vc) · ω1 + Vc · ω2| · τ. (5.50)
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5.1 Switched-mode circuits and switched Markov systems

We can use the Euler approach to the integration of Equation 5.48 to obtain a finite

difference equation that is suitable for computer simulation, SDE for the switched-

mode circuit

∆Vc = (D · (Vs − Vc) · ω1 − (1 −D) · Vc · ω2) · ∆t

+
√

D · (1 −D) · |(Vs − Vc) · ω1 + Vc · ω2| · τ · Nt, (5.51)

where Nt is a Gaussian random variable with zero mean and unit variance. An indica-

tion of the similarity of the solutions is shown in a direct evaluation of Equation 5.51 in

Figure 5.8. This is qualitatively similar to Figure 5.7, but differs in detail, because both

processes are stochastic.
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Figure 5.8. The result from an SDE model for a switched capacitor circuit. In this model,

the dichotomous noise from the switching between states ON and OFF is replaced by a

continuous Gaussian process, having the same mean and variance. This is reasonable,

since the Central Limit Theorem (CLT) implies that the random variation will converge

to a Gaussian random variable, in the case where we combine a very large number of

bounded and independent increments. This demonstration indicates that it is reasonable

to use Stochastic Differential Equations (SDEs) to model the dynamics and noise of a

switched-mode circuit. This is similar to the way in which the time-average model uses

an Ordinary Differential Equation (ODE) to model the medium-term dynamics of a

switched-mode circuit, without the fluctuations.

The sample paths in Figures 5.7 and 5.8 suggest that the use of an SDE model might

be reasonable, but this is far from a proof. It would be desirable to show that the
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solutions from Equations 5.44 and 5.45 are equivalent, in measure, to the solution of

Equation 5.48. The mean value is not a difficult issue, since it is already addressed

in the time-average model of Middlebrook and Ćuk (1976). The noise term is more

complicated to evaluate, and needs at least some verification. Equation 5.50 predicts

the value of the variance, σ2 that we should observe for different choices of switching

time, τ. This can be tested against a direct simulation, using Equations 5.44 and 5.45.

We have to regard the switching time τ as being small in relation to the time constants

in the circuit, but still finite.

In Figure 5.9, Equations 5.44 and 5.45 are used to simulate the behaviour of the cir-

cuit for a variety of switching times, τ and switching frequencies, f = 1/ (2τ). The

value of f can be controlled, within the simulation. Each simulation covers a period

of ns = 216 = 65536 time ticks. so the period of time for each simulation is 216 · τ.

A range of values for f is chosen over three decades, from 105 Hz to 108 Hz. These

switching times are all much faster than the time constants in the circuit. The variance,

σ2 can be estimated using the standard formula from statistics, as realised in GNU Oc-

tave v2.9. These are the simulation points, plotted using the symbol ×, in Figure 5.9.

Equation 5.50 predicts that the value of σ2 should follow a scaling law of

σ2 =
1

4
D · (1 −D) · ((Vs − Vc) · ω1 + Vc · ω2)

2 · f−2, (5.52)

which is shown as the solid line in the figure. The agreement is very close, showing

that the variance, of Vc, as measured from simulations using Equations 5.44 and 5.45,

is accurately modelled by Equation 5.50. It is important to note that the straight line is

not a least-squares fit to the results from the simulations. The straight line is the pre-

diction of a model. The points are the results from simulations. The correspondence of

the two results indicates that the model for the variance is accurate over a wide range

of different time scales.

We conclude that the medium term dynamics of the circuit, including transient be-

haviour and noise, can be modelled using an SDE, in Equation 5.48, where the mean

rate of change is given by Equation 5.49 and the standard deviation is given by Equa-

tion 5.50.

It is possible to control a switched-mode circuit without a sophisticated control law.

We can select the modes at random, and the average voltage would be determined by
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Figure 5.9. The scaling of variance with switching frequency. Equations 5.44 and 5.45 are

used to simulate the behaviour of the circuit for a variety of switching times, τ and

switching frequencies, f = 1/ (2τ). The variance is estimated empirically and plotted

using the symbol, ×. Equation 5.50 predicts that a value of σ2, which should follow a

scaling law, of O
(

f−2
)

, which is shown in the solid line in the figure. The agreement is

very close, showing that the variance can be estimated using Equation 5.50, with good

accuracy. The straight line is not a least-squares fit to the results from the simulations.

The straight line is the prediction of the model, represented by Equation 5.50. The

medium terms dynamics of the circuit, including transient behaviour and noise, can be

modelled using an SDE in Equation 5.48.

the probabilities of the various modes, D and (1 −D). A cost of this approach is that

the state-variable is subject to more variation than would be the case for a periodic

switching rule, but this can be overcome by switching the circuit more rapidly, making

τ very small.

Summary of the switched capacitor circuit

We have shown that a switched-mode circuit can be represented using a switched state-

space model. We have shown that one particular switched-mode circuit can be repre-

sented using a time-average switched state-space model, although result is quite gen-

eral. It can be used to represent any switched mode circuit, where the circuit is linear
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in each mode (Middlebrook and Ćuk 1976, Levine 1996).

If switching always occurs at integral multiples of a switching time, τ, then the time-

evolution for a switched-mode circuit and a particular switched-Markov system, Par-

rondo’s games have the same mathematical form. Equilibrium, steady-state voltages,

for the switched-mode circuit, can be calculated using a time-average switched state-

space model. This is similar to the calculation of the equilibrium, steady-state proba-

bilities, for Parrondo’s games, using a time-average game.

We have shown that there are fractals in the phase-space of the switched capacitor cir-

cuit29. This is similar to the result for fractals in the phase-space of Parrondo’s games.

Finally, just as Parrondo’s games can be derived by sampling a Fokker-Planck equation

or a Langevin equation, it is possible to work backwards from Parrondo’s games to an

equivalent Langevin equation, as long as the first two moments are matched up. The

same procedure is possible for the switched-mode circuit. The discrete equations for

the two modes, Equations 5.44 and 5.45, can be used to derive an equivalent SDE for

the dynamics and the fluctuations of the process, Equation 5.48.

Switched-mode circuits and switched-Markov systems can both be modelled using the

one formalism, of the switched state-space model. This gives rise to a number of sim-

ilarities in the two types of system. Given these common features, it is natural to ask

whether it is possible to construct a version of Parrondo’s paradox for switched-mode

dynamical systems. In Parrondo’s games, this involves changes in the rates of change

of the expected value of discrete-position, E [n]. For dynamical systems this may not

make very much sense because the state-variable for n = 1 may be a voltage and the

state-variable for n = 2 might be a current or even a fixed source, such as Vs, for the

switched capacitor circuit. Looking at changes in the value of n does not have the same

meaning for dynamical systems as it does for Parrondo’s games. As we shall see, it is

possible to construct a situation that is similar to Parrondo’s paradox by looking at

rates of change in stored internal energy of the system.

29The process is described in Equations 5.42 and 5.43 and illustrated in Figure 5.6, and reproduces

results in Barnsley (1988).
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5.2 A Parrondo effect for a switched-mode circuit

The starting point for this enquiry is Parrondo’s games. The work presented here is the

continuation of earlier papers (Allison and Abbott 2000b, Allison and Abbott 1999, Alli-

son and Abbott 2000a, Allison and Abbott 2001). We show that it is possible to combine

two losing games to create a new process, which is winning. We extend the apparent

paradox of Parrondo’s games to the case of a real physical system, obeying the laws

of conservation of energy and charge. The flow of reward in Parrondo’s games is re-

placed with a flow of energy in a physical circuit.

In Parrondo’s games, a set of games, and associated rules, are said to be winning if the

expected value of the capital as a function of time, E [x(t)], is increasing, ∂
∂t E[x(t)] > 0.

In the winning case of Parrondo’s games, there is an accumulation of capital. A dy-

namical system is said to be stable, in the sense of Lyapunov, if the expected value

of the stored energy in the system E [U(t)], is decreasing in time, ∂
∂t E [U(t)] < 0, or

alternatively E
[

U̇
]

< 0. The stored energy in the system can serve as a Lyapunov

function (Stengel 1986, Levine 1996). In an unstable dynamical system, there is an ac-

cumulation of stored energy.

The properties of winning and losing, can be investigated by studying the geometric and

topological properties of certain sets within the parameter space of the system. If we

visualise Parrondo’s games appropriately then it is apparent that boundary between

the winning and losing regions of the parameter space is not planar. The winning and

losing regions are not convex, as was suggested by Moraal (2000b). This is considered

further by Harmer et al. (2001). Costa et al. (2005) have used arguments of this type to

suggest that Parrondo’s paradox is ubiquitous.

The analogous result for a switched-mode device is that it is possible to combine two

unstable systems together to achieve a stable result. This is feasible because the unsta-

ble region is not convex.

The analogy between Parrondo’s games and switched-mode systems can be made

more rigorous if we consider the mathematical structures that they have in common:
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• The macroscopic state of each system at each moment of time can be completely

described by a state vector, Xm.

• The time evolution of both systems is governed by an indefinite sequence of

randomly selected transition operators:

Xm+1 = Xm · Am (5.53)

where Am is the transition operator that applied at discrete time m.

• We can classify the responses of the systems in terms of asymptotic rates of flow

of conserved quantities. In the case of a switched-mode system, we can consider

power, E
[

U̇
]

= E
[

∂
∂tU
]

= ∂
∂t E [U], as a flow of internal stored energy, U. If

the mean rate of flow is always inwards, without bound, then system will ac-

cumulate an indefinite amount of energy and must be unstable. In the case of

Parrondo’s games, we must consider the flow of reward to determine whether

the games are winning or losing. If the flow of reward is away from the player,

without bound, then the game is losing.

• The effect of selection at random is to generate a new time-averaged system,

which will be governed by a linear convex combination of the original transition

operators (Middlebrook and Ćuk 1976).

• The rate of flow associated with the time-averaged system is generally not the

same as the time average of the flows associated with the original transition op-

erators. The rate of flow is a non-linear function of the transition operators.

The losing region of the parameter space for Parrondo’s games is not convex. We show

that it is possible to construct a switched-mode system, which has a non-convex unsta-

ble region in its parameter space. For the sake of simplicity, we limit the system to one

free real parameter, which is a loop gain, K. The main body of this section contains five

key subsections:

1. the construction of a simple switched-mode system with a non-convex unstable

region in the parameter space

2. the formulation of this system in terms of a state vector Xt and two transition

operators A1 and A2
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3. the determination of the internal stored energy as a quadratic function of the

state vector:

U = XT PX (5.54)

for some positive definite matrix P. This energy function can be used as a Lya-

punov function.

4. the proof of instability of processes governed by the original pure transition op-

erators A1 and A2

5. the proof of stability, with probability one, of processes governed by a randomly

selected mixed sequence of transition operators A1 and A2.

This shows that the Parrondo effect applies, with rigour, to at least one real switched-

mode electronic system.

Simulations indicate that the particular system, which we constructed has further in-

teresting properties. We show the key results from the simulations and speculate about

some interesting open questions, which (we believe) are worthy of future investigation.

5.2.1 Construction of a simple switched-mode system

Our immediate aim is to design a system in the Laplace, or s, domain that has a non-

convex unstable region in the parameter space. We achieve this by constructing a sys-

tem with a disjoint unstable region in the parameter space. For simplicity, we choose a

parameter space with a single free variable, a loop gain: K ∈ R.

If a linear system, or plant, is placed inside a feedback control loop then a new system,

with new properties, is created. A possible system topology is shown in Figure 5.10.

We can write the equations for this system as:

F(s)−1 = G(s)−1 + K · H(s) (5.55)

where G(s) is called the open loop transfer function and F(s) is called the closed loop

transfer function. The loop gain, K, is a free parameter and H(s) is the transfer function
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Figure 5.10. General plan of a second-order system with one feedback loop. The inputs to

the system at the left are denoted by U(s). The output from the differencing amplifier,

V1, is called an error signal. This is fed through a plant, which is represented as two

single poles. The variables V2(s) and V3(s) are the state variables for this system.

The feedback path takes a copy of V3(s), filters it, and then feeds the result, V4(s)

into the differencing amplifier. Superficial consideration of the circuit might lead one

to suspect that V4(s) should be a state variable but closer analysis reveals that this is

not so.

of the return path. For this particular system, we have

G(s) =
(ω0)

2

(

s + 1
2ω0

)2
(5.56)

and

H(s) = K ·
(

−2
s

ω0
+ 1

)

. (5.57)

It is customary to analyse the stability of closed loop systems in terms of the poles of

the closed-loop transfer function, F(s), which are the zeros of F(s)−1. These poles will

generally move about in the complex plane in response to changes in the loop gain, K.

A graph of the positions of the poles, as a function of gain, is called a root locus plot

and is shown in Figure 5.11. Some choices of gain may cause one, or more, of the poles

to move into the unstable region, on the right hand side of the s-plane, which would

mean that the closed loop system would then be unstable. This is the basis of the

Routh-Hurwitz criterion (Levine 1996). In general, there will be stable and unstable

values for the gain, K.

In this case, we can think of the neutral position of the system as being the case where

K = 0 and there are repeated poles at s = − 1
2ω0. The system is stable in the neutral

position. The general positions of the poles are given by the roots of the characteristic

equation:

F(s)−1 =

(

s

ω0

)2

+ (1 − 2K)

(

s

ω0

)

+

(

1

4
+ K

)

= 0. (5.58)
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K s1/ω0 s2/ω0 Routh-Hurwitz stability

K → −∞ 2K − 3/2 +1/2 unstable

−1 −3/2 −
√

3 −3/2 +
√

3 unstable

−1/4 −3/2 0 marginal

0 −1/2 −1/2 stable

+1/2 −j
√

3/2 +j
√

3/2 marginal

+1 +1/2 − j +1/2 + j unstable

+2 +3/2 +3/2 unstable

K → +∞ +1/2 2K − 3/2 unstable

Table 5.1. Some values for the poles, s1 and s2, as functions of the loop gain K. The regions

of stability and instability of the plant are indicated in the final column of the table.

The stable range of values for K is
(

− 1
4 < K < + 1

2

)

. All other values are unstable or

marginally stable. The stable region is convex. The unstable region is not convex. The

loci of these poles, s1 and s2, as functions of the loop gain K, are shown graphically in

Figure 5.11.

Fortunately this is a quadratic function of s and we can readily calculate the loci of the

roots:

s = ω0 ·
((

K − 1

2

)

±
√

K · (K − 2)

)

. (5.59)

The loci of these roots of the characteristic equation, in the s-plane, are shown on the

root locus plot of Figure 5.11. Some particular values of K have special interest. For

K = −1 we get closed loop poles at s = ω0(− 3
2 ±

√
3). The pole at s = ω0(− 3

2 +
√

3) is

a positive real number and gives rise to the exponentially increasing response shown

in Figure 5.15. For K = +1 we get closed loop poles at s = ω0(
1
2 ± j), which have

positive real parts and give rise to the exponentially increasing oscillations shown in

Figure 5.16.

There is a range of stable values for K surrounded by two unstable ranges. Analysis

of Equation 5.59 reveals that the stable range of values for K is
(

− 1
4 < K < + 1

2

)

. The

other intervals,
(

−∞ < K < − 1
4

)

and
(

+ 1
2 < K < +∞

)

are associated with unstable

values of K. Some of the critical values for K are shown in Table 5.1 and the locus of

the poles, in the complex plane, is shown graphically in Figure 5.11.
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The unstable region, within the parameter space for K, is composed of two disjoint

open intervals and is not convex. Our choice for G(s) was guided by the need to de-

velop a second order system with an appropriate root locus and a non-convex unstable

region in the parameter space for the loop gain K.

Figure 5.11. Root locus plot for a second order system. The poles, in the s-plane, for particular

values of K are represented by crosses. The direction of movement of the poles, with

increasing K, within the locus, is indicated by the arrows. The radius of the circle

is ω0. The neutral position for the plant corresponds to a pair of repeated poles at

s = − 1
2 ω0. Some of the critical values for the loop gain K and the associated poles,

s1 and s2, are listed in Table 5.1.

It is possible to think of this plant30, with variable gain, K, as a switched-mode system.

We can think of the system with K = −1 as being unstable plant number 1. We can

think of the system with K = +1 as being unstable plant number 2. The mean value

of these two values of gain would be K = 0, which corresponds to the neutral system,

which is stable. We could switch rapidly between the two unstable control systems and

we might expect that the result would be a stable control system that somehow corre-

sponds to the neutral system.

We proceed to re-formulate this switched-mode system in state space and to derive

the necessary mathematical machinery to establish that the switched system actually

30In the terminology of control theory a plant is the combination of a process and an actuator. The word

plant is used more generally, by control engineers , to refer to a whole system. The etymology of the

term derives from the idea of a manufacturing plant, such as a chemical refinery or a rolling mill.
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is stable.

5.2.2 A switched state-space formulation

We formulate the system in terms of a state vector Xt and two transition operators A1

and A2. The choice of state variables is not unique. The strategy used here is to imagine

the system G(s) as being constructed of two function blocks in series:

G(s) =





+ω0
(

s + 1
2ω0

)



 ·




+ω0
(

s + 1
2ω0

)



 . (5.60)

The variables, {V1, V2, V3, V4} are the voltages at the outputs of the various function

blocks shown in Figure 5.10. Analysis reveals that only voltages V2 and V3 are needed

to store the internal state of the system. All other variables can be written as linear

combinations of these state variables. The state variables {V2, V3} constitute a set of

generalised coordinates for the system.

We can analyse the system using signal flow concepts that lead to a state-space model

for the whole closed-loop system:

Ẋ = AX + Bu (5.61)

where X is the state vector, A is the transition matrix, B is an input vector and u is

an input voltage, shown in Figure 5.10. Equation 5.61 in known in the literature as a

state-space model. This is described in quite a wide range of references (DeRusso et al.

1965, Pierre 1986, Stengel 1986, Levine 1996, Dorf and Bishop 1998, Karnopp et al. 2000).

The state vector is composed of two state variables:

X =

[

V2

V3

]

. (5.62)

The transition matrix defines the way that the system evolves over time,

A = ω0 ·




(

+2K − 1
2

)

−2K

+1 − 1
2



 . (5.63)
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We can consider the matrix, A, to be a linear function of a single real scalar vari-

able, K. We can denote this as A = A(K). The function is linear, so A(K1 + K2) =

A(K1) + A(K2).

The input vector is:

B =

[

+1

0

]

(5.64)

and the input voltage is u(t). If we are only interested in the asymptotic stability of

the system then can consider u(t) to be be simply a Dirac delta function, u(t) = δ(t).

Alternatively, we could choose u(t) = 0 and select initial conditions, X = X0 at time,

t = 0. This approach leads to a homogeneous equation in time:

Ẋ = AX. (5.65)

All the simulations presented in this section are for the homogeneous system described

in Equation 5.65, with non-zero initial conditions X = X0.

We can make use of the two special values for A corresponding to the two special val-

ues of K discussed earlier, K1 = −1 and K2 = +1. We can define: A1 = A(K1) and

A2 = A(K2). We can also define the state transition matrix corresponding to the neu-

tral position as A0 = A(0). We note that A0 is the average of A1 and A2, and therefore

A0 = 1
2(A1 + A2). This follows from the fact that A(K) is a linear function of K.

We can now imagine an inhomogeneous process where we switch at random with

equal probability between the two systems defined by transition matrices A1 and A2

at regular time intervals, ∆T. The time evolution of such a system can be simulated

using a discrete time model:

Xt+∆T = exp (At · ∆T) Xt, (5.66)

where exp (At · ∆T) is the matrix exponential function applied to the matrix At · ∆T.

Equation 5.66 is an exact solution to the homogeneous ordinary differential equations

governing the plant, over the time interval, ∆T (Dorf and Bishop 1998). We can join

many of these exact solutions together, to simulate the exact solution of the switched

system. It is worth noting the relationships between Equation 5.66 and Equation 5.53.
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The matrix exponential function can be evaluated numerically, using power series, or

algebraically, using Laplace transform techniques.

The symbol At really refers to A (K (t)), since A only varies, in time, because K varies,

in time. In this sense, we now consider A to be a function of t although it only takes

one of two values. The symbol At represents the transition operator that applies at

time t, which will either be A1 or A2.

The stability of this stochastic inhomogeneous system cannot be analysed using linear

techniques, like the Routh-Hurwitz criterion. The system is no longer strictly linear

because of the multiplicative operation, introduced by the switching. A different, ap-

proach must be used. We proceed to use Lyapunov’s second, or direct method, to

analyse this problem.

5.2.3 Internal stored energy

It is not possible to determine the amount of stored energy in a system, without some

reference to the scale of the system. We could be modelling a large national energy

grid, delivering many megawatts of power; or a microscopic MEMS system, dissipat-

ing micro-watts of power. Both systems could have the same description in the Laplace

domain.

Even given an indication of scale, it is possible for several different physical circuits to

have the same description, in the Laplace domain. The synthesis of physical circuit, to

match a mathematical model, is not unique. What we provide here is a single possible

physical implementation for G(s) and H(s) and show that it is possible to represent

the stored energy, in this implementation, as a quadratic function of the state variables,

V2 and V3.

One possible physical implementation of the system

There are well established techniques for synthesising physical circuits in the Laplace

domain. The standard design problem is to design a physical circuit that has a transfer

function, which closely approximates a given, or required, transfer function. This is

often achieved using operational amplifiers (Peyton and Walsh 1993, Sedra and Smith

2004). The open-loop system, or plant, given in Equation 5.56, can be constructed
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by placing two function blocks, each with a single real pole, in cascade. A circuit to

achieve this is shown in Figure 5.12. This circuit will synthesise G(s), provided that

Figure 5.12. A model for the open-loop transfer function, G(s). This operational amplifier

circuit implements two single, and identical, real poles by cascading two circuits in

series. The required transfer function is produced as long as we satisfy the constraints,

ω0/2 = 1/(R2C1) = 1/(R4C2) and R2/R1 = R4/R3 = 2.

certain constraints are met. The poles will be located at the correct angular frequencies

if we require that ω0/2 = 1/(R2C1) = 1/(R4C2). The circuit will have the correct

low-frequency, or steady-state, gain if we choose our components in such a way that

R2/R1 = R4/R3 = 2. Simulations and experience show that this circuit is practical.

The stored energy in this part of the circuit has two components: U1 = 1
2C1V2

2 and

U2 = 1
2C2V3

2.

The feedback transfer function, H(s), described in Equation 5.57 is more difficult to

synthesise, because it requires differentiation. Peyton and Walsh (1993) points out that

there are practical issues with differentiation:

• Differentiators tend to accentuate the higher frequency components of the noise

in a signal.

• Differentiators can have stability issues at DC, as frequency tends towards zero.

• The presence of parasitic resistance at the input, and parasitic capacitance in

the feedback path, add additional poles to the circuit. This limits performance

at high frequency and may create stability issues if a differentiator is used as a

sub-system in a feedback control system.
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• All operational amplifiers have finite gain. Most practical operational ampli-

fiers are internally compensated, which has the effect of adding another low-

frequency pole to the system. These effects limit performance at high frequency.

These issues can be managed, with careful design, but it must be noted that we only

approximate the correct transfer function within a range of frequencies. Simulations

show that the circuit, in Figure 5.13, can be made to work well over the audio range of

frequencies. Detailed formulae for the limits of performance are given in (Peyton and

Walsh 1993). If we choose R8 = R9 and R6C3 = 2/ω0 then the transfer function of the

Figure 5.13. A model for the feedback transfer function, G(s). The feedback circuit is es-

sentially a simplified version of a Proportional, Integral and Derivative (PID) circuit.

In this case we are simply implementing the proportional and derivative parts of the

circuit, using operational amplifiers. At first sight, one might think that the capacitor,

C3, would be an additional energy storage element, which could affect the stability

of the system. More detailed analysis shows that C3 affects the value, but not the

general form of the Lyapunov function.

circuit, in Figure 5.13, is

V4(s)

V3(s)
= −

(

1 − s
1
2ω0

)

, (5.67)

which is of the same general form as Equation 5.57. The change of sign between Equa-

tion 5.67 and Equation 5.57 can be accommodated in the design of the summing am-

plifier that will be used to complete the feedback loop.

The feedback path contains one energy storage element, C3, which has stored energy

of U3 = 1
2 C3V3

2. The summing and differencing amplifiers contain no energy storage
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Chapter 5 switched-mode circuits and switched Markov systems

elements so they do not contribute to the net stored energy. This means that the total

stored energy of this implementation of the system is:

U = U1 + U2 + U3 (5.68)

=
1

2
C1V2

2 +
1

2
(C2 + C3) V3

2, (5.69)

which is a quadratic function of the state variables, V2 and V3. This supports our earlier

claim that these state variables are sufficient to describe the system. Other voltages,

such as V1, are only linear combinations of the state variables. They may appear in our

output equations but are not needed in the equations of state transition.

In order to simplify the notation, in the next section, we can define a matrix with ca-

pacitance elements:

C =

[

C11 C12

C21 C22

]

=

[

C1 0

0 C2 + C3

]

. (5.70)

This allows us to represent stored energy U, using a convenient matrix notation.

Energy and power matrices

We can represent the internal stored energy of the system as a quadratic function of the

state vector, X. Using notation from Levine (1996), we can define the internal stored

energy as:

U = XTPX (5.71)

where X is the state vector and P is a positive-definite matrix, called an energy matrix.

If we differentiate the stored energy along the trajectories of the system, as defined by

Equation 5.65, then we get:

U̇ = XTQX (5.72)

where

ATP + PA = −Q (5.73)

and Equation 5.73, is called the Lyapunov equation. The choices of P and Q are related

through the Lyapunov equation but we are free to choose one of them.

In order to construct a workable Lyapunov function, we use stored energy in the entire

circuit, in Equation 5.68. We use the definitions in Equation 5.70, to obtain:

P =

[

1
2C11 0

0 1
2C22

]

. (5.74)
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5.2 A Parrondo effect for a switched-mode circuit

If we use Equation 5.73 to solve for the power matrix, Q, then we obtain:

Q = ω0 ·
[

1
2C11 − 2KC11 KC11 − 1

2C22

KC11 − 1
2 C22

1
2C22

]

. (5.75)

We require this matrix to be positive definite for some range of values of K. We can

establish when the matrix is positive definite by evaluating all the top left hand minor

determinants of Q. We get: ∆1 = C11

(

1
2 − 2K

)

and ∆2 = 1
4C22 (C11 − C22) − K2 (C11)

2.

We can obtain the largest admissible range of values for K if we choose C11 = 2C and

C22 = C for some standard capacitance C. This gives an admissible range of values of

K as

−1

4
< K < +

1

4
. (5.76)

We can use this Lyapunov function to establish that the system is stable when K is in

the admissible range. Since the un-switched system is linear, we can actually calculate

a larger range of values, for which the un-switched system is stable, using the Routh-

Hurwitz criterion: − 1
4 < K < + 1

2 . This is larger than the admissible range for the

present Lyapunov function, which we can only use when − 1
4 < K < + 1

4 . We know

that the present Lyapunov function is adequate in the smaller range. We also know

that the un-switched system would also be stable for values of K in this smaller range.

We can think of ω0 as a characteristic frequency for the system and R0 = 1/(ω0C) as a

characteristic resistance. This implies that Equation 5.72, describing the rate of change

of stored energy, is dimensionally consistent with Joule’s law, U̇ = ∂U
∂t = V2/R0.

We can consider the system near its neutral position, when K = 0 and A = A0. Lya-

punov’s theorem establishes that the system A0 is stable since both P and Q are positive

definite. It seems desirable to test this analytical result. We simulated the system using

the values of K = 0, A = A0, the value of P from Equation 5.74 and the value of Q

from Equation 5.75. The results are shown in Figure 5.14.

The energy is always positive, since P is positive definite. The energy is always de-

creasing, which is consistent with the fact that the power U̇ is always negative. This is

also consistent with the fact that Q is positive definite. This was found to be true for a

variety of initial conditions, X0.
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Figure 5.14. Discrete state-space simulation of the neutral system. We describe the system,

with A = A0 and K = 0 as the neutral system. This figure depicts a discrete state-

space simulation of the neutral system. The state variables V2 and V3 are shown in the

top of the figure. The stored energy is shown on a logarithmic scale in the middle and

the power dissipation is shown in the bottom graph. All units are SI and correspond

to a characteristic frequency of about 2.2 kHz. and a characteristic resistance of 33

kΩ. The power converges to zero. The rate of convergence is limited by the slowest

mode in the response.

We note that there is no stochastic element in the simulation in Figure 5.14. This is only

a simulation of the time-averaged plant A0 and is not sufficient to establish the stability

of the stochastic inhomogeneous process where A1 and A2 are chosen at random.

5.2.4 Proof of instability of plants A1 and A2

The plants A1 and A2 were designed to be unstable. This is supported by simulations.

Figure 5.15 shows a simulation of the plant A1. All variables clearly diverge exponen-

tially to infinity. Figure 5.16 shows a simulation of the plant A2. All variables diverge

to infinity in an exponentially growing sinusoidal fashion.
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Figure 5.15. Discrete state-space simulation of system A1. The system has a real exponential

unstable mode. The stored energy increases exponentially, without bound. Expo-

nential functions appear linear on a logarithmic scale. After about one millisecond,

the voltages, V2 and V3, have built up to levels of hundreds of volts. This would

clearly exceed the capabilities of most operational amplifiers. If the simulation were

continued for long enough then the voltages would eventually exceed the ratings of all

components in the system, and the system would fail catastrophically. This is clearly

non-physical. The actual outcome for a real physical circuit would depend on factors

that are not included in the linear model. There are a few possible outcomes that are

often observed in unstable systems, (i) The voltages can get locked into a fixed state

(saturated near the supply voltages) (ii) the plant can destroy itself (iii) the plant

could oscillate between two or more quasi-stable states (near the supply voltages).

The purpose of this simulation is not to represent what would actually happen to any

specific physical circuit. The purpose is to verify that the design is unstable. This is

an adjunct to a proof of instability and helps with motivation but is not an actual proof

of instability, in the strict sense.

The formal proof for plants A1 and A2 is really just a re-statement of the Routh-Hurwitz

result, for linear systems, within the context of the matrix notation. This is described

in Levine (1996), for example.
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Figure 5.16. Discrete state-space simulation of system A2. This system also has a complex

exponential unstable mode. A complex conjugate pair of poles on the right hand side

of the complex s-plane (with positive real part) are associated with growing exponential

functions of the form exp(+σt) · cos(ωt + φ). Functions of this type can be seen in

the top of the figure, in the state variables. The stored energy does have a periodic

aspect but can be bracketed between upper and lower exponential bounds. The lower

bound for the stored energy increases exponentially, without bound. This means that

the system is unstable. After about one millisecond, the voltages, V2 and V3, have

built up to levels of millions of volts. This would clearly exceed the capabilities of

all components in the system, and the system would fail catastrophically. The actual

outcome for a real physical circuit would depend on factors that are not included in the

linear model. There are a few possible outcomes that are often observed in unstable

systems, (i) the voltages can get locked into a fixed state (saturated near the supply

voltages) (ii) the plant can destroy itself (iii) the plant could oscillate between two or

more quasi-stable states (near the supply voltages). The purpose of this simulation

is not to represent what would actually happen to any specific physical circuit. The

purpose is to verify that the design is unstable. This is an adjunct to a proof of

instability and helps with motivation but is not an actual proof of instability, in the

strict sense.
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5.2.5 Proof of stability of the stochastically mixed processes

The mathematical issue with the switched system is that, in general, switching intro-

duces a multiplication operation and the resulting system may not be linear. That is

why the more general approach of Lyapunov has to be used, rather than the more

limited approach of Routh and Hurwitz.

Simulations strongly suggest that the mixed process should be stable, but this is not a

proof. A sample path is shown in Figure 5.17. The system appears to converge to the

point XT = [0, 0] in the state-space. We note that the instantaneous power may vary
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Figure 5.17. Discrete state-space simulation of the randomly switched system. The response

of the time-averaged system is included for comparison. For this example, the state

variables all tend towards zero, the stored energy is exponentially decreasing and the

instantaneous power does eventually decrease to zero. The instantaneous power may

diverge wildly from the expected value of the power, but it does tend to zero in the

end.

greatly and is often positive. We also note that the average power is always decreasing,

this is supported by the fact that the curve for stored energy is decreasing in some av-

erage sense. We need to make these ideas more precise.
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There is a theorem due to Kushner, which is reproduced in Levine (1996), on p. 1108,

which states that: The mixed system is stable with probability one if: LU ≤ 0 and U ≥
0, where L is the infinitesimal generator for the process:

LU (X0) = lim
∆t→0

E [U(X∆t)] − U(X0)

∆t
, (5.77)

where E [X] is the expected value of X. We can make use of the fact that E [U(X0)] =

U(X0) when U(X0) is known so we can write:

LU (X0) = lim
∆t→0

E [U(X∆t)] − E [U(X0)]

∆t
(5.78)

= lim
∆t→0

E

[

U(X∆t) − U(X0)

∆t

]

. (5.79)

This reduces to

LU (X0) = E

[

∂U(X)

∂t

]

= E
[

U̇(X)
]

(5.80)

wherever the limit exists, at the point in state-space, X = X0. This raises the question

of whether or not E
[

U̇(X)
]

converges uniformly. We recall Equation 5.54 so we can

write

E [U(X)] = E
[

XTPX
]

(5.81)

but Ẋ = AX, where A = A1 or A = A2 so

E
[

Ẋ
]

= E [AX] (5.82)

= E [A] X. (5.83)

Equation 5.80 now reduces to

LU (X) = E

[

∂U(X)

∂t

]

(5.84)

= XT
(

E [A]T P + PE [A]
)

X. (5.85)

We are choosing A = A1 or A = A2 at random with equal probability so E [A] =
1
2 (A1 + A2) = A0 and we arrive at an expression for LU (X):

LU (X) = +XT
(

A0
TP + PA0

)

X (5.86)

and we know from Equation 5.76 that this is negative since Q0 = −A0
TP − PA0 corre-

sponds to the case with K = 0 and is positive definite. This can all be summarised by

the statement:

LU (X) =
∂E [U(X)]

∂t
= −XTQ0X ≤ 0. (5.87)
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We have LU ≤ 0 and U ≥ 0 so, applying the theorem from Kushner, the mixed system

will be stable with probability of one. A simulation of this process is shown in Figure 5.17.

The stored energy in the system does increase, about half of the time for a short in-

tervals, but the overwhelming effect is a consistent reduction of stored energy. The

presence of switching noise implies that the instantaneous power can be quite large

even though the expected value is very small and negative.

We have constructed a switched-mode system, in which both pure modes are unstable

but the random mixture of the two modes is stable. This shows that the Parrondo effect

can be applied to energy flow in at least one real physical system.

5.3 Sources of noise

In the switched capacitor circuit there was always certain amount of switching noise

in the state variable, Vc. This is the case for ripple, when there is a periodic switching

regime, shown in Figure 5.5. There is also switching noise when the switching regime

is randomised. This is shown in Figure 5.7, for example. In either case, the act of

switching the configuration of the circuit causes noise to appear in the circuit. In the

switched control circuit of Figure 5.10, the loop gain is switched between two values

and switching noise appears in the state variables. This is shown in Figure 5.17, for

example. In addition to switching noise, there are other internal sources of noise in

electronic circuits. All dissipative elements, such as resistors have thermal noise. Tran-

sistors and other switching elements can suffer from shot noise and avalanche noise.

In all situations noise cannot be rectified, to give rise to a biased change in the state

variables, without an external source of energy.

In fact, if we could successfully rectify noise without any other energy input then we

would have an example of Maxwell’s demon.

It is not possible to construct a demon that can overcome the laws of thermodynam-

ics (Zurek 1989). All such demons contain errors in the physical modelling of the de-

vices or in the mathematical technique for modelling noise. This is well established

and will not be pursued here.
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The earlier problem, of modelling noise in electronic circuits using Langevin equations,

is still open, and of interest. If we could take the continuum limit of a switched mode

circuit, such as the one shown in Figure 5.7, then future work can develop mathemati-

cal models for handling noisy functions of this type, such as the SDE in Equation 5.48.

These problems are considered further in the next chapter.

5.4 Chapter summary

In this chapter, the following major topics have been covered:

• The time-average switched state-space model has been introduced, through he

use of a worked example.

• It has been shown that the time-evolution of a switched mode circuit and a switched

Markov system, Parrondo’s games, have the same mathematical formalism.

• It has been established that fractals can be generated in the phase-space of switched-

mode circuits, when modes are chosen at random.

• The limiting case, of fast switching, has been considered and a time-average

Langevin equation, has been introduced to model the dynamics and random fluc-

tuations of a rapidly but randomly selected switched-mode circuit. This Langevin

equation generalises the time averaged ordinary differential equations, of Mid-

dlebrook and Ćuk (1976), since it can represent average dynamics and random

fluctuations.

• A Parrondo-effect has been established for a switched-mode circuit. We can

switch, at random, between two unstable control systems to obtain a stable con-

trol system.

• The winning and losing regions of Parrondo’s games have been considered and

it has been noted that these are non-convex. Parrondo’s paradox is ultimately a

statement about convexity, or lack of convexity. We confirm the earlier claims by

Moraal (2000b). The unstable regions of the parameter space for the switched-

mode circuit have the same lack of convexity as the winning, or losing, regions

of Parrondo’s games.
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5.4 Chapter summary

In the next chapter we develop some general tools, for analysing noise in electronic

circuits, based on the stochastic calculus of Itô (Øksendal 1998, Levine 1996). These

include, but are not limited to the SDE in Equation 5.48.
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Chapter 6

Langevin equations as
models for noise in circuits

W
E show that stochastic differential calculus of

Itô (Itô 1942, Itô 1951) is a rigorous, and yet conve-

nient, tool for the analysis of noise in electronic circuits.

This chapter extends earlier work (Allison and Abbott 2005). We begin by

showing how the nodal and mesh equations of ordinary circuit analysis

can be extended to model the effects of thermal fluctuations. We describe

models for the basic lumped components of electronics. These develop-

ments are non-trivial, because white noise is not a function, in the usual

sense of the word. It is a generalised function in the sense used by Schwartz.

Special techniques have to be used. The calculus of Itô provides the

necessary tools. Our analysis leads to a systematic method for formulating

Langevin equations for electronic circuits. These can then be transformed

into ordinary differential equations, allowing the calculation of average

voltages, or noise power, without the need to explicitly solve the stochastic

differential equations.

We argue that the SDE approach to noise estimation is systematic and

should find wide application amongst the other basic tools of circuit theory.
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6.1 Introduction, to noise techniques in electronics

The traditional approach to thermal noise in circuits can be traced back to Johnson

(1928) and Nyquist (1928). Over the years, a number of empirical techniques have been

developed to estimate noise in circuits that filter the thermal noise, and these appear

in standard textbooks (Lathi 1965, Carlson et al. 2002). Our aim is to extend these re-

sults in a systematic manner, using the stochastic calculus of Itô (Itô 1942, Itô 1951). In

more recent years, Itô’s techniques have been formulated in ways that make them eas-

ier to apply (Durrett 1996, Øksendal 1998, Kloeden and Platen 1999). There has been

some work in the literature on the application of stochastic calculus to electronic sys-

tems (Demir et al. 2000, Mehrotra and Sangiovanni-Vincentelli 2004, Gitterman 2005),

but these works suppose that the relevant Stochastic Differential Equations (SDEs)

have already been formulated. We address the problem of the systematic formula-

tion of the equations, based on physical principles. Once the equations have been for-

mulated then it is possible to use standard techniques to solve the equations (Durrett

1996, Øksendal 1998), or failing that, to solve the equations numerically (Kloeden and

Platen 1999).

Clearly, the central issue in any analysis of noise is the way in which white noise is

represented. One surprising aspect of white noise is that it cannot be constructed

as an ordinary function of time, say Z(t). It should be regarded a generalised func-

tion, or distribution of the type described by Schwartz (Mandelbrot 1977, Kloeden and

Platen 1999). Generalised functions, such as noise, Z(t), should always appear inside

an integration over a finite time interval (Lighthill 1958, Papoulis 1962, Zemanian 1965,

Bracewell 2000). For example, compare

I1 =
∫ T2

T1

f (t) · Z(t)dt and I2 =
∫ T2

T1

f (t) · δ(t)dt (6.1)

(6.2)
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where f (t) is an ordinary, well behaved or good31 function of time, Z(t) is white noise

and δ(t) is the Dirac delta function. The functional forms and applications are identi-

cal. It is not possible to specify the instantaneous values of either of the distributions,

Z(t) or δ(t), at each instant of time but it is always possible to express the effect of

these distributions over a finite interval of time, using a functional. In short, noise can

be correctly described in terms of distributions but not in terms of ordinary functions.

It is customary to represent noise in terms of infinitesimal increments of another pro-

cess called Brownian motion, B(t), where

dB ≡ Z(t)dt, (6.3)

which is really a concise notation for

∫ T2

T1

f (t)dB ≡
∫ T2

T1

f (t)Z(t)dt. (6.4)

This form of Brownian motion, B(t), is a mathematical abstraction, based on the real

physical phenomenon of the same name (Durrett 1996, Øksendal 1998, Kloeden and

Platen 1999).

There is a proof, due to Kolmogorov, that it is possible to construct a function which is

continuous almost everywhere and yields all the properties that we expect of Gaussian

white noise, Z(t) (Karlin and Taylor 1975, Norris 1997, Durrett 1996). This is known as

the Wiener process32, and also as Brownian motion. Wiener showed that it was possible

to define integrals of the form in Equation 6.4 for well behaved or good functions, f (t).

The theory of stochastic differential equations (Lamberton and Lapeyre 1991, Baxter

and Rennie 1996, Durrett 1996, Øksendal 1998, Kloeden and Platen 1999) establishes

31We use the term good function, in the sense used by Lighthill (1958). Lighthill defines a good func-

tion, γ (t), as one which is everywhere differentiable, any number of times, and one that decays asymp-

totically towards zero rapidly enough, that the integral
∫ +∞

−∞
γ (t) · tNdt converges for N ≥ 0. The

Gaussian function is the classic example of a good function. We use Lighthill’s notion that distributions,

or “generalised functions,” are obtained using regular sequences of good functions. More generally,

distributions, or “generalised functions,” are obtained by completing the space of continuous functions,

and making use of a suitable (possibly weak) definitions of convergence. Different definitions lead to

different function spaces.
32In some of the literature, noise is represented by dW = Z(t)dt that is an infinitesimal increment of

the Wiener process. For our purposes, we regard dW and dB as mathematically equivalent.
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the existence of integration with respect to white noise, over a finite time interval:

I3 =
∫ T2

T1

FtdBt, (6.5)

even in the case where the function, Ft is a distribution, or generalised function, which

contains noise. We follow the convention used in the literature, where generalised

functions of time are represented with subscripts, Ft, rather than as functions with

bracketed arguments, F(t).

The forms and terminology used today derive largely from the work of Kiyosi Itô (Itô

1942, Itô 1951). His formulation has the advantage that the integrals can be defined for

a large class of functions and that the solutions are martingales. An alternative formu-

lation, proposed independently by Stratonovich and Fisk, has the disadvantage that it

is only defined for a very narrow class of functions and the solutions are not martin-

gales.

The one disadvantage of Itô’s approach to integration is that the formula for change of

variable is different to the one used for the commonly used, Riemann-Stieltjes, type of

integration. Itô’s formula is:

d f (Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X, X]t (6.6)

where d[X, X]t is understood to be an inner product, roughly dX · dX. The Stratonovich

formulation preserves the more usual rule for change of variable at the expense of less

general application. A very interesting history of the development of the theory and

techniques of SDEs may be found in Protter (1990).

We argue that the calculus of stochastic differential equations, as defined by Itô is the

best tool to use to analyse noise in electronic circuits. We show that in many cases we

do not actually have to solve the SDEs explicitly in order to evaluate parameters of

interest, such as noise power. It is possible to derive an ODE from the SDE to describe

the evolution of the parameters in time.
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6.2 Stochastic analysis of circuits

Since noise is a generalised function, it must appear inside an integration. Itô’s differ-

ential equation

dXt = σ(Xt)dBt + µ(Xt)dt (6.7)

is really short hand for an integral equation

Xt − Xt0 =
∫ t

t0

σ(Xτ)dBτ +
∫ t

t0

µ(Xτ)dτ. (6.8)

Durrett (1996) points out that detached stochastic differentials, such as dXt are ficti-

tious. We can only use these symbols on the understanding that expressions like Equa-

tion 6.7 can be integrated to create expressions of the form Equation 6.8. We can make

a finite difference approximation for a very short time interval ∆t = t − t0:

∆Xt ≈ σ(Xt)∆Bt + µ(Xt)∆t. (6.9)

From a philosophical point of view, we can consider the behaviour of a circuit over a

short but finite time interval, ∆t. This interval needs to be large enough to avoid prob-

lems with physical representation, such as infinite bandwidth, and yet short enough to

represent the changing behaviour of the system under investigation.

In short, we shall work with infinitesimal increments, of the form of Equation 6.7,

knowing that these are really short hand for integrals over finite time intervals of the

form of Equation 6.8 and we can approximate the process in computer simulations

using Equation 6.9, known as an Euler approximation (Kloeden and Platen 1999, Davis

2000).

6.2.1 Outline of stochastic calculus of Itô

We provide a very brief outline of Itô’s stochastic calculus (Itô 1942, Itô 1951). Since

the time of Itô a tremendous amount of material has been published, establishing

general theorems. There are theorems regarding construction of probability spaces,

convergence of measures, existence and uniqueness of solutions, changes of measure

and many other foundational issues. Summaries and bibliographies can be found in

(Gikhman and Skorokhod 1969) and (Durrett 1996). Much of this material is very de-

tailed and is very necessary to establish the rigour of the technique, but the degree
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of detail makes it difficult to immediately apply the techniques to practical problems,

such as the analysis of noise in an electronic circuit.

The situation, with stochastic calculus, is similar to the case where an engineer may

want to measure the mass of an object, in kilograms, and model that quantity as a real

number. Of course, pure mathematicians will tell us that the construction of the real

numbers is a very complicated process, first devised by Dedekind (Harrison 1998).

Pure mathematicians might prefer that we read an entire thesis before using a single

real number to represent the mass of a single object. This situation would be intoler-

able to a practical person, who just wants to get a job done. The applied approach is

to accept that we do not quite know what a real number is, but we do know the rules

that a real number will follow. We do know that real numbers must obey the standard

field axioms (Apostol 1974), and we can use those axioms to carry out our computa-

tions. We rely on the specialists to provide the foundation, and we are assured by their

efforts, even if we do not read then in detail. In more recent years, Itô’s techniques

have been formulated in ways that make them easier to apply for non-specialists, who

mainly want to carry out computations (Øksendal 1998, Kloeden and Platen 1999).

Some of the recent interest is motivated by a desire to solve problems in the area of

finance (Lamberton and Lapeyre 1991, Baxter and Rennie 1996).

We present an outline of the theory of stochastic differential equations, but only what

we need to solve the problems arising in the analysis of noise within electronic circuits.

Properties of Brownian motion

Brownian motion has a long history where Brown (1828) studied the irregular motion

of fragments of pollen in water. There is an excellent summary of a century of the

history, in Hänggi and Marchesoni (2005). In the early 1900s both Einstein and Smolu-

chowsky independently worked on a mathematical framework for Brownian motion

(Abbott et al. 1996). This work formed the stepping stone for a Noble prize, awarded to

Perrin, in 1926. During the following decades the subject becomes far more mathemat-

ical and abstract, see Uhlenbeck and Ornstein (1930) and Wang and Uhlenbeck (1945),

for example Itô (1951) cites the earlier work of Kolmogorov (1931) and Feller (1937).

These works are also very mathematical and abstract. Modern models for Brownian
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motion have now been reduced to idealised mathematical abstractions. The theory no

longer includes all the messy details, of any specific problem, such as particles in wa-

ter. On the other hand, the power of this abstraction is that the models can be applied,

with some accuracy, to a very wide range of different problems.

The version of Brownian motion that we describe here is the mathematical abstraction,

formulated by Kolmogorov (1931). Brownian motion, Bt, can be constructed in such a

way that it has the following properties:

Translational invariance Bt − B0 is independent of B0 and has the same distribution

as Brownian motion with B0 = 0. This means that we can make an arbitrary

standard choice for the initial condition.

Initial Condition Brownian motion has a zero initial condition, B0 = 0,

Continuity Brownian motion can be constructed in such a way that it is continuous

almost everywhere (a.e.). This construction is due to Kolmogorov (Durrett 1996),

Random Variable Bt is a random variable with a Normal (or Gaussian) distribution

Bt ∼ N
(

µ, σ2
)

, with µ = 0 and σ2 = t,

Markov Brownian motion is a Markov process. Bs+t − Bs, with t > 0 is independent

of anything that happened before time, s,

Martingale The expected value, E [Bs+t], with t > 0, is not affected by any informa-

tion about events before time s, Xs−u, for u > 0. If we only have information

about events up to time, s, then our best estimate for the future expected value is

E [Bs+t] = E [Bs],

Independent Increments The increments of Brownian motion are independent. If

{t1, t2, t2, t4} are different instants in time, such that t1 < t2 < t2 < t4, then

E [(Bt4
− Bt3) · (Bt2 − Bt1)] = 0,

Fractional Dimensions Brownian motion is a fractal, and has dimensions of time to

the half, [Bt] = [T]1/2.

Karatzas and Shreve (1988) provide detailed descriptions of four different methods for

constructing Brownian motion, with the required properties. For operational purposes,

we can use the properties, secure in the knowledge that mathematical objects with

these properties can be constructed.
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The Itô integral

Itô defined an integral, I1, of a function ft with respect to Brownian motion, Bt;

I1 =
∫ T2

T1

ft · dBt. (6.10)

This is defined in a way that is a natural extension of the Riemann-Stieltjes integral.

The important properties of the Itô integral are listed in (Øksendal 1998).

• The Itô integral I1 is a random variable.

• If T1 is fixed and T2 = t is an independent variable then the resulting Itô integral,

I1(t), is a martingale.

• The Itô integral is summative over ranges:

∫ T2

T1

ft · dBt =
∫ T3

T1

ft · dBt +
∫ T2

T3

ft · dBt. (6.11)

• The Itô integral is linear

∫ T2

T1

(α · ft + β · gt) · dBt = α ·
∫ T2

T1

ft · dBt + β ·
∫ T2

T1

gt · dBt, (6.12)

where α ∈ R and β ∈ R are constants.

• An Itô integral always has an expected value of zero

E

[

∫ T2

T1

ft · dBt

]

= 0. (6.13)

• Itô integrals are FT measurable.

The existence and properties of the Itô integral are discussed in a number of refer-

ences (Gikhman and Skorokhod 1969, Durrett 1996, Øksendal 1998). One Itô integral

can be evaluated directly, by definition,
∫ τ

0
1 · Bt = Bτ. (6.14)

Many Stochastic Differential Equations (SDEs) can be solved, using changes of vari-

able to manipulate the stochastic parts of the equation into the same form as Equa-

tion 6.14. There are stochastic analogues to integration by parts and integrating fac-

tors (Øksendal 1998). The stochastic analogue to the chain rule is called Itô’s Formula

(Durrett 1996, Øksendal 1998, Kloeden and Platen 1999).
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Itô’s formula

Itô’s rules for change of variable differ from the rule Riemann-Steiltjes integrals. We

consider an SDE of the form

dXt = u(t, x) · dt + v(t, x) · dBt. (6.15)

We now consider another variable Yt, such that

Yt = g (t, x) = g (t, Xt) , (6.16)

which is a function of Xt and t, in general. Itô’s formula states that

dYt =
∂g

∂t
(t, Xt) dt +

∂g

∂x
(t, Xt) dx +

1

2

∂2g

∂x2
(t, Xt) . (6.17)

This formula must be interpreted together with some other rules:

dt · dt = 0 (6.18)

dt · dBt = 0 (6.19)

dBt · dt = 0, (6.20)

and

dbt · dBt = dt. (6.21)

This last rule, in Equation 6.21, is of particular interest. It differs from what we are used

to, compared with the rules for Riemann-Steiltjes integrals, where the increments are

not stochastic. It is also worth noting that dBt has fractional dimensions, [dBt] = [T]1/2.

Brownian motion is a fractal and the sample paths have dimension of 1/2. This is noted

in Mandelbrot (1977). The units of dBt are root-seconds, s1/2.

Itô’s formula is widely reported in the literature (Durrett 1996, Øksendal 1998, Kloe-

den and Platen 1999). It is widely used to integrate SDEs, by using a change of variable.

A worked example

We consider the problem of Geometric Brownian motion (GBM). We use the following

equation, to model value of an investment, Xt, over time

dXt = r · Xt · dt + α · Xt · dBt, (6.22)
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where Xt models the value of an investment at time t, r ∈ R+ is a positive real con-

stant called the interest rate, and α ∈ R+ is a positive real constant called the volatility.

Equation 6.22 is widely used as a basis for modelling the variation of prices in financial

systems (Lamberton and Lapeyre 1991, Baxter and Rennie 1996).

It is possible to simulate Equation 6.22 numerically. Many sample paths are required to

give an accurate picture of the situation, because this equation is stochastic. Figure 6.1

shows seven sample paths. The number of paths has been limited in order to show

the individual paths more clearly. The aim is to give a qualitative feel for what the

solutions might be like, before explicitly solving Equation 6.22 analytically.

The first step in the solution is to write Equation 6.22 as

∫ t

0

dXt

Xt
= rt + αBt, (6.23)

with the initial condition B0 = 0. Itô’s formula is now applied with g (t, x) = ln (x).

We obtain

d ln (Xt) =
dXt

Xt
− 1

2
α2dt. (6.24)

This last term being due to Equation 6.21. We can now combine Equations 6.23 and 6.24,

to obtain a complete solution

Xt = X0 · exp

((

r − 1

2
α2

)

· t + α · Bt

)

. (6.25)

The presence of the stochastic process, Bt, in Equation 6.25, is the source of variation,

which is why all sample paths are unique. Each sample path will include its own

unique instance of Bt, as indicated in Figure 6.1.

The model for GBM is is instructive. If we know the full solution for this simple case

then more complicated problems can be seen as extensions of a known problem and

might not seem to be as difficult as they would first appear. For example, Equation 6.25

forms the basis for the modelling of multiplicative noise in physical systems.

The model for GBM forms the basis of the Black-Scholes model for the pricing of fi-

nancial derivatives (Lamberton and Lapeyre 1991, Baxter and Rennie 1996). Of course,
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Figure 6.1. Some sample paths from Geometric Brownian Motion (GBM). The equation

for Geometric Brownian Motion (GBM) is approximated numerically using the Euler

integration formula (Kloeden and Platen 1999, Davis 2000). The simulation is executed

in Octave v2.9. The time step is kept small, in order to prevent the (neglected) second-

order terms from introducing large errors into the results. There are 1024 samples in

each of the seven instances of the sample paths. The parameters are scaled to suggest

a financial application; the value of a financial investment, for example. The time unit

is chosen as years. The proportional rate of increase is r = 0.07 ≡ 7% per annum,

for all of the sample paths. The paths are made very volatile, with α = 0.7. This is

done in order to make the effect of volatility easy to see. The black smooth continuous

line shows the mean path E [Xt]. The coloured jagged lines are the sample paths. The

individual paths may diverge quite widely from the expected path. This is a fundamental

effect of volatility. Actual returns can be very different from expected returns.

it is always up to the user to decide whether a model is appropriate for any given ap-

plication. The downturn and bail-out of Long-Term Capital Management (LTCM)33,

in 1998, suggests that even sophisticated models may not adequately represent risk

33Myron Scholes and Robert C. Merton made important contributions to the Black-Scholes model and

they were on the board of LTCM but this was not sufficient to prevent the company from experiencing

difficulties. Soros (2008) states that the main problem with the model used by LTCM was that it did

not take into account the empirical fact that deviations [from equilibrium] may be self-reinforcing, or

reflexive. This misunderstanding caused LTCM to radically underestimate their risk. We could say that,

in financial markets, price increments do not depend only on the present state and that the process of

price variation is not Markov.
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in a very complex situation. Problems with one inappropriate application of a theory

do not affect the fact that Equation 6.22 can be solved exactly, to yield Equation 6.25.

Geometric Brownian Motion (GBM) is an internally consistent and valid model, even

if it does not always adequately represent the behaviour of actual phenomena in the

real world. There is an account of the social history of the Black-Scholes model in

(Bernstein 2008).

6.2.2 The Fokker Planck equation and the Langevin SDE

If we accept that the dynamics of a particular system are governed by an SDE, such

as the Langevin Equation, then it is reasonable to ask what the corresponding PDE

is for the probability density function, as a function of time and position. Analysis

shows that the resulting PDE is identical to the Fokker-Planck equation (Gikhman and

Skorokhod 1969, Kloeden and Platen 1999). When the equation is derived in this way,

from an SDE via the Chapman-Kolmogorov equations, the resulting PDE is called The

Kolmogorov backward equation, or the second direct equation of Kolmogorov.

Gikhman and Skorokhod (1969) attribute the following theorem to Kolmogorov. Sup-

pose that we represent the position of a diffusing particle in one-dimensional space,

x, with a stochastic function of time Xt. Suppose, further, that time is represented by

t and dt is an infinitesimal increment of time and dBt is an infinitesimal increment of

Brownian motion. Given

dXt = a (t, Xt) · dt + b (t, Xt) · dBt, (6.26)

where a(t, x) and b(t, x) are good functions of t and x, then the probability density of

the particle, over x and t, can be represented by p(t, x), where

∂

∂t
p (t, x) = − ∂

∂x
(a (t, Xt) · p (t, x)) +

1

2

∂2

∂x2
(b (t, Xt) · p (t, x)) , (6.27)

which is identical in form with the Fokker-Planck equation. This is an important re-

sult. Given an SDE, in Equation 6.26, we can write down the corresponding PDE in

Equation 6.27.
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6.3 Modelling of electronic circuits, using SDEs

If we are given an SDE for an electronic circuit then we have some of the tools required

to determine the solution (Durrett 1996, Øksendal 1998, Kloeden and Platen 1999). For

example, we can use techniques, similar to the ones for Geometric Brownian Motion,

in Equation 6.22. There is some material in the literature regarding the use of SDEs for

the analysis of noise in electronic circuits (Demir et al. 2000, Mehrotra and Sangiovanni-

Vincentelli 2004, Gitterman 2005), but the modelling does not always go right down to

the detailed level, of single components, and does not relate to established results, such

as those of Nyquist (1928). That is our purpose here, to place the existing work on a

firmer foundation. We begin with a re-evaluation of the laws of Kirchhoff.

6.3.1 Infinitesimal forms of Kirchhoff’s laws

We can re-write Kirchhoff’s laws for infinitesimal intervals of time. The advantage of

writing the circuit laws in this way is that the new equations provide a single simple

systematic basis for combining signals of different types.

It is possible to write statistical fluctuations in terms of generalised functions, such as

dB ≡ Ztdt or δ(t)dt. We can also write contributions from deterministic functions in

infinitesimal form, f (t)dt. We can then combine noise contributions freely with other

contributions from deterministic functions. We do this in the knowledge that we could

always convert the resulting Stochastic Differential Equations (SDEs) into Stochastic

Integral Equations (SIEs), through integration. In this way, we avoid many of the

philosophical difficulties connected with the manipulation of generalised functions.

We must always be able to write the generalised functions in terms of integral func-

tionals, such as Equation 6.5.

6.3.2 Kirchhoff’s current law

The infinitesimal version of Kirchhoff’s Current Law (KCL) is written in terms of in-

finitesimal increments of electric flux (electric charge) flowing out of a node:

∑
∀k

dQk = 0. (6.28)

Page 217



6.3 Modelling of electronic circuits, using SDEs

This is shown in Figure 6.2 If all the contributions, dQk are not stochastic, then we can

Figure 6.2. The infinitesimal form of Kirchhoff’s Current Law (KCL). This figure represents

the total effect of currents flowing into, and out of, a node of a circuit, during an

infinitesimal period of time, dt.

write the increments of charge in terms of currents, dQk = Ikdt, and the Equation 6.28

reduces to

∑
∀k

(Ikdt) =

(

∑
∀k

Ik

)

dt = 0 (6.29)

and if this is true for all dt, we can integrate and get

∑
∀k

Ik = 0, (6.30)

which is the more usual form of the law. The proof of the infinitesimal form follows

from one of Maxwell’s equations (Hayt 1988), called Gauss’s electric law:
∮

A
D · dA =

∫

v
ρ · dv = Q (6.31)

where the vector, D, is the electric flux density, the vector, dA, is a directed element of

the surface, A, and the scalar, the scalar ρ is the volume charge density, the scalar, dv,

is an infinitesimal element of the volume, v, enclosed by the surface, A, and Q, is the

total charge enclosed within the surface.

Suppose that we divide the complete surface, A, into a finite number, N, of small dis-

joint sub-surfaces, Ak such that
⋃N

k=1 Ak = A and Ai ∩ Aj = ∅, if i 6= j. We can express

the electric flux through each sub-surface as:

Qk =
∫

Ak

D · dA (6.32)

and we can write
N

∑
k=1

Qk = Q. (6.33)
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If we consider the variation in total electric flux, charge, over an infinitesimal time

interval, dt, then we get:
N

∑
k=1

dQk = dQ. (6.34)

The correct modelling of dQ is a non-trivial problem. It depends on the relationship

of the surface, A, to the surrounding electrical environment. Specifically, we need to

know the capacitance, C, of the surface, A, with respect to earth.

The stored energy of the total charge in the node is: U = 1
2C Q2 If we assume that

the system is at thermodynamic equilibrium with the surroundings then we can use

thermodynamic and statistical arguments. It is possible to show that E [Q] = 0, be-

cause this is the minimum energy configuration for the system34. Using the principle

of equipartition of energy, it is possible to show that E
[

1
2C Q2

]

= 1
2 kT, which is simply

the mean energy for each degree of freedom, in a classical thermodynamic system at

temperature T. This implies that E
[

Q2
]

= kT·C.

It can be shown that this formula is divisible. That is, a node can be arbitrarily divided

into two complete sub-nodes, enclosed by two complete surfaces, A1, A2. These en-

close two sets of charge, Q1 and Q2.

The charge within the surfaces must be the same, no matter how we choose to partition

the node, Q = Q1 + Q2. Energy is also partitioned, E [U] = [U1] + E [U2]. Capacitance

of the two surfaces must also add, if the surfaces are conducting and are at the same

potential, C = C1 + C2 and yet each sub-node follows same the formula for fluctu-

ations: E
[

Q1
2
]

= kT·C1 and E
[

Q2
2
]

= kT·C2. This seems to be a paradox, until

we realise that the fluctuations of charges enclosed in the two nodes are independent,

E[Q1 · Q2] = 0.

We regard the charge enclosed in a node as being a normally distributed random pro-

cess, Q ∼ N(0, kT·C) so we can model the natural thermal fluctuations of charge

enclosed inside the node, over a time interval dt, as dQ = ±
√

kTC·dB where dB is

an infinitesimal increment of Brownian motion. This means that Equation6.34 can be

34We have used the symbols, E [Q], to denote an ensemble average of a stochastic process, Q. We use

the symbols, 〈Q〉, to denote the time average of Q. If the process is ergodic then E [Q] = 〈Q〉
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written as
N

∑
k=1

dQk =
√

kTC·dB. (6.35)

This differs from the homogeneous form of Kirchhoff’s current law, in Equation 6.28.

This is an indication that Kirchhoff’s laws are ultimately statistical and there will be

small fluctuations. The fluctuations can usually be ignored, as long as the circuit is

well constructed and the capacitance of the node to earth, C is small. If this is not the

case, then we would need to include the parasitic capacitance, C, in our model of the

circuit.

In the remainder of this chapter, we will use the homogeneous, differential form of

Kirchhoff’s current law, Equation 6.28, where infinitesimal increments of charge are

represented in the form, dQ = Idt for deterministic currents, and also in the form,

dQ = indB for noise currents35.

6.3.3 Kirchhoff’s voltage law

The infinitesimal version of Kirchhoff’s Voltage Law (KVL) is written in terms of in-

finitesimal increments of magnetic flux through a mesh:

∑
∀k

dΦk = 0. (6.36)

This is shown in Figure 6.3. If all the contributions, dΦk, are not stochastic then we

can write the increments of flux in terms of voltages, dΦk = Vkdt and Equation 6.36

reduces to

∑
∀k

(Vkdt) =

(

∑
∀k

Vk

)

dt = 0 (6.37)

and if this is true for all dt, we can integrate and get

∑
∀k

Vk = 0, (6.38)

35Note that the units are [dQ] = [I][T], [dt] = [T], [in] = [I][T]
1
2 and [dB] = [T]

1
2 . The units of noise

current are A·Hz−1/2, or amperes per root Hz. The fractional units are a consequence of the fact that

Brownian motion is a fractal (Mandelbrot 1977). Brownian motion is statistically self-similar under a

change of scale.
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Figure 6.3. The infinitesimal form of Kirchhoff’s Voltage Law (KVL). This figure represents

the total effect of flux flowing through a mesh, in either direction, during an infinitesimal

period of time, dt.

which is the more usual form of the law. If we sum the voltage increments around the

mesh then we must get zero. This is equivalent to saying that electric fields are the

product of a static potential field, E = −∇V. The proof of the infinitesimal form of

Kirchhoff’s voltage law follows from one of Maxwell’s equations (Hayt 1988), called

Faraday’s law:
∮

λ
E · dλ = − ∂

∂t

∫

S
B · dA = −∂Φ

∂t
(6.39)

where the vector, E, is the electric field strength, the vector, dλ, is a directed line ele-

ment of the contour, λ, the vector, B, is the magnetic flux density and the vector, dA is

a directed element of the surface, S, enclosed by the contour, λ.

Suppose that we divide the complete contour, λ, into a finite number, N, of small

disjoint sub-curves, λk, such that
⋃N

k=1 λk = λ, and λi ∩ λj = ∅, if i 6= j. We can

express the voltage increments in each sub-curve as

Vk =
∫

λk

E · dλ (6.40)

and we can write
N

∑
k=1

Vk = −∂Φ

∂t
. (6.41)

If we consider the variation in total magnetic flux over an infinitesimal time interval,

dt, then we get:
N

∑
k=1

Vkdt =
N

∑
k=1

dΦk = −dΦ. (6.42)

The correct modelling of dΦ is a non-trivial problem. It depends on the actual physical

geometry of the current path. Specifically, we need to know the inductance, L, of the
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current path.

The stored energy of the total charge in the node is: U = 1
2L Φ2. If we assume that

the system is at thermodynamic equilibrium with the surroundings, then we can use

thermodynamic and statistical arguments. It is possible to show that E [Φ] = 0, be-

cause this is the minimum energy configuration for the system. Using the principle of

equipartition of energy, it is possible to show that E
[

1
2L Φ2

]

= 1
2kT, which is simply

the mean energy for each degree of freedom in a classical thermodynamic system at

temperature T. This implies that E
[

Φ2
]

= kT·L.

It can be shown that this formula is divisible. That is, the contour, λ, can be arbitrarily

divided into two complete sub-contours, λ1, λ2. These enclose two sets of flux, φ1 and

φ2. The flux linked by the contours must be the same, no matter how we choose to

partition the mesh, Φ = Φ1 + Φ2. Energy is also associated with magnetic flux. It is

conserved and partitioned as, E [U] = [U1] + E [U2].

Inductance of the two contours must also add, if the surfaces are connected and are car-

rying the same current, L = L1 + L2 and yet each sub-node follows the same formula

for fluctuations: E
[

Φ1
2
]

= kT·L1 and E
[

Φ2
2
]

= kT·L2. This seems to be a paradox,

until we realise that the fluctuations of the flux enclosed in each the two nodes are in-

dependent, E[Φ1 · Φ2] = 0.

We regard the magnetic flux linked by the contour, λ, as being a normally distributed

random process, Φ ∼ N(0, kT·L) so we can model the natural thermal fluctuations of

flux linked by the contour over a time interval dt, as dΦ = ±
√

kT·L·dB where dB is

an infinitesimal increment of Brownian motion. This means that Equation 6.42 can be

written as
N

∑
k=1

dΦk =
√

kTL·dB. (6.43)

This differs from the homogeneous from of Kirchhoff’s voltage law, in Equation 6.36.

This is an indication that Kirchhoff’s laws are ultimately statistical and that there will

be small fluctuations. The fluctuations can usually be ignored, as long as the circuit is

well constructed and the inductance of the current carrying path, L, is small. If this is

not the case, then we would need to include the parasitic inductance, L, in our model
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of the circuit.

In the remainder of this chapter, we will use the homogeneous, differential form of

Kirchhoff’s voltage law, Equation 6.36, where infinitesimal increments of magnetic flux

are represented in the form dΦ = Vdt for deterministic currents, and also in the form,

dΦ = vndB for noise currents36.

6.3.4 Models for resistors

There are two possible linear models for thermal noise in a resistor, a Thévenin and

a Norton model, which are shown in Figure 6.4. The Thévenin model, Figure 6.4(a),

places a noise voltage source in series with an ideal noiseless resistor. During an in-

finitesimal time interval, dt, the source contributes a magnetic flux of vndB to all circuit

meshes in which it sits. We can use the results of Johnson (1928) and Nyquist (1928),

∆
〈

V2
〉

= 4kTR·∆ f , to estimate intensity of the noise voltage, vn =
√

2kTR. The units

of noise voltage are V/
√

Hz.

The use of the constant “2” rather than “4” is due to the convention that we use for

frequency. We consider all frequencies in the real line, positive and negative. This is

the definition of frequency used for complex exponentials, rather than sinusoids. It is

consistent with widely used definitions of power spectral density and autocorrelation

functions (Reif 1965, Bracewell 2000, Yates and Goodman 1999, Peebles 2001, Razavi

2001). It is sometimes called the two-sided power spectrum (Razavi 2001).

The flat spectrum described by Johnson (1928) is really only a special case which ap-

plies at low frequencies. The high frequency cutoff of the spectrum is determined by

quantum mechanical effects (Nyquist 1928). This was also noted in Feynman et al.

(1963) and Reif (1965). The power spectrum of the output of a system governed by a

Langevin equation, driven by white noise will generally be Lorenzian (Papoulis 1991)

36Note that the units are [dΦ] = [V][T] = [M][L]2[T]−2[I]−1, [dt] = [T], [vn] = [V][T]
1
2 and [dB] =

[T]
1
2 . The units of noise voltage are V·Hz−1/2, volts per root Hz. The fractional units are a consequence

of the fact that Brownian motion is a fractal (Mandelbrot 1977).
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Figure 6.4. Linear noise models for a resistor. This figure shows the total contribution to electric

flux (charge) and magnetic flux, caused by a resistor, during an infinitesimal interval

of time, dt. The Thévenin equivalent model, is shown in part (a), on the left. The

increment of charge is dQ = irdt. The increment of magnetic flux is vRdt. The resistor

is represented as a noiseless ideal resistance (obeying Ohm’s law) in series with a noise

voltage source. Noise sources are represented shading the corresponding circuit symbols,

in order to distinguish them from deterministic sources. We can apply Kirchhoff’s

voltage law to the Thevinin circuit to obtain an SDE to describe the terminal behaviour

of this component, vR · dt = iR · R · dt + vndB. The Norton equivalent model, is

shown in part (b), on the right. The increments of electric and magnetic flux are

the same as for the Thévenin model. The resistor is represented as a noiseless ideal

conductance (obeying Ohm’s law) in parallel with a noise current source. We can

apply Kirchhoff’s current law to the Norton circuit to obtain another SDE to describe

the terminal behaviour of this component iR · Rdt + R · indB = vRdt. The Thevinin

and Norton noise models have equivalent behaviour, at the terminals, provided, vn =

Rin. These infinitesimal models can be incorporated with the infinitesimal models

for other components, using the infinitesimal versions of Kirchhoff’s laws, to arrive

at Stochastic Differential Equations (SDEs) for complete circuits. The noise sources in

a circuit are typically the dissipative components, such as resistors, or the semiconductor

components, such as diodes and transistors.

and the high frequency cutoff due to the dynamics of the Langevin equation will usu-

ally be several orders of magnitude below the cutoff due to quantum mechanical ef-

fects. This is why the abstraction of a flat spectrum is adequate. An interesting sum-

mary of the history of Power Spectral Density (PSD) for noise can be found in Ab-

bott et al. (1996).
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The Norton model, Figure 6.4(b), places a noise current source in parallel with an ideal

noiseless resistor. During an infinitesimal time interval, dt, the source contributes an

electric flux, or charge37, of dQ1 = indB to the node into which the terminal flows. A

corresponding opposite charge of dQ2 = −indB is added at the other terminal38. The

corresponding intensity of noise current is in =
√

2kT/R. The units of noise current

are A/
√

Hz.

The equivalence of the Thévenin and Norton models is consistent with the fact that

vn = Rin which is the same as the accepted rule for deterministic signals. Wannier

(1966) notes that the Norton model more accurately describes the physical process of

fluctuations within a resistor.

We can write the increments of electric flux associated with a resistor as

dQ = indB (6.44)

where dB is an infinitesimal increment of Brownian motion. These increments of elec-

tric flux can be used directly in the differential form of KCL, Equation 6.28.

We can write the increments of magnetic flux associated with a resistor as

dΦ = vndB (6.45)

where dB is an infinitesimal increment of Brownian motion. These increments of mag-

netic flux can be used directly in the differential form of KVL, Equation 6.36.

We can also imagine other noise models for other devices. These will generally have

different expressions for current and voltage noise intensities, vn and in, but the calcu-

lations will generally be of the same form as for the resistor.

37Electric flux has the units of charge (Hayt 1988).
38The signs only determine the directions of the symbols. The direction of the noise current will

change indefinitely often within any finite time interval. The instantaneous value of the noise current at

any given instant of time cannot be specified, even in principle, since noise current is a generalised func-

tion.
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A functional mapping between electrical and mechanical systems

There is a widely used functional mapping between quantities in electrical and me-

chanical systems. These can be expressed in terms of the Hamiltonian function, H,

using Hamilton’s canonical equations (Lanczos 1949).

Variable Electrical Quantity Mechanical Quantity

Effort Voltage, −V = + ∂Φ
∂t = − ∂H

∂Q Force, +F = +
dp
dt = − ∂H

∂x

Flow Current, I = +∂Q
∂t = + ∂H

∂Φ
Velocity, v = + dx

dt = + ∂H
∂p

Momentum Magnetic flux, Φ Momentum, p

Displacement Electric flux, Q Displacement, x

Power P = V · I P = F · v

Energy E =
∫ Q

VdQ ≡
∫ Φ

IdΦ E =
∫ x

Fdx ≡
∫ p

vdp

Further details of the mapping are described by Karnopp et al. (2000). There are dif-

ferences of sign in the definitions of the effort variables. These are due to historical

differences of convention in the way that the symbols are defined39. The mapping ap-

plies to all equations of motion, including the Langevin equation.

Variable Electrical Quantity Mechanical Quantity

Viscous damping force −V = −R·I +F = −α·v
Noise intensity E[vn

2] = 2kT · R E[ fn
2] = 2kT · α

Langevin Equation LdI + RIdt = vndBt mdv + αvdt = fndBt

This demonstrates that the resulting equations for electrical circuits are Langevin equa-

tions in the literal sense. Of course, all established results for mechanical systems can

be applied directly to electrical systems, by mapping solutions to the mechanical prob-

lems into the electrical domain. These considerations also suggest that we should use

the generalised coordinates, Φ and Q to describe the dynamics of electrical systems, as

an analogy of the use of p and x for mechanical systems.
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dQ = i  dt = C dv

+
 −

= v dt CΦd

 C C

C

Figure 6.5. Modelling of capacitors. The modelling of capacitors is complete, for SDE applica-

tions, if the infinitesimal increments of flux are completely specified. In this case, the

increment of electric flux (charge) is given by dQ = iCdt = CdvC. The increment of

magnetic flux is given by dΦ = vCdt.

6.3.5 Modelling of capacitors

For a fixed capacitor, C, with terminal voltage, vC, and terminal current, iC, we require

the following equivalent forms for infinitesimal increments of electric flux

dQ = iC · dt = Cd · vC. (6.46)

The increment of magnetic flux follows the usual rule for any component

dΦ = vC · dt. (6.47)

There are two equivalent forms for dQ, but only one for dΦ. The capacitor model can

be combined with Norton and Thévenin models, to create more complex circuits. The

equations for the increments of flux, Equations 6.46 and 6.47, can be combined directly

with the differential form of KCL, Equation 6.28.

6.3.6 Modelling of inductors

For a fixed inductor, L, with terminal voltage, V, and terminal current, I, we require

the following equivalent forms for infinitesimal increments of magnetic flux

dΦ = vL · dt = L · diL. (6.48)

The increment of electric flux follows the usual rule for any component

dQ = iL · dt. (6.49)

39In the electrical case, the minus sign is known as Lenz’ law, V = −∂Φ/∂t.
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+
 −

dQ = i  dt L

Φd = v dt = L di L  L
L

Figure 6.6. Modelling of inductors. The modelling of inductors, for SDE applications, is complete

if the infinitesimal increments of flux are completely specified. In this case, the increment

of electric flux (charge) is given by dQ = iLdt. The increment of magnetic flux is given

by dΦ = vL · dt = L · diL.

There are two equivalent forms for dΦ, but only one for dQ. The inductor model can

be combined with Norton and Thévenin models, to create more complex circuits. The

equations for the increments of flux, Equations 6.48 and 6.49, can be combined directly

with the differential form of KVL, Equation 6.36.

6.4 A one-dimensional Langevin equation (SDE)

We consider the case of a resistor in parallel with a capacitor. This problem has been

considered by many authors, including (Feynman et al. 1963, Lathi 1965, Carlson et al.

2002). The circuit is represented in Figure 6.7 We expect to find a mean-square voltage

across the capacitor of,
〈

V2
〉

=
kT

C
. (6.50)

This is clear if we regard the voltage across the capacitor as a single degree of freedom

and apply the principle of equipartition of energy,
〈

1
2 CV2

〉

= 1
2kT. Equilibrium and

quasi-equilibrium arguments, of this type, are presented in Feynman et al. (1963), Reif

(1965) and Wannier (1966). The history of this approach, for mechanical systems, can

be traced at least as far back as Gibbs (1902).

6.4.1 An approach, based on power spectral density

If we consider a resistor and a capacitor in parallel, then the equivalent circuit could

be represented as a parallel (Norton equivalent) circuit, as shown in Figure 6.7. A
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R v CG i =4kT/R

i Ci R

C
−

+

Figure 6.7. Parallel, or Norton, representation of an RC circuit. Johnson (1928) and Nyquist

(1928) suggested an approach to the estimation of mean-square noise voltage, based

on Power Spectral Density (PSD). This approach is used here. This figure shows a

Norton equivalent representation of the resistor. The noise source is represented as a

noise current source, with Power Spectral Density, Gi( f ). The source is represented by

the standard symbol for a current source, but it is shaded, to indicate that it is a noise

source, which represents a generalised function. Nyquist showed that, for thermal noise

in a resistor, we would expect that Gi( f ) = 4kT/R. This circuit can be analysed as a

parallel circuit but it is usually represented as a series (Thevinin equivalent) circuit.

resistor and capacitor in parallel can also be represented as a Thevinin-equivalent cir-

cuit. It is common in the literature to regard the voltages as the signals of interest,

and to use a Thévenin-equivalent circuit, as shown in Figure 6.8. In the traditional

approach, due to Nyquist (1928), increments of time, dt, or Brownian motion, dBt, are

not considered explicitly. The source voltage for the circuit is the Thévenin-equivalent

voltage, represented here as vn(t).No attempt is made to represent vn(t) directly, but

the Fourier transform, VN( f ), has a spectral representation in the frequency domain,

G1( f ) = E
[

|VN ( f )|2
]

= 4kTR, where k ≈ 1.3806503 × 10−23 J·◦K−1, is Boltzmann’s

constant and T is the temperature in degrees Kelvin. The Fourier transform of a noise

function, VN( f ) = F [vn(t)], is a random variable, which is distributed over the com-

plex plane. The corresponding PSD involves a magnitude-squared, and an expected

value so it reduces to a real function of frequency G1( f ). In the case of thermal noise,

the PSD, G1( f ), reduces to a constant real number, which does not depend on fre-

quency, G1( f ) = 4kTR. This result was derived by Nyquist (1928). The result is nearly

correct for low frequencies, | f | ≪ kT/h, where h ≈ 6.62606876× 10−34 J·s, is Planck’s

constant. This PSD, G1( f ) = 4kTR , is a one sided power spectral density that only

considers non-negative frequencies f ≥ 0. The output from the circuit is considered to

be vC(t), but no attempt is made to represent vC(t) directly, but the Fourier transform,

VC( f ), also has a spectral representation in the frequency domain, which is related
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to the input VN( f ), through the transfer function of the RC circuit. We can define,

G2( f ) = E
[

|VC( f ) ( f )|2
]

, and write

G2 ( f ) = |H (j2π f )|2 · G1 ( f ) , (6.51)

where H(s) is the transfer function of the circuit in the Laplace domain. We note that

G1( f ) = 4kTR does not vary with frequency. It is constant, so is can be taken outside of

any integration. The total noise energy can be calculated by integrating Equation 6.51

over all frequencies, to give

E
[

|vc(t)|2
]

= G1 ( f ) ·
∫ +∞

−∞
|H (j2π f )|2 · d f . (6.52)

v C

i C

Ri R

(t) has
−

+
(t) hasv n

 1G =4kTR
−

+
C

 2G

Figure 6.8. A Thévenin Equivalent Circuit for the RC circuit. The resistor and capacitor in

parallel can be represented as a Thevinin-equivalent circuit. It is common in the liter-

ature to regard the signal of interest as the noise voltage source, associated with the

resistor, and to use a Thévenin-equivalent circuit, shown here. Viewed from this point of

view, the circuit is a Linear Time-Invariant (LTI) system driven by a noise source. The

input to the circuit is nominally represented by vn(t) and the output from the circuit is

nominally represented by vC(t). These are generalised functions, in the time domain,

but their power spectral densities are good functions, in the sense used by Lighthill

(1958). The PSD of vn(t) is denoted by G1( f ) = |F [vn(t)]|2, and the PSD of vC(t)

is denoted by G2( f ) = |F [vC(t)]|2. Nyquist’s analysis considers the PSD of the input

function, G1( f ), the PSD of the output function, G2( f ), and the way in which they

are related through the transfer function of the circuit, G2 ( f ) = |H (j2π f )|2 · G2 ( f ).

The total noise energy, observed at the output, can be calculated by integrating this

last expression over all frequencies.

The transfer function for the RC circuit has only one real pole. In the Laplace domain,

we can write

H(s) =
ω0

s + ω0
, (6.53)

Page 230



Chapter 6 Langevin equations as models for noise in circuits

where ω0 = 1/(RC). This can be written in terms of angular frequency

H(jω) =
1

1 + j
(

ω
ω0

) (6.54)

We can then normalise the frequency variable:

H(jΩ) =
1

1 + jΩ
, (6.55)

where Ω = ω/ω0.

The Power Spectral Density (PSD) of the circuit can be calculated as the magnitude-

squared response of the circuit. This can be written as

|H (jΩ)|2 = H (jΩ) · H (jΩ)∗ (6.56)

= H (+jΩ) · H (−jΩ) . (6.57)

Equation 6.56 is quite general. The special case, for a single pole reverts to

|H (jΩ)|2 =
1

1 + jΩ
· 1

1 − jΩ
=

1

Ω − j
· 1

Ω + j
. (6.58)

This can be explicitly written as a polynomial in Ω,

|H (jΩ)|2 =
1

Ω2 + 1
. (6.59)

The power spectral density function, represented by Equation 6.59 is called a Lorentzian

function.

We would like to be able to reduce the entire effect of a filter, on noise, back to a single

number. This is the role of the Noise Equivalent Bandwidth (NEB) (Carlson et al. 2002),

which is defined as:

BN =
1

2

∫ +∞

−∞

∣

∣

∣

∣

H

(

j
f

f0

)∣

∣

∣

∣

2

d f (6.60)

This can be evaluated in terms of the normalised PSD:

BN =
f0

2
·
∫ +∞

−∞
|H (jΩ)|2 dΩ. (6.61)

This leads to an expression for the particular case, of a single-pole RC circuit,

BN =
f0

2
·
∫ +∞

−∞

1

Ω2 + 1
dΩ, (6.62)
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where f0 = 1/ (2πRC). Integrals of this type can be evaluated using Cauchy’s integral

formula. An integral along the real line can be shown to be equivalent to the inte-

gral around a contour in the complex plane, which can be reduced to a finite sum of

residues, at the poles. This reduces an improper integral of the type of Equation 6.62

to a simple result.

Cauchy’s integral formula states that
∮

g(z)

z − z0
= j2π · g (z0) , (6.63)

where the path of integration includes z0. The quantity, j2πg (z0) is called the residue

of g at z0. Cauchy’s integral formula is central to mathematical analysis with complex

variables and can be found in many text books, including (Goursat 1916, Courant and

McShane 1966, Apostol 1974, LePage 1980, Doran and Lasenby 2003, Kreyszig 2006).

The formula equation is linear, so sums of functions lead to sums of residues. This

means that many rational functions can be integrated by resolving them into partial

fractions. The conditions under which the formula can be used to evaluate real inte-

grals are discussed in (Goursat 1916, Courant and McShane 1966, Apostol 1974, LePage

1980). The essential requirement is that the PSD, |H (jΩ)|2 must tend towards zero as

the radius, |Ω| → ∞ with a power index of less than −2. Specifically, there must be a

positive real constant constant, M ∈ R+, such that

|H (jΩ)|2 <
M

|Ω|2
. (6.64)

These conditions are met for PSD functions with one or more poles, because one pole

in the transfer function gives rise to two poles in the PSD.

The improper integral in Equation 6.62 can be evaluated using Cauchy’s integral for-

mula. The first step is to break the PSD function into a partial fraction expansion. We

can re-write |H (jΩ)|2 as

1

Ω2 + 1
= +

+j

2
· 1

Ω − j
+

−j

2
· 1

Ω + j
(6.65)

The PSD function has poles at Ω = ±j. These are shown in Figure 6.9.

Cauchy’s formula then leads to a concise expression for the integral,
∫ +∞

−∞

1

Ω2 + 1
dΩ = θ = (2πj) ·

(−j

2

)

= π. (6.66)

Page 232



Chapter 6 Langevin equations as models for noise in circuits

Ω plane

+j

−j

Imaginary

Real

Figure 6.9. The Poles of the PSD function for an RC circuit. This figure represents the complex

plane. The x-axis represents the real part and the y-axis represents the imaginary part

of complex numbers. The PSD function, |H (jΩ)|2, has poles at Ω = ±j. The integral

around the D-shaped contour is the same as the integral along the real axis. For clarity,

the horizontal part of the contour is represented slightly above the real axis. In practice

this part of the contour runs along the real axis. For clarity, the semi-circular part of

the contour (the return path) is shown as having finite radius, r. In practice this radius

approaches infinity, r → ∞. Under these conditions, the contribution, to the integral,

from the return path approaches zero.

If we combine Equation 6.62 and Equation 6.66 then we can deduce that

BN =
π f0

2
, (6.67)

but ω0 = 2π f0 = 1/(RC), which leads to the final result,

BN =
1

4RC
. (6.68)

This is a one-sided bandwidth, which applies for f ≥ 0 so it has to be used together

with a one-sided estimate for the PSD at the input, G1( f ) = 4kTR. We can predict the

noise power observed at the resistor, in the RC circuit, in Figure 6.8.

E
[

x2
]

= 4kTBN (6.69)

= 4kT
1

4RC
(6.70)

=
kT

C
. (6.71)

This result is recorded in many of the standard textbooks, including Carlson et al.

(2002). It is also derived in a very direct way by Feynman et al. (1963), who uses a

quasi-equilibrium thermodynamic argument. A capacitor is treated as though it were

an over-sized particle with one degree of freedom. Equipartition of energy is a classical
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approximation due to Boltzmann and Maxwell. On average each degree of freedom

has mean energy of kT/2. One can understand that extreme deviations form this equal-

ity should be rare. If we imagine a single high energy particle, amongst a large number

of more slowly moving particles. This would be equivalent to a fast moving white ball

breaking up a frame of balls, in eight-ball. After a few collisions, the energy in the

white-ball is more evenly distributed amongst the other coloured balls. After many

collisions, between all of the balls, we would expect the mean energy of each ball to be

about the same. A formal proof of the classical equipartition theorem is given by Reif

(1965). Classically, we expect them mean energy in the capacitor to satisfy

E [Uc] =
1

2
CE
[

vc
2
]

=
1

2
kT. (6.72)

Given that the voltage across the capacitor is vc = x, then Equation 6.72 leads directly

to Equation 6.69. Feynman et al. (1963) uses this argument to show that E
[

vc
2
]

=

kT/C for a capacitor and E
[

il
2
]

= kT/L for an inductor. Equilibrium and quasi-

equilibrium arguments, of this type, are presented in (Feynman et al. 1963, Reif 1965)

and (Wannier 1966). The fact that Nyquist’s procedure is consistent with the result from

equipartition of energy might tempt us to calculate all noise levels using equipartition

arguments. A problem with this special technique is that it only works if we measure

the voltage directly across a capacitor or directly through an inductor. In addition, some

noise sources are not thermal. A further issue is that the presence of a circuit to filter

noise will introduce autocorrelation, which will affect the higher cumulants. We might

be able to estimate mean expected values but it is not clear whether we could estimate

variances without accounting for the autocorrelation. The use of equipartition serves

as a sanity check for some circuits but it is not clear how to generalise the technique

to more complex situations. This is an important motivation for developing a more

general theory based on Stochastic Differential Equations (SDEs).

6.4.2 The Langevin SDE

We represent the resistor using a Norton model of an noiseless resistor, R, in parallel

with a noise source, denoted by i0dB where i0 =
√

2kT/R. This is shown in Figure 6.10.

The circuit is drawn and labelled in a manner that is consistent with analysis, using

an Stochastic Differential Equations (SDEs). We consider the nodal equation for the

circuit. We require ∑ dQ = 0. For the capacitor, we have dQ = CdvC, where C is
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R v C

i R dt C dv C

dBi C
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+
 0

Figure 6.10. SDE models for an RC parallel circuit. This figure shows an RC parallel circuit,

with resistor, R, noise current source, iodB, and capacitor, C. The noise source in

this circuit is embodied in the resistor, and contributes an increment of electric flux of

i0dB. The increment of electric flux in the resistor is iRdt. The increment of electric

flux in the capacitor is iCdt = CdvC. The infinitesimal models for the resistor and the

capacitor can be combined using Kirchhoff’s current law to arrive at an SDE for the

complete circuit.

the capacitance and dvC is an infinitesimal increment of the capacitor voltage. For the

resistor, we have dQ = vC
R dt and for the equivalent noise source in the resistor, we have

dQ = i0dB, as discussed above. The nodal equation then becomes

CdvC +
1

R
vCdt = i0 · dB =

√
2kT/R · dB, (6.73)

which is the SDE for this system. It has the same form and plays exactly the same role

as the Langevin equation in statistical physics (Reif 1965, Hecht 1990, Wannier 1966,

Risken 1996).

It is possible to evaluate the infinitesimal moments implied by a Langevin equation

and to formulate a Partial Differential Equation (PDE), describing the probability den-

sity of an ensemble of solutions to the SDE in Equation 6.73. This PDE is known as

the Fokker-Planck equation (Reif 1965, Tuckwell 1988, Risken 1996). If we could solve

the Fokker-Planck equation then we could apply operators to the solutions to calculate

quantities of interest, such as the noise power as a function of time, w(t). Unfortu-

nately, this approach is cumbersome. Instead, we suggest the application of a method

described by Gubner (1996), where the SDE is transformed into a much simpler ODE

in the noise power.

Equation 6.73 can be re-written as an SDE in the narrow sense:

dvC =
−1

RC
vCdt +

i0
C

dB. (6.74)
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This is of the form

dvC = α(t)vCdt + β(t)dB (6.75)

where α(t) = α = −1/(RC) and β(t) = β = +i0/C =
√

2kT/ (RC2). If we define the

expected value of vC as µ = E [vC] and the variance as w = E
[

(vC − µ)2
]

then it can

be shown (Gubner 1996) that

dw(t)

dt
= 2α(t)w(t) + β(t)2 . (6.76)

We have now derived an Ordinary Differential Equation (ODE) in the variable of in-

terest, noise power. If we consider the steady-state situation after all transients have

decayed then we have dw(t)
dt = 0, which implies that

w = E
[

(V − µ)2
]

= − β(t)2

2α(t)
=

kT

C
, (6.77)

which is the classical result in Equation 6.50, which appears in the literature (Feynman et al.

1963, Lathi 1965, Carlson et al. 2002).

We did not solve the SDE directly. We only used it to derive an ODE. We did not solve

the ODE but only used it to derive an algebraic equation, which we then used to solve

for the steady state value of the noise power. We believe that this simple and systematic

method is general and should find wide application in the analysis of noise in circuits.

In summary: We proceed from the circuit to nodal, or mesh, equations to an SDE to an

ODE to an algebraic equation and then obtain estimates of noise power.

6.5 A two-dimensional Langevin equation (SDE)

6.5.1 Nyquist’s approach, based on power spectral density

We consider the parallel RCL circuit shown in Figure 6.11. Standard analysis of this

circuit, in the Laplace domain gives the transfer function:

vC

in
=

1
1
R + sC + 1

sL

(6.78)

where in is the current noise source with PSD, of Gi = 4kT/R. This is a one-sided PSD.

Equation 6.78 can be written as

vC

vn
=

1
RC s

s2 + 1
RC s + 1

LC

(6.79)
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R v CG i =4kT/R

i Ci R i L

C
−

+
L

Figure 6.11. A parallel RCL circuit. Using the approach of Nyquist and Johnson, the parallel RCL

circuit is a Linear Time Invariant (LTI) system being driven by a noise source, with

Power Spectral Density (PSD) of Gi = 4kT/R. The output voltage, of interest, is the

voltage across the capacitor, vC.

where vn is a voltage noise source with a PSD, of Gv = 4kTR. This is also an one

sided PSD. The transfer function in Equation 6.79 can be written in the canonical form,

of Equation 6.80, provided that we allow, ω0
2 = 1/ (LC) and ζ =

√
L/C/R. This

approach, to the scaling of the problem, means that we can solve the noise problem for

all second order circuits, regardless of the actual values of the angular frequency, ω0,

or the impedance, R. With this in mind, it is worth taking some time to consider the

standard definitions and terms for second-order systems.

Some definitions and terms, for the second-order transfer function

We are given a standard second-order resonant band-pass transfer function:

H(s) =
2ζω0s

s2 + 2ζω0s + ω2
0

(6.80)

where 2π f0 = ω0 is the angular resonant frequency and ζ is the damping ratio. For sinu-

soidal signals, we have ω = 2π f . The damping coefficient is often defined as σ = ω0ζ.

The damped natural angular frequency of oscillation is defined as ωd = ω0

√

1 − ζ2. This

definition means that ω2
0 = ω2

d + σ2. These relationships are shown in Figure 6.12.

The Transfer function can be normalised to give:

H(S) =
2ζS

S2 + 2ζS + 1
(6.81)

where S = s/ω0 = jω/ω0 = j f / f0. The scaled poles are now located at Λ1 = −ζ +

jΩd and Λ2 = −ζ − jΩd, where ζ = σ/ω0 and Ωd = ωd/ω0. The scaled poles, in the

scaled big S plane are shown in Figure 6.13.
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ω0

ωd

λ2

λ1
Im.

Re.

The s plane

σ
Figure 6.12. Positions of poles of a second-order under-damped circuit. The poles are located

in the s plane at λ1 = −σ + jωd and λ2 = −σ− jωd. These form a complex conjugate

pair, so λ2 = λ1
∗. The radius of the circle is given by ω0, where ω2

0 = ω2
d + σ2.

Im.

Re.

d

Ω

1

2

Ω

ζ

0=1

The scaled S plane
Λ

Λ

Figure 6.13. The normalised poles of a second-order under-damped circuit. the angles are

preserved but the angular frequencies are all normalised to ω0 = 1 radian per second.

The second order transfer function H(s) can be written in the form:

H(s) =
2ζω0s

(s − λ1) (s − λ2)
(6.82)

This relationship can be used to locate all of the poles, and zeros of the Power Spectral

Density (PSD) function, |H(s)|2. If Equation 6.82 is multiplied by its complex conjugate

then it is possible to show that the normalised PSD has the general form:

|H (jΩ)|2 =
4ζ2Ω2

Ω4 + (4ζ2 − 2) Ω2 + 1
, (6.83)
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where Ω = ω/ω0 and ζ = σ/ω0. This can also be written as:

|H (jΩ)|2 =
4
(

1 − Ωd
2
)

Ω2

Ω4 +
(

2 − 4Ωd
2
)

Ω2 + 1
, (6.84)

since ζ2 + Ωd
2 = 1.

The poles of the normalised PSD are located at the corners of a rectangle in the complex

S plane:

• Λ1 = −ζ + jΩd

• Λ2 = −ζ − jΩd = Λ1
∗

• Λ3 = +ζ + jΩd = −Λ1
∗

• Λ4 = +ζ − jΩd = −Λ1

where ζ = σ/ω0, Ωd = ωd/ω0, and S = s/ω0.

If we wish to view the situation from the point of view of normalised angular frequency

Ω then these poles get rotated through π/2 when we view the situation from the point

of view of the Ω plane, where real normalised angular frequencies lie along the real

line. This follows from the fact that S = jΩ. The poles in the Ω plane are shown in

Figure 6.14.

The PSD can be written as a product of linear factors in Ω:

|H (jΩ)|2 =
4ζ2Ω2

(Ω − jΛ1)
(

Ω − jΛ∗
1

)

(Ω + jΛ1)
(

Ω + jΛ∗
1

) . (6.85)

The usual approach to this problem is to resolve the function into a sum of first order

partial fractions. The amount of labour involved is reduced if we realise that the four

poles can be arranged into two pairs of complex conjugate poles: {−jΛ∗
1 , +jΛ1} and

{−jΛ1, +jΛ∗
1}. It is sensible to multiply these factors first:

(Ω + jΛ∗
1) · (Ω − jΛ1) = Ω2 + 2ΩdΩ + 1

(Ω + jΛ1) · (Ω − jΛ∗
1) = Ω2 − 2ΩdΩ + 1.
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Ω plane

Imaginary

Im.

Re.

*Λ1

+jΛ1 +j *Λ1

−j Λ1−j

Figure 6.14. Poles of the power spectral density function. This figure shows the poles of the

Power Spectral Density (PSD) function in the Ω plane. We can integrate with respect

to Ω, using Cauchy’s theorem by integrating along the real axis. We can imagine the

return path being effectively at infinity. It can be shown that the integral around the

return path converges to zero as the radius goes to infinity. This is because the power

spectral density drops off faster than radius of the path.

After that, one can use the formula for the difference of two squares, (A + B)(A− B) =

A2 − B2, to obtain:

(Ω + jΛ∗
1) · (Ω − jΛ1) · (Ω + jΛ1) · (Ω − jΛ∗

1)

=
(

Ω2 + 2ΩdΩ + 1
)

·
(

Ω2 − 2ΩdΩ + 1
)

= Ω4 +
(

4ζ2 − 2
)

Ω2 + 1,

which proves that Equations 6.85 and 6.83 are equal. Equation 6.84 follows from the

fact that ζ2 + Ωd
2 = 1. We could use Equations 6.85 or Equation 6.84, depending on

the application and depending on which ever form was more convenient.
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The normalised PSD, expressed in terms of Ω, can be written, as a sum of linear partial

fractions,

|H (jΩ)|2 = |H (S)|2

=
+ζ

2Ωd
· Λ1

Ω − jΛ1
+

+ζ

2Ωd
· Λ∗

1

Ω + jΛ∗
1

+

−ζ

2Ωd
· Λ1

Ω + jΛ1
+

−ζ

2Ωd
· Λ∗

1

Ω − jΛ∗
1

, (6.86)

where Λ1 = −ζ + jΩd.

Noise equivalent bandwidth for a second-order system

It is then possible to use Cauchy’s Integral Formula to derive an expression for the

Noise Equivalent Bandwidth, BN, of a standard second-order resonant band-pass cir-

cuit:

BN =
f0

2
·
∫ +∞

−∞
|H (jΩ)|2 dΩ, (6.87)

where 2π f0 = ω0.

If a function can be written as:

F(Ω) =
N

∑
k=1

ck ·
1

Ω − zk
, (6.88)

then the poles are zk, for 1 ≤ k ≤ N and the residues are 2πjck, for 1 ≤ k ≤ N. The

Cauchy Integral Formula implies that the integral of F(z) is given by the sum of the

residues:
∮

F(Ω)dΩ = j2π
N

∑
k=1

ck · bk, (6.89)

where the bk coefficients are either 0 or 1. The coefficient, bk = 1, if the pole, zk, lies

inside the contour and the coefficient, bk0, if the pole, zk, lies outside of the contour.

The poles and residues are all described in Equation 6.86, so to apply Cauchy’s for-

mula, all that we need to do is to identify which poles lie inside the contour and then

sum those residues, and multiply by j2π. The poles and the contour are shown in
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Figure 6.14. The required integral can be written as

∫ +∞

−∞
|H (jΩ)|2 dΩ = j2π

N

∑
k=1

ck · bk. (6.90)

The only difficult part is deciding which poles lie inside the contour. The poles and

the contour are shown in Figure 6.14. Equation 6.87 can then be applied to obtain the

Noise Equivalent Bandwidth, BN.

We can sum and scale the appropriate residues in Equation 6.86 to evaluate the integral

of |H (jΩ)|2, along the real axis of the Ω plane. The residues at Ω = −jΛ∗
1 and Ω =

−jΛ1 are relevant because they lie inside the contour of integration. When we apply

Cauchy’s Integral Formula, we obtain:
∫ +∞

−∞
|H (jΩ)|2 dΩ = j2π

(

ζ

2Ωd
(Λ∗

1 − Λ1)

)

= 2πζ, (6.91)

which gives the final result of

Bn = π · f0 · ζ =
π

2
· f0

Q
. (6.92)

This is closely related to the half-power bandwidth, which is given by

B1/2 = 2 · f0 · ζ =
f0

Q
. (6.93)

The derivation of this last result can be found in Hayt et al. (2002). The noise-bandwidth

and half-power-bandwidth are not equal but are closely related, for the second-order

band-pass circuit.

For the parallel LRC circuit we have ζω0 = 1/ (2RC), and hence

Bn =
1

4RC
, (6.94)

which is the same result as for the RC circuit. This gives an expression for the mean-

square voltage across the resistor as,

E
[

|vn|2
]

=
kT

C
, (6.95)

which is also the same as for the RC circuit. The value, or presence, or even complete

absence of the inductor, makes no difference to the mean square voltage across the

capacitor. This is also consistent with an argument, based on equipartition of energy,

where 1
2 CE

[

|vn|2
]

= 1
2 kT, because the mean energy per degree of freedom is 1

2kT. If

we view the capacitor as a single lumped element then it has one degree of freedom.
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6.5.2 An approach, using the the Langevin stochastic differential

equation

R

i Li R dt C dv C

dBi
−

+ L d i

dt

v C dtC 0

+

−

 LL

Figure 6.15. An RCL parallel circuit. This parallel circuit has two energy storage elements, so

the state-space model has two dimensions. The choice of state variables is not unique

but a sensible choice is to use the energy variables, the capacitor voltage, vc, and

the inductor current, iL. If we apply Kirchhoff’s Current Law (KCL) then we obtain

dvC = (−1/ (RC)) vCdt − (1/C) iLdt + (i0/C) dB. If we apply Kirchhoff’s Voltage

Law (KVL) then we obtain diL = (1/L) vCdt. These are the two equations of state

for this circuit.

This parallel RCL circuit In Figure 6.15 is identical with the circuit in Figure 6.11, but

the symbols that are used to describe the circuit have been changed, in order to be con-

sistent with an SDE representation. The symbols represent infinitesimal increments of

flux that occur in an infinitesimal time interval, dt. Increments of electric flux (charge)

are represented using conventional current symbols, along a conductors. Increments of

magnetic flux are represented using conventional voltage symbol, across components.

The circuit is already in a form where the infinitesimal forms of Kirchhoff’s laws can

be applied. There are two energy storage elements, so the state-space model has two

dimensions. We choose state variables of the capacitor voltage, vc, and the inductor

current, iL. If we apply Kirchhoff’s Current Law (KCL), to the common node at the top

of the figure, then we obtain

dvC = − 1

RC
· vC · dt − 1

C
· iL · dt +

i0
C
· dB. (6.96)

If we apply Kirchhoff’s Voltage Law (KVL), to the mesh that includes L and C only,

then we obtain

diL = +
1

L
· vC · dt. (6.97)

Equations 6.96 and 6.97 are the two equations of state for the circuit in Figure 6.15.

These can be written in matrix form as
[

dvC

diL

]

=

[

− 1
RC − 1

C

+ 1
L 0

]

·
[

vC

iL

]

· dt +

[

i0
C

0

]

· Bt. (6.98)
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This has the general form of

dXt = A · Xt · dt + K · dBt, (6.99)

where X is the state vector (in phase space), A is the state-transition matrix, K is a mix-

ing matrix (that can introduce linear mixtures of noise into the state variables) and dBt

is a vector of independent infinitesimal increments of Brownian motion. Specifically,

these variables can be defined, for the circuit in Figure 6.15, as follows,

X =

[

vC

iL

]

, (6.100)

A =

[

− 1
RC − 1

C

+ 1
L 0

]

(6.101)

K =

[

i0
C

0

]

(6.102)

dBt = [dBt] , (6.103)

which is a rather degenerate one-dimensional vector that is equivalent to the scalar,

dBt. This problem is of a standard form, that has been solved by Øksendal (1998), as

follows

Xt = exp (At) ·
(

X0 + exp (−At) · K · dBt +
∫ t

0
exp (−As) · A · K · Bs · ds

)

. (6.104)

It is clear that circuits, leading to equations of the form of Equation 6.99 can be solved

using solution of the form of Equation 6.104. This technique can be extended to all

linear circuits with finite numbers of energy storage elements, and noise generating

elements.

6.6 Noise models for the JFET

The noise model that we use here, shown in Figure 6.16 is the one used by Abbott et al.

(1997) and is essentially a van der Ziel model (Streetman 1995, Razavi 2001) with all

noise sources referred to the input. For a JFET, the gate currents are limited by reverse

biased PN junctions. We regard the gate leakage current as negligible and have not

included it in the model.
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.g
m V dtgs

+

+

-

-

Vgs CgsIn 2dB

V dB1n

G
A

SS

D

Figure 6.16. Noise model for a JFET. This is a van der Ziel model with all noise sources referred

to the input. The gate to source capacitance is represented by Cgs. This model

includes the standard noise-free small signal model for a JFET. The amplifying effect

of the JFET is represented by the dependent current source, gm·Vgs. The noise is

represented by two sources at the input, Vn·dB1 and In·dB2 where dB1 and dB2 are

infinitesimal increments of Brownian motion.

6.7 A simple JFET circuit

allows reference to this section We use a very simple version of the Colpitts oscillator

with a FET as the amplifying element. This is shown in Figure 6.17. In the Colpitts

topology, the chain of capacitors, C1 and C2, allows for a feedback path with high

impedance and voltage amplification.

    VDD

R 2

C

C

C

L

L 2

R

JFET,  J1

R

 3

 1

 3

 2

 1

 1

output, D

Figure 6.17. Large-signal, schematic circuit diagram for a Colpitts oscillator. This circuit uses

a JFET as the amplifying element. There are noise sources in R1, R2 and J1.
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6.8 Analysis of the JFET circuit

If we analyse the circuit in Figure 6.17, using small-signal technique, and insert the

noise model from Figure 6.16, then we obtain the complete small signal noise model

for the Colpitts oscillator, shown in Figure 6.18. If the circuit did not have noise sources

V dB1n
In 2dB

IR1 3dB

IR2 4dB

.g
m Vgs

Cgs

L1

+

-
dtVgs

+

-
dtV2

+ -

+-

dt dt

dt

V1

G

A

E

S

C1

C2 R2R1

dtI1

D

+

-
VD

Figure 6.18. Small signal equivalent circuit of a Colpitts oscillator. This circuit model, includes

the van der Ziel noise model. The FET is mapped into the equivalent circuit with

Source, S, Gate, G, Drain D. The earth is represented by E. The circuit has four

energy storage elements, Cgs, C1, C2 and L1. There are four corresponding state

variables, Vgs, V1, V2 and I1. Further analysis shows that only three of these are

independent. There are four noise sources, Vn·dB1, In·dB2, IR1·dB3 and IR2·dB4. The

nominal output is the drain voltage, VD.

then ordinary mesh and nodal analysis could be performed and we obtain a standard

state-variable model (DeRusso et al. 1965). With the presence of noise sources, we can

still write down mesh equations. Kirchhoff’s voltage law takes the form: ∑ dΦ =

∑ Vdt = 0 where the contribution from a noise voltage source would be dΦ = VndB.

We obtain a mesh equation for the mesh including the Gate G and the node A,

V1 dt − Vgs dt + Vn dB1 = 0, (6.105)

which indicates that the state-variables, V1 and Vgs are not independent. We can obtain

a mesh equation including L1, C1 and C2,

dI1 =
1

L1
·V1 dt +

1

L1
·V2 dt. (6.106)
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The current through the noise source, Vn dB1 is undetermined but we can regard G and

A as an enlarged node and write

I1 dt + C1 dV1 + Cgs dVgs − In dB2 = 0. (6.107)

Finally, the source is simply a very large node

C1 dV1 − C2 dV2 + Cgs dVgs =
V2

R1
dt − gm Vgs dt + In dB2 − IR1 dB3. (6.108)

Equations 6.105, 6.106, 6.107 and 6.108 are the equations of state for this system.

The nominal output of the circuit is the drain voltage , VD. This can be expressed with

an output equation,

VD dt = −R2 gm Vgs dt − IR2 R2 dB4. (6.109)

This completes the formulation of the circuit. We could solve the resulting SDEs exactly

if we could write these equations in matrix form:

dXt = A · Xtdt + KdBt (6.110)

where A is a square state-transition matrix and exp (+At) is defined, Xt is a state vector

containing the state-variables,
{

Vgs, V1, V2, I1

}

and K is a matrix that combines the

independent noise sources, {dB1, dB2, dB3, dB4}. In this case the matrix, K is square but

this does not have to be the case. There will be an explicit solution of the form:

Xt = exp (+At) ·
[

X0 + exp (−At) · K · Bt +
∫ t

0
exp (−As) · A · KBsds

]

. (6.111)

The derivation of this solution relies on the multi-dimensional form of Itô’s lemma

and may be found in Øksendal (1998). Of course, these equations can also be solved

using numerical methods described in the literature, see for example (Kloeden and

Platen 1999, Penski 2000).

6.9 Summary and open questions

So far, we have constructed models for L, R and C. We have devised practical and con-

sistent forms for Kirchhoff’s laws. We have shown that the noise equations for electri-

cal circuits are completely equivalent to the Langevin equations of statistical mechan-

ics. We have shown that explicit solution of the SDEs is not always necessary, since we
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can often formulate much simpler ODEs in the variables of interest. Finally, we have

made some progress on the formulation of a practical and consistent noise models for

a JFET.

A cursory examination of the JFET in Figure 6.18 circuit would suggest that the state

variables should be: {V1, V2, Vgs, I1}. There ought to be 4 state variables. There seem to

be 4 independent equations 6.105, 6.106, 6.107 and 6.108, so we might expect that these

equations could be written directly in the form of Equation 6.110. This turns out not to

be the case, because Equation 6.105 is degenerate. It does not contain any explicit ref-

erence to dV1 or dVgs and we might expect that the noise components of these variables

are not independent. We do not appear to have enough independent equations for the

number of (apparently) independent variables.

Our unsolved problem of noise is that we cannot yet implement the noise model for

the JFET until we can put Equations 6.105, 6.106, 6.107 and 6.108 into the form of Equa-

tion 6.110.

It seems that the solution must ultimately depend on a reduction of the number of

state variables required to describe the circuit. We must somehow reduce V1 and Vgs to

a single variable. We would then have three truly independent variables in three truly

independent equations, in the whole circuit, and the equations could be solved.

At first sight, this problem looks like it might be a simple oversight. If the noise source,

vn·dB1 were a deterministic voltage source, say V3·dt then there would be no prob-

lem. Equation 6.105 would reduce to an ordinary mesh equation of the usual type,

V1 − Vgs + V3 = 0, and the elimination of one of the state-variables, V1 or Vgs would

be trivial. Unfortunately, the circuit does contain a noise source, vn·dB1, and the mesh

equation does not reduce in the usual way. We cannot simply “cancel by dt,” as it were.

We suspect that the required reduction will depend on the unique decomposition of

semi-martingales as expounded by Doob (Protter 1990). The state-variables V1 and Vgs

cannot be independent because they do not have independent decompositions.
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This chapter completes the exposition of the work of this thesis. We now summarise

this work in the following concluding chapter.
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Chapter 7

Conclusions and future
challenges

W
E review the original contributions made in this thesis and

consider future possible developments that have potential

for further development.

Page 251



7.1 Original contribution

7.1 Original contribution

This thesis makes a number of important contributions to the application of models of

the type used in Parrondo’s games.

• We establish the physical basis for Parrondo’s games, which places the work of

earlier authors on a more rigorous basis.

• We establish conditions for realistic simulations of Brownian ratchets, using Par-

rondo’s games.

• We also show how to evaluate all of the moments of Parrondo’s games using

a discrete transform method. This can be done without explicitly solving the

difference equations, represented by Parrondo’s games.

• We establish a unified small-matrix technique for evaluating expected return

from all sets of games in the same class at Parrondo’s games.

• We establish, by construction, that Parrondo’s games still manifest their appar-

ently paradoxical behaviour, even if null transitions are included.

• We also examine the conditions for the minimum number of states and develop

a set of games with only two states, which demonstrates the same paradoxical

behaviour as Parrondo’s games.

• We reveal that fractals are generated in the phase-space for Parrondo’s games.

• We devise methods for evaluating all the moments of fractals, including second

and higher moments.

• The concepts embodied in Parrondo’s games are applied to electrical circuits.

• We extended the methods of Middlebrook and Ćuk (1976) and use stochastic

differential equations (SDEs) to model switching noise in switched-mode circuits,

in the case where there is a random aspect in the switching rule.

• We show fractals exist in the phase spaces of switched mode circuits, where there

is a random, or stochastic, aspect in the switching rule.

• We develop methods to model electrical circuits using stochastic differential

equations (SDEs).
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7.2 Future prospects

Towards the end of his life Isaac Newton is reported to have said, “I do not know what

I may appear to the world, but to myself I seem to have been only like a boy playing on the

sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell

than ordinary, whilst the great ocean of truth lay all undiscovered before me.” What we know

is always such a small fraction of what can be known.

Each new discovery that we make, whether it is large or small, leads us on to ask new

questions. The scientist is always in a situation like triage in a hospital. Unfortunately,

some problems are lost causes and must be abandoned. Some problems do not need

our attention. Somebody else can solve them. Some questions can be answered, using

the available resources, and are worth solving. So it is with this thesis. There are many

questions that could be asked. The questions that are presented here are the ones that

seem to be new to the world, capable of solution and would produce useful results if

they were answered. We present some unsolved problems of noise, in this spirit.

7.2.1 The physical basis of Parrondo’s games

Choice of basis functions

If we are to solve partial differential equations, using a sum of basis functions then, the

basis-functions and operators must be chosen together, as parts of a working ensemble.

Ideally, we want the set of functions to be closed under the operators. If this does not

apply then, each time we apply the differential operators, ∂/∂x, ∂2/∂x2 then we will

increase the number of function that need to be tracked in the algorithm. This increase

occurs at each time step. There may be many steps in a simulation. The algorithm will

soon run up against storage or computational limits.

Polynomials may not always be ideal basis functions but they are closed under differ-

entiation. This is an important property. Sinusoidal functions also have closure under

differentiation. Sinusoidal expansions are used in Fourier’s solution to the diffusion

equation, for heat (Farlow 1982). They naturally occur in an approach, based in sep-

aration of variables. There are some difficulties with polynomial and sinusoidal basis
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functions though. They do not have good locality and they do not automatically guar-

antee continuity in parabolic partial differential equations, where total probability is

conserved. Conservation only arises out of an infinite sum and it is not clear what will

happen if the sum is truncated. This is the same issue that arises in the truncation of the

Kramers-Moyal expansion, where truncation can lead to negative probability densities.

With these ideas in mind, it is plausible that Gaussian functions of the form

p(x) =
1

σ
√

2π
· exp

(

− (x − µ)2

2σ2

)

(7.1)

might be good basis functions. The function p(x) automatically has locality near x =

µ(t), with a defined variation each side of the order of ±σ(t). These basis function also

have a well defined total probability,

∫ +∞

−∞
p(x)dx = 1, (7.2)

regardless of the values of µ(t) or σ(t). This is important for parabolic differential equa-

tions, where total probability is conserved. A good example is Equation 3.69, which is

first devised by Fourier (Maxwell 1888) and is used by Einstein (1905). The solution

has the form of a Gaussian function that scales with time.

Unfortunately, Gaussian functions are not orthogonal but they are almost orthogonal if

they are located in different positions. If we define

N (x, µ, σ2) =
1

σ
√

2π
· exp

(

− (x − µ)2

2σ2

)

(7.3)

then it can be shown that

N (x, µ1, σ1
2) · N (x, µ2, σ2

2) = N (µ1, µ2, σ4
2) · N (x, µ3, σ3

2) (7.4)

where

µ3 =
σ1

2

σ1
2 + σ2

2
· µ2 +

σ2
2

σ1
2 + σ2

2
· µ1, (7.5)

and
1

σ3
2

=
1

σ1
2

+
1

σ2
2

(7.6)

and

σ4
2 = σ1

2 + σ2
2. (7.7)
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This can be proved by completing the squares in the exponents, and rearranging terms,

algebraically. Equation 7.4 allows us to establish a quasi-orthogonal condition for

Gaussian functions:

I =
∫ +∞

−∞
N (x, µ1, σ1

2) · N (x, µ2, σ2
2)dx = N (µ1, µ2, σ1

2 + σ2
2). (7.8)

This reduces to I ≈ 1, when (µ2 − µ2)
2 ≪ σ1

2 + σ2
2, and I ≈ 0 when (µ2 − µ2)

2 ≫
σ1

2 + σ2
2. Gaussian functions are quasi-orthogonal. If we apply linear algebra to the

problem of representation then the resulting matrices are not purely diagonal, but they

are are diagonally dominant, and are well conditioned. It is certainly true, numerically,

that Gaussian functions are very good for representation of other functions. This can

be seen in Figure 7.1 where a sinc function is approximated, using finite weighted sum

of Gaussian functions. The Gaussian function is a very versatile basis function. It is

possible to approximate many different functional forms, over finite intervals, using

Gaussian functions.

An important, but unfortunate, issue with Gaussian functions, as basis functions, is

that they are not closed under differentiation. This limits their utility, for solving dif-

ferential equations. Consider p(x) in Equation 7.1. Rodrigues’ formula allows us to

express the derivatives of p(x) in terms of Hermite polynomials (Abramowitz and

Stegun 1970),

∂k

∂xk
p(x) = (−1)k · Hk

(√
2

2
x

)

· p(x), (7.9)

where Hk(x) are Hermite polynomials, satisfying the recurrence relationship

Hk+1 (x) = 2xHk (x) − 2kHk−1 (x) . (7.10)

The first two Hermite polynomials are H0(x) = +1, H1(x) = 2x. Higher order poly-

nomials and derivatives can be evaluated using Equations 7.10 and 7.9.

This suggests that Gaussian functions, multiplied by polynomials might be good basis

functions. The set of polynomial functions, windowed by Gaussian functions, is closed

under differentiation. A good example, of this type of function, is the class of Hermite

functions, of the form

hk(x, σ) =
Hk

(

x−µ
σ

)

e
−(x−µ)2

2σ2

√

2kk!σ
√

π
, (7.11)
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Figure 7.1. The Gaussian function, as a basis function. The top half of this figure shows

an approximation to the sinc function, y = sin(πx)/(πx), using a weighted sum

of Gaussian functions, yg(x) = ∑
M
k=1 bk · N (x, xk, σ2). The Gaussian approximation

collocates at the sampling points, yg(xk) = yk = y(xk). The collocating points are

shown with the symbol, +. The two functions, y(x) and yg(x) are shown as continuous

curves. The two curves are so close that they cannot be distinguished on this scale. The

RMS distance between the two curves is approximately 1.3 × 10−5. This is achieved

with 15 equally spaced collocating points. The width of the basis functions is controlled

by the parameter, σ. This is chosen to be somewhat larger than the sampling distance,

λ. The choice for this figure is σ = 1.68 · λ. This is chosen in order to limit the edge

effects that are quite common with collocating functions. The bottom half of the figure

shows the error of this approximation, yg(x) − y(x). It is possible to construct almost

anything out of Gaussian functions, if one uses enough of them. Gaussian functions

can be useful for windowing other functions, as a part of signal processing. They are

used in Gabor wavelets. The Gaussian is an excellent windowing function because it has

locality in the time and frequency domains. It has minimum time-bandwidth product and

it makes a good testing function because its properties have been extensively studied.

Most of the indefinite integrals that one needs to evaluate can be evaluated explicitly,

in closed form (without the use of power series).

where k ≥ 0 is the degree of the Hermite polynomial Hk and σ is a scale param-

eter, and µ is a position parameter. These functions have a very interesting prop-

erty that hk is isomorphic with its own Fourier transform. Hermite functions, of the
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form of Equation 7.11, are well behaved in the time and frequency domains. They

also appear as the eigenfunctions for Schrödinger’s equation for the harmonic oscil-

lator, which has quadratic potential as a function of position. Schrödinger’s equation

and the Fokker-Planck equation are related through a transformation of relativistic

Minkowski space, called a Wick rotation, where the time coordinate is multiplied by

j =
√
−1 (Risken 1996). Hermite functions are used for the unification of time-domain

and frequency-domain measurements in electronic engineering Rao and Sarkar (1999).

Risken (1996) discusses the expansion of distribution functions into Hermite functions,

for the solutions of the Kramers equation. The conjecture is that Hermite functions

might be very well-behaved and suitable basis functions for solving the partial differ-

ential equations, which arise in the study of Brownian ratchets.

The technical issue to be overcome is the choice of position, µ, and scale, σ, for each ba-

sis function. There is also the problem of how to accommodate mutual approximation

of both the probability density, p(x), and the potential function v(x), within the scheme

imposed by the Fokker Planck equation. It is not clear that equally spaced samples are

best, but on the other hand, if equal spacing is not used then the number of testing

functions that are created, during each time step, will grow very quickly, maybe even

exponentially. The algorithm may collapse under the weight of demand, for storage or

computation. This is the closure issue again. We need the set of basis functions to be

closed under the set of operations that we have to perform.

Brownian ratchets with distributed charge

In biological ion channels, and pumps, performance depends strongly on how we

model the effect of ion to ion interactions. At high local ion concentrations the effect of

the crowding of charge is significant. It is necessary to include this effect in the mod-

els. If we are interested in average ion currents then we can replace the complicated

many-body problem with a time-average mean-field for the distribution of charge. We

can use Poisson’s equation.

To date, most analyses of Brownian ratchets neglect the effect of distributed charge.

This means that the analysis is only strictly valid for dilute solutions. One exception

is Allison and Abbott (2003a), who use Poisson’s equation to formulate methods for
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generating difference equations that can be used to model Brownian ratchets with dis-

tributed charge. They show that distributed charge reduces the transport effect that is

generated by a Brownian ratchet.

Unfortunately, there are technical issues with the resulting equations because there are

important transitions at a wide range of different scales. Such equations are regarded

as being stiff. The standard method for sampling, for finite differences, is not very sta-

ble when the partial differential equations are stiff.

Fortunately, there is a good possibility that a different choice of basis functions would

help. Hermite functions (Hermite polynomials, weighted by Gaussian functions) ap-

pear to be be an appropriate basis functions for sampling the resulting equations. The

conjectures is that the use of Hermite functions, to examine Brownian ratchets with

distributed charge, would lead to a different set of difference equations, which would

generalise Parrondo’s games in a different way.

Bayesian approach to the analysis of the games

Most of the discussion of probability in this thesis is consistent with the orthodox view,

formulated in axiomatic form by Kolmogorov (1950). If we examine the structure of

the games then we realise that they are being played sequentially and the outcome

from each step is determined by the conditional probabilities that apply at each step.

This sequential aspect of the games suggests that an approach based on Bayesian prob-

ability might be more natural. It would avoid a lot of arcane discussion about ergodic

theory (Jaynes 1957). Some of the apparently paradoxical behaviour might be easier to

understand if it were explained in a more natural step-by step fashion. Jaynes (2003)

includes a discussion of the derivation of the Fokker-Planck equation. This could be a

useful starting point for the Bayesian analysis of Parrondo’s games.

Parrondo’s games as a von Neumann game

Juan Parrondo originally left the rule for choosing game A or game B unspecified.

Some researchers have studied deterministic, periodic sequences and some have stud-

ied randomised sequences. There would be interesting possibilities, from the game
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theoretic point of view, if the games were played between agents with objectives. For

example in a casino situation, the gambler might have the options of betting long (on a

win) or short (on a loss). This would be like a futures market where short selling is pos-

sible. The casino could choose to play game A or game B. If the gambler and the casino

both had to choose their strategies for the next time-tick before playing the games and

they made their choices in secret without telling the other party, then Parrondo’s games

would become a true matrix-game, in the sense used by von Neumann and by Nash. It

should be possible to use the theorems of Nash to show that equilibrium strategies ex-

ist. There should be strategies from which neither player would be willing to diverge.

This part of the theory should be fairly routine. These strategies may not be unique,

though.

The interesting generalisation of this question would be , what if we played a game

against nature? Our payoff is determined by our ability, or otherwise to transform en-

ergy from one form to another in a Brownian motor. We do this by choosing from a

number of available strategies, after the fashion of Maxwell’s demon, who opens or

does not open the door. Nature seeks to hide her secrets. Nature’s payoff is that she

seeks to maximise the entropy that we produce, as a result of out activities. This im-

poses an energy cost on us, which has to be factored into our plans. Can games of this

type be made physically realistic?

We can consider some electrical examples. In a purely dissipative electrical system,

such as networks of resistors, the resulting distribution of currents and voltages always

arranges itself in such a way as to minimise the dissipation of power,

P = v1
2/R1 + v2

2/R2. (7.12)

This result has been known since the time of Kirchhoff. In a purely conservative elec-

trical system, such as the LC resonant circuit, the currents and voltages arrange them-

selves in a way that minimises the action, given by integrating the Lagrangian

L = UC −UL =
1

2
Cv2 =

1

2
Li2. (7.13)

So in a circuit which is dissipative and also has energy storage, which objective is opti-

mised? Can the currents and voltages serve two masters? The conjecture is that game

theory might give the right approach to a problem where we seek to optimise two

different objective functions. We can imagine a game being played between agents,
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possibly many agents, each with different objectives. The most probable outcome is a

Nash equilibrium where none of the agents are not prepared to change their strategies

because that would leave them vulnerable to exploitation.

7.2.2 Rates of return from discrete games of chance

Higher moments of Parrondo’s games

In Chapter 3, formulae are developed for evaluating the higher moments to Parrondo’s

games. The open question is whether these equations can be reduced to more simple

expressions,in the way that is carried out for the first moment. The second moment is

of particular interest because it measures the amount of spread generated by the action

of Parrondo’s games. at first sight this would seem to be just a matter of algebra. It

might be necessary to carry out a lot of algebra but this would seem to be well within

the capability of a computer algebra package, such as Mathematica, Maple or Axiom.

Evaluation of higher moments would make it possible to predict the Peclet numbers

arising from different ratchet designs. Our desire would be to optimise the design to

get a strong transport effect without generating too much spreading of the particles.

Moments of fractal objects

In this thesis, we show that it is possible to calculate the moments of fractal objects,

generated by an Iterated Function System (IFS), using a Moment Generating Function

(MGF). The MGF can be determined by considering the symmetries resulting from the

IFS. The moments can be determined by differentiating the MGF. This could have some

interesting application for determining the moments of fractal objects, wherever they

may be found.

Given a fractal object, the collage theorem of Barnsley allows us to construct an IFS

which will generate an approximation to the original fractal object (Barnsley 1988).

This is the basis of Fractal image compression. This suggests a procedure for calcu-

lating moments. Given a fractal object, we can generate an IFS which can used to

determine an MGF, which can be differentiated to calculate moments. The conjecture

is that this will be less labour than evaluating the moments directly from the original
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data. The reason for being optimistic about this, is that the IFS requires much less stor-

age than the original data.

Behrends’ conjecture regarding fractal dimension

There is the important question of how to optimise the return from Parrondo’s games,

if the only choice at our disposal is to choose a sequence of games, [A, B, B, A, B, · · · ].
This can be shown to be equivalent to choosing a binary number in the unit interval

[1, 0, 0, 1, 0, 1, 0 · · · ] ≡ .1001010 · · · . Behrends (2006) investigates the question of the

optimal sequence of games. He argues that the cost of the search depends on the frac-

tal dimension of the attracting set. He writes, as follows “We denote by Rmax
x0

(m) the

maximum possible reward. The aim of this note is to investigate the behaviour of the sequence
(

Rmax
x0

(m)
)

for large m. It will be shown that the growth is nearly linear: there is a constant

γ (which does not depend on x0) such that
(

Rmax
x0

(m)
)

/m tends to γ . However, an explicit

calculation of γ might be hard. The complexity depends on the fractal dimension of the smallest

nonempty compact subset of M which is invariant with respect to all Γρ.”

The issue here is that the fractal dimension of the attracting set possibly does play a

role in the relative ease, or difficulty, of finding good sequences of games, with high

reward. This is interesting because the fractal is constructed within a rather abstract

phase-space that has no material existence. The results in this thesis show that the

averages over phase-space will always be the same as the time average. One might

conclude that all we have to do is to analyse the time-average game and we will know

everything that can be known about the games. If Behrend’s conjecture is true then

the distribution of probability vectors in phase-space does play a role in determining

how much computational effort is required, in order to acquire information about an

optimal sequence, for a given set of games. The open question is whether Behrends

conjecture is true.

7.2.3 Switched-mode circuits and switched Markov systems

Moments of fractal objects, for switched-mode devices

The fractal objects in the phase-spaces of electronic circuits are as physical and real as

the voltages and currents in the circuits. They can me measured and displayed, and
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compared against theories. The results in this thesis show that when there is a random

element in the switching rule, there will be fractals in the phase space. This should

apply to small variations in timing, such as jitter, as it does to binary choices, such as

ON or OFF. The obvious extension of this theory is to build some physical hardware

and examine whether uncertainty in the switching law does generate fractals in the

phase space. The theory should predict the moments of of all the state-variables. This

includes the mean values and variances of all the voltages and currents. These results

all follow from an analysis of the fractal sets in the phase-space.

SDEs to model large switched-mode circuits

The national power grid is actually an extremely large switched-mode device. Ev-

ery time we switch on, or off, a new load, the network switches into a new mode. Of

course, the number of devices and switching incidents on such a large network is enor-

mous. We cannot track them individually, any more than we can tract the individual

molecules in a large volume of gas. Statistical methods must be used. The techniques

defined in this thesis show how to aggregate the effects of random switching to arrive

at Langevin equations that can be used to model the behaviour of the dynamical sys-

tem.

Classical control theory mostly reduces to the use of time-average ordinary differen-

tial equations to model the average behaviour of a system. Langevin equations can be

used to model average behaviour, including transients, and the fluctuations due to the

stochastic switching within the system. One of the more modern trends in the design of

power distribution networks is the use of signal processing techniques (Novak 2008).

As National networks become larger, the noise due to switching will become more

pronounced. This is especially the case if there is a large number of small generators,

switching into and out of the national grid. This is likely to become more pronounced

if there is a move to renewable energy, generated near the locations of use. We believe

that Langevin equations will find a role in the analysis and design of power distribu-

tion networks because they have the capability of describing both average transient

behaviour and the fluctuations due to switching noise.
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7.2.4 Langevin equations to model noise in electronic circuits

As the feature size of microelectronic circuits is reduced, it is necessary to reduce the

supply voltages and currents in order to keep power dissipation within manageable

limits. This is placing stress on noise margins. It is likely that microelectronic design

will run up against noise constraints before quantum limits are reached. we believe

that there will be an increasing demand for accurate prediction of noise levels within

microelectronic circuits, based on physical modelling. This methods presented in this

thesis are an important first step towards towards algorithmic analysis of noise. If the

analysis can be made completely algorithmic then it can be programmed into a machine.

It can be built into the software of the simulators. We believe that Langevin equations

will play an important role here.

Unique decomposition of martingales

The noise model for the JFET, in a Colpitts oscillator, in Figure 6.18, required three

capacitors, C1, Cgs and C2 to join at a single node. In the analysis that follows, there

appear to be too many independent variables and not enough equations.

It seems impossible to specify to specify a unique solution. One might suspect that the

answer to this difficulty lies in the fact that supposedly independent variables might

not actually be independent. This would depend on the decomposition of martingales

into stochastic and deterministic parts. If this decomposition is unique then suppos-

edly independent quantities are actually dependent. This reduces the number of in-

dependent quantities in the equations, which would allow the equations to be solved,

in a straightforward manner.. The conjecture here is that the state variables in systems

of SDEs are martingales and that the decomposition into stochastic and deterministic

parts is unique.

The two capacitor problem

The three capacitors, C1, Cgs and C2, in Figure 6.18, join at a single node. This problem

has a great similarity with a long standing difficulty in circuit theory, called the two-

capacitor problem (Powell 1979, Mayer et al. 1993). Consider the following thought
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experiment. We place two equal capacitors, C1 = C2 = C, side by side. They are not

connected electrically. We charge up one capacitor, C1 to an initial voltage, V1. The

initial stored energy in the system is U = 1
2CV1

2. We then connect the capacitors and

current flows through the supposedly lossless wires. Charge is conserved so we can

calculate the final voltage as V2 = 1
2V1, and hence the final stored energy of the system

is U = 1
4 CV1

2. Where did the missing energy go? Is there something wrong with circuit

theory?

It appears that constructing a pure capacitor is impossible and that inductance may be

important and the transient currents and voltages may be oscillatory. It also appears

that it is not possible to construct a capacitor of zero size, and therefore radiation will

always occur. The proof of this depends on Maxwell’s equations, which lie outside of

ordinary circuit theory. The solution is to include a small amount of resistance in the

circuit, to represent the radiation resistance (Boykin et al. 2002).

Possibly the most perceptive insight is given by Zemanian (2005), who also wrote

(Zemanian 1965), about distribution theory and generalised functions. He points out

that all that is required to resolve the apparent paradox is that the circuit contains at

least an infinitesimal amount of resistance. This could be Ohmic, in the wires, or it

could be resistance of radiation. This is not the most important issue. The oscillations

are not the important issue. The important issue is that the circuit must contain some

small resistive part. For very small amounts of resistance, most of the power is dissi-

pated extremely quickly in the first brief moments after the circuit is completed. This

should be obvious to anybody who has ever tried to discharge a large capacitor, say

100, 000 µF at 50 volts, using a screwdriver40. Zemanian (2005) shows that the estima-

tion of the final energy in the capacitors, calculated using distribution theory gives the

same result as expected from a naive consideration of circuit theory. It appears that

charge is conserved under these conditions, but energy is dissipated, no matter how

small the resistive part of the circuit may be. The final values of the state variables

do not depend on the exact path by which this state is reached. We do not need to

know the details of the rapid, impulsive transition. The complete solution to the two-

capacitor depends on nonstandard analysis, using generalised functions.

40The author has tried this experiment, once.
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It is possible that the three capacitor problem, in Figure 6.18, has some similarity to

the two-capacitor problem. It is possible that both problems cannot be solved with-

out including parasitic components, such as parasitic resistance. We could possibly

add parasitic resistance, to the three capacitor problem, solve the resulting model and

then take the limit as the resistances become infinitesimally small. This would require

nonstandard analysis of the type used by Zemanian (2005). The conjecture is that we

can solve the three capacitor problem by adding the right parasitic components. The

unsolved problem is, which components must be added, and why?

Closing comments

Niels Bohr is reported to have said “Prediction is very difficult, especially about the future.”

It is hard to predict which parts of this work will prove to be the most useful, but of

one must judge then the following summary (of the summary) would seem to be the

best short list.

• Parrondo’s games exhibit a real effect that is closely related to real physical trans-

port processes, in nature.

• The moments of these processes can be calculated analytically.

• Various similar games, devised by other authors, can all be analysed within the

same mathematical framework.

• Phase-space, state-space and visualisation techniques are helpful.

• The framework is quite general and applies to other physical systems, including

electronic circuits.

• In the continuum limit, it seems possible to use stochastic differential equations

to model these systems.
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é

Scientific genealogy

Andrew Allison's Scientific Genealogy

1802 – PhD, Prague, Joseph Johann von Littrow

1834 – PhD, Moscow State University, Nokolai Dmitrievich Brashman

1849 – PhD, St Petersburg University, Pafnuty Lvovich Chebyshev

1884 – PhD, St Petersburg University, Andrey Andreyevich Markov

1912 – PhD, St Petersburg University, Abram Samoilovitch Besicovitch

1943 – MA, University of Cambridge, Patrick Alfred Pierce Moran

1965 – PhD, Australian National University, Charles Edward Miller Pearce

1782 – MA, University of Cambridge, �omas Jones

1811 – MA, University of Cambridge, Adam Sedgwick

1830 – MA, University of Cambridge, William Hopkins

1857 – MA, University of Cambridge, Edward John Routh

1868 – MA, University of Cambridge, John William Strutt (Lord Rayleigh)

1883 – MA, University of Cambridge, Joseph John �omson

1903 – MA, University of Cambridge, John Sealy Edward Townsend

1923 – DPhil, University of Oxford, Victor Albert Bailey

1948 – MSc, University of Sydney, Ronald Ernest Aitchison

1964 – PhD, University of Sydney, Peter Harold Cole

1980 – PhD, University of Adelaide, Kamran Eshraghian

1995 – PhD, University of Adelaide, Derek Abbott

2009 - PhD submitted, University of Adelaide, Andrew Gordon Allison

Formalised supervisor relationship

Mentoring relationship

1816 – MA, University of Cambridge, George Peacock

1827 – BA, University of Cambridge, Augustus De Morgan

1911 – MSc, University of Melbourne, Edward (Eddy) Byam Brown

1945 – MA,  University of Melbourne, Eric Osbourne Willoughby

1968 – PhD, University of Adelaide, Bruce Raymond Davis

1774 – MA, University of Cambridge, John Cranke1756 – MA, University of Cambridge, �omas Postlethwaite

1742 – MA, University of Cambridge, Stephen Whisson

1723 – MA, University of Cambridge, Walter Taylor

1715 – MA, University of Cambridge, Robert Smith

1706 – MA, University of Cambridge, Roger Cotes

1668 – MA, University of Cambridge, Isaac Newton

1800 – MA, University of Cambridge, John Hudson

NOBEL

NOBEL

P
a
g
e

2
6
8



Methods of work

The author is grateful to Mei Sheong Wong for capturing one aspect of his working

methods in an etching, on a copper plate. This plate was prepared at Second Valley, in

South Australia, in 2007. It shows the author at work on the problem of the moments

of Parrondo’s games, using a z-transform technique. Mei’s WWW site can be found at

http://www.wastrels.com.au/

The production of this thesis involved many hours of work, with computers. Many

hundreds of lines of source code were written, in a variety of languages, especially
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Methods of work

LATEX and Matlab. This might lead people to conclude that the computer comes first,

but this is not correct. Computers are used to verify and to display ideas that are

first developed using other techniques. Most of the geometry, calculus and algebra is

first carried out by hand, on paper. Sometimes, quite a lot of paper is used. The re-

sults for Astumian’s games, with absorbing boundaries, require about thirty pages of

hand-written A4 paper, which leads to about five pages of finished images and text, in

Section 4.5.6. This is a fairly typical yield factor, throughout the thesis. To include every

step of every mathematical argument would make the thesis very tiresome to read.

Many hundreds of pieces of paper were written, manipulated and stored. The author

uses a hierarchical form of document identification. Each project is allocated a working

title and acronym. A project called “the Moments of Parrondo’s Games via a Trans-

form method” is identified as “MPGT.” The project called “Astumian’s Games with

Absorbing States” is identified as “AGAS” and so on. Collisions between acronyms

can always be avoided by making them longer. The use of acronyms is easier for hu-

man beings to use than a pure numbering system, with numerical tokens.

All the documents resulting from the first working session on a project are identified

with a label that follows the format of a UNIX file system, eg: “MPGT/1”. The individ-

ual pages can be numbered as “MPGT/1/1” and ‘MPGT/1/2” and so on. Individual

equations and figures can be identified as “MPGT/1/1/3” and so on. Equations can

be numbered by counting the relational operators, such as = or ≤, starting from the

top of the page. If the second working session follows on directly from the first, in a

linear narrative, then the second session will be identified as “MPGT/2”, and so on.

This can proceed for a very long time. At the present time, the MPGT project extends

as far as “MPGT/37”. New sessions can be added at any time.

The useful aspect of a tree-oriented notation is that it allows for branching. If an er-

ror is found in a page, say “MPGT/3/4/” then a new line of development can be

created, starting with “MPGT/3/4.1/” and so on. The labels “MPGT/3/4/” and

“MPGT/3/4.0/” are deemed to be equal. The dot numbering convention for the branch-

ing follows the convention to IP addresses. It might take many branches and false leads

to solve a problem. The label “‘MPGT/17/9.2/3.1.1/6.1” has occurred, in practice. The
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notation does not place any limit on the extent of branching. This approach, to num-

bering with dots, is very similar to but more systematic than the notation used in the

Tractatus by Wittgenstein (1918). The metaphor for the labelling system is a UNIX file

system with may sub-directories. Each sub-directory stores a document which has an

internal numbing system similar to Wittgenstein (1918).

Branching is required in any narrative where old ideas are being corrected or new cre-

ative developments are being introduced. A hierarchical tree-oriented numbing sys-

tem allows for commentary, after commentary, without end, in the fashion of the Tal-

mud. Using this method of labelling, documents can be stored, retrieved and edited.

New comments can be added. New lines of thought can be introduced. Commentaries,

checks, additions, and new ideas can be added, to any arbitrary level of recursion. In

short, the storage method does not place any limit on the creative process.

The documents can be taken out, laid out on a table in arbitrary positions or arbitrary

sequences, to assist with creativity. The documents can then be stored away in correct

order, to prevent loss of information. This makes it possible to work in a disrupted or

temporary workspace and to make use of small fragments of time because it is possible

to physically store your mental state and then reconstruct it physically on a table, later

on. The author refers to this approach to document labelling as the Wittgenstein system,

as a reference to the Tractatus and to Wittgenstein’s Jewish heritage of commentary

and debate.

The author has also developed a horizontal form of the Noguchi (Communication-

Nation 2005, Patterson 2007) filing system for storing all the paper associated with

projects. The system used for this thesis differs from Noguchi’s original system in

that it is horizontal and makes use of suspension files. This makes it quick and easy

to archive old material, back into standard filing cabinets, for long term storage. The

central feature of the Noguchi system is that it trades off some searching time (when

a document is retrieved) in exchange for a great saving of clerical effort (when a doc-

ument is stored). The Noguchi system automatically sorts the most frequently used

documents to the front of the queue. It automatically identifies the infrequently used

documents, which should be placed into archives, in filing cabinets, or placed in the

recycling bin.
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Figure 7.2. Fundamental limitations of computation. Thus I have heard: “There are four incalcu-

lables, which cannot be calculated, an attempt to calculate which would lead to frustration

and madness. What four? They are the objective field of the Buddhas, the objective field

of one who has acquired the meditations, the ripening of action, and the calculation of the

world.” Buddha Gotama, Anguttara Nikāya (IV 77). Translated and arranged by Bhikku

Ñānamoli (1978).
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ITÔ-K. (1942). Differential equations determining a Markoff process (in Japanese), Journ. Pan-
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Glossary

No new technical terms, or acronyms, are defined in this thesis. New concepts are

constructed from short phrases of existing concepts. Some existing acronyms are used

and are listed here, together with a few technical terms.

AC Alternating Current, high frequency

AE Almost Everywhere

AIP American Institute of Physics

BIOMEMS Biological- Micro-Electro-Mechanical Systems

BJT Bipolar Junction Transistor

CBME Centre for Bio-Medical Engineering

CLT Central Limit Theorem

CSIRO Commonwealth Scientific and Industrial Organisation

dBt an infinitesimal increment of Brownian motion

DC Direct Current, zero frequency

det the determinant of a matrix

DNA Deoxy-ribo-Nucleic Acid

EMACS Editing with MACroS, The one true text editor

EPS Encapsulated Post-Script

FET Field Effect Transistor

JFET Junction Field Effect Transistor

GNU GNU is Not UNIX, devised by Richard M Stallman

HTML Hyper-Text Markup language

IE Integral Equation

inkscape A versatile vector graphics program
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Glossary

KCL Kirchhoff’s Current Law

KVL Kirchhoff’s Voltage law

LATEX the TEX mathematical markup language with macros

LINUX Linus Torvald’s open-source reverse-engineered version of UNIX.

LRC Adjective for a circuit containing an inductor, L, resistor, R, and a capacitor, C

Matlab A powerful matrix-oriented scientific and engineering computing language

MEMS Micro Electro-Mechanical System

MGF Moment Generating Function

MOSFET Metal-Oxide Field-Effect Transistor

MULTICS Multiplexed Information and Computing Service

Octave The GNU open-source matrix-oriented computing language

ODE Ordinary Differential Equation

PDE Partial Differential Equation

Perl A language for getting your job done, especially with text

PFE Partial Fraction Expansion, of rational polynomials over a field

PSD Power Spectral Density

RC Adjective for a circuit containing a resistor, R, and a capacitor, C

RMS Root Mean Square

SDE Stochastic Differential Equation

SIE Stochastic Integral Equation, the more rigorous form of an SDE

sinc the function of x, sin(πx)/(πx)

UNIX A widely used computer operating system, pun on MULTICS.

UPoN Unsolved Problems of Noise

WWW World Wide Web

xfig A venerable, reliable and compact vector graphics program
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Index

Ćuk

and Middlebrook, 162

absorbing

boundary conditions, 122

Astumian’s games, 125

states, 122

actin, 18

adenosine, 18

admittance, 166

Astumian

Astumian’s games, 121

rule-set 1, 122

rule-set 2, 122

asymmetrical, 21

asymptotic

rates of return, 91, 94

not helpful with absorbing states, 126

small-matrix technique, 96

value

of the time-varying probability vector, 128

average

current, 163

rate of return

from Parrondo’s original games, 97

small-matrix formula, 95

reward, 93

state-space time-average model, 170

time averaged angular corner frequencies,

169

time-average model

of Middlebrook and Ćuk , 162

time-average SDE

for switched-mode circuits, 180

time-average switched state-space model, 171

time-averaged game, 95

small-matrix representation, 96

voltage, 163

average probability vector

in phase-space

of Parrondo’s games, 154

over phase-space, 152

averages

consistency of

in time and phase-space, 155

Avogadro’s number, 13

band-pass circuit

SDE model for, 236

Barnsley, 141, 147, 149

and Iterated Function Systems (IFS), 139

and the Cantor set, 175, 176, 183

dimension of Parrondo’s fractal, 151

testing theory of, 150

basis functions

choice of, 253

basis functions

choice of, 31

Behrends

analysis agrees with Astumian, 130

and formulae for Astumian’s games, 129

conjecture

regarding fractal dimension, 261

Bernoulli, 59, 60, 62, 67

distribution, 52

process, 52, 65

and Parrondo’s games, 70

solution using z-transforms, 64

trials, 61

Binomial, 61

coefficients, 52

distribution, 52

probability mass function, 59

Boltzmann, 12

Boyle, 12

Brownian motion, 12, 14, 16

properties of, 210

Brownian motor, 17
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Brownian ratchet, 18

flashing ratchet

physical design, 20

inter-digital, 20–23

successful physical examples, 22

Brownian ratchets

with distributed charge, 257

Cantor set

is a fractal, 138

capacitance, 219, 220

capacitor, 228, 236

in switched-mode circuit, 162

randomly switched, 177, 179

SDE model, 177

SDE model for, 180

stochastic model, 227

switched, 163, 165, 167

equivalent to an admittance, 166

fractals in phase-space, 175

simulation, 169

with fast switching, 177

capacitors

SDE modelling of, 227

catalysis, 24

Cauchy

integral formula, 232

challenges

for the future, 251

charge

electric, 217

equivalent to charge, 217

electric flux, 217

chromatography, 39

circuit

equivalent

switched-mode, 164

switched mode, 162

circuits

electronic

modelling using SDEs, 217

stochastic analysis of, 209

Clifford

Clifford algebra, 144

geometric algebra

meaning of determinant, 144

Colpitts oscillator, 245

computation

fundamental limitations of, 16, 275

conclusions

summary of, 251

configuration space, 83

consistency of averages

in time and phase-space, 155

continuity, 42, 254

law of, 53

continuity, law of, 41

contribution

original, 252

contributions

original

in this thesis, 7

control

control law

randomised, 162

loop, 186

systems

stable and unstable, 189

theory

law can be randomised, 181

convex

convex set

Kolmogorov’s definition, 102

convexity and concavity, 101

linear convex combination, 94

current

average, 163

in the switched capacitor circuit, 167

KCL

Kirchhoff’s current law, 217

Kirchhoff’s current law

infinitesimal form, 217

KCL, 217

terminal, 227

current source
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noise, 224

symbol, 229

Norton equivalent, 224

currents

and voltages

as state variables, 163

De Moivre, 52

debt, 70

decomposition

unique

martingales, 248

definitions of terms

for Markov transition operators, 82

Democritus, 12

demon

Maxwell’s, 14

figure, 15

role in creative process, xiv

density function

conditional, 29

difference equations

partial, 40

with periodic coefficients, 72

differences

finite, 30

partial, 30

diffusion, 29

coefficient

effective, 68

equation, 41

Einstein’s use of Fourier’s solution, 52

Fourier’s solution to, 52

Fick’s law, 30, 41

Graham’s law, 41

minority carriers

bipolar transistor, 58

operator

Parrondo and Ehrenfest, 51

Parrondo’s games with natural, 57

partial difference equation for, 51

dimension

capacity, 151

constraint

reduces number by one, 84

different from cardinality, 144

fractal, 137, 143

attracting set, 157

generated by matrix operators, 144

of attracting set in an IFS, 143

with two matrix operators, 145

Hausdorff, 137

Moment Generating Function

multi-dimensional, 152

multi dimensional

discrete Markov chain, 84

multi-dimensional

Moment Generating Function, 154

scaling property, 154

number of

very large in Parrondo’s games, 88

Parrondo’s original games, 148

three states, 148

phase-space

multi-dimensional, 154

special two dimensional case

Parrondo’s games, 104

dimensions

many

leads to large matrices, 90

discrete games of chance

history, 23

rates of return from, 81

solution using discrete transforms, 59

discrete transforms, 35

discrete transforms in space

the w-transform, 68

dynamics

and state-variables, 163

detailed

ignored in time-average models, 170

medium-term, 169

medium-term and stochastic

modelled by SDE, 181

state-space models for, 173
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Einstein, 24, 41, 43

Einstein-Smoluchowski equation, 52

solution to the diffusion equation, 52

energy

a apparent paradox resolved, 167

a Parrondian paradox with, 184

source, 162

stored, 162, 163

waste, 163

entropy, 14, 15, 19

Epicurus, 12

equilibrium

quasi, 228, 233

thermodynamic, 219, 222

equilibrium, steady-state voltages, 164

equipartition

of energy, 219, 222, 228, 233, 242

limitations of use, 234

mean square voltage, 234

proof, 234

equivalent representation

in time and phase-space

of Parrondo’s games, 150

ergodic

an inhomogeneous Markov chain, 140

hypothesis

for Cantor’s fractal, 140

feedback

control

loop, 186

path, 187

transfer function, 193

FET

Field Effect Transistor, 244

Feynman, 12, 17, 223

finite difference equations

and Parrondo’s games, 38

finite difference model, for switched-mode cir-

cuits, 168

flashing ratchet, 19, 20

fluctuations, 13, 16, 19

flux

density

electric, 218

electric

charge, 217

magnetic, 220, 221

Fokker-Planck Equation, 29, 30, 41

and Brownian ratchets, 39

and Parrondo’s Game B, 50

and Parrondo’s game B, 50

diffusion equation as a special case, 52

equivalent finite partial difference equation,

46

methods of obtaining, 41

relation to the Kramers-Moyal expansion,

30

sampling, 44

summary of results, 58

sampling the, 38

with piecewise-constant coefficients, 42

Fokker-Planck equation

relationship to Langevin equation, 216

fractal

an interesting example, 157

Parrondo’s, 148

snowflake fractal, 157

fractals

moments of, 260

functional mapping

between electrical and mechanical systems,

226

functions

continuous

discrete transformations of, 29

sampling

of, 29

gain

zero gain surface, 98

zero-gain surface

figure, 116

gambler

gambler’s ruin

and Astumian’s games, 125
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gambling as a paradigm

for Parrondo’s games, 86

for probability theory, 86

Game A

Parrondo’s, 47

Game B

Parrondo’s, 47

games

independent games without memory, 112

games of chance

discrete

history, 23

Gauss

Gaussian basis function, 34

Gaussian conditional density function, 30

Gaussian distribution

completely determined by first two mo-

ments, 59

robust when sampled, 69

Gaussian function

solution to the diffusion equation, 52

Gaussian functions

as basis functions, 69

Gaussian limit of the binomial, 52

generalised function, 142, 178, 206

Lighthill and, 142

generating function, 30, 36, 39

generating functions

and the z-transform, 59

table of, 69

Geometric Brownian Motion (GBM)

basis for Black-Scholes model, 214

Geometric Brownian motion (GBM)

exact solution, 213

Gibbs, 13, 14, 83, 84, 228

Hamiltonian, 226

Hurwitz, 187

IFS

Iterated Function System, 139

Iterated Function Systems, 147

inductor, 236

stochastic modelling, 227, 228

inductors

modelling of, 227

instability, 187

and modes of response, 171

proof, 197

integral
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Itô’s formula, 213

Jaynes, 258

JFET

Field Effect Transistor

simple circuit, 245

Junction Field Effect Transistor, 244

analysis of circuit, 246

Kirchhoff, 259

Kirchhoff’s laws

infinitesimal forms, 217

Kirchhoff’s voltage law

stochastic form, 220

Kolmogorov

and linear spaces, 84

construction of Brownian motion, 207

definition of a convex set, 102

on continuity of Brownian motion, 207

Kushner, 200, 202

Lagrangian, 259

Langevin, 183, 203

Langevin equation, 228

applied to electronic circuits, 243

for electronic circuits, 234

Page 295



Index

relationship to the Fokker-Planck equation,

216

two dimensional, 236

Langevin equations

models for noise in electronic circuits, 263

Langevin equations,as models for noise in cir-

cuits, 205

Laplace, 31

Gaussian limit of the binomial, 52

on probability, 41

transform, 35

one-sided, in time, 35

two-sided, inspace, 35

linear transformations

of phase-space, 153

low-pass filter

SDE model for, 228

Lucretius, 12

Lyapunov

equation, 195

function, 194

stability, 184

theorem, 196

Lyapunov’s method

second, 192

Mandelbrot

Cantor dust, 139

self-similar sets, 139

Markov chains

can generate fractals

in phase-space, 138

time-homogeneous

notation, 132

time-inhomogeneous, 134

martingale, 208

decomposition

unique, 263

definition of, 211

property of Itô integrals, 211
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Stochastic Differential Equation

multi-dimensional

exact solution, 244

SDE, 161, 177, 179, 181, 203, 206, 208, 213

algebraic solution of, 212

simulation, 180

stochastic processes

with stationary probabilities of transition,

66

stochastically switched, 178, 200

sub-prime crisis, 70

correlated downturn, 72

switched capacitor circuit,summary, 182

switched state-space model, 190

switched-Markov chain

ODE model, 172

switched-mode, 162–164, 166

circuit

fast random switching, 177

fractals in state-space, 175

ODE model, 171–174

SDE model, 177

Page 299



Index

stability, 172

simulation, 169

switched-mode circuits, 161, 162

switched-mode devices

fractals in phase-space

moments of, 261

switched Markov systems, 161

switching noise, 168

as one of many noise sources, 202

SDE for modelling, 202

Taleb, 70

Taleb’s game

definition, 70

solution using discrete transforms, 70

terminal

current, 227

voltage, 227
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