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1.1 Introduction 

The replacement of missing teeth by osseointegrated dental implants is a commonly utilised 

treatment option in dentistry. However, successful treatment outcomes are dependent on sufficient 

bone quantity in the proposed surgical site for implant placement (Buser et al., 2004). 

Surgical augmentation of bone defects is commonly performed prior to or during implant 

placement. Bone augmentation procedures of the maxillary sinus or guided bone regeneration 

(GBR) procedures of alveolar ridge defects have utilised a variety of bone graft materials in block or 

particulate form, either alone or in combination with resorbable or non-resorbable barrier 

membranes. 

 

1.2 Osteogenesis, Osteoconduction, Osteoinduction  

Bone graft materials are defined as any implanted material that “promotes new bone formation 

through osteogenic, osteoinductive or osteoconductive processes” (Bauer and Muschler, 2000). 

However, these three processes differ in their mechanisms of new bone formation. Osteogenesis 

occurs when the graft material contains viable osteoprogenitor cells capable of differentiating into 

osteoblasts to produce new bone. Osteoconduction occurs when the graft material serves as a 

scaffold, allowing osteogenic cells to infiltrate from the adjacent bone margins, to proliferate and form 

bone on the surface of the graft material with subsequent replacement or incorporation of the graft 

material with new bone (Jensen et al., 2006). Finally, osteoinduction occurs when the graft material 

stimulates undifferentiated mesenchymal stem cells from the surrounding tissue to differentiate into 

osteogenic cells to form new bone (Urist, 1965, Yuan et al., 2001b, Habibovic et al., 2005b, Yuan et 

al., 2006b). 

 During skeletal development and repair, bone formation can occur via the processes of 

endochondral or intramembranous ossification. Endochondral ossification occurs primarily in long 

bones while in the flat bones of the skull and also the mandible, bone formation occurs via the 

process of intramembranous ossification.  
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During endochondral ossification, undifferentiated mesenchymal stem cells condense at the 

site of future bone formation. Cells within the condensation centre differentiate into chondrocytes to 

produce cartilage while those at the periphery differentiate into fibroblast like perichondrial cells to 

produce perichondrium. During this process, cartilage becomes mineralised as the chondrocytes 

become hypertrophic and this is followed by vascular invasion of the mineralised cartilage. 

Subsequently, chondroclasts degrade the mineralised cartilage allowing osteoblast migration and 

osteoid deposition onto the cartilaginous matrix with replacement of the cartilage precursor with 

mineralised bone (Chung et al., 2004, Colnot, 2005).  

In contrast to endochondral ossification, no cartilage precursor is formed during 

intramembranous ossification. Cell differentiation occurs within a membranous, condensed plate of 

mesenchymal cells present in fibrous connective tissue with differentiation of these cells directly into 

those of an osteoblastic lineage. These cells continue to differentiate and proliferate into osteoblasts 

that deposit bone matrix resulting in the formation of woven bone (Kronenberg, 2003, Chung et al., 

2004).  

 

1.3 Bone graft materials 

The ideal bone graft material should be biocompatible, with a physicochemical structure 

similar to natural bone in order to promote angiogenesis and fibrovascular tissue ingrowth with 

incorporation of the graft material with the new bone (Klawitter et al., 1976, Daculsi and Passuti, 

1990, Chang et al., 2000). Additionally, an ideal bone graft should be osteogenic or osteoinductive 

resulting in formation of new bone or at a minimum, osteoconductive, promoting direct bone contact 

and growth along the graft material. Additionally, the ideal graft material should undergo remodelling 

with a resorption rate similar to the rate of new bone formation resulting in an augmented site 

consisting of host bone alone (Shetty and Han, 1991). 

Four different types of bone graft materials have been commonly used and are classified as 

autografts, allograft, xenografts or alloplasts.  
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1.3.1 Autografts 

Autografts are harvested from the intended graft recipient and are considered the gold 

standard bone graft material. Autografts are osteogenic, due to the presence of viable osteogenic 

cells, osteoinductive, due to the presence of bone matrix proteins such as bone morphogenetic 

proteins (BMP) and osteoconductive, due to the porous mineralised component of bone (Misch and 

Dietsh, 1993). However, the amount of graft material that can be harvested is limited and may be 

associated with increased morbidity and risk of surgical or postoperative complications (Laurie et al., 

1984, Younger and Chapman, 1989, Clavero and Lundgren, 2003, Cricchio and Lundgren, 2003).  

 

1.3.2 Allografts 

Allografts are grafts that have been harvested from one individual and implanted into another 

individual of the same species. Donors can be living related persons, living unrelated persons or, 

more commonly, from cadavers after the removal of viable cells (Friedlaender et al., 1999). Allografts 

are generally prepared in freeze-dried forms (FDBA) or hydrochloric acid treated to produce 

demineralised freeze-dried forms (DFDBA) to expose growth factors such as the BMP sequestered 

in the bone matrix (Urist, 1971). As cells are removed from allografts, they are not osteogenic and 

the extent of osteoinductive and osteoconductive properties of the allograft may vary depending on 

graft processing (Becker et al., 1995) as well as the donor age (Schwartz et al., 1998). Although 

allografts have been used with clinical success in implant dentistry (Simion et al., 1996, Olson et al., 

2000), their application may be limited due to high cost and the patient’s perceived risks of viral 

transmission, immunogenicity or other social and religious concerns (Buck et al., 1989, Friedlaender 

et al., 1999).  
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1.3.3 Xenografts 

Xenografts are grafts harvested from different species, commonly of bovine origin resulting in 

hydroxyapatite bone mineral after removal of the organic component (Jensen et al., 1996). 

Xenografts are osteoconductive as they have a mineral content and porosity similar to human bone 

(Spector, 1994) but do not contain osteogenic cells or osteoinductive agents. Animal and human 

studies have demonstrated new bone formation in direct contact with demineralised bovine bone 

matrix (DBBM) particles when used in bone grafting procedures (Fukuta et al., 1992, Yildirim et al., 

2000, Zitzmann et al., 2001). Similar to allografts, the use of DBBM may not be acceptable to some 

patients due to the perceived risk of disease transmission or other social or religious concerns 

(Sogal and Tofe, 1999, Wenz et al., 2001). 

 

1.3.4 Alloplasts 

Alloplasts represent a large group of chemically and structurally diverse materials with varying 

mechanical and biological properties (Aichelmann-Reidy and Yukna, 1998). These materials include 

calcium sulfate (De Leonardis and Pecora, 1999), composite polymers (Ashman and Lopinto, 2000), 

bioactive glass ceramics (Oonishi et al., 1997) as well as the calcium phosphate based ceramics.  

As alloplasts do not provide any osteogenic cells or osteoinductive proteins, they are considered to 

be osteoconductive only (Aichelmann-Reidy and Yukna, 1998).  

 

1.4 Calcium Phosphate (CaP) ceramics 

Calcium phosphate (CaP) ceramics are a group of polycrystalline ceramics with varying 

structural and mineral arrangements with hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and 

the mixture of HA and β-TCP, biphasic calcium phosphate (BCP) investigated with the most interest.  

These materials have been widely used as bone graft materials in dentistry (Monroe et al., 

1971, Nery and Lynch, 1978, Jarcho, 1981, Jepsen et al., 2008, Lee et al., 2008b) due to their 

biocompatibility and similarity in composition to bone mineral (Rey, 1990, LeGeros, 2002). 
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Hydroxyapatite [Ca10(PO4)6(OH)2] is the primary mineral component of bone, while tricalcium 

phosphate [Ca3(PO4)2] is not a natural component of bone but has chemical proportions of calcium 

and phosphate similar to bone mineral (Jarcho, 1986). These materials are not considered 

osteogenic or osteoinductive but provide a biocompatible osteoconductive scaffold for new bone 

formation. A unique property of CaP ceramics is their bioactivity, with formation of carbonate 

hydroxyapatite [Ca10(PO4.HPO4.CO3)6(OH)2] on their surfaces prior to bone deposition resulting in 

formation of a bond at the bone-ceramic interface (Jarcho, 1986). 

 

1.4.1 Preparation of CaP ceramics 

Calcium phosphate ceramics are produced by the preparation of calcium deficient apatites 

(CdA) with varying Ca/P ratios which are compacted and sintered under high pressure (10,000 to 

20,000 psi) and high temperatures (≥1000oC) (LeGeros, 1993, Jarcho, 1986).  

The physicochemical properties of the ceramic are determined by the Ca/P ratio of the apatite 

in addition to the sintering pressure and temperature. By controlling these variables, a wide range of 

calcium phosphate ceramics with different physicochemical properties can be produced. Apatites 

with a Ca/P ratio of 1.67 result in the formation of hydroxyapatite (HA) while a Ca/P ratio of 1.5 

results in the formation of tricalcium phosphate (TCP). When apatites with varying Ca/P ratios are 

sintered simultaneously, different amounts of HA and TCP are formed in the final CaP ceramic, 

resulting in the formation of biphasic calcium phosphate (BCP) ceramics (Blokhuis et al., 2000, 

Bouler et al., 2000, Daculsi et al., 2003). 

 

1.4.2 Biphasic Calcium Phosphate (BCP) 

Biphasic calcium phosphate (BCP) ceramics consist of a mixture of β-TCP and HA (HA-TCP) 

(Daculsi et al., 2003). BCP ceramics were developed to provide the benefits of rapid resorption of β-

TCP whilst maintaining the osteoconductive scaffold of the minimally resorbable HA (Hashimoto-

Uoshima et al., 1995, Piattelli et al., 1996). 
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Due to the presence of β-TCP, HA-TCP is considered a resorbable graft material, with greater 

resorbability associated with increasing ratios of β-TCP to HA (Daculsi et al., 1989, Farina et al., 

2008, Jensen et al., 2008). Most animal studies have reported that HA-TCP is osteoconductive, with 

new bone formation occurring directly against the graft materials (Daculsi et al., 1989, Fleckenstein 

et al., 2006, Jensen et al., 2007), however, fibrous encapsulation and an absence of 

osteoconductivity have been reported 18 months after implantation of HA-TCP particles into rat 

osseous defects (Develioglu et al., 2007).  

Others have suggested that HA-TCP may be more osteoconductive than HA due to its greater 

solubility and greater bone formation detected in vivo (Schopper et al., 2005, Jensen et al., 2007, 

Jensen et al., 2008).  

HA-TCP was initially used in periodontics and implant dentistry in the treatment of periodontal 

osseous defects and maxillary alveolar ridge defects (Nery et al., 1990, Piattelli et al., 1996). More 

recently, HA-TCP with a 60HA:40TCP ratio has been used in maxillary sinus augmentation resulting 

in new bone formation and an absence of inflammatory or foreign body reaction (Lee et al., 2008b). 

A new particulate HA-TCP ceramic has recently been released (Straumann Bone Ceramic®). 

The CdA is sintered at 1100-1500°C on a polymer matrix to produce a ceramic with a HA:TCP ratio 

of 60:40 and crystallinity of 100%. The porous block has a total porosity of 90% and macropore size 

of 100-500 μm with interconnected pores of 100-150 μm in diameter. This block is then ground and 

sieved to produce particle sizes ranging from 400-700 μm.  

Recent animal studies have reported on the osteoconductive properties of this material 

(Jensen et al., 2007, Jensen et al., 2008). In membrane covered defects in minipig mandibles, Bone 

Ceramic® particles were used effectively as an osteoconductive graft material, with similar bone 

formation when compared to autogenous bone after 24 weeks. Additionally, only limited degradation 

of the HA-TCP was reported after this time period (Jensen et al., 2007). However, others have 

reported fibrous encapsulation of this material with minimal graft resorption after nine weeks 

(Schwarz et al., 2007). In human clinical trials, this material has been used in maxillary sinus 
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augmentation, either alone or combined with autogenous bone (Artzi et al., 2008, Cordaro et al., 

2008). In both studies, biopsies taken 180-270 days after augmentation demonstrated close contact 

between the HA-TCP particles and new bone. Additionally, some resorption of the graft particles had 

occurred with a reduced percentage of graft particles demonstrated histomorphometrically (Cordaro 

et al., 2008). 

 

1.5 Osteoinduction 

Osteoinduction has been defined as “the mechanism of cellular differentiation of one tissue 

towards bone due to the physicochemical effect or contact with another tissue” (Urist et al., 1967). In 

vivo, the osteoinductive properties of bone graft materials can be demonstrated by the formation of 

ectopic bone after implantation into non-osseous sites lacking osteogenic cells.  

The development and clinical application of an osteoinductive bone graft material would be 

advantageous in the reconstruction of large bone defects, as the concurrent process of 

osteoinduction within the centre of the defect as well as osteoconduction at the defect margins could 

result in greater and more rapid bone formation (Yuan et al., 2006a). Several animal studies have 

suggested that an osteoinductive agent may translate to better bone-healing orthotopically, with 

enhanced healing in osseous defects when compared to non-osteoinductive or weakly 

osteoinductive materials (Habibovic et al., 2006b, Yuan et al., 2006a, Habibovic et al., 2008).  

The phenomenon of material related osteoinduction was first reported in a study where 

endochondral bone formation was detected 8 to 16 weeks after intramuscular implantation of 

demineralised bone matrix into the anterior abdominal wall of rabbits, rats, mice and guinea pigs 

(Urist, 1965). Later studies suggested that bone morphogenetic proteins (BMP) within the 

demineralised bone matrix were responsible for inducing the differentiation of resident perivascular 

mesenchymal cells firstly into chondrocytes and then into osteoblasts (Urist and Strates, 1971, Reddi 

and Huggins, 1972, Reddi, 1981, Urist et al., 1983). Since then, the osteoinductive potential of native 
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and recombinant BMP have been demonstrated in a number of animal studies (Cook and Rueger, 

1996, Riley et al., 1996) as well as trialled in clinical practice (Jung et al., 2003). 

 

1.5.1 Osteoinduction by CaP ceramics 

The presence of BMP was determined to be unnecessary when materials devoid of these 

proteins such as a polyhydroxylethylmethacrylate sponge were observed to be osteoinductive after 

implantation into the soft tissues of pigs and rats (Winter and Simpson, 1969). Calcification of the 

polymeric sponge occurred prior to bone formation, suggesting the importance of in vivo calcification 

in the process of osteoinduction. Since this early finding, others have demonstrated osteoinduction 

after soft tissue implantation of a variety of materials including porous titanium blocks (Fujibayashi et 

al., 2004, Kokubo, 2004), bioactive glasses (Yuan et al., 2001a) as well as CaP ceramics.  

Although CaP ceramics are usually encapsulated by fibrovascular connective tissue (Piecuch, 

1982, Yamasaki and Sakai, 1992, Fellah et al., 2008), the first evidence of CaP ceramic associated 

osteoinduction was reported after subcutaneous implantation of HA in dogs (Yamasaki, 1990). 

In the last two decades, several research groups have reported osteoinduction by CaP 

ceramics without the addition of osteogenic cells or bone growth factors after implantation into non-

osseous sites. It has been suggested that the bioactive properties of CaP ceramics and release of 

calcium and phosphate ions may enhance the calcification required for material associated 

osteoinduction (Habibovic et al., 2005a) with this phenomenon independent of the type of CaP 

ceramic (Table 1) 
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CaP Ceramic  Osteoinduction (Reference) 

HA 

Heughebaert et al., 1988 
Yamasaki and Sakai, 1992 
Ripamonti, 1996 
Yuan et al., 1998b 
Yuan et al., 1999 
Yuan et al., 2001c 
Habibovic et al., 2005b, Yuan et al., 2006b 

TCP (β-TCP, α-TCP) Yuan et al., 2001a 

BCP (HA-TCP) 

Yang et al., 1996 
Yang et al., 1997 
Yuan et al., 1998a 
Kurashina et al., 2002 
Habibovic et al., 2005b 
Le Nihouannen et al., 2005 
Yuan et al., 2006a, 2006b 
Habibovic et al., 2008 

Table 1: Studies reporting osteoinduction after implantation of CaP ceramics 

 

1.5.2 Osteoinduction by HA-TCP 

Precipitation of the biological apatite layer on the HA-TCP surface could provide a suitable 

chemical environment to induce differentiation of mesenchymal stem cells into osteogenic cell lines 

(Daculsi et al., 1990, Daculsi et al., 2003) with the greater solubility of HA-TCP (LeGeros et al., 2003, 

Schopper et al., 2005) resulting in improved osteoinductivity (Yuan et al., 1998a, Habibovic et al., 

2005b, Yuan et al., 2006a, 2006b, Habibovic et al., 2008). 

After intramuscular and subcutaneous implantation of HA-TCP in dogs and pigs, ectopic bone 

formation was detected 45 days after intramuscular implantation and 60 days subcutaneously. 

Fifteen days after implantation, invasion of fibrovascular connective tissue into the ceramic 

macropores was seen, followed by the appearance of polymorphic mesenchymal cells near the 

invading vasculature and the ceramic interface after 30 days with some of these cells positive for 

alkaline phosphatase (ALP) activity. From day 45, osteoblast differentiation and formation of bone 

matrix in contact with the ceramic surface was observed. Osteoblast differentiation occurred within 

the cell clusters that had aggregated on the pore inner surface and new bone formation was always 

closely associated with the presence of blood vessels (Yang et al., 1996, Yang et al., 1997). 
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More recently, new bone formation within the ceramic macropores as well as bony trabeculae 

bridging the ceramic particles were identified after intramuscular implantation of an HA-TCP with a 

60:40 HA:TCP ratio into sheep for six months. Blood vessels were observed within the macropore 

structure, as well as associated with new bone formation within the macropores and between the 

graft particles (Le Nihouannen et al., 2005). 

This newly formed bone appears to be stable with the absence of pathology in the 

surrounding soft tissues four and a half years after implantation and ongoing bone remodelling 

resulting in the presence of lamellar bone with Haversian like structures (Ye et al., 2007). 

However, not all studies have demonstrated osteoinduction after implantation of HA-TCP with 

an absence of new bone formation and fibrous encapsulation of the ceramic (Fellah et al., 2008). 

After subcutaneous implantation into rats, demineralised bone powder resulted in ectopic 

endochondral bone formation however no bone formation was reported in the sites implanted with 

the HA-TCP ceramic with a 65/35 HA:TCP ratio (Eid et al., 2001). 

 

1.5.3 Animal model specificity 

The implantation of materials into non-osseous sites has been performed in a variety of 

animal models although the extent and predictability of osteoinduction appears to be dependent on 

the animal model used. Osteoinduction has commonly been observed after intramuscular 

implantation in large animals such as dogs, baboons, sheep and goats (Table 2). 
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Animal Model Osteoinduction reported (Reference) 

Dogs 

Yamasaki and Sakai, 1992 
Klein et al., 1994 
Ripamonti, 1996 
Yang et al., 1997 
Yuan et al., 1998a 
Yuan et al., 1999 
Yuan et al., 2000 
Yuan et al., 2001a 
Yuan et al., 2001c 

Baboons Ripamonti, 1996 

Sheep Gosain et al., 2002 
Le Nihouannen et al., 2005 

Goats 
Yuan et al., 2002 
Habibovic et al., 2005a 
Habibovic et al., 2008 

Table 2. Studies demonstrating osteoinduction after implantation of CaP ceramic in large animal 

models 

 

Osteoinduction has been demonstrated less consistently in smaller animal models such as 

rabbits (Kurashina et al., 2002, Yuan et al., 2006b) with smaller amounts of bone formation 

(Ripamonti, 1996) or longer implantation periods required before ectopic bone formation. Similarly, 

intramuscular or subcutaneous implantation in rodent models have not usually reported ectopic bone 

formation (Ohgushi et al., 1989a, Goshima et al., 1991, Yang et al., 1996) however the 

osteoinductive potential of HA-TCP have been demonstrated recently in rodents (Yuan et al., 

2006b). 

Differences in osteoinductive activity have been attributed to possible differences in the levels 

of endogenous proteins such as BMP between animal species (Ripamonti, 1996) as well as genetic 

differences in osteoinductive potential between individuals (Marusic et al., 1999, Habibovic et al., 

2005b). The size of the implanted graft may also influence the osteoinductive potential, with greater 

bone formation generally reported after implantation of larger grafts. Larger grafts provide a 

mechanically stable surface necessary for bone growth (Szmukler-Moncler et al., 1998) as well as 

greater surface area for cell migration and biological fluid flow. The lack of osteoinductive activity in 

smaller animal models may be partly explained by the presence of shear stresses or micromotion or 
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insufficient surface area in the smaller grafts utilised (Yuan et al., 1998a, Yuan et al., 2001c, 

Habibovic et al., 2006a).  

 

1.5.4 Structural influences on CaP ceramic associated osteoinduction 

Although the process of osteoinduction is not fully understood, the three-dimensional structure 

and geometry of the biomaterial appears to have a crucial role in influencing osteoinduction 

(Fujibayashi et al., 2004). Certain structural elements such as macroporous and microporous 

surfaces appear to be necessary. The presence of macropores may reduce the shear stresses 

present on the outer surface of the ceramic (Yuan et al., 1998a, Yuan et al., 2001c) as well as 

allowing development of a sufficient calcium and phosphate ion concentration within the pore during 

CaP ceramic dissolution (Duan et al., 2005). Animal studies have demonstrated that ectopic bone 

formation is limited to the macroporous surfaces of the implanted ceramic and is absent around non-

porous materials (Ripamonti, 1991, Yamasaki and Sakai, 1992) with maintenance of the 

macroporous structure after implantation critical for osteoinduction (Kurashina et al., 2002).  

Recent studies have indicated that a microporous surface is important for CaP ceramic 

osteoinduction (Yuan et al., 1998a, Habibovic et al., 2005b, Habibovic et al., 2008) with bone 

formation occurring after intramuscular implantation in dogs of HA or HA-TCP macroporous 

ceramics with surface microporosity, whereas bone formation did not occur with dense ceramics 

(Yuan et al., 1999, Yuan et al., 2002). Similarly, others have also reported increased bone formation 

associated with increasing microporosity of the HA-TCP ceramic (Habibovic et al., 2005b, Habibovic 

et al., 2006a, Habibovic et al., 2006b, Habibovic et al., 2008).  

These structural elements increase the specific surface area of the material, enhancing 

surface reactivity and dissolution of the ceramic in body fluid. Greater precipitation of the biological 

apatite layer may occur on the ceramic surface resulting in increased protein adsorption and cell 

adhesion to the ceramic (Hing et al., 2005, Li et al., 2008). In vivo, when HA ceramics with high and 

low specific surface areas were implanted intramuscularly into goats, only the HA ceramic with a 
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higher specific surface area induced bone. Similarly, HA-TCP with a lower specific surface area 

induced significantly less bone than those with a higher specific surface area (Habibovic et al., 

2005b).  

A microporous surface may have other cellular effects, such as enhancing cell deposition of 

extracellular matrix components, with abundant collagen fibrils seen within the β-TCP micropores 

after intramuscular implantation in dogs (Kondo et al., 2006). Microporosity may also enhance 

osteogenic cell differentiation. Pluripotent mesenchymal cells demonstrated greater levels of alkaline 

phosphatase (ALP) activity when cultured on HA-TCP ceramics with a greater microporosity and 

specific surface area than those cultured on ceramics with reduced microporosity and smaller 

surface area (Li et al., 2008). 

 

1.5.5 Molecular mechanisms of osteoinduction 

The molecular mechanisms of osteoinduction by biomaterials are not completely understood 

and several hypotheses have been proposed (Barrere et al., 2003, Habibovic et al., 2005b). 

It has been proposed that an interconnected macroporous and microporous surface is critical 

for osteoinduction due to the effect on specific surface area and formation of the biological apatite 

layer (Habibovic et al., 2005b). As CaP ceramics have a high affinity for proteins (De Groot, 1998) 

adsorption of endogenous proteins and bone growth factors including BMP (Ripamonti et al., 1992, 

Reddi, 2000) can occur from the surrounding fluid (Combes and Rey, 2002, Wilson et al., 2005). 

Coprecipitation of these endogenous proteins above a concentration threshold (Wang et al., 1990) 

within the biological apatite layer at the ceramic surface may act as a physico-chemical trigger for 

attachment and differentiation of pluripotent mesenchymal cells into an osteogenic lineage 

(Habibovic et al., 2005b, Fan et al., 2007) (Figure 1). The presence of endogenous BMP such as 

BMP-3 and BMP-7 at the bone-ceramic interface within the concavities of HA or HA-TCP after 

intramuscular implantation suggests these ceramics can serve as the substratum for the adsorption 

and storage of endogenous circulating BMP (Ripamonti, 1991, Yuan et al., 1998b).  
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Figure 1. Mechanism of material related osteoinduction as proposed by Habibovic et al., (2005b) 

  

Although endogenous BMP have been suggested to play a role in CaP material 

osteoinduction (Ripamonti, 1996, Habibovic et al., 2005b), material associated osteoinduction results 

in intramembranous bone formation (Ripamonti, 1996, Yang et al., 1996) while BMP induced bone 

formation usually proceeds along an endochondral pathway (Urist, 1965, Reddi, 1981). Additionally, 

ectopic bone formation associated with CaP ceramics occurs within the macropores and never on 

the periphery of the graft material, while bone formation after implantation of BMP loaded carriers is 
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seen on the outside of the carrier and even in distant soft tissue (Yuan et al., 2001b). These 

observations suggest that there may be other mechanisms regulating material associated 

osteoinduction. 

Some authors have suggested that low oxygen tension within the central region of the graft 

material may stimulate differentiation of pericytes from blood vessels into osteoblasts, as osteogenic 

cells have been observed to arise from pericytes adjacent to small blood vessels in connective tissue 

(Diaz-Flores et al., 1992, Reilly et al., 1998, Collett and Canfield, 2005). Others have also suggested 

that inflammatory cytokines released by macrophages into the local environment during 

phagocytosis of ceramic microparticles (Laquerriere et al., 2003, Lu et al., 2004) may stimulate the 

differentiation of pericytes or circulating stem cells into osteoblasts (Le Nihouannen et al., 2005) 

(Figure 2).  
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Figure 2. Diagram of possible mechanisms for material associated osteoinduction. Following 

implantation, the MBCP (Micro-macroporous biphasic calcium phosphate) granules partly dissolve 

(1a) and a biological apatite precipitates onto the surface of the MBCP concentrating endogenous 

bone growth factors (2a). Circulating stem cells are recruited to this surface (3a) and differentiate 

into osteoprogenitors (4a). Microparticles detach from the microporous surface of MBCP (1b) and 

are phagocytosed by macrophages releasing inflammatory cytokines (2b). The inflammatory 

cytokines stimulate circulating stem cells (3b) into osteoprogenitors (4b). Osteoblastic cells align and 

produce bone extracellular matrix on the MBCP (5) (Le Nihouannen et al., 2005). 

 

1.6 Composite grafts  

Another method to provide osteogenic or osteoinductive properties to alloplasts, replicating 

properties traditionally associated with autografts or allografts, is to utilise a tissue engineering 

strategy with an alloplastic graft material as a carrier delivering osteogenic cells or osteoinductive 

agents within the defect to stimulate chemotaxis, proliferation and differentiation of mesenchymal 

stem cells into osteogenic cells.  

Without a scaffold or carrier, the in vivo application of osteogenic cells or growth factors is 

ineffective (Urist et al., 1984b, Goshima et al., 1991) due to the short half-life of proteins, the rapid 
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diffusion of proteins and cells away from the defect site as well as their susceptibility to uptake, 

catabolism or proteolysis (Hotz and Herr, 1994, Winn et al., 1999) resulting in an insufficient local 

concentration of the growth factor or number of osteogenic cells (Reddi, 1995, Wozney and Rosen, 

1998).  

The ideal matrix or scaffold for osteoinductive growth factors or osteogenic cells should 

display the following properties and characteristics (Bartold et al., 2006, Yuan et al., 2006b, Guillot et 

al., 2007): 

• Biocompatibility 

• Biodegradability to enable bone remodelling and replacement  

• Interconnective macroporosity and microporosity to facilitate vascularisation, oxygen and 

nutrient transfer as well as cellular recruitment, adherence and ingrowth  

• High mechanical strength and stability to sustain shape and bulk of defect until replaced by host 

bone 

• Ease of handling 

• Osteoconductivity to guide bone around or inside the bone graft 

• Release of growth factors at the desired concentration over the correct time period 

• Maintain cell viability to allow cell differentiation and ECM production within the carrier 

CaP ceramics have been suggested as carriers as they demonstrate a number of these 

qualities. The surfaces of CaP ceramics are chemically stable, display a high adsorption capacity for 

proteins (Urist et al., 1984a, Hartman et al., 2005) and provide good substratum for the attachment 

of osteogenic mesenchymal stem cells (MSCs) (Goshima et al., 1991, Toquet et al., 1999). After 

formation of new bone, the bioactive and osteoconductive properties of porous CaP ceramics can 

promote rapid ingrowth of newly formed bone along the ceramic surface. 
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1.6.1 Composite grafts of CaP ceramics and osteogenic cells 

CaP ceramics have been used as carriers for multipotent bone marrow MSCs that are 

capable of differentiating into various mesenchymal tissues including those of osteogenic lineage 

(Friedenstein et al., 1966, Caplan, 1991).  

The combination of porous CaP ceramics (HA, β-TCP, HA-TCP) and bone marrow or bone 

marrow MSCs have been evaluated in vivo with ectopic bone formation in a variety of animal models 

including rodents (Ohgushi et al., 1990, Goshima et al., 1991, Dong et al., 2002, Harris and Cooper, 

2004). Similarly, in animal osseous defects the combination of CaP and MSCs or bone marrow 

improved bone ingrowth when compared to CaP ceramic alone (Ohgushi et al., 1989b, Kon et al., 

2000, Jafarian et al., 2008). 

In these studies, new bone formation occurred directly against the ceramic surface within the 

ceramic pores, progressing from the periphery of the ceramic towards the centre (Ohgushi et al., 

1990, Kruyt et al., 2007, Kruyt et al., 2008). Bone formation occurred via an intramembranous 

pathway, although in sites where insufficient vascularity was present cartilage was observed 

(Goshima et al., 1991). 

 

1.6.2 Composite grafts of CaP ceramics and growth factors  

Growth factors are proteins expressed by a variety of cell types or released during matrix 

degradation. They regulate different cellular activities during bone healing and their levels are tightly 

regulated by a number of positive and negative feedback mechanisms (Giannobile, 1996, 

Schilephake, 2002).  

Injury to bone and vasculature results in an acute inflammatory response with platelet 

activation as well as fibrin deposition. Activated platelets release growth factors such as fibroblast 

growth factor (FGF), transforming growth factor-β (TGF-β), insulin like growth factor (IGF) and 

platelet derived growth factor (PDGF). Migrating inflammatory cells, local osteogenic cells and 

disruption of the extracellular matrix result in further release of IGF-I, PDGF, TGF-α and TGF-β as 
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well as other pro-inflammatory cytokines including prostaglandins, nitric oxide, kinins, vasoactive 

amines, complement factors and interleukins (Hansson et al., 1987, Rappolee et al., 1988, 

Antoniades et al., 1991). The cumulative effect of these chemical mediators is angiogenesis and 

development of fibrovascular granulation tissue within the osseous defect, with subsequent 

mesenchymal cell migration, proliferation and osteogenic cell differentiation (Bauer and Muschler, 

2000).  

The use of growth factors in bone regeneration aims to mimic and enhance this healing 

cascade, increasing the rate and amount of new bone formation within the bony defect.  

Due to the high affinity of CaP ceramics for proteins, a variety of growth factors in solution can 

be adsorbed onto the ceramic. Along with members of the TGF-β superfamily, BMP has received 

the most attention in the literature as ectopic bone formation as well as enhanced osseous wound 

healing have been demonstrated over the CaP ceramic alone (Urist et al., 1987, Ohyama et al., 

2004, Jung et al., 2006).  

The degree of bone formation appears to be dose dependent with increasing concentrations 

of BMP (Oda et al., 1997, Yuan et al., 2001b), however a minimum threshold concentration appears 

to be necessary (Oda et al., 1997). The degree and mechanism of bone formation also appears to 

be dependent on the three-dimensional geometry of the CaP ceramic. Bone formation was 

commonly found in the porous structure of the ceramics (Ripamonti et al., 1993, Oda et al., 1997) 

while no bone formation was seen when BMP was combined with non-porous ceramics (Kuboki et 

al., 1998). Additionally, the use of a porous BMP loaded CaP carrier with the appropriate three-

dimensional architecture may provide sufficient angiogenesis after implantation to promote new bone 

formation via an intramembranous pathway without a cartilage intermediate (Kuboki et al., 1995, 

Kuboki et al., 1998). 
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1.6.3 Adsorption and release kinetics of growth factors on CaP ceramics 

An effective composite graft for bone regeneration requires adsorption of the growth factor to 

the carrier while remaining biologically active, followed by controlled delivery to target cells at 

concentrations seen during wound healing (Winn et al., 1999, Whitaker et al., 2001). Adsorption of 

growth factors onto CaP ceramics is rapid (Jiang et al., 1999, Laffargue et al., 2000, Stephan et al., 

2000) with adsorption occurring immediately after combination (Ziegler et al., 2002). Proteins are 

mainly absorbed through electrostatic attractions between the ionic groups on the protein and the 

ceramic surface (Gorbunoff and Timasheff, 1984, Wassell et al., 1995), therefore growth factors with 

fewer of these groups may have a lower adsorption to CaP ceramics.  

Characteristics of the CaP ceramic will also affect the protein adsorption, with a higher Ca/P 

ratio (Sharpe et al., 1997) and specific surface area of the ceramic resulting in a greater amount of 

protein able to be adsorbed (Matsumoto et al., 2004, Zhu et al., 2008). However, in vitro protein 

adsorption may not be representative of an in vivo situation as CaP ceramics can interact with a 

variety of proteins and cells within body fluids which compete with the growth factor for binding sites 

on the ceramic surface (Sharpe et al., 1997). 

A biphasic release kinetic with an initial rapid burst release followed by a sustained release 

over a longer period (Winn et al., 1999) has been reported in vitro and in vivo for CaP ceramic 

adsorbed growth factors however this may vary depending on the binding capability of the protein 

and available surface area of the ceramic (Guicheux et al., 1998a, Guicheux et al., 1998b, Uludag et 

al., 1999, Laffargue et al., 2000, Lee et al., 2000, Ziegler et al., 2002, Matsumoto et al., 2004, 

Bateman et al., 2005, Poehling et al., 2006). A biphasic release kinetic may be beneficial in vivo as 

the initial burst release may augment the initial wound healing response, attracting differentiating 

cells into the porous ceramic carrier with the slower secondary release providing continued exposure 

of the growth factor to cells present within the bone defect (Uludag et al., 1999, Ziegler et al., 2002). 
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In addition to the growth factors previously mentioned, CaP ceramics have also been 

combined with platelet derived growth factor (PDGF) and Enamel Matrix Derivative (EMD) for use in 

bone and periodontal regeneration. 

 

1.7 Enamel Matrix Protein Derivative (EMD) 

Enamel matrix proteins (EMP) constitute the largest portion of the enamel matrix 

(Hammarstrom, 1997) and are involved in regulating cell differentiation processes during tooth 

development (Bartlett et al., 2006). A number of enamel matrix proteins are synthesised and 

secreted by ameloblasts during amelogenesis including Amelogenin, Ameloblastin, Tuftelin and 

Enamelin (Bartlett et al., 2006). The major EMP is Amelogenin with this protein having a role in 

regulating HA crystal deposition and growth during amelogenesis (Zeichner-David et al., 1997). 

EMPs have been detected on the developing root surface and are suggested to be released 

by Hertwig’s epithelial root sheath (Lindskog, 1982a, 1982b, Lindskog and Hammarstrom, 1982, 

Slavkin et al., 1989, Bosshardt and Nanci, 2004) with a role in cementoblast differentiation to 

produce acellular extrinsic fibre cementum (Hammarstrom, 1997).  

Amelogenin expression may also have a role in inducing mesenchymal stem cell recruitment 

during bone development and remodelling. Amelogenin mRNA and protein expression were 

detected from mesenchymal cells such as osteocytes, osteoblasts and bone marrow progenitor cells 

in rats, dogs and humans suggesting a possible role in osteogenic activity (Haze et al., 2007). 

 

1.7.1 Emdogain® 

A commercial preparation of enamel matrix protein derivative (EMD) has been developed 

(Emdogain®), derived from enamel buds of developing porcine teeth and contained within a viscous 

propylene glycol alginate (PGA) carrier. EMD comprises 90% amelogenin and 10% of non-

amelogenin enamel matrix proteins such as enamelins, tuftelin, amelin, enamelin and ameloblastin 

and other proteins such as albumin (Maycock et al., 2002).  
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After coating the tooth root in the periodontal defect, EMD precipitates onto the root surface 

(Gestrelius et al., 1997a) and remains detectable for one to four weeks in vivo (Gestrelius et al., 

1997a, Sculean et al., 2002c, Cornelini et al., 2004). It has been used in periodontal regeneration by 

mimicking the cellular and signalling events that occur during periodontal development, promoting 

mesenchymal cell differentiation into cementoblasts to form acellular cementum, periodontal 

ligament fibroblasts to form periodontal ligament and osteoblasts to form alveolar bone after 

exposure to EMD (Hammarstrom, 1997).  

 

1.7.2 Molecular and cellular effects of EMD 

Studies have demonstrated that the clinical use of EMD in periodontal regeneration does not 

result in any adverse immunological or antibody-mediated reactions in humans (Zetterstrom et al., 

1997, Nikolopoulos et al., 2002). No specific growth factors were identified in early analysis of EMD 

preparations (Gestrelius et al., 1997b). However, TGF-β or a TGF-β like molecule was later identified 

as a principal bioactive factor in EMD (Kawase et al., 2002). More recently, members of the TGF-β 

superfamily such as the BMP or BMP-like molecules including BMP-2, BMP-4 and BMP-6 have also 

been identified within EMD or enamel extracts (Iwata et al., 2002, Suzuki et al., 2005, Narukawa et 

al., 2007). Similarly, EMD has also been suggested to stimulate macrophage release of 

osteoinductive growth factors such as BMP-2 and BMP-4 (Fujishiro et al., 2008).  

The cellular effects of EMD are poorly understood. However, it seems that the effects of EMPs 

go beyond that of amelogenesis and cementogenesis with in vitro studies demonstrating the effects 

of EMD on a variety of different cell types.  

In a number of in vitro studies, proteins contained in EMD were shown to act as multipurpose 

growth factors able to affect different periodontal cell types including epithelial cells (Kawase et al., 

2000, Lyngstadaas et al., 2001), gingival fibroblasts (Haase and Bartold, 2001, Rincon et al., 2005), 

periodontal ligament fibroblasts (Gestrelius et al., 1997b, Lyngstadaas et al., 2001), cementoblasts 

(Tokiyasu et al., 2000, Swanson et al., 2006) as well as osteoblasts.  
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In vitro, EMD has been reported to enhance DNA synthesis (Kawase et al., 2002, Zeldich et 

al., 2007), cell proliferation (Keila et al., 2004, Zeldich et al., 2007) and cell attachment of human 

gingival fibroblasts (Haase and Bartold, 2001, Rincon et al., 2005). EMD is mitogenic for PDL 

fibroblasts resulting in increased cell proliferation (Gestrelius et al., 1997b, Lyngstadaas et al., 2001) 

as well as increased RNA and DNA synthesis (Brett et al., 2002, Rincon et al., 2005) with this effect 

appearing to be dose dependent (Davenport et al., 2003, Palioto et al., 2004, Rodrigues et al., 2007) 

with EMD negatively affecting cell viability at higher concentrations (Davenport et al., 2003). EMD 

also enhances PDL fibroblast migration (Hoang et al., 2000, Rodrigues et al., 2007) while its effect 

on PDL fibroblast cell adhesion has been mixed with EMD having no effect (Gestrelius et al., 1997b, 

Palioto et al., 2004) or an inhibitory effect (Rodrigues et al., 2007) while others have reported an 

increase in attachment rate (Lyngstadaas et al., 2001, Suzuki et al., 2001).  

EMD also increases the cellular activity of PDL fibroblasts with increased cell metabolism 

(Lyngstadaas et al., 2001) and upregulation of gene expression related to nucleic acid metabolism, 

protein metabolism and signal transduction (Barkana et al., 2007) as well as increased extracellular 

matrix protein production (Gestrelius et al., 1997b, Haase and Bartold, 2001, Rodrigues et al., 2007).  

In contrast, the effect of EMD on epithelial cells appears to be inhibitory with a cytostatic effect 

on DNA synthesis and cell proliferation (Kawase et al., 2000, Lyngstadaas et al., 2001). However, 

this may depend on the epithelial source with EMD demonstrating a stimulatory effect on DNA 

synthesis and cell attachment of epithelial cells harvested from epithelial cell rests of Malassez 

(Rincon et al., 2005). 

 

1.7.3 Effect of EMD on osteoblastic cells 

A multitude of cellular effects have been reported after exposure of osteogenic cells to EMD. 

EMD has been demonstrated to enhance cell viability in vitro with a dose dependent effect on 

mature primary osteoblast survival (Jiang et al., 2001) with the positive effect on cell survival 

possibly due to an inhibitory effect of EMD on cell apoptosis. A reduction in TNF-α induced 
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apoptosis of MC3T3-E1 cells was reported after 24 hours when 100 μg/ml of EMD was included in 

the cell culture (He et al., 2005). 

EMD may enhance cell attachment and motility of osteoblastic cells. EMD improved alveolar 

bone cell attachment to EMD treated culture plates (Rincon et al., 2005) as well as the motility of 

different osteoblastic cell lines placed on untreated glass surfaces over 24 hours, however this effect 

was less than the ECM components type I collagen and laminin (Klein et al., 2007). 

A number of studies have suggested positive proliferative effects of EMD on osteoblast 

progenitors as well as differentiated osteoblasts. Reports on the effect of EMD on bone marrow MSC 

proliferation have been mixed with some reporting enhanced cell proliferation (Keila et al., 2004) in a 

dose dependent manner (Guida et al., 2007) while others have reported no effect on proliferation 

(Gurpinar et al., 2003, van den Dolder et al., 2006). The proliferative effect of EMD on the 

osteoblastic progenitor cell line MC3T3 was reported by a number of authors (Tokiyasu et al., 2000, 

He et al., 2004b, 2004a, Jiang et al., 2006). These cells behave as immature cells committed to the 

osteoblast lineage and when cultured in the presence of ascorbic acid and other hormones, 

cytokines and growth factors are stimulated to differentiate along the osteoblast pathway (Franceschi 

et al., 1994). Enhanced cell proliferation still occurred in the presence of a porous membrane, 

suggesting that the cellular effects of EMD do not require direct cell contact but are mediated by 

soluble molecules released from EMD (He et al., 2004a). In phenotypically mature human 

osteoblasts, 30-100μg/ml EMD significantly stimulated human osteoblast cell growth and 

proliferation (Mizutani et al., 2003, Galli et al., 2006), however, EMD did not have a proliferative 

effect on alveolar bone cells (Rincon et al., 2005). 

The effect of EMD on alkaline phosphatase (ALP) expression activity in osteogenic cells is 

inconsistent although increased ALP expression and in vitro mineralisation after EMD exposure have 

been reported in a subset of PDL fibroblasts (Nagano et al., 2004, Lossdorfer et al., 2007, Rodrigues 

et al., 2007) that are capable of differentiating into a osteoblast-like or cementoblast-like phenotype 

(McCulloch and Melcher, 1983, Liu et al., 1997). The in vitro effect of EMD on bone marrow MSCs 
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differentiation have varied with reports of a two fold increase in ALP activity and increased 

mineralised nodule formation in bone marrow (Keila et al., 2004) while others report no effect on the 

differentiation of these cells (van den Dolder et al., 2006) despite simultaneously enhancing cell 

proliferation (Guida et al., 2007).  

In other osteoblastic cell lines, EMD enhanced ALP expression of MC3T3-E1 osteoblastic 

cells under differentiating conditions (He et al., 2004b, Jiang et al., 2006) and in KUSA/A1 mouse 

osteoblast cells, EMD stimulated ALP activity and mineralised nodule formation in a dose dependent 

manner with the addition of 12.5 to 50μg/ml EMD (Yoneda et al., 2003). In contrast, foetal rat 

calvarial cells treated with 10, 50 or 100 μg/ml EMD in vitro significantly inhibited ALP activity and 

mineralised nodule formation in a dose dependent manner after five to 17 days (Hama et al., 2008). 

In human osteoblastic cell cultures, 50 and 100 μg/ml of EMD enhanced ALP activity and 

increased mineralised nodule formation after two and three weeks of treatment (Galli et al., 2006) 

while human primary osteoblasts cultured in conjunction with 50 μg/ml EMD enhanced osteoblast 

maturation with a two fold increase in ALP activity (Reseland et al., 2006). However, an earlier study 

reported that 30 μg/ml EMD decreased ALP expression and cell differentiation in these cells despite 

having a positive effect on cell proliferation (Mizutani et al., 2003). 

The inconsistent reports of the effect of EMD on osteoblast proliferation and differentiation 

may be due to differences in osteoblastic cell types or stage of osteoblast maturation. EMD had 

differing effects when cultured with two different mouse osteoblastic cell lines (ST2 and KUSA/A1). 

In ST2 cells capable of differentiating into adipocytes or osteoblasts, EMD did not enhance cell 

growth while in KUSA/A1 cells, which are highly committed to an osteogenic lineage, cell growth was 

enhanced by EMD in a concentration dependent manner (Yoneda et al., 2003).  

EMD may stimulate cell proliferation during the early stages of osteoblast maturation but have 

a predominantly cell differentiation effect when applied to mature cell lines (Schwartz et al., 2000). 

The addition of EMD to pre-osteoblastic cells (2T9 cells which exhibit osteogenesis in response to 

BMP-2) enhanced cell proliferation but had no effect on their differentiation or ALP activity. In 
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contrast, EMD decreased cell proliferation and increased ALP activity as well as osteocalcin 

production in cultures of osteoblast like cells (MG63 human osteoblast-like osteosarcoma cells). 

Interestingly, when EMD was cultured with mature normal human osteoblasts (NHOst cells), EMD 

had a dual effect, enhancing cell proliferation and differentiation with an increase in ALP activity 

(Schwartz et al., 2000).  

 

1.7.4 Effect of EMD on pluripotent mesenchymal stem cell differentiation 

EMD may stimulate the differentiation of pluripotent mesenchymal cells into osteoblastic 

and/or chondroblastic lineages (Ohyama et al., 2002). A pluripotent mesenchymal cell line (C2C12) 

was cultured in differentiation medium with or without the addition of EMD. Without the addition of 

EMD, C2C12 cells altered their phenotype to myoblasts while cells cultured in the presence of EMD 

were strongly inhibited from myoblast development but increased ALP activity two- to four-fold. EMD 

stimulated cells also increased the mRNA expression of osteocalcin and type X collagen suggesting 

that EMD stimulated osteoblastic differentiation of these cells. In a later study, a pluripotent mouse 

fibroblastic cell line (C3H10T1/2) cultured with 10 to 100 μg/ml EMD for up to seven days 

demonstrated increased mRNA levels of osteogenesis- and chondrogenesis-related transcription 

factors as well as Runx2 and Sox9 protein expression (Narukawa et al., 2007). The authors 

suggested that expression of these transcription factors were mediated by a BMP-6 like molecule 

present in EMD.  

 

1.7.5 Osteoinductive potential of EMD 

Early evidence of the osteoinductive properties of enamel proteins were demonstrated after 

soft tissue implantation of demineralised enamel (Urist, 1971). A number of studies have 

subsequently investigated the osteoinductive potential of EMD and formation of ectopic bone in non-

osseous sites. Intramuscular implantation of 2 mg or 4 mg of EMD alone or in conjunction with 

inactive DFDBA into mouse calf muscle did not demonstrate osteoinduction after 56 days while 
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implants that contained active DFBDA resulted in ectopic bone formation (Boyan et al., 2000). The 

addition of 2 mg of EMD to active DFDBA did not provide an additive effect of active DFDBA alone, 

however, the addition of 4 mg to DFDBA resulted in enhanced bone induction, area of new bone, 

and cortical bone suggesting a minimum threshold concentration of EMD was required (Boyan et al., 

2000). In other reports, implantation of 1 mg EMD within a collagen carrier into the hind thigh muscle 

of rats for two weeks did not demonstrate ectopic bone formation (Yoneda et al., 2003) and the 

implantation of EMD or PGA with undemineralised dentine matrix into the rectus abdominis muscles 

of rats confirmed that neither EMD nor PGA had osteoinductive properties with an absence of 

ectopic bone formation after 21 days (Koike et al., 2005). 

When EMD was combined with a graft material, no osteoinductive activity was observed after 

implantation of 30 mg/0.3 ml EMD and DBBM into the pectoralis muscle of rats (Donos et al., 2006). 

More recently, subcutaneous implantation of 0.25, 0.5 or 0.8 mg EMD combined with a CaP/poly 

(D,L-lactic-coglycolic acid) carrier in rats also did not result in osteoinduction with a highly 

vascularised loose connective tissue surrounding the implant observed histologically after four 

weeks (Plachokova et al., 2008). These studies have demonstrated that EMD does not provide the 

inductive factors or the three dimensional scaffold required for differentiation of mesenchymal 

progenitor cells into an osteoblastic lineage. 

 

1.7.6 Osteopromotive effects of EMD  

Although the osteoinductive properties of EMD have not been demonstrated, it may exhibit a 

number of osteopromotive effects in addition to its direct effects on osteogenic cells. EMD has also 

been demonstrated to regulate expression of molecules that control bone mineralisation (Ganss et 

al., 1999) such as bone sialoprotein (He et al., 2004b, Shimizu et al., 2004), osteopontin (Yoneda et 

al., 2003) and osteocalcin (Reseland et al., 2006). Furthermore, EMD may enhance wound healing 

by stimulating ECM protein production and remodelling (Gestrelius et al., 1997b, Yoneda et al., 

2003, He et al., 2004b, Goda et al., 2008) as well as stimulating growth factors and cytokines critical 
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to wound healing including transforming growth factor-β1 (Yoneda et al., 2003), insulin-like growth 

factor-I (Mizutani et al., 2003), fibroblast growth factor-2 (Mizutani et al., 2003), interleukin-6 (Lee et 

al., 2008a) and prostaglandins (Mizutani et al., 2003, Takayanagi et al., 2006). EMD may also 

directly enhance angiogenesis (Yuan et al., 2003, Mirastschijski et al., 2004) by enhancing 

endothelial cell chemotaxis and proliferation (Yuan et al., 2003, Schlueter et al., 2007) as well as 

indirectly by stimulating secretion of pro-angiogenic vascular endothelial growth factor (VEGF) 

(Mirastschijski et al., 2004). 

A number of investigators have investigated the in vivo effect of EMD on bone formation with 

a recent systematic review suggesting that EMD promotes osteogenic differentiation of pluripotent 

mesenchymal cells resulting in greater bone formation in vivo (Rathe et al., 2009). In rat osseous 

defects, a higher volume of trabeculae bone was seen seven days after application of EMD 

compared with PGA (Kawana et al., 2001). Similarly, greater stromal cell accumulation as well as 

greater bone formation were observed after EMD/PGA were applied to bony defects compared to 

PGA alone at 60 days postoperatively (Sawae et al., 2002). In a rat skull defect, EMD within a 

collagen carrier enhanced bone repair resulting in greater mineralised bone as well as greater 

radiopacity when compared to defects treated with the collagen carrier alone after two weeks 

(Yoneda et al., 2003). 

However, no osteopromotive effects were seen in tibial bone defects in rabbits (Cornelini et 

al., 2004) or in implant osteotomy sites in rabbits after the addition of 0.5ml EMD immediately prior to 

placement of commercially pure titanium implants (Franke Stenport and Johansson, 2003). Similarly, 

no additive effect of EMD was demonstrated when combined with a GBR technique with a 

resorbable collagen membrane in critical sized rat calvarial defects. Defects treated with EMD alone 

healed in a similar manner to untreated defects with incomplete healing while all the defects treated 

by GBR resulted in complete bony healing with EMD providing no additive effect (Donos et al., 

2004). Similar results were reported later with EMD having no effect on bone formation beyond the 
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borders of natural bone when combined with an ePTFE membrane capsule on the lateral aspect of a 

rat mandibular ramus (Donos et al., 2005). 

 

1.7.7 Clinical use of EMD 

Animal and human histological studies have demonstrated that administration of EMD in 

periodontal fenestration or intrabony defects successfully promotes formation of new cementum, 

periodontal ligament and alveolar bone (Hammarstrom et al., 1997, Heijl, 1997, Sculean et al., 

2000a, Sculean et al., 2000b, Yukna and Mellonig, 2000). The use of EMD in the treatment of 

periodontal intrabony defects has been found to significantly reduce probing pocket depth as well as 

enhance clinical attachment gain and alveolar bone growth (Heijl et al., 1997, Sculean et al., 1999, 

Tonetti et al., 2002, Heden and Wennstrom, 2006, Sculean et al., 2008a) with a recent meta-analysis 

of the literature suggesting that use of EMD in the treatment of intrabony defects provided 

significantly better clinical outcomes than periodontal flap surgery alone (Esposito et al., 2005). 

 

1.7.8 Composite grafts containing EMD  

Because of its gel like consistency, EMD alone possesses poor space making potential, 

limiting its use in regeneration of large defects (Mellonig, 1999, Kuru et al., 2006, Rathe et al., 2009). 

In unsupportive osseous defects, the combination of EMD with a bone graft material may maintain 

space and wound stability for the regenerative process and bioactive properties of EMD.  

EMD has been combined with a variety of bone substitutes including xenografts such as 

DBBM (Scheyer et al., 2002, Sculean et al., 2002b) as well as alloplasts such as bioactive glass 

(Sculean et al., 2002a, Sculean et al., 2005, Sculean et al., 2007) and CaP ceramics, with most used 

in the treatment of periodontal intrabony defects.  

The addition of EMD to DBBM has shown no clinical (Scheyer et al., 2002, Sculean et al., 

2002b) or histological (Sculean et al., 2003) benefit over DBBM alone, however the composite graft 

has demonstrated improved clinical outcomes over EMD alone in the treatment of periodontal 
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intrabony defects (Lekovic et al., 2000, Velasquez-Plata et al., 2002, Zucchelli et al., 2003). Similarly, 

no additive effect of EMD and DBBM to GBR was reported in critical sized calvarial defects in rats 

(Donos et al., 2004). In a follow up study, the addition of EMD to DBBM did not enhance the amount 

of bone formation when placed under a ePTFE capsule on the lateral aspect of the rat mandibular 

ramus (Donos et al., 2005). 

Alloplasts such as bioactive glasses have been suggested as a potential carrier for EMD with 

mouse preosteoblasts cultured in contact with bioactive glass and EMD exhibiting significantly higher 

total protein production and osteocalcin expression in vitro than bioactive glass alone (Hattar et al., 

2005). Although the addition of EMD to bioactive glass lead to enhanced bone mineralisation around 

the bioactive glass particles histologically, this did not enhance the clinical outcome in the treatment 

of human periodontal intrabony defects (Sculean et al., 2002a, Sculean et al., 2005, Sculean et al., 

2007). 

EMD has also been combined with CaP ceramics including β-TCP and HA-TCP. Although the 

release kinetics of EMD when combined with a CaP scaffold are not well documented, a biphasic 

release kinetic was observed from the CaP carrier with approximately 10% of EMD released during 

the first five hours as a result of release of EMD from the surface of the scaffold followed by a 

sustained release of approximately 2% during the first week (Plachokova et al., 2008). Thereafter, 

release of EMD increased rapidly as a result of scaffold degradation, with 60% of the EMD released 

into the medium by day 28. 

No additional benefits were reported when EMD and β-TCP were combined, with similar 

clinical outcomes to EMD alone in the treatment of periodontal intrabony defects (Bokan et al., 

2006). The combination of EMD and HA-TCP (Bone Ceramic®) is commercially available (Emdogain 

Plus®) with similar clinical outcomes to EMD alone six months after treatment of wide periodontal 

intrabony defects (Jepsen et al., 2008). Histological examination of this composite graft material nine 

months after treatment of periodontal intrabony defects suggest only limited osteoconductivity with 
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limited new bone formation and fibrous connective tissue encapsulation of the ceramic particles 

(Sculean et al., 2008b). 

 

1.8 Platelet Derived Growth Factor (PDGF) 

Platelet derived growth factor (PDGF) plays a role in embryonic development (Schatteman et 

al., 1992, Shinbrot et al., 1994) as well as during soft and hard tissue wound healing (Ross et al., 

1986). It is released from the bone matrix, activated platelets and macrophages at the site of tissue 

injury (Bolander, 1992, Andrew et al., 1995, Fujii et al., 1999). 

The PDGF family consists of dimeric glycoproteins with two disulphide bonded polypeptide 

chains. Each of these chains is referred to as A, B, C or D chains (Alvarez et al., 2006) which 

associate to form the homodimers PDGF-AA, BB, CC, DD with the A and B chains also able to form 

the heterodimer PDGF-AB (Fredriksson et al., 2004). A number of cell types express PDGF 

including osteoblasts, fibroblasts, keratinocytes, skeletal and smooth muscle cells, neural cells, 

vascular endothelial cells, macrophages and platelets (Heldin and Westermark, 1999). Cells of the 

osteoblast lineage express the PDGF-A gene and to a lesser extent the PDGF-B gene (Zhang et al., 

1991, Andrew et al., 1995) with an autocrine effect of PDGF-AA but not PDGF-BB reported (Rydziel 

et al., 1994, Andrew et al., 1995, Rydziel and Canalis, 1996, Yang et al., 2000). 

The PDGF receptor consists of two polypeptide chains (PDGF-Rα and PDGF-Rβ) encoded by 

two genes (Matsui et al., 1989, Stephenson et al., 1991) that combine to form three dimeric isoforms 

(PDGF-Rαα, PDGF-Rββ and PDGF-Rαβ). The PDGF-Rαα binds PDGF-AA, AB, BB and CC, while 

PDGF-Rαβ binds PDGF-AB, BB, CC and DD and the PDGFR-ββ binds PDGF-BB and PDGF-DD 

(Fredriksson et al., 2004). Upon binding to its specific cell surface receptor, PDGF stimulates a 

signal transduction pathway leading to mRNA transcription and protein production. 

Of the different PDGF isoforms, PDGF BB is biologically most potent (Hock and Canalis, 

1994) and this has been attributed to its ability to bind to all PDGF receptor isoforms (Canalis et al., 
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1992, Pfeilschifter et al., 1992) as well as displaying a higher binding affinity to the PDGF-Rβ 

receptor (Hart and Bowen-Pope, 1990). 

PDGF receptors are found on a number of different cell types including platelets, fibroblasts, 

myoblasts, vascular smooth muscle cells, capillary endothelial cells, pericytes, neural cells, myeloid 

haematopoietic cells and macrophages (Alvarez et al., 2006). The levels of α and β receptor chain 

expression can vary considerably, determining the cellular response to PDGF stimulation (Heldin 

and Westermark, 1999). In addition, the level of PDGF receptor expression on cells is not constant, 

with levels increasing during inflammation (Rubin et al., 1988) or after stimulation by other growth 

factors or cytokines (Schollmann et al., 1992). 

 

1.8.1 Effect of PDGF in wound healing 

Following injury, formation of a blood clot occurs with platelets adhering and aggregating to 

the injured vessel wall. Platelet degranulation releases varying amounts of PDGF-AB, PDGF-AA, 

PDGF-BB and PDGF-CC from α-granules (Singer and Clark, 1999, Hollinger et al., 2008). Within the 

injured site, endothelial cells as well as fibroblasts also release PDGF within the wound site (Harlan 

et al., 1986, Paulsson et al., 1987). The net result of PDGF release is a proangiogenic, proliferative 

and mitogenic effect resulting in the formation of a fibrovascular tissue to begin the process of tissue 

repair or regeneration (Grotendorst et al., 1985).  

PDGF is chemotactic for neutrophils, monocytes and macrophages (Deuel et al., 1982) as 

well as for fibroblasts (Seppa et al., 1982) with the PDGF-BB isoform the most potent (Siegbahn et 

al., 1990). PDGF also enhances fibroblast synthesis of ECM components including fibronectin (Blatti 

et al., 1988), collagen (Grotendorst et al., 1985, Thomopoulos et al., 2005) and proteoglycans 

(Heldin et al., 1989, Schonherr et al., 1991) as well as stimulating tissue and wound remodelling 

through fibroblast collagenase production (Bauer et al., 1985). 

The effects of PDGF on bone healing are similar to those seen in soft tissue healing and are 

summarised in Figure 3. After injury, release of PDGF from platelets or bone matrix results in 
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angiogenesis, chemotaxis, and mitogenesis of mesenchymal progenitor cells. PDGF can enhance 

angiogenesis directly or indirectly via upregulation of other growth factors such as VEGF. The net 

effect of PDGF results in an increased number of osteoprogenitor cells within the bone defect that 

will respond to other differentiating factors such as the bone morphogenetic proteins (BMP). 

 

Figure 3 Role of PDGF in bone healing (Adapted from Lynch et al., (2008)) 

 

1.8.2 Effect of PDGF on fibroblasts 

PDGF exerts chemotactic and mitogenic activity on a variety of mesenchymal derived cells, 

including fibroblasts and PDL fibroblasts (Piche and Graves, 1989, Bartold et al., 1992, Bartold and 

Raben, 1996). In oral tissues, a number of in vitro studies have reported that PDGF has strong 

proliferative and mitogenic effects on gingival fibroblasts (Bartold, 1993, Dennison et al., 1994, 

Marcopoulou et al., 2003) as well as chemotactic, proliferation and mitogenic effects on PDL 

fibroblasts (Oates et al., 1993, Bartold and Raben, 1996, Chong et al., 2006). This effect appears to 

be time and dose dependent (Oates et al., 1993, Ojima et al., 2003) with PDGF-BB having a greater 

effect than PDGF-AA or PDGF-AB (Boyan et al., 1994).  

PDGF-BB modulates adhesion and attachment of PDL fibroblasts with enhanced attachment 

and adherence of human PDL fibroblasts to periodontally involved root surfaces (Gamal and Mailhot, 

a1172507
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2000). Similarly, PDGF-BB had a positive effect on adhesion and growth of cultured fibroblasts to 

periodontally diseased surfaces with the density and shape of PDL cells seen after PDGF treatment 

similar to the healthy controls (Belal et al., 2006).  

PDGF has been reported to enhance synthesis of ECM components by both gingival and PDL 

fibroblasts with increased collagen synthesis as well as modulation of the production of 

proteoglycans such as hyaluronate and versican (Matsuda et al., 1992, Bartold and Raben, 1996, 

Haase et al., 1998, Ojima et al., 2003). 

  

1.8.3 Effect of PDGF on osteoblasts 

PDGF has an important role in bone healing and repair with increased gene expression of 

PDGF-A and B chains and PDGF receptors seen during normal fracture healing (Fujii et al., 1999). 

PDGF is chemotactic for osteogenic cells with PDGF-BB demonstrating greater potency than PDGF-

AA (Lind et al., 1995). PDGF-BB stimulates chemotactic activity in the MC3T3-E1 osteoblast cell line 

(Tsukamoto et al., 1991, Mehrotra et al., 2004) with maximal chemotaxis reported at a concentration 

of 25 ng/ml (Tsukamoto et al., 1991). However, the chemotactic effect may be dependent on the 

stage of differentiation with PDGF being more chemotactic for undifferentiated cell than osteoblast 

rich populations (Hughes et al., 1992). This suggests that PDGF may enhance early wound healing 

by increasing the number of undifferentiated osteoprogenitor cells within the bone defect rather than 

the number of differentiated osteoblasts seen in the later stages of bone healing.  

The mitogenic effects of PDGF on osteoblasts and osteoprogenitor cells have also been 

reported with rhPDGF-BB, PDGF-AA and PDGF-AB stimulating DNA synthesis and cell proliferation 

in foetal rat osteoblasts (Centrella et al., 1991) as well as in human osteoblasts (Zhang et al., 1991) 

with PDGF-BB a more potent mitogen than PDGF-AA (Hock and Canalis, 1994). PDGF-BB was also 

found to enhance DNA synthesis in rat calvarial osteoblast like cells (Canalis et al., 1989, Hsieh and 

Graves, 1998), in bovine osteoblast like cells (Giannobile et al., 1997) as well as in MC3T3-E1 

osteoblasts (Mehrotra et al., 2004).  
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Both PDGF-BB and PDGF-AA have been demonstrated to enhance cell proliferation of 

osteoprogenitor and osteoblast cell cultures (Strayhorn et al., 1999, Yang et al., 2000). A 2 to 2.5 

fold proliferative effect on foetal rat calvarial osteoblasts was observed with PDGF-AA and PDGF-BB 

with a more potent effect associated with PDGF-BB (Hock and Canalis, 1994). PDGF-BB also has a 

greater effect on osteoprogenitors, increasing replication by 2.5 fold compared to 1.5 fold with 

PDGF-AA. However, PDGF-BB did not stimulate cell proliferation of MC3T3-E1 preosteoblasts after 

a 48 hour culture period (Kim et al., 2007). It is possible that differences in the mitogenic effect of 

PDGF may be dependent on the stage of osteoblastic differentiation with a reduced response to 

PDGF in well differentiated cells compared to less differentiated cells (Abdennagy et al., 1992, Yu et 

al., 1997).  

Although the chemotactic, proliferative and mitogenic effects of PDGF on osteoblastic cells 

are well documented, PDGF may have an inhibitory effect on cell differentiation and expression of an 

osteoblast like phenotype, reducing ALP activity and mineralisation in vitro (Giannobile et al., 1997). 

The application of rhPDGF-BB, PDGF-AB and PDGF-AA to osteoblast enriched cultures from foetal 

rat bone reduced ALP activity with PDGF-BB having the greatest inhibitory effect on differentiation 

(Centrella et al., 1991). Similarly, the inhibition of differentiation of foetal rat calvarial osteoblasts into 

mature osteoblasts as well as a reduction in bone matrix formation were observed after culture with 

PDGF-BB and PDGF-AA for 24-72 hours, with PDGF-BB a more potent inhibitor than PDGF-AA 

(Hock and Canalis, 1994).  

In cell culture studies, prolonged PDGF exposure to osteoprogenitors may inhibit osteoblast 

differentiation. Cells cultured with 10 or 20 ng/ml PDGF for 8 days reduced the expression of 

osteopontin and osteocalcin genes associated with osteoblast differentiation and matrix 

mineralisation (Strayhorn et al., 1999) while continuous PDGF treatment suppressed osteoblast 

differentiation as demonstrated by the inhibition of ALP, type I collagen, and osteocalcin expression 

as well as inhibiting mineralised nodule formation in vitro (Yu et al., 1997). Similarly, in cultures of 

foetal rat osteoblastic cells exposed to a longer duration, continuous exposure to PDGF resulted in a 
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dose dependent decrease in ALP activity and mineralised nodule formation while differentiating 

osteoblasts treated with multiple, brief exposures to PDGF demonstrated 50% enhanced mineralised 

nodule area (Hsieh and Graves, 1998). More recently, prolonged incubation of osteoprogenitors with 

PDGF-BB over three consecutive days were attributed to a reduction in osteoblast differentiation and 

a negative effect on in vivo bone regeneration. In contrast, PDGF-BB had a short duration effect 

when applied directly to the surgical defects resulting in increased proliferation of the resident 

osteoblastic cells but did not affect the differentiation of these cells (Marzouk et al., 2008). 

From the literature, it appears that the main effect of PDGF on bone healing is mediated 

through its chemotactic and mitogenic ability at the site of injury (Kieswetter et al., 1997). Exposure 

to PDGF inhibits osteoblast differentiation transiently while enhancing osteoblast progenitor 

proliferation and chemotaxis resulting in a total increase in the number of progenitor cells, which can 

differentiate when stimulated by other growth factors and signalling proteins. 

PDGF may also have an anabolic effect on bone healing by enhancing matrix protein 

synthesis from osteogenic cells. PDGF had a dose dependent stimulatory effect on bone matrix 

apposition in foetal rat calvaria with a two fold increase after 48 hours (Pfeilschifter et al., 1990). 

ECM protein synthesis was also enhanced with the addition of PDGF-BB, PDGF-AB or PDGF-AA to 

fetal rat bone osteoblast cultures with an increase in the rate of collagen and non-collagen protein 

synthesis in differentiated and undifferentiated bone cells (Centrella et al., 1989, Centrella et al., 

1991, Giannobile et al., 1997). 

PDGF is proangiogenic with all members of the PDGF family, including PDGF-BB displaying 

potent angiogenic activity in vivo (Risau et al., 1992, Cao et al., 2002). PDGF-BB also displays 

potent mitogenic and chemotactic effects on pericytes and vascular smooth muscle cells (vSMCs) 

(Westermark and Heldin, 1993, Lindahl et al., 1997, Hellstrom et al., 1999) with lack of PDGF-BB 

signalling resulting in pericyte loss as well as capillary dilation and rupture (Lindahl et al., 1997, 

Richardson et al., 2001). The effect of PDGF on endothelial cells (EC) has also been reported 
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(Castellon et al., 2002) and expression and release of PDGF by cultured EC has been documented 

(DiCorleto and Bowen-Pope, 1983, Collins et al., 1985, Collins et al., 1987).  

PDGF may also stimulate angiogenesis indirectly, by upregulating release of growth factors 

such as VEGF (Guo et al., 2003) from host cells including osteoblasts (Bouletreau et al., 2002). This 

was reported in vivo with an increased concentration of VEGF detected in wound fluid after 

application of rhPDGF-BB to periodontal osseous defects (Cooke et al., 2006). Others have also 

suggested a cooperative effect between PDGF-BB and Fibroblast growth factor-2 with PDGF-BB 

upregulating FGF receptor promoter activity and expression in vitro in human vSMCs (Millette et al., 

2005, Nissen et al., 2007).  

PDGF may also play a role in bone resorption and remodelling by increasing the number of 

osteoclasts within the bone defect (Cochran et al., 1993, Hock and Canalis, 1994) as well as 

collagenase activity (Canalis et al., 1989, Varghese et al., 1996) with increases in bone resorption 

and turnover in vivo as measured by carboxyterminal telopeptide of type I collagen (ICTP) after 

application of 0.3mg/ml rhPDGF-BB in periodontal osseous defects (Cooke et al., 2006, Sarment et 

al., 2006). 

 

1.8.4 In vivo effects of PDGF  

PDGF has been used safely for the treatment of chronic cutaneous foot ulcers in diabetic 

patients (Knight et al., 1998, Smiell, 1998) and has also been released for use in treatment of 

periodontal or orthopaedic osseous defects. 

Animal studies have demonstrated that PDGF enhances the rate and degree of bone healing 

(Nash et al., 1994). Most of the studies have focussed on the more potent PDGF-BB isoform and 

identification of the human PDGF-BB gene has allowed production of quantities of recombinant 

human form of PDGF-BB (rhPDGF-BB) via genetic transfer into bacterial or fungal cells greater than 

that obtainable through platelet concentration alone.  



 

39 

Lynch and co-workers first introduced PDGF to periodontology and implant dentistry by 

applying 3 mg of recombinant PDGF-BB and IGF-I in a methylcellulose gel carrier to naturally 

occurring periodontal defects in beagle dogs (Lynch et al., 1989, Lynch et al., 1991b). The half-life of 

locally applied PDGF-BB was reported to be 4.2 hours with 96% of the proteins cleared after 96 

hours. The authors observed increased cellular activity, periodontal regeneration as well as new 

bone formation in treated sites. Similar findings were reported after application of 10 μg PDGF-BB or 

the combination of 10 μg each of PDGF-BB and IGF-I in a methylcellulose gel vehicle during 

periodontal surgery to experimental periodontitis defects in monkeys. Improved wound healing and 

bone fill were seen after four and 12 weeks with the greatest improvements seen in the combined 

PDGF-BB/IGF-I group (Giannobile et al., 1996). 

In a study of peri-implant osseous defects in dogs, direct application of rhPDGF-BB in 

combination with IGF produced two to three times more new bone at earlier time points (Lynch et al., 

1991a) while similarly, the application of 5 μg/ml each of PDGF/IGF-I around implants placed in 

extraction sockets in dogs resulted in a significantly greater bone to implant contact compared to the 

untreated control group after 3 weeks (Stefani et al., 2000). 

Human trials utilising recombinant human PDGF have also reported statistically significant 

alveolar bone formation nine months post treatment (Howell et al., 1997). Two doses of rhPDGF-BB 

and rhIGF-I (50 μg/ml of each or 150 μg/ml of each) were combined in a methylcellulose gel carrier 

and placed in periodontal intraosseous defects. The application of 150 μg/ml of rhPDGF-BB and 

rhIGF-I resulted in a 1.33 mm greater new vertical bone formation and 24% greater defect fill 

compared to sites with no growth factors after 6-9 months of healing. 

 

1.8.5 Composite grafts containing PDGF 

When administered systemically, PDGF has a short biological half-life with a plasma 

clearance half-life of 2-10 minutes after intravenous administration into baboons and rats (Bowen-

Pope et al., 1984, Cohen et al., 1990). From a clinical perspective, these studies suggest that 
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maintenance of plasma and tissue concentrations of PDGF at levels equivalent to those showing 

activity in vitro would be difficult to achieve following systemic administration.  

In contrast, when PDGF is applied locally to periodontal osseous defects, the half-life of PDGF 

is approximately four hours (Lynch et al., 1991b) suggesting that local delivery of the growth factor is 

more suitable for obtaining a sufficient local concentration required to enhance bone regeneration. 

The use of rhPDGF-BB appears to be most effective after short term administration, 

replicating the events that would occur during initial clot formation. Multiple, brief exposures to PDGF 

would enhance bone formation in vivo, while prolonged exposure to PDGF would inhibit 

differentiation of osteoblasts and mineralisation and instead promote fibrosis and granulation tissue 

formation (Hsieh and Graves, 1998).  

Regulation of the spatial and temporal levels of PDGF in vivo with the combination of an 

appropriate carrier is likely to have a major influence on its biological effect. The use of a graft 

material in conjunction with PDGF may allow for a sufficient concentration of PDGF to be delivered 

to the local bone defect. As most growth factors exhibit a biphasic release kinetic from graft material, 

an initial high concentration of PDGF released locally would mimic that found during clot formation 

followed by a lower concentration of PDGF during early bone healing.  

rhPDGF-BB has been approved for clinical application in the surgical treatment of periodontal 

intrabony defects and has been combined with a variety of graft materials including allografts 

(Nevins et al., 2007), xenografts such as DBBM and alloplasts.  

PDGF-BB is adsorbed to DBBM in a concentration dependent manner, with the greatest 

adsorption seen at lower PDGF-BB concentrations and maximal PDGF-BB adsorption after 15 

minutes (Jiang et al., 1999). The release of PDGF-BB from DBBM demonstrated a biphasic release 

pattern, with 18% rapidly released in the first hour, approximately 43% released after 48 hours and 

stabilising thereafter with 50% of the PDGF-BB released after 10 days. In vitro, proliferation of 

cultured osteoblastic cells was significantly enhanced on PDGF-BB treated DBBM compared to 

DBBM alone, suggesting that addition of PDGF-BB enhances the bone regenerative properties of 
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this graft material (Jiang et al., 1999). PDGF-BB adsorbed to a DBBM-collagen matrix graft material 

demonstrated a similar manner of adsorption as reported in the previous study although the slower 

release of PDGF may be due to the addition of collagen matrix to the DBBM with 6.5% released after 

one hour and approximately 30% of the adsorbed protein released after 10 days (Stephan et al., 

2000). Similar to the previous study, PDGF-BB treated matrix enhanced proliferation of cultured 

osteoblastic cells in vitro compared to the matrix alone. However, in vivo studies have reported that 

the addition of PDGF-BB to DBBM was not beneficial in enhancing new bone formation over DBBM 

alone when a composite graft of rhPDGF-BB and DBBM was placed under Teflon capsules in rats 

for five months (Lioubavina-Hack et al., 2005). 

The use of this composite graft material has also been evaluated in vivo for surgical 

reconstruction of large alveolar defects (Simion et al., 2006). A rhPDGF-BB infused block of DBBM 

was placed in a canine mandibular defect and stabilised using two implants with or without an 

overlying resorbable membrane and compared with a buffer treated DBBM graft with or without a 

membrane. Radiographic and histological analysis demonstrated that the greatest bone regeneration 

occurred in the rhPDGF-BB treated graft block without the collagen membrane. Bone formation 

progressed from both coronal and apical surfaces of the treated graft, indicating that osteoblasts 

were attracted into the graft from both the superior (coronal) periosteal surface and inferior medullary 

spaces. The finding that greatest bone formation occurred without a barrier membrane demonstrates 

that the additive effects of PDGF were dependent on direct access to a rich supply of osteogenic and 

angiogenic cells within the periosteum. 

In a recent human case report, the same authors reported on vertical ridge augmentation 

utilising the combination of rhPDGF-BB and DBBM followed by implant placement five months after 

augmentation. Histological examination demonstrated new bone formation through the whole bovine 

bone block trabeculae with the xenograft particles embedded in bone with evidence of new bone 

formation and ongoing bone remodelling (Simion et al., 2007). 
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1.8.6 Clinical results with PDGF-BB and CaP ceramics 

The combination of the CaP ceramic β-TCP and rhPDGF-BB is commercially available (Gem 

21S®). In an early study, PDGF-BB was combined with a chitosan and TCP sponge in the rat 

calvarial defect model and evaluated histologically after two and four weeks (Lee et al., 2000). 

Histologically, this composite graft promotes osseous healing of calvarial defects with no connective 

tissue encapsulation of the TCP graft material. A biphasic release kinetic was demonstrated with a 

high initial burst release in the first day, slowing down for the next six days and then maintaining a 

slower release for the remaining 14 days with an effective therapeutic concentration maintained 

throughout the study period (Lee et al., 2000). More recently, PDGF-BB was adsorbed to β-TCP in a 

concentration and time-dependent manner with rapid adsorption occurring between one and five 

minutes after subcutaneous implantation of PDGF-BB and β-TCP into mice (Bateman et al., 2005). 

In vitro release studies demonstrated burst release kinetics with 16% of PDGF-BB released after one 

hour, approximately 30% released after 24 hours and 45% of the adsorbed PDGF-BB released after 

ten days. In vivo release was found to occur more rapidly than in vitro release with over 90% of the 

PDGF-BB released from the β-TCP after 6 days. In addition, PDGF-BB had a stimulatory effect on 

osteoblasts in vitro with the osteoblastic cells incubated with PDGF-BB treated matrices 

demonstrating attachment within the ceramic pores as well as greater cell proliferation than the 

control matrices alone (Bateman et al., 2005).  

In a large multi-centre study, the use of this composite graft material has been evaluated for 

the treatment of periodontal osseous defects (Nevins et al., 2005). The combination of 0.3 mg/ml or 

1.0 mg/ml of rhPDGF-BB with β-TCP resulted in greater CAL gain over β-TCP alone at three months 

although this was not statistically different after six months. Radiographic evaluation of the 

rhPDGF/β-TCP treated sites demonstrated significantly greater bone growth and bone fill at six 

months compared to β-TCP alone with ongoing bone formation and maturation after 24 months 

(McGuire et al., 2006). Histologically, the use of this material has demonstrated periodontal 
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regeneration six months after surgical treatment of human intraosseous periodontal defects 

(Ridgway et al., 2008). 

Commercially available 0.3 mg/ml rhPDGF and β-TCP (Gem21S®) has also been used in 

guided bone regeneration (GBR). In a recent case report, β-TCP/rhPDGF-BB was utilised in a 

simultaneous GBR technique at the time of dental implant placement (Byun and Wang, 2008). 

Autogenous bone was used as an inner graft surface directly adjacent to the implant surface with an 

outer graft material of β-TCP/rhPDGF-BB and a collagen barrier membrane tented over these 

materials. Complete bone healing at the defect site was demonstrated when second stage surgery 

was performed after 5 months healing, suggesting that the combination of rhPDGF-BB and β-TCP 

may be a suitable material for guided bone regeneration. 

Only limited data exist evaluating the combination of HA-TCP and rhPDGF although the use 

of particulate Bone Ceramic® loaded with 0.3 mg/ml rhPDGF-BB in conjunction with a collagen 

membrane on initial bone formation in lateral ridge augmentation has been recently reported in dogs 

(Schwarz et al., 2009). Three weeks after augmentation, the sites with the addition of rhPDGF-BB 

demonstrated greater augmented area and mineralised tissue formation as well as greater 

transglutaminase II antigen reactivity in augmented sites than the control when used as a bone graft 

material. As transglutaminase II is an enzyme that has been demonstrated to be directly involved in 

the process of angiogenesis (Haroon et al., 1999), the combination of HA-TCP and rhPDGF-BB may 

enhance initial bone healing in lateral ridge augmentation.  

 

1.9 Conclusions 

There has been ongoing research for an alloplastic bone graft material with the osteogenic, 

osteoinductive and osteoconductive properties of autogenous bone. CaP ceramics have been 

evaluated and are a suitable bone graft materials for clinical use due to their excellent 

biocompatibility and osteoconductivity. The combination of HA and TCP to produce HA-TCP 

provides the advantages of each of these individual ceramics and appears to offer better 
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osteoconductivity and bioactivity when compared to HA and TCP alone. However, use of these graft 

materials alone do not provide osteogenic or osteoinductive properties although osteoinduction has 

been reported when CaP ceramics with an appropriate geometry and architecture are implanted into 

certain animal models. Structural modifications that provide osteoinductive properties would be 

considered advantageous clinically in the augmentation of large osseous defects. 

The next step in bone regeneration and engineering is tissue engineering with the production 

of composite grafts incorporating growth factors or osteogenic cells to induce or enhance the normal 

osseous healing process. The combination of these agents with a graft material may offer benefits 

over use of the agent alone, in regards to adsorption, release kinetics, resistance to diffusion and 

proteolysis as well as provide space making ability in large bone defects. CaP ceramics including 

HA-TCP appear to be ideal carriers for a number of growth factors and cells with osteoinduction 

demonstrated when combined with the BMP as well as bone marrow MSCs. Other studies have also 

demonstrated enhanced bone healing when these materials have been combined with a number of 

growth factors.  

The potential of combining HA-TCP with growth factors such as PDGF or EMD appears 

promising. EMD stimulates a variety of different cell types directly and indirectly through a number of 

different pathways including those involved in wound healing and bone regeneration although the 

current evidence suggests that EMD is not osteoinductive but rather osteopromotive. PDGF is an 

important growth factor in bone healing and affects a number of different cell lines during early 

wound healing. Most of the current literature focuses on the more potent isoform PDGF-BB and 

suggests that PDGF-BB is mitogenic, chemotactic and proliferative for poorly differentiated 

osteoblastic cell populations with reduced effects on well differentiated osteoblasts. However, 

osteoinductivity by PDGF has not been demonstrated. The combination of a CaP ceramic and 

PDGF, in particular rhPDGF-BB may enhance bone growth and regeneration. rhPDGF-BB with a β-

TCP is currently commercially available, however the use of a HA-TCP may be a more suitable 
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carrier due to its lower solubility and prolonged maintenance of an osteoconductive scaffold for new 

bone formation.  

Given that BCP ceramics with the appropriate three-dimensional architecture and geometry 

have demonstrated osteoinductivity, the combination of this graft material with EMD or PDGF-BB 

could be an important development in bone tissue engineering in replicating the osteoinductive and 

osteoconductive properties of autogenous bone grafts in the surgical treatment of large bone 

defects. 
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2.1 Abstract 

Objective: The aim of this study was to determine whether Hydroxyapatite �-Tricalcium Phosphate 

(HA-TCP) either alone or combined with Enamel Matrix Derivative (EMD) or recombinant human 

Platelet Derived Growth Factor-BB (rhPDGF-BB) is osteoinductive when implanted into a non-

osseous site. 

Methods: Twenty CD-1 adult male mice underwent intramuscular implantation into both hindlimbs of 

an empty gelatine capsule or a gelatine capsule containing one of the following: 10 mg of uncoated 

particulate HA-TCP, (Straumann Bone Ceramic®, HA-TCP), EMD coated HA-TCP, (Emdogain®, HA-

TCP + EMD) or rhPDGF-BB coated HA-TCP (HA-TCP + PDGF). Ten animals were sacrificed at four 

and eight weeks with five specimens from each group retrieved at each time point. The area of graft 

placement was radiographed and after graft retrieval, a semi-quantitative histological examination 

was performed with the aim of assessing the inflammatory changes, reparative processes and 

osteoinduction within the graft site. 

Results: At both 4 and 8 weeks, histological analysis failed to demonstrate any osteoinductive 

activity in any of the specimens from the three experimental groups. A minimal chronic inflammatory 

response and foreign body reaction was seen in the experimental groups which reduced over time. 

The particles were embedded within fibrous connective tissue and were encapsulated by a dense 

cellular layer consisting of active fibroblasts and occasional macrophages with the thickness of this 

layer decreasing over time. At 4 weeks, a greater density of the fibrous connective tissue was 

demonstrated in the HA-TCP + EMD group (P<0.001) while a greater thickness in the capsule 

thickness was seen in the HA-TCP group (P=0.022) although no differences were seen after 8 

weeks. Greater neovascularisation was seen in the HA-TCP + PDGF group after 8 weeks (P=0.043) 

while greater amounts of adipose tissue surrounding the particles were detected in the HA-TCP + 

PDGF group at 4 weeks (P=0.002) and in the HA-TCP + EMD group at eight weeks (P=0.002).
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Conclusions: The results of this study suggest that the use of commercially available HA-TCP 

alone or in combination with EMD or rhPDGF-BB is biocompatible but not osteoinductive in the 

murine model. 
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2.2 Introduction

The use of osseointegrated dental implants for the replacement of missing teeth is a 

commonly utilised treatment option however successful treatment outcomes are dependent on 

sufficient bone quantity at the proposed surgical site (Buser et al., 2004). 

Surgical augmentation of osseous defects have traditionally utilised autografts, allograft or 

xenograft bone graft materials with autogenous bone considered the gold standard as it is 

osteogenic, osteoinductive and osteoconductive. However, the amount of bone that can be 

harvested is limited and may be associated with an increased risk of surgical complications and 

postoperative morbidity (Clavero and Lundgren, 2003, Cricchio and Lundgren, 2003). Alternatives 

such as osteoinductive and osteoconductive allografts (Schwartz et al., 1998) as well as xenografts 

(Simion et al., 1996, Olson et al., 2000, Buser et al., 2008) are available although social and religious 

issues may restrict their use in some patients. In addition, as xenografts lack osteogenic cells or 

osteoinductive proteins, they are considered osteoconductive only and therefore limited to smaller 

osseous defects. 

Some of these issues have driven the development of synthetic alloplasts including biphasic 

calcium phosphate (BCP), a member of the family of calcium phosphate (CaP) ceramics 

(Aichelmann-Reidy and Yukna, 1998, LeGeros, 2002). However, similar to xenografts, alloplasts do 

not provide any osteogenic cells or osteoinductive proteins and are considered osteoconductive only 

(Aichelmann-Reidy and Yukna, 1998). 

The biphasic calcium phosphate (BCP) ceramics are made up of varying ratios of 

hydroxyapatite (HA) to beta-tricalcium phosphate (�-TCP) to form hydroxyapatite �-tricalcium

phosphate (HA-TCP). HA-TCP was developed as a resorbable graft material to combine the rapid 

resorption of �-TCP while maintaining the osteoconductive scaffold of the minimally resorbable HA 

(Hashimoto-Uoshima et al., 1995, Piattelli et al., 1996). As with other CaP ceramics, HA-TCP is 

considered a bioactive bone graft material, with the ability to form a direct bond against host bone 

(Daculsi et al., 1989, Hashimoto-Uoshima et al., 1995, Jensen et al., 2007)
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HA-TCP has been previously used in periodontics and implant dentistry (Nery et al., 1990, 

Piattelli et al., 1996, Lee et al., 2008) with a new particulate HA-TCP ceramic recently released 

(Straumann Bone Ceramic®). In vivo studies have reported close contact between newly formed 

bone and Bone Ceramic® particles in animal osseous defects (Jensen et al., 2007, Jensen et al.,

2008) as well as in human clinical trials with the use of this material in the treatment of periodontal 

defects (Jepsen et al., 2008, Sculean et al., 2008b) and maxillary sinus augmentation (Artzi et al.,

2008, Cordaro et al., 2008).

CaP ceramics such as HA-TCP are generally considered to be osteoconductive but not 

osteoinductive, i.e. they do not possess the ability to form bone when implanted into non-osseous 

sites (Urist, 1965). However, osteoinductivity of HA-TCP has been reported in several animal studies 

after intramuscular or subcutaneous implantation (Yang et al., 1997, Habibovic et al., 2005a, Le 

Nihouannen et al., 2005, Yuan et al., 2006b, Habibovic et al., 2008).

Clinically, the use of an osteoinductive bone graft material would be advantageous in the 

reconstruction of large bone defects with osteoinduction and osteoconduction occurring concurrently. 

This would result in greater and more rapid bone formation (Oda et al., 1997, Habibovic et al.,

2006b, Yuan et al., 2006a, Habibovic et al., 2008, Jung et al., 2008) in osseous defects when 

compared to non-osteoinductive or weakly osteoinductive materials. 

The process of material induced osteoinduction appears to be dependent on the physico-

structural properties of HA-TCP materials with the three-dimensional structure and geometry of the 

biomaterial having a crucial role in influencing osteoinduction. Certain structural elements such as a 

macroporous and microporous surface which increases the ceramic specific surface area and 

enhances the formation of the biological apatite layer (Hing et al., 2005, Li et al., 2008) are 

necessary for ectopic bone formation (Ripamonti, 1991, Yamasaki and Sakai, 1992, Yuan et al.,

1998a, Habibovic et al., 2005b, Habibovic et al., 2008). It has been suggested that precipitation of a 

biological apatite layer on the surface of the HA-TCP after implantation could provide a suitable 

chemical environment to induce differentiation of mesenchymal stem cells into osteogenic cell lines 
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(Daculsi et al., 1990, Daculsi et al., 2003). Coprecipitation of endogenous proteins such as bone 

morphogenetic proteins (BMP) (Ripamonti, 1991, Yuan et al., 1998b) within the biological apatite 

layer above a concentration threshold (Wang et al., 1990) may act as a trigger for differentiation of 

stem cells into an osteogenic lineage (Habibovic et al., 2005b, Fan et al., 2007). Other authors have 

suggested that inflammatory cytokines released by macrophages in the local environment during 

phagocytosis of ceramic microparticles (Laquerriere et al., 2003, Lu et al., 2004) or the low oxygen 

tension within the central region of the graft material may stimulate differentiation of pericytes from 

blood vessels into osteoblasts (Le Nihouannen et al., 2005) as osteogenic cells have been observed 

to arise from these cells within connective tissue (Diaz-Flores et al., 1992, Reilly et al., 1998, Collett 

and Canfield, 2005).

Another method of providing osteogenic or osteoinductive properties to alloplasts, thereby 

replicating the properties associated with autografts or allografts is to adopt a tissue engineering 

strategy by utilising an osteoconductive alloplast matrix to deliver osteogenic or osteoinductive 

agents within the defect. Porous calcium phosphate ceramics have been suggested as carriers as 

their surfaces are chemically stable and display a high adsorption capacity for proteins (Urist et al.,

1984a, Hartman et al., 2005) as well as providing a good substratum for the attachment of 

osteogenic mesenchymal stem cells (MSCs) (Goshima et al., 1991, Toquet et al., 1999). In addition, 

the adsorption of growth factors onto CaP ceramics is rapid (Laffargue et al., 2000) and a biphasic 

release kinetic has been reported both in vivo and in vitro with an initial rapid burst release followed 

by a sustained release over a longer period (Winn et al., 1999). Clinically, this may be beneficial as 

the initial burst release of growth factor may augment the initial wound healing response, attracting 

differentiating cells into the porous ceramic matrix while the slower secondary release from the 

implant could provide continued exposure for these cells in the bone defect (Uludag et al., 1999, 

Ziegler et al., 2002).

Animal studies have demonstrated osteogenesis after soft tissue implantation of bone marrow 

MSCs loaded onto porous calcium phosphate ceramics (Goshima et al., 1991, Dong et al., 2002, 
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Harris and Cooper, 2004, Kruyt et al., 2007, Jafarian et al., 2008). In addition, the combination of 

CaP ceramics with osteoinductive proteins such as the bone morphogenetic proteins (BMP) have 

been reported in the literature with ectopic bone formation as well as enhanced osseous wound 

healing over a CaP ceramic alone (Urist et al., 1987, Oda et al., 1997, Jung et al., 2008) 

At present, two commercially available growth factors, enamel matrix protein derivative 

(Emdogain®) and a recombinant human platelet-derived growth factor-BB (rhPDGF-BB) marketed as 

GEM 21S® have been combined with CaP ceramics for use in periodontal and bone regeneration. 

2.2.1 Enamel Matrix Derivative (EMD, Emdogain®)

Emdogain® is an enamel matrix protein derivative (EMD) derived from enamel buds of 

developing porcine teeth. It is comprised of 90% amelogenin and 10% non-amelogenin proteins 

contained within a viscous propylene glycol alginate (PGA) carrier (Maycock et al., 2002). Enamel 

matrix proteins are thought to be released by Hertwig’s epithelial root sheath and have been 

detected on the developing root surface during cementogenesis (Lindskog, 1982a, 1982b, Lindskog 

and Hammarstrom, 1982, Slavkin et al., 1989, Bosshardt and Nanci, 2004) however amelogenin 

expression may also have a role in inducing mesenchymal stem cell recruitment during bone 

development and remodelling (Haze et al., 2007).

In early studies no specific growth factors were identified in EMD preparations (Gestrelius et

al., 1997), however, TGF-� or a TGF-� like molecule was later identified as a bioactive factor in EMD 

(Kawase et al., 2002). In addition, members of the TGF-� superfamily such as the osteoinductive 

BMP or BMP-like molecules including BMP-2, BMP-4 and BMP-6 have also been identified within 

EMD or enamel extracts (Iwata et al., 2002, Suzuki et al., 2005, Narukawa et al., 2007). Similarly, 

EMD has also been suggested to stimulate macrophage release of osteoinductive growth factors 

such as BMP-2 and BMP-4 (Fujishiro et al., 2008). 

In a number of in vitro studies, EMD has demonstrated chemotactic, mitogenic and 

proliferative effects on a variety of different cell types including gingival fibroblasts (Haase and 
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Bartold, 2001, Rincon et al., 2005, Zeldich et al., 2007), periodontal ligament fibroblasts (Gestrelius 

et al., 1997, Lyngstadaas et al., 2001, Rodrigues et al., 2007) and cementoblasts (Tokiyasu et al.,

2000, Swanson et al., 2006). In contrast, the effect of EMD on epithelial cells appears to be inhibitory 

with a cytostatic effect on DNA synthesis and cell proliferation (Kawase et al., 2000, Lyngstadaas et

al., 2001).

EMD has also demonstrated chemotactic, mitogenic and proliferative effects on osteoblasts 

and osteoprogenitor cells (Rincon et al., 2005, Jiang et al., 2006, Guida et al., 2007) however, the 

reports on the effects of EMD on osteoblast differentiation have been inconsistent with some 

reporting enhanced differentiation as measured by an increase in alkaline phosphatase (ALP) 

activity (He et al., 2004, Jiang et al., 2006) while others have reported reduced ALP activity (Guida et

al., 2007, Hama et al., 2008). These differences may be explained by the differing effect of EMD on 

different cell types (Yoneda et al., 2003), or different stages of osteoblast maturation with no effect 

on differentiation on immature cell lines while enhancing differentiation in mature osteoblast like cells 

(Schwartz et al., 2000).

Recent data suggests that EMD may stimulate pluripotent mesenchymal cell differentiation 

and proliferation into an osteoblast lineage (Ohyama et al., 2002). Without the addition of EMD, 

these cells altered their phenotype to myoblasts whilst EMD cultured cells seemed to undergo 

osteoblastic differentiation with increased ALP activity and expression of molecules critical to bone 

metabolism such as osteocalcin and type X collagen. Recently, a BMP-6 like molecule present in 

EMD was reported to be responsible for increased mRNA levels of osteogenesis- and 

chondrogenesis-related transcription factors when cultured with a pluripotent mouse fibroblastic cell 

line (Narukawa et al., 2007). 

EMD has also been demonstrated to regulate expression of molecules that control bone 

mineralisation (Ganss et al., 1999) such as bone sialoprotein (He et al., 2004, Shimizu et al., 2004), 

osteopontin (Yoneda et al., 2003) and osteocalcin (Reseland et al., 2006). Furthermore, EMD may 

enhance wound healing by directly enhancing angiogenesis (Yuan et al., 2003, Mirastschijski et al.,
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2004) with enhanced endothelial cell chemotaxis and proliferation (Yuan et al., 2003, Schlueter et

al., 2007) as well as indirectly by stimulating secretion of another important angiogenic growth factor, 

vascular endothelial growth factor (VEGF) (Mirastschijski et al., 2004). 

The clinical application of EMD in periodontal regeneration aims to mimic the cellular and 

signalling events that occur during periodontal development (Hammarstrom, 1997) with 

differentiation of mesenchymal cells into cementoblasts, periodontal ligament fibroblasts and 

osteoblasts after exposure to EMD. 

Animal and human histological evidence of periodontal regeneration of periodontal 

fenestration or intrabony defects after administration of EMD has been demonstrated with formation 

of new cementum, periodontal ligament and alveolar bone (Hammarstrom et al., 1997, Heijl, 1997, 

Sculean et al., 2000a, Sculean et al., 2000b, Yukna and Mellonig, 2000) while clinical studies have 

demonstrated enhanced reduction of probing pocket depth, clinical attachment gain and alveolar 

bone growth (Heijl et al., 1997, Sculean et al., 1999, Tonetti et al., 2002, Heden and Wennstrom, 

2006, Sculean et al., 2008a). A recent meta-analysis of the literature has concluded that the use of 

EMD in the treatment of intrabony defects provided significantly better clinical outcomes than 

periodontal flap surgery alone (Esposito et al., 2005).

2.2.2 Platelet derived growth factor-BB (PDGF-BB) 

Platelet derived growth factor (PDGF) plays a role in embryonic development (Schatteman et

al., 1992, Shinbrot et al., 1994) as well as during soft and hard tissue wound healing (Ross et al.,

1986). It is released from the bone matrix, activated platelets and macrophages at the site of tissue 

injury (Bolander, 1992, Andrew et al., 1995, Fujii et al., 1999) with the proangiogenic, proliferative 

and mitogenic effect of PDGF resulting in the formation of fibrovascular tissue (Grotendorst et al.,

1985). The PDGF protein is a dimeric glycoprotein made up of two disulphide bonded polypeptide 

chains (A, B, C, D) which associate to form the four homodimer isoforms PDGF-AA, BB, CC, DD and 

one heterodimer isoform PDGF-AB (Fredriksson et al., 2004) with the PDGF-BB form the biologically 
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most potent (Hock and Canalis, 1994). The greater potency of PDGF-BB has been attributed to the 

ability of PDGF-BB to bind to all isoforms of the PDGF receptor (Canalis et al., 1992, Pfeilschifter et

al., 1992) as well as a higher binding affinity to the PDGF-R� receptor (Hart and Bowen-Pope, 

1990).

PDGF is proangiogenic by enhancing chemotaxis, proliferation and differentiation of 

endothelial cells and vascular smooth muscle cells (Leveen et al., 1994, Hellstrom et al., 1999, 

Castellon et al., 2002). PDGF may also enhance angiogenesis indirectly by increasing the 

expression of other angiogenic growth factors such as vascular endothelial growth factor (VEGF) or 

fibroblast growth factor (FGF) (Bouletreau et al., 2002, Guo et al., 2003, Millette et al., 2005).

PDGF appears to be a potent chemotactic stimulator of inflammatory cells (Deuel et al., 1982) 

as well as having chemotactic, proliferative and mitogenic effect on fibroblasts (Seppa et al., 1982, 

Piche and Graves, 1989, Bartold et al., 1992, Bartold, 1993, Bartold and Raben, 1996, Lin et al.,

2006) with the PDGF-BB isoform the most potent (Siegbahn et al., 1990, Boyan et al., 1994).

PDGF has strong chemotactic effects on osteogenic cells (Tsukamoto et al., 1991, Mehrotra 

et al., 2004) with PDGF-BB again demonstrating the greatest potency (Lind et al., 1995). The 

chemotactic effect of PDGF may be dependent on the stage of osteoblast differentiation with greater 

chemotaxis for undifferentiated osteoprogenitors compared to differentiated osteoblasts (Hughes et

al., 1992) suggesting that PDGF may enhance early wound healing by increasing the number of 

undifferentiated osteoprogenitor cells within the bone defect rather than the later stages of bone 

healing with differentiated osteoblasts.

The mitogenic effects of PDGF-AA, BB and AB on osteoblasts and undifferentiated 

osteoprogenitor cells have been reported (Canalis et al., 1989, Centrella et al., 1991, Zhang et al.,

1991, Hsieh and Graves, 1998, Mehrotra et al., 2004) with PDGF-BB the most potent mitogen (Hock 

and Canalis, 1994). Similar to its chemotactic effects, the effect of PDGF may depend on the stage 

of osteoblastic differentiation with a greater response in less differentiated cells compared to 

differentiated cells (Abdennagy et al., 1992, Yu et al., 1997).
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Although PDGF may demonstrate chemotactic, proliferative and mitogenic effects, it may 

have an inhibitory effect on osteoblast differentiation as indicated by a reduction of ALP activity and 

mineralisation in vitro (Giannobile et al., 1997) with PDGF-BB having the greatest inhibitory effect on 

differentiation (Centrella et al., 1991, Hock and Canalis, 1994). This effect may depend on the length 

of PDGF exposure with continuous PDGF stimulation reducing osteoblast differentiation (Yu et al.,

1997, Strayhorn et al., 1999) while multiple, brief exposures to PDGF enhances osteoblast 

differentiation and mineralisation (Hsieh and Graves, 1998, Marzouk et al., 2008). 

The application of recombinant forms of PDGF to osseous healing have demonstrated 

enhanced bone formation in animal osseous defects (Nash et al., 1994). Most studies have focussed 

on the more potent PDGF-BB isoform and Lynch et al., (Lynch et al., 1989, Lynch et al., 1991b) first 

described its use in periodontics and implant dentistry with increased cellular activity, bone and 

periodontal regeneration after the application of a combination of recombinant PDGF-BB and IGF-I 

(Lynch et al., 1989, Lynch et al., 1991b, Giannobile et al., 1996, Howell et al., 1997). Similarly, in 

peri-implant osseous defects in dogs, the application of PDGF resulted in greater bone repair and 

formation than untreated control groups (Lynch et al., 1991a, Stefani et al., 2000). 

2.2.3 Combination of CaP ceramics with EMD or rhPDGF-BB 

The application of growth factors without a scaffold or carrier is partly ineffective in vivo due to 

their short half-life, rapid diffusion away from the defect site as well as the susceptibility of these 

proteins to uptake, catabolism or proteolysis (Hotz and Herr, 1994, Winn et al., 1999) resulting in an 

insufficient local concentration of the growth factor necessary for bone formation (Urist et al., 1984b, 

Reddi, 1995, Wozney and Rosen, 1998). In addition, inclusion of a bone graft material may provide 

support of the overlying flap as the fluid like consistency of growth factors limits their use alone due 

to collapse of the overlying surgical flap (Mellonig, 1999, Kuru et al., 2006).

EMD has been combined with a variety of bone graft materials including DBBM (Sculean et 

al., 2002b, Velasquez-Plata et al., 2002, Sculean et al., 2003, Zucchelli et al., 2003), bioactive glass 
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(Sculean et al., 2002a, Sculean et al., 2005, Sculean et al., 2007) as well as CaP ceramics such as 

�-TCP and HA-TCP. Clinical and human histological studies have reported no additional benefit of 

EMD when combined with DBBM or bioactive glass compared to these bone graft materials alone 

(Scheyer et al., 2002, Sculean et al., 2002b, Sculean et al., 2005, Sculean et al., 2007) however, the 

addition of EMD to DBBM appeared to improve the clinical benefit when compared to EMD alone 

(Lekovic et al., 2000, Zucchelli et al., 2003). 

Limited data exist on the combination of EMD and CaP ceramics although the addition of 

EMD to �-TCP does not seem to provide any additional benefit over EMD alone (Bokan et al., 2006). 

Although the release kinetics of EMD when combined with a CaP scaffold is not well documented, a 

biphasic release kinetic of EMD from a CaP carrier with an initial burst release during the first 5 

hours followed by a slower sustained release has been observed in vitro (Plachokova et al., 2008). 

The combination of EMD and HA-TCP (Bone Ceramic®) is commercially available (Emdogain Plus®)

and demonstrated similar clinical outcomes six months after treatment when compared to the use of 

EMD alone in the treatment of wide periodontal intrabony defects (Jepsen et al., 2008). The recent 

histological findings of EMD combined with Bone Ceramic® (Emdogain Plus®) in the treatment of 

periodontal intrabony defects suggest only limited osteoconductivity (Sculean et al., 2008b) with 

limited new bone formation and fibrous encapsulation of the ceramic particles nine months after 

treatment.

A combination of the CaP ceramic �-TCP and rhPDGF-BB is commercially available (Gem 

21S®). In an early study, PDGF-BB was combined with the natural polymer chitosan and TCP 

sponge in the rat calvarial defect model and evaluated histologically after two and four weeks (Lee et

al., 2000). The release of PDGF-BB followed a biphasic release kinetic and histologically, the 

composite graft promoted osseous healing of calvarial defects with no connective tissue 

encapsulation of the TCP graft material. More recently, the subcutaneous implantation of PDGF-BB 

and �-TCP into mice indicated that PDGF-BB was adsorbed to �-TCP in a concentration and time-

dependent manner with rapid adsorption occurring between one and five minutes (Bateman et al.,
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2005). In vitro release studies demonstrated biphasic release kinetics with in vivo release occurring 

more rapidly than in vitro release. In vitro, PDGF-BB had a stimulatory effect on osteoblasts with the 

osteoblastic cells incubated with PDGF-BB treated matrices demonstrating attachment within the 

ceramic pores as well as greater cell proliferation than the control matrices alone (Bateman et al.,

2005).

In a large multi-centre study, the use of this composite graft material has been evaluated for 

the treatment of periodontal osseous defects (Nevins et al., 2005). The combination of 0.3 mg/ml or 

1.0 mg/ml of rhPDGF-BB with �-TCP resulted in greater CAL gain over �-TCP alone at three months 

although this was not statistically different after six months. Radiographic evaluation of the 

rhPDGF/�-TCP treated sites demonstrated significantly greater bone growth and bone fill at six 

months compared to �-TCP alone with ongoing bone formation and maturation after 24 months 

(McGuire et al., 2006). Histologically, the use of this material has demonstrated periodontal 

regeneration six months after surgical treatment of human intraosseous periodontal defects 

(Ridgway et al., 2008). 

Gem21S® has also been used in guided bone regeneration (GBR) utilising a simultaneous 

GBR technique at the time of dental implant placement (Byun and Wang, 2008). Autogenous bone 

was placed as an inner graft layer directly onto the implant surface and covered with an outer layer 

of �-TCP/rhPDGF-BB contained by a collagen barrier membrane. Complete bone healing at the 

defect site was demonstrated when second stage surgery was performed after 5 months healing, 

suggesting that the combination of rhPDGF-BB and �-TCP may be a suitable material for guided 

bone regeneration. 

Only limited data exists evaluating the combination of HA-TCP and rhPDGF-BB although the 

use of Bone Ceramic® combined with 0.3 mg/ml rhPDGF-BB on initial bone formation during GBR of 

a canine alveolar ridge defect was evaluated (Schwarz et al., 2009). Three weeks after 

augmentation, the sites with the addition of rhPDGF-BB demonstrated greater augmented area and 

mineralised tissue formation as well as greater transglutaminase II antigen reactivity in augmented 
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sites than the control. As transglutaminase II is an enzyme that has been demonstrated to be directly 

involved in the process of angiogenesis (Haroon et al., 1999), the combination of HA-TCP and 

rhPDGF-BB may enhance initial bone healing in lateral ridge augmentation.  

To date, there have been no studies reporting the osteoinductive properties of HA-TCP when 

combined with EMD (Emdogain®) or rhPDGF-BB in the concentration found in the commercially 

available Gem 21S®. Given that EMD is involved in a mesenchymal cell differentiation and that 

rhPDGF-BB is a potent mitogenic and proliferative stimulator of osteoblasts, it is possible these 

growth factors may demonstrate osteoinductive properties when combined with HA-TCP. In this 

study, our aim was to demonstrate whether HA-TCP is osteoinductive when implanted into non-

osseous sites as well as determine whether an enamel matrix protein derivative (Emdogain®, EMD) 

or recombinant human platelet derived growth factor-BB (rhPDGF-BB) provides or increases the 

osteoinductive potential of HA-TCP. 

2.3 Materials and Methods 

2.3.1 Ethics approval 

Ethics approval was granted by the Animal Ethics Committee of the Institute of Medical and 

Veterinary Science (IMVS)/Central Northern Adelaide Health Service under project number 155/07 

for the period 6/12/2007 to 30/6/2009. 

2.3.2 Animals 

Twenty male Swiss/CD-1 mice of six to eight weeks of age with a minimum weight of 30g 

were used in this study. Animals were stabilised for a minimum of two days prior to commencement 

of the experimental procedure. 

2.3.3 Preparation of HA-TCP ceramic 
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A commercially available, fully synthetic particulate HA-TCP bone graft substitute of medical 

grade purity with a HA/TCP ratio of 60/40 was purchased (Straumann Bone Ceramic® – BIORA AB, 

Straumann, Malmö, Sweden, Lot numbers: F1203, F5860). This material has a 100% crystalline HA 

component, a particle size of 400-700 �m and 90% porosity with interconnected pores of 100-500 

�m in diameter. Ten milligrams (10 mg) of particulate HA-TCP was weighed out (Mettler Analytical 

Balance AE 260 DeltaRange, Mettler-Toledo Inc, Columbus, Ohio, USA) and placed into thirty 

gelatine half capsules (Size 5 White Opaque Gelatin Capsules, Capsugel, Pfizer Australia, West 

Ryde, NSW, Australia). Ten capsules were left empty for the control group. All capsules were 

sterilised by exposure to ultraviolet light for a minimum of 24 hours prior to implantation.

2.3.4 Preparation of growth factors 

rhPDGF-BB: On the day of implantation, 500 �g of unconstituted recombinant human platelet 

derived growth factor-BB (rhPDGF-BB – PeproTech, Rocky Hill, New Jersey, USA) was 

reconstituted in 1.67 ml of sterile saline in accordance to the manufacturer’s instruction to produce a 

rhPDGF-BB concentration of 0.3 mg/ml and stored at 4°C until used. This concentration is the same 

as a commercially available rhPDGF-BB used in conjunction with �-TCP (Gem21S® - Osteohealth, 

Shirley, New York, USA) in bone regenerative therapy. 

Enamel matrix protein derivative (EMD): A commercially available enamel matrix protein 

derivative with a concentration of 30 mg/ml in a propyl glycol alginate (PGA) carrier was purchased 

(Emdogain® - BIORA AB, Straumann, Malmö, Sweden, Lot number: F3752) and was opened at the 

time of implantation. 

2.3.5 Implantation procedure 

The implantation surgery was performed after administration of inhalation anaesthesia with 

2% v/v isoflurane with O2 flow rate set at 2 L/min. Following administration of inhalation anaesthesia, 
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the animals were placed in a rodent stereotactic device and inhalation anaesthesia was maintained 

using a nose cone fitted to the stereotactic frame. 

Both hindlimbs were secured and the implantation sites were disinfected with alcohol swabs. 

A medial incision in both left and right legs was made through the full thickness of the skin over the 

muscles in the same axis as the femur and tibia. An intramuscular pocket was created in the 

quadriceps muscle using blunt dissection. Immediately prior to implantation, the open end of the 

gelatine half capsule was compressed together to partially seal the capsule. One implant was 

inserted into each pocket and the incision closed with surgical staples. The same procedure was 

applied bilaterally, giving two implants per animal. The wounds were swabbed with povidine-iodine 

and the animals closely monitored until they fully recovered from the anaesthetic (Appendix One: 

Surgical Protocol).

The mice were maintained postoperatively on 0.3 mg/ml of fluoroquinolone in 125 ml of H2O

for 1 week with the solution changed daily. All animals were weighed and reviewed weekly until 

sacrifice. A commercially available diet (Rat and Mouse Breeder Cubes, Specialty Feeds, Glen 

Forest, WA, Australia) and water were provided ad libitum for 4 and 8 weeks prior to sacrifice. 

2.3.6 Experimental groups 

Twenty mice were divided into four groups of five mice with implants placed into the left and 

right quadriceps muscles of each mouse. Mice within each group were identified with individual tail 

markings. Table 1 summarises the allocation of graft material and growth factor for each site per 

group at each time period.

The control group had an empty gelatine capsule implanted while the groups in which growth 

factors were combined with HA-TCP, 28 �l of 30 mg/ml enamel matrix protein derivative (EMD-

Emdogain®) or 10 �l of 0.3 mg/ml recombinant human platelet derived growth factor-BB (rhPDGF-

BB) was dispensed immediately prior to implantation into a half capsule containing the HA-TCP and 

mixed with the dispensing pipette tip. This is the prescribed mixing ratio recommended by the 
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manufacturer to produce Emdogain PLUS® (Emdogain® + Bone Ceramic®) and Gem-21S® (rhPDGF-

BB + �-TCP) preparations except that HA-TCP (Straumann Bone Ceramic®) was used in place of �-

TCP.

Group No. No. of Mice Experimental
Period Left Thigh Right Thigh 

1 5 4 weeks Control
(Gelatine capsule) HA-TCP + EMD 

2 5 8 weeks Control
(Gelatine capsule) HA-TCP + EMD 

3 5 4 weeks HA-TCP HA-TCP + rhPDGF-BB 

4 5 8 weeks HA-TCP HA-TCP + rhPDGF-BB 

Table 1: Allocation of graft materials and growth factors to surgical sites 

2.3.7 Retrieval surgery 

After 4 weeks, the five mice from Group 1 and the five mice from Group 3 were euthanised 

using CO2 inhalation. This was repeated after 8 weeks with the five mice from Group 2 and the five 

mice from Group 4.

Samples were retrieved by removal of the hindquarters of each mouse followed by removal of 

skin and fur and then placed immediately in 10% buffered formalin for one week (Appendix Two: 

Retrieval protocol). Following fixation, the specimens were rinsed in physiological buffered saline 

(PBS) and the sections were decalcified in 5% formic acid for two weeks with the solution changed 

weekly. After decalcification, all specimens were placed in 70% ethanol prior to sectioning. 

2.3.8 Radiographic evaluation 

Digital radiographs of the limbs were taken after fixation to determine the location of the 

implanted particles and repeated after decalcification to confirm complete decalcification of the 

specimen.

Standardised radiographic techniques were used to ensure uniform exposure and 

assessment. The x-ray unit used was a dental radiography unit with settings of 60kV and 7mA 
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(Siemens SR60/70 7L, Siemens Australia, Bayswater, VIC, Australia) and images visualised and 

recorded with Sidexis® dental imaging software (Version 5.5, Sirona Australia, Chatswood, NSW, 

Australia) (Appendix Three: Radiographic Protocol).

2.3.9 Histological evaluation 

Using the digital radiographs for guidance, the specimens were sectioned transversely in the 

area of the implanted particles and then processed for paraffin embedding. The specimens were 

oriented such that the cut surfaces were viewed when the paraffin blocks were sectioned. Sections 

of 7μm were cut along the transverse axis of the femur bone (Appendix Four: Histological 

Preparation Protocol) and these were stained with stained with haematoxylin and eosin (H and E) 

as well as Perl’s stain or von Kossa’s stain. Some unstained sections were also prepared. All 

specimens were assessed under light microscopy. 

Images were viewed at 40X, 100X and 200X magnification under a light microscope (Olympus 

BH-2 Research microscope, Olympus Australia, Mount Waverly, VIC, Australia) connected to a 2 

megapixel digital CMOS colour camera (Altra20, Soft Imaging System, Gulfview Heights, SA, 

Australia). Digital images of sections at 200X magnification were obtained (AnalySIS FIVE, Olympus 

Australia, Mount Waverly, VIC, Australia) and analysed with a separate computer image analysis 

program (ImageJ version 1.41o, National Institutes of Health, USA). 

Three sections of the implanted area were examined for each animal where possible. A semi-

quantitative histological examination based on that used by Garraway et al., (1998) was performed 

with the aim of assessing the inflammatory changes, reparative processes and presence of 

osteoinduction after implantation of uncoated particulate HA-TCP or when combined with the growth 

factors EMD or rhPDGF-BB. 
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Acute Inflammation 

Acute inflammation was recorded if a predominantly polymorphonuclear (PMN) leucocyte cell 

infiltrate was detected around the implanted material. The extent of the infiltrate was indicated by the 

following categories: 

� Score 0: No polymorphonuclear leucocytes (PMNs) 

� Score 1: PMNs �25% of cells around implanted material 

� Score 2: PMNs 26-50% of cells around implanted material 

� Score 3: PMNs 51-75% of cells around implanted material 

� Score 4: PMNs 76-100% of cells around implanted material

Chronic Inflammation 

Chronic inflammation was recorded when the cell infiltrate consisted predominantly of plasma 

cells, monocytes/macrophages or lymphocytes. The extent of the infiltrate was indicated by the 

following categories: 

� Score 0: No chronic inflammation 

� Score 1: Chronic inflammatory cells �25% of cells around implanted material 

� Score 2: Chronic inflammatory cells 26-50% of cells around implanted material 

� Score 3: Chronic inflammatory cells 51-75% of cells around implanted material 

� Score 4: Chronic inflammatory cells 76-100% of cells around implanted material 

Resorption/Foreign Body Reaction 

The degree and extent of foreign body reaction or resorption of the implanted material was 

determined by detection of multinucleated cells such as foreign-body giant cells or osteoclasts 

around the implanted material. The extent of resorption and organisation was indicated by the 

following categories: 

� Score 0: No evidence of resorption/foreign body reaction 
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� Score 1: Resorptive cells �25% of cells around implanted material 

� Score 2: Resorptive cells 26-50% of cells around implanted material 

� Score 3: Resorptive cells 51-75% of cells around implanted material 

� Score 4: Resorptive cells 76-100% of cells around implanted material 

Fibrosis - Distribution

The distribution of fibrosis was reported when a fibrous network produced by fibroblasts was 

seen around implanted materials. The extent of fibrosis was indicated by the following categories: 

� Score 0: No evidence of fibrosis 

� Score 1: Fibroblasts and collagen distributed �25% around implanted material 

� Score 2: Fibroblasts and collagen distributed 26-50% around implanted material 

� Score 3: Fibroblasts and collagen distributed 51-75% around implanted material 

� Score 4: Fibroblasts and collagen distributed 76-100% around implanted material 

Fibrosis - Density  

The density of the fibrous network was reported when the density of fibroblasts and 

connective tissue fibres were subjectively assessed and classified in the following categories: 

� Score 0: No evidence of fibrous connective tissue 

� Score 1: Loose fibrous connective tissue with few fibroblasts or widely separated collagen fibres

� Score 2: Mildly dense fibrous connective tissue with low numbers of fibroblasts or loosely 

spaced collagen fibres

� Score 3: Moderately dense fibrous connective tissue with moderate numbers of fibroblasts or 

minimally separated collagen fibres 

� Score 4: Very dense fibrous connective tissue with high numbers of fibroblasts and densely 

packed collagen fibres 
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Vascularity - Distribution 

The distribution of vasculature was determined by the presence of blood vessels around the 

implanted particles. The extent of vascularisation was indicated by the following categories: 

� Score 0: No evidence of vascular structures

� Score 1: Vascular structures distributed �25% around implanted material 

� Score 2: Vascular structures distributed 26-50% around implanted material 

� Score 3: Vascular structures distributed 51-75% around implanted material 

� Score 4: Vascular structures distributed 76-100% around implanted material 

Vascularity - Area 

The total vasculature area was measured and recorded as a percentage of the total area 

examined. In addition, this was classified in the following categories: 

� Score 0: No evidence of vasculature

� Score 1: Vasculature comprising �1% of total area measured 

� Score 2: Vasculature comprising 1-1.99% of total area measured 

� Score 3: Vasculature comprising 2-2.99% of total area measured 

� Score 4: Vasculature comprising �3% of total area measured 

Adipose Tissue - Distribution 

The distribution of adipose tissue was determined by the extent of adipose tissue and 

adipocytes detected around the implanted particles and recorded under the following categories: 

� Score 1: Adipose tissue distributed �25% around implanted material 

� Score 2: Adipose tissue distributed 26-50% around implanted material 

� Score 3: Adipose tissue distributed 51-75% around implanted material 

� Score 4: Adipose tissue distributed 76-100% around implanted material 
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Adipose Tissue - Area 

The total area of adipose tissue was measured and recorded as a percentage of the total area 

examined. In addition, this was classified in the following categories: 

� Score 0: No evidence of adipose tissue 

� Score 1: Adipose tissue comprising �10% of total area measured 

� Score 2: Adipose tissue comprising 10-19.99% of total area measured 

� Score 3: Adipose tissue comprising 20-29.99% of total area measured 

� Score 4: Adipose tissue comprising �30% of total area measured 

Capsule Thickness

The thickness of the cell layer encapsulating the particle was measured and recorded in the 

following categories: 

� Score 0: No lining cells present around implanted material 

� Score 1: Lining cell thickness 1-5 cells thick around implanted material 

� Score 2: Lining cell thickness 6-10 cells thick around implanted material 

� Score 3: Lining cell thickness 11-16 cells thick around implanted material  

� Score 4: Lining cell thickness 16-20 cells thick around implanted material 

Osteoinduction

Osteoinduction was reported if matrix resembling the osteoid matrix of woven bone or 

presence of osteocytes was detected adjacent to implanted materials. The extent of osteoinduction 

was indicated by the following categories. 

� Score 0: No evidence of new bone formation 

� Score 1: Osteoid formation detected �25% around implanted material 

� Score 2: Osteoid formation detected 26-50% around implanted material 

� Score 3: Osteoid formation detected 51-75% around implanted material 
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� Score 4: Osteoid formation detected 76-100% around implanted material 

The mean and median score of each semi-quantitative histological category were calculated 

for each experimental group and at each time period. 

2.3.10 Statistical analyses 

The mean and median values were tabulated and statistical analyses performed. The non-

parametric Kruskal-Wallis test was used to determine any statistical differences between the three 

experimental groups and the Mann-Whitney test for differences between two groups. Statistical 

analyses were performed using a statistical and graphing package (GraphPad Prism 5.0). Values of 

P<0.05 were considered statistically significant. 

2.4 Results 

2.4.1 Surgical and postoperative complications 

All animals survived the surgery and the majority had an uneventful postoperative recovery. 

Three mice (one in 8 week Control/HA-TCP + EMD, two in 4 week HA-TCP/HA-TCP + PDGF) 

developed wound dehiscence in the first 48 hours postoperatively due to loss of the surgical staples 

and required additional sutures for wound closure. One mouse (8 week HA-TCP/HA-TCP + PDGF) 

lost its surgical staple at two weeks postoperatively resulting in wound breakdown and required 

further suturing. A further mouse (8 week Control/HA-TCP + EMD) had late wound irritation at 4 

weeks postoperatively as a result of a loosening staple. These two animals were placed on the 

antibiotic fluoroquinolone for a further week. All animals eventually recovered and none were lost 

during the experimental period. 

The mice were initially housed in their groups with five mice per cage but were separated into 

individual cages after one week due to fighting. Mouse weights increased and were maintained 
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throughout the experimental period. By the time of graft retrieval at four and eight weeks, all 

implantation sites had healed completely.  

2.4.2 Radiographic evaluation 

Radiographs were taken of the excised hind limb of each mouse after fixation at 4 and 8 

weeks to determine the graft location and assess the degree of graft dispersion. Radiographic 

analysis of ectopic bone formation radiographically was not possible due to the radiopaque nature of 

the HA-TCP material. As expected, no radiographic image was visible in the control groups and 

specimens from this group have been excluded from the radiographic analysis. 

After decalcification, samples from all groups demonstrated no radiopaque particles within the 

hind limb soft tissues. 

4 Week Groups

HA-TCP

Radiopaque graft particles were visible within the soft tissue of the hind limb with four samples 

demonstrating a central well delineated radiopaque area with varying amounts of particle dispersion 

(Figure 1A) while the remaining sample demonstrated less graft material that was widely dispersed 

through the soft tissue of the specimen (Figure 1B).
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Figure 1A     Figure 1B 

Figure 1: 4 Week radiographs of hind limb with well defined radiopaque graft material (Figure 1A) 

and dispersed graft material (Figure 1B) in HA-TCP group 

HA-TCP + PDGF 

All five samples demonstrated well defined radiopaque areas with four exhibiting minimal graft 

dispersion (Figure 2A) and the remaining sample exhibiting a moderate degree of graft dispersion 

(Figure 2B). The graft particles in samples from this group were more confined with minimal graft 

dispersion when compared to the other two groups. 

    

Figure 2A     Figure 2B 

Figure 2: 4 Week radiographs of hind limb with well defined radiopaque graft material (Figure 2A) 

and dispersed graft material (Figure 2B) in HA-TCP + PDGF group 
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HA-TCP + EMD 

Three of the five samples demonstrated well defined radiopaque areas with minimal graft 

dispersion in one sample (Figure 3A) while the other two were moderately dispersed. The other two 

samples demonstrated greater dispersion of the graft material throughout the soft tissue of the 

specimen (Figure 3B).

    

Figure 3A     Figure 3B 

Figure 3: 4 Week radiographs of hind limb with well defined radiopaque graft material (Figure 3A) 

and dispersed graft material (Figure 3B) in HA-TCP + EMD group

8 Week Groups

HA-TCP

Three of the five samples demonstrated well defined radiopaque areas (Figure 4A) although 

varying degrees of particle dispersion were evident in this group. Of the remaining specimens, the 

grafter material in one specimen was widely dispersed in the soft tissue (Figure 4B) while the other 

demonstrated less radiopaque material dispersed within the local area of implantation. 
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Figure 4A     Figure 4B

Figure 4: 8 Week radiographs of hind limb with well defined radiopaque graft material (Figure 4A) 

and dispersed graft material (Figure 4B) in HA-TCP group

HA-TCP and PDGF 

Three of the five samples demonstrated well defined radiopaque areas (Figure 5A) although

these were less well contained than those in the four week group with varying degrees of graft 

dispersion evident. Of the remaining two samples, one demonstrated wide dispersion of the graft 

material in the soft tissue (Figure 5B) while the other contained less radiopaque graft material 

dispersed within the local area of implantation.

    

Figure 5A     Figure 5B 

Figure 5: 8 Week radiographs of hind limb with well defined radiopaque graft material (Figure 5A) 

and dispersed graft material (Figure 5B) in HA-TCP + PDGF group
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HA-TCP + EMD 

Four of the five samples demonstrated well defined radiopaque areas with varying degrees of 

particle dispersion in the local area of implantation (Figure 6A). The dispersion of the graft particles 

in these samples was generally less than the uncoated HA-TCP samples. However, the remaining 

sample in the HA-TCP + EMD group demonstrated widespread scattering of the graft material within 

the soft tissue (Figure 6B).

    

Figure 6A     Figure 6B

 Figure 6: 8 Week radiographs of hind limb with well defined radiopaque graft material (Figure 6A) 

and dispersed graft material (Figure 6B) in HA-TCP + EMD group

2.4.3 Histological evaluation 

All animals survived the four and eight week experimental period. No histological evidence of 

the implanted gelatine capsule was present in the control group and this group was not included in 

the histological evaluation. Implanted graft particles could not be detected in the tissues analysed 

from one animal of the 4 week HA-TCP group. As a result this sample was left out of the analyses. In 

addition, minimal graft material was detected in one animal from the 8 week HA-TCP + PDGF group 

and only one section from this animal was included for analysis. 

In all specimens, a black material was present around the implant site. This was more 

commonly identified in the specimens containing HA-TCP than the control group due to the greater 
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ease in identifying the implantation site with the radiopaque HA-TCP. This black material aggregated 

within the cell layer adjacent to the graft particles as well as within the surrounding fibrous 

connective tissue. On closer examination, the material appeared to be granular and was located 

both intracellularly and extracellularly within the soft connective tissue. The material identity and 

source was unknown. 

In order to identify this material, unstained sections as well as sections stained with von 

Kossa’s and Perl’s stain were analysed. 

2.4.4 Qualitative analysis - Haematoxylin and Eosin 

4 Week Groups

HA-TCP

The implantation site was identified by the presence of irregularly shaped voids representing 

the decalcified ceramic particles, which were encapsulated by a cellular layer and fibrous connective 

tissue network separating the particles from the surrounding skeletal muscle tissue. In all samples, a 

black particulate matter was evident around the implanted particles. This had a clumped appearance 

and was densest in the cell layer lining the particle void as well as the immediate fibrous connective 

tissue surrounding the particles. More scattered black material was present in areas further away 

from the implant site. This material was rarely seen in muscle and appeared to be located both 

intracellularly and extracellularly. In areas of skeletal muscle close to the area of implantation, a 

reactive change in the myocytes was demonstrated with enlarged nuclei located in the centre of the 

muscle fibre while cells distant to the implant area demonstrated peripherally located nuclei. A dense 

cellular layer of one to 15 cells thick was demonstrated immediately lining the particle void, with 

vasculature seen within this layer. Due to the densely packed nature of this cell layer, identification of 

individual cell types was difficult although these cells had a mesenchymal cell appearance 

resembling active fibroblasts with plump nuclei and granular cytoplasm. Macrophages and isolated 

multinucleated giant cells were also seen within this cell layer. Surrounding this cellular layer was a 
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fibrous connective tissue layer consisting of mature spindle shaped fibroblasts with condensed and 

elongated nuclei with vasculature also seen within this fibrous connective tissue layer. The density of 

the fibrous connective tissue between particles appeared to be greater than that surrounding the 

graft area or adjacent to muscle. Within the fibrous connective tissue, a negligible acute 

inflammatory response was identified with isolated polymorphonuclear leucocytes seen only in 

association with blood vessels. A low level chronic inflammatory response was seen with 

macrophages and lymphocytes identified within the surrounding connective tissue while minimal 

multinucleated cells were seen (Figure 7A and 7B). In sections obtained from one animal, the graft 

particles were surrounded by large amounts of adipose tissue with adipocytes demonstrating a small 

cytoplasm and peripherally displaced nucleus scattered within loose, collagenous supporting tissue. 

In sites where adipose tissue predominated, the cell capsule layer as well as surrounding fibrous 

connective tissue was thinner. However this remained relatively dense between particles. In all 

samples, no osteoblastic activity or bone matrix synthesis was detected and there was no evidence 

of intramuscular bone or cartilage formation.
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Photomicrograph of H and E section from 
HA-TCP group at 4 weeks 
Photomicrograph of H and E section from 
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Figures 7A: Photomicrograph of H and E section from HA-TCP group at 4 weeks at 40x 

magnification (Bar = 500�m)

Figure 7B: Photomicrograph of H and E section from HA-TCP group at 4 weeks at 200x 

magnification (Bar = 100�m) 

(BC=Bone Ceramic particle, CL=Cellular capsule layer, FCT=Fibrous connective tissue, M=Muscle, 

NV=Neovascularisation) 

HA-TCP + PDGF

Specimens exhibited regularly shaped voids similar to the HA-TCP group surrounded by a 

cellular capsule and fibrous connective tissue with nearby skeletal muscle. The graft particles in 

sections obtained from three animals were surrounded by large amounts of adipose tissue or fibro-

adipose tissue. In most of the specimens, a black granular material was evident around the 

implanted particles with a similar density and distribution as the other groups. Similar to the other 

groups, a reactive change in the muscle was evident in the area immediately adjacent to the 

implanted site as well as the presence of a highly cellular layer surrounding the particle void. This 

cell layer thickness appeared to be thinner than the HA-TCP group and ranged from one to 10 cells 

thick. Surrounding this layer was a connective tissue layer that walled off the particles from the 

surrounding muscle or adipose tissue consisting of mature fibroblasts with spindle shaped nuclei and 

dense collagen fibres although the density of the connective tissue varied between specimens with 
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some specimens demonstrating very dense connective tissue while others had much looser tissue. 

However, in all specimens the fibrous connective tissue located between particles appeared to be 

denser than that interposed between the particles and muscle. New blood vessels were seen within 

this fibrous connective tissue layer with several samples demonstrating marked vascularity within the 

interparticulate connective tissue (Figure 8A and 8B). Blood vessels were associated with increased 

density of the interparticulate connective tissue. The degree of neovascularisation within this fibrous 

connective tissue varied among animals with two animals demonstrating high levels of vascularity 

while the other three animals exhibited lower levels. Samples where the particles were surrounded 

by large amounts of adipose tissue and fibro-adipose tissue (Figure 8C) were associated with a 

reduced density of the fibrous connective tissue, reduced vasculature and a thinner cellular layer 

surrounding the particle. In all samples, there was minimal acute inflammatory response with the 

absence of or minimal presence of polymorphonuclear leucocytes seen in close proximity to the 

blood vessels. Low levels of macrophages and lymphocytes were demonstrated within the 

connective tissue and minimal multinucleated cells were seen within the connective tissue. In all 

samples, no osteoblastic activity or bone matrix synthesis was detected and there was no evidence 

of intramuscular bone or cartilage formation.    
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Figure 8A: Photomicrograph of H and E section from HA-TCP + PDGF group at 4 weeks at 40x (Bar 

= 500�m)

Figure 8B: Photomicrograph of H and E section from HA-TCP + PDGF group at 4 weeks at 200x 

(Bar = 100�m) 

(BC=Bone Ceramic particle, CL=Cellular capsule layer, FCT=Fibrous connective tissue M=Muscle, 

NV=Neovascularisation) 

Photomicrograph of H and E section from 
HA-TCP + EMD group at 4 weeks at 40x
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Figure 8C: Photomicrograph of H and E section from HA-TCP + PDGF group at 4 weeks at 40x 

magnification demonstrating adipose tissue surrounding graft particles (Bar = 500�m)

(A=Adipose Tissue, BC=Bone Ceramic particle, LCT=Loose Connective Tissue, M=Muscle) 

HA-TCP + EMD

Irregular shaped voids were present surrounded by fibrous connective tissue and muscle with 

the black particulate matter evident around most of the implanted particles with a similar density and 
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distribution as the other groups. Although adipose tissue was detected around samples from two 

animals, this was less common and to a lesser degree than the HATCP + PDGF group. Similar to 

the other groups, a reactive change was seen in myocytes adjacent to the implant site. The particle 

voids were lined by densely packed mesenchymal like cells with immature fibroblasts as well as 

macrophages and isolated multinucleated giant cells. This cell layer varied from one to 15 cells thick 

and in general appeared thicker than the HA-TCP + PDGF group but similar to the HA-TCP group. 

Immediately surrounding and continuous with this lining cell layer was a fibrous connective tissue 

layer containing mature spindle shaped fibroblasts and dense collagen fibres tissue (Figure 9A and 

9B). This connective tissue encapsulated the particles and separated them from the surrounding 

muscle or adipose. The fibroblast response appeared to be greater than the other two groups with 

less inter-animal variation with most animals demonstrating a strong fibroblastic response. Vascular 

structures were seen within the fibrous connective tissue although this did not appear to be as 

intense as the HA-TCP + PDGF group. The cellular response within the tissues was similar to the 

other two groups with a minimal acute inflammatory response and the presence of minimal or no 

polymorphonuclear leucocytes. Low levels of chronic inflammatory cells and minimal multinucleated 

cells were detected within the fibrous connective tissue. In all samples, no osteoblastic activity or 

bone matrix synthesis was detected and there was no evidence of intramuscular bone or cartilage 

formation.
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Figure 9A: Photomicrograph of H and E section from HA-TCP + EMD group at 4 weeks at 40x 

magnification (Bar = 500�m)

Figure 9B: Photomicrograph of H and E section from HA-TCP + EMD group at 4 weeks at 200x 

magnification (Bar = 100�m)

(B=Hind Limb Bone, BC=Bone Ceramic particle, CL=Cellular capsule layer, DC=Dense collagen 

fibres, FCT=Fibrous connective tissue, M=Muscle, NV=Neovascularisation,) 

8 Week Groups

HA-TCP

Samples exhibited irregularly shaped voids representing the decalcified particles surrounded 

by a cellular layer. A black particulate matter was evident around the implanted particles in all 

samples although this appeared to be less than the 4 week samples. In the majority of samples the 

encapsulating cell layer was thinner than the 4 week specimens, ranging from one to five cells thick. 

Compared to the 4 week group, the morphology of this cell layer appeared to be more organised 

with less intercellular spaces with connective tissue fibres between these cells continuous with the 

fibrous connective tissue layer surrounding the particles. This outer connective tissue layer was 

comprised of mature fibroblasts with spindle shaped nuclei and collagen fibres (Figure 10A and 

10B). Similar to the findings from the other groups, the interparticulate connective tissue was 

generally denser than outlying tissue. Vasculature was evident although this was less than the 4 
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week sample as was the acute and chronic inflammatory response with only isolated 

polymorphonuclear leucocytes, macrophages and lymphocytes seen in some specimens. Similarly, 

multinucleated giant cells were rarely seen in all specimens. In several of the 8 week samples, 

adipose tissue was seen surrounding this outer connective tissue layer and similar to the 4 week 

samples, the presence of adipose tissue was associated with a reduced thickness of the cellular 

capsule, reduced vascularity and reduced density of the fibrous connective tissue. In all samples, no 

osteoblastic activity or bone matrix synthesis was detected and there was no evidence of 

intramuscular bone or cartilage formation.
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Figures 10A: Photomicrograph of H and E section from HA-TCP group at 8 weeks at 40x 

magnification (Bar = 500�m) 

Figure 10B: Photomicrograph of H and E section from HA-TCP group at 8 weeks at 200x 

magnification (Bar = 100�m) 

(BC=Bone Ceramic particle, BP=Black particulate material, CL=Cellular capsule layer, DC=Dense 

collagen fibres, FCT=Fibrous connective tissue, M=Muscle, NV=Neovascularisation) 

HA-TCP + PDGF

The 8 week specimens had a similar appearance to the 4 week specimens with a number of 

irregularly shaped voids representing the coated HA-TCP particles (Figure 11A and 11B). The black 

particulate matter was present with a similar distribution and density to the other 8 week groups 
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although this appeared to be less than the 4 week group. The particles were surrounded by a cellular 

layer of cells ranging from 1 to 10 cells thick, which had the appearance of immature fibroblasts with 

plump nuclei. A number of mature fibroblasts with narrow spindle shaped nuclei as well as collagen 

fibres were also seen within this cell layer. Compared to the 4 week samples, the thickness of the 

cell layer was similar but its morphology differed in that it appeared to be more fibrous with collagen 

fibres continuous with the surrounding fibrous connective tissue. Similar to other 4 and 8 week 

specimens, the interparticulate connective tissue was denser than that surrounding the graft area, 

which was a looser, less cellular connective tissue. Vasculature was seen within the fibrous 

connective tissue, generally associated with the dense interparticulate connective tissue. The degree 

of vascularity seen at 8 weeks was less than that demonstrated at 4 weeks but appeared to be 

greater than the other groups at this time period. The inflammatory and foreign body response was 

reduced when compared to the 4 week specimens with negligible acute inflammatory and minimal 

chronic inflammatory cells present as well as isolated multinucleated giant cells detected in only a 

few sites and specimens. Specimens from three animals demonstrated the presence of adipose 

tissue partially surrounding the particles although this was less than the 4 week specimens. In one 

specimen, large amounts of fibro-adipose tissue surrounded the graft particle and minimal 

vascularity as well as a thin cellular layer surrounding the implant was observed. In all samples, no 

osteoblastic activity or bone matrix synthesis was detected and there was no evidence of 

intramuscular bone or cartilage formation.
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Figures 11A: Photomicrograph of H and E section from HA-TCP + PDGF group at 8 weeks at 40x 

magnification (Bar = 500�m)

Figure 11B: Photomicrograph of H and E section from HA-TCP + PDGF group at 8 weeks at 200x 

magnification (Bar = 100�m)

(BC=Bone Ceramic particle, BP=Black particulate material, CL=Cellular capsule layer, FCT=Fibrous 

connective tissue, M=Muscle, NV=Neovascularisation) 

HA-TCP + EMD

The 8 week appearance of these specimens at low magnification was similar to the 4 week 

group with several voids surrounded by a cellular layer, an outer fibrous connective tissue network 

and adjacent skeletal muscle or adipose tissue. In all samples, the black particulate matter present in 

the earlier samples was evident with a similar distribution and density to the other 8 week groups 

although this appeared to be less than the 4 week group. A darker staining cellular layer of one to 10 

cells thick with the appearance of mesenchymal like cells or active fibroblasts were present 

surrounding the particles although this was thinner and more fibrous compared to the 4 week 

samples. Fibrous connective tissue consisting of mature fibroblasts with elongated nuclei and 

collagen fibres were seen continuous with and surrounding this cellular layer. This appeared to be 

less dense than the 4 week group (Figure 12A and 12B) and the interparticulate fibrous connective 

tissue was denser than the surrounding fibrous connective tissue. Four out of five animals 
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demonstrated particles that were enclosed by increased amounts of adipose tissue with limited 

fibrous connective tissue encapsulating the graft particles (Figure 12C) that were greater than the 4 

week samples and other 8 week groups. Similar to other groups, samples with increased amounts of 

adipose tissue were associated with reduced vascularity and a thinner cell layer encapsulating the 

particles. The degree of vascularity in this group was predominantly associated with dense fibrous 

connective tissue and was reduced when compared to the 4 week samples as well as the 8 week 

HA-TCP + PDGF samples. The inflammatory response was reduced when compared to the 4 week 

specimens and similar to the other 8 week groups with negligible acute inflammation and minimal 

chronic inflammation present. A few macrophages and giant cells were identified but these were not 

common findings. In addition, in all samples, no osteoblastic activity or bone matrix synthesis was 

detected and there was no evidence of intramuscular bone or cartilage formation.
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Figures 12A: Photomicrograph of H and E section from HA-TCP + EMD group at 8 weeks at 40x 

magnification (Bar = 500�m)

Figure 12B: Photomicrograph of H and E section from HA-TCP + EMD group at 8 weeks at 200x 

magnification (Bar = 100�m) 

(BC=Bone Ceramic particle, BP=Black particulate material, CL=Cellular capsule layer, DC=Dense 

collagen fibres, FCT=Fibrous connective tissue, M=Muscle, NV=Neovascularisation) 

BP=BLCTlack particulate material

BC BC

M

A

LCT 

BC 
BP 

A

Figure 12C: Photomicrograph of H and E section from HA-TCP + EMD group at 8 weeks at 40x 

magnification demonstrating adipose tissue surrounding graft particles (Bar = 500�m)

(A=Adipose tissue, BC=Bone Ceramic particle, BP=Black particulate material, LCT=Loose 

connective tissue, M=Muscle) 
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Other Histological Stains 

Perl’s Stain 

Several slides from each specimen were stained with Perl’s stain to determine whether the 

black particles identified in the H and E slides were haemosiderin.

4 Week Groups 

No staining indicating the presence of haemosiderin was identified. The black material had a 

similar appearance and distribution around the implanted particles to specimens stained with other 

staining protocols (Figure 13A-13C).

Figure 13A Figure 13B Figure 13C

Figures 13A-13C: Photomicrograph of 4 week sections stained with Perl’s stain from HA-TCP 

(Figure 13A), HA-TCP + PDGF (Figure 13B) and HA-TCP + EMD (Figure 13C) groups at 200x 

magnification (Bar = 100�m)

Von Kossa’s stain 

Several slides from each specimen were stained with Von Kossa’s stain to determine whether 

the black particles identified in the Haematoxylin and Eosin slides were calcium particles. 

4 Week Groups 

No staining indicating calcification was seen in the specimens with the black material 

distributed in a similar manner and intensity as seen in other specimens with different staining 

protocols (Figure 14A-14C).
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Figure 14A Figure 14B Figure 14C

Figures 14A-14C: Photomicrograph of 4 week sections stained with von Kossa’s stain from HA-TCP 

(Figure 14A), HA-TCP + PDGF (Figure 14B) and HA-TCP + EMD (Figure 14C) groups at 200x 

magnification (Bar = 100�m)

Unstained sections 

Unstained sections from each specimen were assessed to determine whether the black 

material identified in the Haematoxylin and Eosin slides were a result of the staining process. 

4 Week Groups

HA-TCP, HA-TCP + PDGF, HA-TCP + EMD  

The black material was present with a similar appearance and intensity as seen in the stained 

sections (Figure 15A-15C).

Figure 15A Figure 15B Figure 15C

Figures 15A-15C: Photomicrograph of 4 week unstained sections from HA-TCP (Figure 15A), HA-

TCP + PDGF (Figure 15B) and HA-TCP + EMD (Figure 15C) groups at 100x magnification (Bar = 

200�m)
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2.4.5 Histomorphometric analysis 

4 Week Samples (Table 2) 

The inflammatory response to implantation was similar amongst the three groups with low 

levels of acute inflammatory cells seen in all groups. No difference existed in the chronic 

inflammatory response between the HA-TCP and the HA-TCP + EMD groups. However the HA-TCP 

+ PDGF group demonstrated a smaller chronic inflammatory response when compared to the other 

two groups. This was statistically significant only when compared to HA-TCP + EMD. A minimal 

foreign body reaction was observed at 4 weeks with no difference between the three groups. The 

fibrous connective tissue response varied amongst the three groups with the greatest distribution of 

fibrous connective tissue around the graft particle seen in the HA-TCP+ EMD group which was 

significantly greater when compared to the HA-TCP + PDGF group. Similarly, a significantly greater 

fibrous connective tissue response was seen in the HA-TCP or EMD groups compared to the PDGF 

group. No significant differences were reported in the vascular distribution between the three groups; 

however a greater total vascular area was demonstrated in the HA-TCP + PDGF group when 

compared to the other groups although this did not reach statistical significance. Adipose tissue was 

a more common finding in the HA-TCP + PDGF group when compared to the other two groups and 

was distributed to a wider degree around the implanted graft particle when compared to HA-TCP and 

HA-TCP + EMD specimens although this was only significant when compared to HA-TCP + EMD. 

The total area of adipose tissue measured followed a similar pattern with the greatest amount of 

adipose tissue measured in the HA-TCP + PDGF group and the least in the HA-TCP + EMD group 

with the difference between these two groups statistically significant. The greatest thickness of the 

cellular capsule encapsulating the ceramic particle was seen in the HA-TCP group followed by the 

HA-TCP + EMD group. In contrast, the HA-TCP + PDGF group demonstrated the thinnest cell layer; 

however this was only significant when compared to the HA-TCP group. No evidence of 

osteoinduction was detected in any of the three groups.
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8 Week values (Table 2) 

At 8 weeks, a minimal acute and chronic inflammatory response as well as a foreign body 

response was demonstrated with no significant differences demonstrated between the three groups. 

The greatest distribution of fibrous connective tissue was seen in the HA-TCP group after 8 weeks 

and the least around HA-TCP + PDGF particles. Although no statistically significant differences 

existed between the HA-TCP + EMD and HA-TCP + PDGF groups, both these groups demonstrated 

statistically reduced distribution of fibrous connective tissue around the graft particle than the HA-

TCP group after 8 weeks. Although a difference in the distribution of fibrous connective tissue was 

demonstrated, there were no differences between the three groups in the density of the fibrous 

connective tissue at this time period. A greater distribution of vasculature in the HA-TCP + PDGF 

group was demonstrated when compared to the other two groups and this was statistically significant 

when compared to the HA-TCP + EMD group. Similarly, the total vascular area measured was 

greatest in the HA-TCP + PDGF group and least in the HA-TCP + EMD group with a significant 

difference demonstrated between the two. Although the distribution and total vasculature area 

around the graft particle was greater in the HA-TCP + PDGF group when compared to the uncoated 

HA-TCP group this was not statistically significant. A difference was demonstrated in the extent of 

adipose tissue distribution as well as the total area of adipose tissue measured. Significantly greater 

distribution of adipose tissue was seen in the HA-TCP + EMD group when compared to the other two 

groups which exhibited similar levels of adipose tissue distribution. The total area of adipose tissue 

measured was also significantly greater in the HA-TCP + EMD group compared to the other two 

groups and although the PDGF coated group had a greater area of adipose tissue than the uncoated 

particles, this was not statistically significant. No differences in the thickness of the cellular layer 

lining the particle were seen between the three groups. In addition, there was no evidence of 

osteoinduction in any of the three groups.



130

4 week versus 8 week results (Table 2) 

HA-TCP

A significant reduction in the inflammatory and foreign body response was seen from 4 to 8 

weeks. A similar distribution of fibrous connective tissue around the implanted particle was seen at 

the two time periods and although the density of this tissue was reduced at 8 weeks, this was not 

statistically significant. Similarly, a non-statistically significant reduction in the distribution and total 

vasculature area as well as adipose tissue surrounding the graft particle was demonstrated at 8 

weeks. At this time period, there was also a statistically significant reduction in the thickness of the 

lining cell layer encapsulating the graft particle.

HA-TCP + PDGF

Similar to the HA-TCP group, a significant reduction was demonstrated in the inflammatory 

and foreign body response between 4 and 8 weeks. No differences existed in the distribution of the 

fibrosis connective tissue and although a small increase in the density was demonstrated, this was 

not statistically significant. Similarly, a small non significant increase in the vasculature distribution 

was seen but this coincided with a non significant reduction in the total vasculature area measured. 

In the 8 week samples, there was a significant reduction in the degree of adipose tissue distribution 

as well as the total amount of adipose tissue measured when compared to the 4 week samples. No 

difference was seen in the thickness of the lining cell layer encapsulating the graft particle between 

the two time periods. 

HA-TCP + EMD

Similar to the other two groups, a significant reduction in the chronic inflammatory and foreign 

body reaction scores were demonstrated between 4 and 8 weeks while no significant difference 

existed for the acute inflammatory score between the two time periods. A significant reduction 

existed in the distribution of fibrous connective tissue around the graft particle at 8 weeks and 



131

although this was associated with a reduction in the density of these tissues this did not reach 

statistical significance. A general reduction in the vascular distribution as well as the total vascular 

area measured existed between 4 and 8 weeks, however this was not statistically significant. A 

change in the distribution of adipose tissue as well as the total adipose tissue area existed between 

4 and 8 weeks with a significant increase in both these parameters measured. In addition, there was 

a significant reduction in the lining cell thickness between the two time periods. 
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Key

� Kruskal-Wallis Test significant at (P<0.05) (4 Weeks) 

�  Kruskal-Wallis Test significant at (P<0.05) (8 Weeks) 

Mann Whitney Test significant at (P<0.05) for 4 week groups 

*  Significant difference between HA-TCP + PDGF versus HA-TCP + EMD groups 

†  Significant difference between HA-TCP versus HA-TCP + PDGF groups 

Mann Whitney Test significant at (P<0.05) for 8 week groups 

�  Significant difference between HA-TCP + PDGF versus HA-TCP + EMD groups 

� Significant difference between HA-TCP versus HA-TCP + PDGF groups 

‡  Significant difference between HA-TCP versus HA-TCP + EMD groups 

Mann Whitney Test significant at (P<0.05) 

¶ Significant difference between group at 4 and 8 weeks 
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2.5 Discussion 

The aim of this study was to investigate the osteoinductive potential of a commercially 

available particulate HA-TCP ceramic alone or combined with the growth factors rhPDGF-BB or 

EMD.

2.5.1 Experimental design 

The ectopic bone model allows assessment of the osteoinductive potential of a material as it 

allows detection of new bone formation in a non-osseous site (Urist, 1965, Winter and Simpson, 

1969) with the murine intramuscular implantation model widely utilised (Becker et al., 1995, 

Garraway et al., 1998, Yoneda et al., 2003, Pekkarinen et al., 2005, Ranly et al., 2005, Machado et

al., 2006). A negative control group consisting of mice that had an empty gelatine capsule implanted 

into the hindlimb was included in the current study. Although a positive control group was not 

included, the osteoinductive potential of a composite graft of HA-TCP and BMP in the murine hindleg 

muscle model has previously been demonstrated (Pekkarinen et al., 2005). 

Previous studies investigating the osteoinductive potential of HA-TCP have reported ectopic 

bone formation in dogs and pigs approximately six weeks after intramuscular implantation (Yang et 

al., 1996, Yang et al., 1997) while subcutaneous implantation in mice and intramuscular implantation 

in rats has demonstrated bone formation by 90 days post implantation (Yuan et al., 2006b). Similarly, 

the soft tissue implantation of composite grafts of HA-TCP combined with BMP or MSCs into rodents 

have demonstrated osteoinduction after 8 weeks (Oda et al., 1997, Alam et al., 2001, Arinzeh et al.,

2005) suggesting that the implantation period utilised in this study was suitable for the detection of 

ectopic bone formation. 

The outcomes of experiments utilising animal models may be influenced by interanimal 

variability (Zbinden et al., 2007). Variability may exist due to inherent genetic or physiological 

differences between animals within the investigated groups or may be created due to differences in 

the macro and microenvironments of the animals prior to, or during the experimental phase as a 
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result of the interaction between animals or between the animal and it’s environment (Howard, 

2002).

A limitation of the current study is the small number of mice within each experimental group, 

with the possibility that the results reported may be due to variation between individual mice rather 

than true differences or similarities between experimental groups. The inclusion of a greater number 

of mice in each experimental group would reduce this effect. However, the experimental protocol 

utilised in the current study was designed to minimise the effect of interanimal variability. Mice were 

of the same gender and of similar weight prior to the experimental procedure and were selected 

randomly for inclusion into each experimental group. In addition, all animals were maintained for a 

conditioning period after arrival and were individually housed in similar conditions and on similar 

diets.

2.5.2 Radiographic findings 

Due to the radiopaque nature of Bone Ceramic®, the presence of radiopacity within the thigh 

muscle does not confirm the presence of new bone formation. Greatest dispersion was seen in the 

uncoated particles at both time periods while less dispersion was seen in the composite graft groups. 

The addition of the liquid rhPDGF-BB to the HA-TCP produced a slurry at the bottom of the capsule, 

reducing dispersion of the graft material after implantation. In contrast, due to the viscous nature of 

the PGA carrier of EMD, graft material may have adhered to the side of the capsule after mixing 

accounting for some of the graft dispersion observed radiographically.

2.5.3 Histological findings 

The absence of major adverse effects at the implant site in the three experimental groups 

during the experimental period suggests that these materials are safe for use.

The voids seen histologically represent the decalcified Bone Ceramic® particles, with a similar 

appearance as seen in other histological studies (Jensen et al., 2007, Schwarz et al., 2007, Sculean 
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et al., 2008b, Friedmann et al., 2009) and has been described as having a fragmentary, potsherd-

like shape (Klein et al., 2009).

Specimens from all three experimental groups failed to demonstrate the presence of 

osteoinduction with a lack of osteoid formation on the surface of the implanted graft particles. 

2.5.4 Inflammatory response 

An acute inflammatory response arises due to surgical trauma to vascularised connective 

tissues during graft placement (van der Meulen and Koerten, 1994) and depending on the extent of 

injury, resolution is rapid with biocompatible materials (Anderson et al., 2008). At both time periods, 

the implants in all three groups were well tolerated and surrounded by a fibrous connective tissue 

with minimal cellular inflammatory response with a reduction in acute inflammatory cells between 4 

and 8 weeks.

Following the acute inflammatory response, a chronic inflammatory response at the implant 

site is seen with the predominance of mononuclear cells such as lymphocytes and monocytes. All 

experimental groups demonstrated low levels of lymphocytes and plasma cells with macrophages 

being the predominant chronic inflammatory cell type. A reduction in the chronic inflammatory cell 

infiltrate was seen between 4 and 8 weeks which is consistent with a normal healing response. The 

HA-TCP + PDGF group demonstrated the smallest inflammatory response after 4 weeks although 

this was only significant when compared to the HA-TCP + EMD group. As wound healing is divided 

into two phases with a inflammatory phase followed by the reparative phase (Linares, 1996) it is 

possible that the presence of PDGF may have enhanced the progression of the healing process with 

earlier resolution of the chronic inflammatory reaction.

It has been suggested that EMD may have an anti-inflammatory effect (Myhre et al., 2006, 

Sato et al., 2008). This was not supported in the current study with the greatest distribution of 

chronic inflammatory cells present in the EMD group at four weeks. However, in vitro studies have 

reported increases in levels of inflammatory mediators such as cyclooxygenase-2 (COX-2) after 
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treatment with EMD (Takayanagi et al., 2006) while in vivo, an increase in inflammatory cells has 

been reported after the subcutaneous implantation of EMD containing collagen membranes (Yuan et 

al., 2003). 

A minimal foreign body reaction was demonstrated in all groups with only isolated 

multinucleated foreign body giant cells identified which decreased over time suggesting 

biocompatibility as well as the low resorbability of the Bone Ceramic® material. These cells may form 

from fusion of macrophages around the graft material (Behling and Spector, 1986) and may be 

involved in resorption and phagocytosis of CaP ceramics (Wada et al., 1989, Basle et al., 1993, 

Heymann et al., 2001, Wenisch et al., 2003).

2.5.5 Encapsulation/Fibrosis 

After implantation, the HA-TCP particles were enclosed within a fibroblast rich connective 

tissue with a cellular layer lining the graft particles, which became less cellular and more fibrous over 

time. A thinner capsule layer was seen generally in specimens that demonstrated greater adipose 

tissue deposition. The formation of a fibrous capsule around a biocompatible implant occurs after 

resolution of the inflammatory response with the migration and proliferation of macrophages, 

endothelial cells and fibroblasts (Anderson and Miller, 1984, Anderson et al., 2008) resulting in 

connective tissue deposition which becomes increasingly acellular and avascular over time (Ziats et

al., 1988).

Surrounding this capsular layer was a fibrous connective tissue similar to those previously 

reported (Schwarz et al., 2007) with mature fibroblasts exhibiting a traditional spindle shaped 

appearance. The increased density and distribution of the fibrous connective tissue observed around 

the HA-TCP particles in the EMD group at 4 weeks may be explained by an increase in the levels of 

local TGF-�1 as a result of EMD application. A TGF-� or a TGF-� like molecule has been identified 

as a bioactive factor in EMD (Kawase et al., 2002, Hama et al., 2008) with this growth factor a potent 
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growth factor regulating numerous cellular functions including extracellular matrix production 

(Barrientos et al., 2008).

2.5.6 Effect of particle size and resorbability on soft tissue reaction 

The 400-700 �m particle size of the Bone Ceramic® may account for the tissue response 

demonstrated in the current study which is consistent with others reporting a minimal inflammatory 

reaction and fibrous encapsulation of the particles (Cui et al., 1995, Alam et al., 2001, Develioglu et 

al., 2005, Fellah et al., 2007, Fellah et al., 2008). Although CaP ceramics are bioinert, the 

implantation of small particles (	20 �m) into non-osseous sites are commonly associated with 

localised foreign body and inflammatory reactions characterised by the presence of macrophages 

and multinucleated giant cells (van der Meulen and Koerten, 1994, Dupraz et al., 1998, Ooms et al.,

2003). In rats, implantation of particles with diameters less than 100 �m were associated with the 

greatest inflammatory reactions up to three weeks post implantation while minimal inflammatory 

reactions were associated with larger particles of 200-400 �m (Malard et al., 1999). Similarly, three 

weeks after intramuscular implantation of HA-TCP granules into rats, thicker fibrous tissue capsule 

formation were observed around particles with a diameter of 80-200 �m compared to those <20 �m

associated with the greatest inflammatory reaction (Fellah et al., 2008). The predominant cell types 

associated with the smaller particles were multinuclear giant cells and lymphocytes within the 

interstitial tissue between the HA-TCP particles as well as macrophages in contact with the ceramic 

particle.

The dissolution properties of the CaP ceramic and duration of implantation may also play a 

role in the tissue reaction. Dissolution is influenced by the type of CaP ceramic with the extent of 

dissolution greatest for TCP and least for HA (LeGeros, 1993) as well as by differences in ceramic 

preparation that modify specific surface area such as sintering temperature (LeGeros, 1993, 

Laquerriere et al., 2003). The high sintering temperature of the Bone Ceramic® at 1100-1500°C 

results may result in low microporosity and low specific surface area resulting in a low dissolution 
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rate. A low inflammatory response and minimal resorption of Bone Ceramic® particles have been 

reported in vivo after time periods ranging from nine to ten weeks (Fleckenstein et al., 2006, 

Schwarz et al., 2007) up to nine months (Jensen et al., 2007, Sculean et al., 2008b).

Conversely, ceramics with greater dissolution properties may enhance the inflammatory 

response with the presence of macrophages and multinucleated giant cells stimulated by the 

continued release of degradation products from the graft material. In vitro, greater production and 

release of proinflammatory cytokines such as Il-1� were reported when macrophages were cultured 

with highly soluble 100% TCP granules compared to less soluble HA-TCP granules (Curran et al.,

2005). In vivo, nonresorbable, highly crystalline HA granules stimulated fibrous encapsulation when 

implanted subcutaneously into rats while a resorbable, poorly crystalline CaP apatite generated 

inflammatory and foreign body reactions (Eid et al., 2001). Similarly, the presence of multinuclear 

giant cells around a highly soluble HA-TCP ceramic with a high TCP component has been reported 

after subcutaneous implantation into rats (Oda et al., 1997). 

The presence of inflammatory and foreign body cells may also be associated with the length 

of implantation period. Although macrophages were undetected around a HA ceramic implant one 

and three months after subcutaneous implantation in rats, the appearance of these cells six months 

after implantation may suggest material biodegradation resulting in a localised inflammatory reaction 

(Cui et al., 1995). Similarly, no inflammatory response was reported 30 days after implantation of 

porous HA-TCP granules with a 65:35 HA:TCP ratio and diameter of 900-1200um (Cerasorb®) into 

rat cranial defects (Develioglu et al., 2005). After three months, occasional multinucleated giant cells 

were detected around this material, while a pronounced multinucleated giant cell response was 

detected at six and 18 months, (Develioglu et al., 2006, Develioglu et al., 2007). 

2.5.7 Vascularisation 

Neovascularisation and angiogenesis results from a complex series of events involving 

endothelial cell organisation into immature vessels and association with outer mural cells such as 
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pericytes and vascular smooth muscle cells (vSMCs) with subsequent matrix deposition and vessel 

maturation (Yancopoulos et al., 2000).

The addition of EMD to HA-TCP did not enhance the angiogenic response. Previous in vivo

reports have suggested a proangiogenic effect of EMD with significantly greater new blood vessel 

formation around an EMD loaded collagen membrane after subcutaneous implantation in mice 

(Yuan et al., 2003). Similarly, greater production of fibrovascular granulation tissue after application 

of EMD to skin wounds in rabbits was seen when compared to the PGA carrier alone (Mirastschijski 

et al., 2004).

Although an overall effect in vivo has been demonstrated, recent in vitro reports have 

suggested a stimulatory effect of EMD on the proliferation of human microvascular endothelial cells 

(HMVECs) (Johnson et al., 2009). In contrast, others have suggested that EMD has a mixed or no 

effect on cell proliferation of human umbilical vein endothelial cells (HUVECs) (Yuan et al., 2003, 

Schlueter et al., 2007) although a positive chemotactic effect on these cells were demonstrated at 

lower EMD doses (Bertl et al., 2009).

Although not evident in the current study, EMD may also have an indirect effect on 

angiogenesis by release of the proangiogenic growth factor, vascular endothelial growth factor 

(VEGF) (Ferrara and Davis-Smyth, 1997, Nissen et al., 1998) from resident cells (Mirastschijski et 

al., 2004).

In contrast, the addition of rhPDGF-BB to the HA-TCP particles resulted in greater vascularity 

after four weeks, which was significant after 8 weeks. All members of the PDGF family, including 

PDGF-BB display potent angiogenic activity in vivo (Oikawa et al., 1994, Cao et al., 2002) with 

PDGF-BB able to induce angiogenesis in the mouse cornea (Cao et al., 2002). More recently, the 

combination of Bone Ceramic® and 0.3mg/ml rhPDGF-BB as a bone graft material in dogs 

demonstrated greater transglutaminase II antigen reactivity, an enzyme directly involved in the 

process of angiogenesis (Haroon et al., 1999) when compared to sites without the addition of 

rhPDGF-BB (Schwarz et al., 2009),. 
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PDGF-BB may mediate its proangiogenic effects through its mitogenic and chemotactic 

effects on pericytes and vSMCs (Westermark and Heldin, 1993, Lindahl et al., 1997) or effects on 

endothelial cells (Risau et al., 1992, Castellon et al., 2002). PDGF-BB may also exert an angiogenic 

effect indirectly by enhancing the secretion of other growth factors such as VEGF. In vitro, rhPDGF-

BB stimulated osteoblast VEGF mRNA transcription in a time and dose dependent manner 

(Bouletreau et al., 2002) while in vivo, the application of rhPDGF-BB to localised periodontal 

osseous defects resulted in an increased concentration of VEGF detected in wound fluid (Cooke et

al., 2006). Others have suggested a cooperative effect between PDGF-BB and FGF2 (Millette et al.,

2005) with upregulation of FGF receptor expression by PDGF-BB in human vSMCs (Nissen et al.,

2007). In the current study, it is possible that the angiogenic effect demonstrated in the PDGF group 

may be mediated by the direct effect of increased levels of PDGF-BB as well as indirectly via 

endogenous VEGF and FGF2. 

2.5.8 Adipose tissue 

Adipose tissue was seen surrounding the HA-TCP particles although this was limited to a few 

specimens in the HA-TCP group while large amounts of adipose tissue were seen in the PDGF 

group at 4 weeks and in the EMD group at 8 weeks. The presence of adipose tissue around CaP 

ceramics has previously been reported after the implantation of macroporous calcium phosphate 

cement into goats (Bodde et al., 2007).

The reason for the large amounts of adipose tissue deposition in some specimens is unknown 

but may be a result of inadvertent placement or migration of the graft material from the intramuscular 

pocket subcutaneously. Others have suggested that the presence of adipose tissue around an 

implant may indicate implant compatibility (Kaminski et al., 1977) with the development of adipose 

tissue only around non-reactive materials after intramuscular implantation into rabbits. 

On the other hand, the presence of adipose tissue may have arisen as a result of surgical 

trauma (Signorini and Campiglio, 1998, Copcu and Sivrioglu, 2003) although formation is more 
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commonly associated with blunt trauma. Another possible reason for adipose tissue development 

could be related to the process of “adipogenic healing” (Xaymardan et al., 2002). The authors 

reported on a sequence of wound healing in which highly vascular granulation tissue matured into 

adipose tissue instead of fibrous scar tissue. The appearance of adipocytes was demonstrated three 

weeks after intramuscular implantation of space creating nylon mesh tubes or porous polyvinyl and 

gelatine sponge material into mice. It was suggested that adipogenic healing occurred as a result of 

invasion, proliferation and differentiation of reparative granulation tissue into the maintained space 

by adipocyte precursor cells (Xaymardan et al., 2002).

It is also possible that increased amount of adipose tissue in the PDGF group at 4 weeks may 

be related to its proangiogenic as well as cell proliferative and differentiation effects on 

preadipocytes (Butterwith and Goddard, 1991, Bachmeier and Loffler, 1995, Staiger and Loffler, 

1998, Widberg et al., 2009). Recent in vivo findings suggest that PDGF-BB may enhance adipose 

tissue formation with the application of 300 ng/ml of PDGF-BB to a murine tissue engineering 

chamber model significantly increasing adipogenesis after 6 weeks. Increased adipogenesis was 

associated with increased angiogenesis and infiltration of mesenchymal progenitor cells (Rophael et

al., 2007).

The reason for the increased deposition of adipose tissue in the EMD group at 8 weeks 

remains unknown although there have been reports of the negative effects of EMD on adipogenic 

differentiation with a marked reduction in lipoprotein lipase gene in pluripotent mesenchymal cells 

(Ohyama et al., 2002). 

2.5.9 Black material 

The black material present within the specimens remains unidentified. This material was 

identified in all groups including the control group suggesting that the source of this material did not 

originate from the HA-TCP particles. Tissues stained with Perl’s and von Kossa’s stain did not 

identify this black material as haemosiderin (Iancu, 1992) or calcium (Symonds, 1990). In addition, 
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several unstained specimens were analysed, with the presence of this material suggesting that the 

origin of this material was not a result of the staining process. 

The source of this material may be from a contaminant within the gelatine capsule or as a 

result of the fixation process. The formation of formalin pigment, also known as acid formaldehyde 

haematin occurs due to the action of formaldehyde on haemoglobin at acid pH (Pizzolato, 1976) 

resulting in a brown, intracellular and extracellular granular deposit. Although this is commonly 

associated with tissues that have been fixed in simple formalin fixatives such as 10% formalin or 

10% formal saline, the formation of formalin pigment may have occurred with the use of neutral 

buffered formalin if the buffer was exhausted in the presence of an acidic blood and tissue pH 

following CO2 inhalation euthanasia (Rothe, 1983, Angus et al., 2008).

2.5.10 Comparisons to other studies 

HA-TCP

HA-TCP associated osteoinduction has been demonstrated after soft tissue implantation in a 

variety of large and small animal models including rodents (Yuan et al., 1998a, Kurashina et al.,

2002, Habibovic et al., 2005b, Le Nihouannen et al., 2005, Yuan et al., 2006b, Habibovic et al.,

2008). However, other studies have also reported similar results to the current study with a lack of 

osteoinduction after implantation of HA-TCP (Oda et al., 1997, Eid et al., 2001, Fellah et al., 2008). 

PDGF

This is the first study to report on the osteoinductive potential of rhPDGF-BB and 

demonstrates a lack of osteoinduction around HA-TCP particles coated with this growth factor. Early 

studies have suggested that adjunctive PDGF may enhance the osteoinductive activity of 

demineralised bone matrix (Howes et al., 1988) although recent studies have suggested an inhibitory 

effect of PDGF-BB on demineralised bone matrix osteoinduction (Ranly et al., 2005). However, the 

osteoinductive potential of rhPDGF-BB alone was not investigated in this study. A further study by 
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the same group (Ranly et al., 2007) investigated the role of platelet rich plasma (PRP) containing 

PDGF on the osteoinductive ability of demineralised bone matrix with the intramuscular implantation 

of 25 �l of PRP alone into mice failed to demonstrate any osteoinductive activity. The findings of the 

current study seem to support the findings in the current study that rhPDGF-BB even when 

combined with a carrier does not provide the osteoinductive stimulus necessary for ectopic bone 

formation.

EMD

Several in vitro studies have reported the presence of BMP or BMP-like molecules in EMD or 

enamel extracts including BMP-2, BMP-4 and BMP-6 (Iwata et al., 2002, Suzuki et al., 2005, 

Narukawa et al., 2007). When a pluripotent mouse fibroblastic cell line was cultured with EMD, 

increased mRNA levels of osteogenic and chondrogenic related transcription factors were detected 

which were possibly mediated by a BMP-6 like molecule present in EMD (Narukawa et al., 2007). 

Furthermore, EMD has been suggested to stimulate release of osteoinductive growth factors such as 

BMP-2 and BMP-4 from wound macrophages (Fujishiro et al., 2008). However, the lack of 

osteoinductive activity of EMD in the current study supports those previously reported when EMD 

combined with a collagen carrier (Yoneda et al., 2003) or graft material were implanted into non-

osseous sites (Boyan et al., 2000, Donos et al., 2006, Plachokova et al., 2008). 

The reasons for a lack of osteoinductive activity in the current study may be attributed to the 

physicochemical properties of the Bone Ceramic® as well as the methodology used. Material 

induced osteoinduction appears to be dependent on the presence of certain structural elements such 

as macroporosity and a microporous surface to create a suitable microenvironment for cell 

differentiation and new bone formation (Yuan et al., 1998a, Habibovic et al., 2005b, Habibovic et al.,

2006a, Habibovic et al., 2006b, Habibovic et al., 2008).
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A lack of ectopic bone formation in the current study may be attributed to the physicochemical 

properties of the Bone Ceramic®. This material has a high interconnected macroporosity with a 

macropore size of 100-500 �m and a median pore diameter of 200 �m (Klein et al., 2009) which is in 

the range reported to be ideal for promotion of angiogenesis and osteoblast growth (Hulbert et al.,

1970, Klawitter et al., 1976, Tsuruga et al., 1997, Chang et al., 2000). However, the high sintering 

temperature of Bone Ceramic® at 1100-1500°C may result in low surface microporosity and specific 

surface area (Kitsugi et al., 1987, LeGeros, 1993) explaining the absence of bone formation in the 

current study.

The use of a murine model may also account for variability in osteoinduction. Although the 

combination of CaP ceramics and osteogenic cells or BMP have been demonstrated in the murine 

model (Oda et al., 1997, Alam et al., 2001, Arinzeh et al., 2005), the degree of CaP ceramic induced 

osteoinduction can vary depending on the animal model as well as between individual animals (Yang 

et al., 1996, Habibovic et al., 2005b, Habibovic et al., 2006a). Osteoinduction has been 

demonstrated regularly in large animal models such as dogs, baboons, sheep and goats (Yamasaki 

and Sakai, 1992, Ripamonti, 1996, Le Nihouannen et al., 2005, Habibovic et al., 2008) while less 

consistently in small animal models, including the murine model (Ohgushi et al., 1989, Goshima et 

al., 1991, Ohgushi et al., 1993, Klein et al., 1994, Yang et al., 1996, Kurashina et al., 2002, Yuan et 

al., 2006b). This may be related to differences in levels of osteoinductive activity or levels of 

endogenous proteins such as BMP between species or between individual animals (Ripamonti, 

1996, Marusic et al., 1999, Habibovic et al., 2005b) which could affect the level of mesenchymal cell 

differentiation into an osteogenic lineage.

Variability in the osteoinductive response may also be attributed to the size of the implanted 

grafts (Habibovic et al., 2006a). Recent studies on osteoinduction have utilised large blocks or 

cylinders of CaP ceramics compared to particulate graft materials. This may provide a more 

mechanically stable surface necessary for bone growth (Szmukler-Moncler et al., 1998) as well as 

provide a greater surface area for cell adhesion and proliferation for bone formation. The use of 
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smaller or particulate graft materials may explain the lack of osteoinduction seen in the current study 

due to the reduced surface area or presence of graft micromotion (Yuan et al., 1998a, Yuan et al.,

2001, Habibovic et al., 2006a). 

The rate of adsorption and release kinetics of the growth factors, EMD and rhPDGF-BB from 

HA-TCP may have affected the osteoinductive potential. Ideally, adsorption and release of growth

factors should allow a sufficient concentration of a biologically active growth factor that mimics 

concentrations seen during normal wound healing (Winn et al., 1999, Whitaker et al., 2001). Most

studies investigating composite grafts of growth factors and CaP ceramics have allowed uptake of 

the growth factor uptake for up to 72 hours under specific conditions (Laffargue et al., 2000, Alam et 

al., 2001, Ziegler et al., 2002, Bateman et al., 2005). In addition, greater protein adsorption occurs in 

ceramics with a higher Ca/P ratio and greater specific surface area (Alam et al., 2001, Zhu et al.,

2008). In the current study, the low microporosity of the HA-TCP ceramic and the combination of 

growth factor with the HA-TCP particles immediately prior to implantation as used clinically may have 

resulted in insufficient adsorption of the growth factor to the HA-TCP material with an insufficient 

concentration for bone induction (Oda et al., 1997, Alam et al., 2001).
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2.5.11 Conclusions and future directions 

The present investigation failed to demonstrate any osteoinductive properties of a 

commercially available HA-TCP ceramic (Straumann Bone Ceramic®) when implanted alone or 

combined with rhPDGF-BB or EMD. These studies suggest that neither Straumann Bone Ceramic®

nor the addition of EMD or rhPDGF-BB provides the three dimensional scaffold or inductive factors 

required for differentiation of mesenchymal progenitor cells into an osteoblastic lineage. The soft 

tissue response to these materials demonstrate that these materials are biocompatible with no 

adverse reactions reported and by the end of the experimental period the HA-TCP particles were 

encapsulated by an organised fibrous connective tissue.  

As the combination of these growth factors and CaP ceramics are marketed for clinical use for 

bone regeneration they may have osteopromotive effects. Further research on the osteopromotive 

effects of EMD and rhPDGF-BB combined with HA-TCP should be undertaken to determine whether 

these materials enhance the rate and degree of bone formation in critical sized osseous defects. 
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