The Effects of Selenomethionine and Wheat Biofortified with Selenium on DNA Damage and Cell Death in Human Lymphocytes

Jing Wu

Thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

> Discipline of Plant and Food Science School of Agriculture, Food and Wine Faculty of Science The University of Adelaide

> > January 2010

Table of content

Abstract Declaration	viii ix
Declaration	ix
Acknowledgements	X
List of abbreviation	
1. Literature Review: the Role of Selenium in Human Health and Gen	
1.1 Introduction	
1.1 Introduction	
1.1.1The element1.1.2Selenium distribution in soils	
1.2 Selenium distribution in sons 1.2 Selenium in human health	
1.2 Selenosis	
1.2.2 Selenim deficiency	
1.2.3 Suboptimal Se status and related health conditions	
1.2.3.1 Cancer	
1.2.3.2 Immunocompotence and infectious diseases	
1.2.3.3 Cardiovascular disease	
1.3 Human selenoproteins	
1.3.1 Selenoproteins in humans	
1.3.1.1 Glutathione peroxidases (GPxs)	
1.3.1.2 Deiodinases (5'DIs)	
1.3.1.3 Thioredoxin reductases (TrxRs)	
1.3.1.4 Selenophosphate synthetase 2 (SPS2)	
1.3.1.5 Selenoprotein P (SelP)	
1.3.1.6 Selenoprotein W (SelW)	
1.3.2 Selenoprotein biosynthesis	
1.3.2.1 Biosynthesis of selenocysteine on Sec tRNA ^{[Ser]Sec}	11
1.3.2.2 Specific co-translational incorportation of selenoc	
1.3.3 Regulatory aspects of selenoprotein synthesis	•
1.4 Selenium metabolism in humans	
1.4.1 Forms of Se in human diet	
1.4.2 Absorption and transportation	
1.4.3 Metabolism pathway	
1.4.4 Storage and excretion	
1.5 Assessment of Se status in humans	
1.5.1 Tissue concentration – the primary biomarker of Se statu	
1.5.2 GPx activity – the functional biomarker of Se status	
1.6 Dietary sources of Se in humans	
1.6.1 Dietary sources of Se	
1.6.2 Bioavailability and bioefficacy of dietary Se in foods	
1.7 Selenium requirement for human health and current status/intake	
Australians.	
1.7.1 Selenium requirement for human health	
1.7.2 Selenium status/intake of Australians	
1.7.3 Strategy for increasing Se intake.	
1.8 Selenium toxicity and reference values	

	1.8.1	Selenium toxicity	22
	1.8.2	Upper limit (UL) reference values	
1.9	Genome	e instability/damage in human health	24
	1.9.1	Genome instability/damage and degenerative diseases	
	1.9.2	Genome instability/damage and micronutrient status	
	1.9.3	Assessment of genome damage in lymphocytes	
		1.9.3.1 The cytokinesis-block micronucleus cytome (CBMN C	
		Assay	
		1.9.3.2 The alkaline Comet assay	
1.10	Role of	Se in genome instability/damage	29
	1.10.1	Se and DNA damage	29
	1.10.2	Assumptions and evidence	30
1.11	Conclu	sion and knowledge gaps	
1.12		nces	
2. Ain	ns. Hypot	heses and Study Design	
2.1		aims	
2.2	•	neses	
2.3	• •	design	
2.3	2.3.1	<i>In vitro</i> dose-response studies for Se-met in cultured human	
	2.3.1	lymphocytes	50
	2.3.2	Dietary Se intake and plasma Se survey studies	
	2.3.3	<i>In vivo</i> randomised double-blinded placebo-controlled	
	2.010	intervention trial	50
2.4	Outcom	ne measures	
	2.4.1	Plasma Se	
	2.4.2	GPx activity in platelets.	
	2.4.3	The CBMN Cyt assay	
	2.4.4	The alkaline Comet assay	
	2.4.5	Food Frequency Questionnaire (FFQ) survey	
2.5		nces	
3. The	e Effect o	f Selenium (as Selenomethionine) Concentration on Genome	
Stabil	ity and C	vtotovicity in Human Lymphocytes Measured Using the	

		totoxicity in Human Lymphocytes Measured Using the	
Cytok	kinesis-blo	ck Micronucleus Cytome Assay	56
3.1	Summar	y	56
3.2	Introduc	tion	57
3.3		esign and methods	
	3.3.1	Recruitment	58
	3.3.2	Collection of blood samples and determination of Se	58
	3.3.3	Lymphocyte isolation	59
	3.3.4	Cell counting using the Coulter Counter	
	3.3.5	Culture medium.	59
	3.3.6	9-day lymphocyte culture in 96-microwell plate	61
	3.3.7	γ-Ray- irradiation of cells	61
	3.3.8	CBMN-Cyt assay	62
		3.3.8.1 CBMN Cyt assay	62
		3.3.8.2 Scoring criteria.	63
	3.3.9	Statistical analysis	66
	3.3.10	Lymphocyte long-term culture pilot study	
3.4	Results.		67
	3.4.1	Plasma Se of volunteers	67
	3.4.2	Effect of Se-met on cell growth and viability on day 9 and day 10	
			68

	3.4.3	Effect of Se-met on baseline DNA damage	68
	3.4.4	Effect of Se-met on γ -ray induced cytotoxicity and DNA damage	71
3.5	Discus	sion	
3.6		nces	
		of Se (as Seleno-L-methionine) Concentration on DNA Damage in	
		hocytes as Measured Using the Comet Assay	
4.1		ry	
4.2		ction	
4.3	•	lesign and methods	
	4.3.1 4.3.2	Recruitment	
	4.3.2	Collection of blood samples and determination of Se Lymphocyte isolation	
	4.3.3	Cell counting using the Coulter Counter	
	4.3.4	Culture medium	
	4.3.6	9-day lymphocyte culture in 96-microwell plate	
	ч .5.0	4.3.6.1 9-day lymphocyte culture in 96-microwell plate	
		4.3.6.2 Freezing cultured cells	
	4.3.7	Comet assay	
		4.3.7.1 Preparation of cell suspension from cryopreserved cells	
		4.3.7.2 Viability count.	
		4.3.7.3 H ₂ O ₂ treatment	
		4.3.7.4 Standard Comet assay	91
		4.3.7.5 Glycosylase treatment	91
		4.3.7.6 Measurement of DNA damage and scoring calibration	92
	4.3.8	Statistical analysis	
	4.3.9	Intra-individual validation of Comet assay with H ₂ O ₂ challenge	94
4.4		5	
	4.4.1	Plasma Se of volunteers	
	4.4.2	Baseline cell growth and viability of cells	
	4.4.3	The effect of glycosylase treatment.	
	4.4.4		
	1 1 5	relation to Se concentration provided as Se-met	
	4.4.5		
4.5	Discuss	cells in relation to Se concentration provided as Se-met	
4.6		ces	
4.0	Keleten		.100
5. Ge	nome He	alth Effect of Wheat Biofortified or Process-fortified with Seleni	um
		ler Men: a Double-blind Placebo-controlled Trial	
5.1		ry	
5.2	Introdu	ction	.113
5.3	Study d	lesign and methods	.114
	5.3.1	Recruitment and plasma Se screening of volunteers	.114
	5.3.2	Dietary Se intake	
	5.3.3	Intervention design	
		5.3.3.1 Selenium wheat biscuits used in the trial	
		5.3.3.2 Study protocol.	
	5.3.4	Blood collection and sample preparation	
		5.3.4.1Isolation and storage of platelets	
		5.3.4.2 Isolation and storage of lymphocytes	
	5 2 5	5.3.4.3 Plasma Se, folate, Vit B_{12} and homocysteine analysis	
	5.3.5	Measure of platelet glutathione peroxidase (GPx) activity	.120

		5.3.5.1 Platelet glutathione peroxidase (GPx) assay	.120
		5.3.5.2 Lowry protein assay	.121
		5.3.5.3 Calculation of GPx activity	.121
	5.3.6	Measurement of DNA damage in lymphocytes	
		5.3.6.1 Comet assay	.121
		5.3.6.2 Evaluation of DNA damage	.122
	5.3.7	Statistical analysis	
		5.3.7.1 Sample size	.123
		5.3.7.2 Statistical analysis	.123
5.4	Results	۰ ۶	.124
	5.4.1	Characteristics of volunteers	.124
	5.4.2	Plasma folate, Vit B12 and homocysteine level during the whole st	•
	5.4.3	Response of plasma Se to Se supplementation	
	5.4.4	Response of selenoenzyme platelet GPx activity to Se supplementa	
	5.4.5	Response of DNA damage in lymphocytes to Se supplementation	.128
	5.4.6	Correlation between plasma Se, folate, Vit B_{12} , homocysteine, GPx	
		activity and DNA damage	
5.5	Discus	ssion.	
5.6	Refere	nces	.139
6. A St	irvey St	udy Investigating the Selenium Status, Intake and Dietary Source	ce in
Health	y Older	South Australian Men	.144
6.1	Summa	ary	.144
6.2	Introd	uction	.144
6.3	Study	design and methods	.145
	6.3.1	Subjects	.145
	6.3.2	Dietary intake instruments	.145
		6.3.2.1 The CSIRO Food Frequency Questionnaire	.145
		6.3.2.2 The Anti-Cancer Council Victoria Food Frequency	
		Questionnaire	
	6.3.3	Determination of plasma Se	147
	6.3.4	Determination of platelet glutathione peroxidase (GPx) activity	147
		6.3.4.1Platelet glutathione peroxidase (GPx) assay	.147
		6.3.4.2 Lowry protein assay	.148
		6.3.4.3 Calculation of GPx activity	
	6.3.5	Statistical analysis	
6.4	Results	3	
	6.4.1	Se intake measured by CSIRO FFQ and plasma Se status	.149
	6.4.2	Total Se intake measured by CSIRO FFQ and its correlation with	
		plasma Se status	
	6.4.3	Se intake/status and food sources (by CSIRO FFQ)	.150
	6.4.4	Correlation between Se intake, plasma Se and the intake of	
		other nutrients measured using CSIRO FFQ and ACCV FFQ	
6.5		sion	
6.6	Referen	nces	.156
Correla Older l	ation to Healthy	takes, Food Intakes, Plasma Mineral Concentrations and DNA Damage in Lymphocytes as Measured by the Comet Assay South Australian Men	.161
7.1	Summa	ary	.101

Study design and methods..... 162

7.2

7.3

	7.3.1	Subjects	162
	7.3.2	Dietary intake instruments	163
		7.3.2.1 The CSIRO Food Frequency Questionnaire	163
		7.3.2.2 The Anti-Cancer Council Victoria Food Frequency	
		Questionnaire (ACCV FFQ)	164
	7.3.3	Determination of plasma mineral concentrations	165
	7.3.4	DNA damage measured by the Comet assay	
		7.3.4.1 Comet assay	165
		7.3.4.2 Evaluation of DNA damage	166
	7.3.5	Statistical analysis	
7.4	Results	- 5	167
	7.4.1	Estimated intake of nutrients and food groups measured using	g two
		FFQs	167
	7.4.2	Impact of Se-fortified wheat intervention on plasma mineral	
		concentrations	169
	7.4.3	Correlation between intake of minerals and plasma mineral	
		concentrations at baseline	171
	7.4.4	Correlation between intake of nutrients or food groups and D	NA
		damage in lymphocytes measured by using Comet assay at ba	aseline
	7.4.5	Correlation between plasma mineral concentrations and DNA	ł
		damage in lymphocytes using pooled data from the intervention	ion
			172
7.5	Discus	sion	173
7.6	Referen	nces	177
8. Co	nclusion	s, Knowledge Gaps and Future Directions	
8.1		iction	
8.2	In vitro	o dose-response study for Se-met in human lymphocytes	182
8.3		Se supplementation study in healthy older South Australian me	
8.4		us, intake and food sources survey study in healthy older South	
		lian men	
8.5		nces	
Appen	dix		191

Abstract

Selenium (Se) is an essential micronutrient, being a component of more than twenty seleno-proteins in humans. Previous studies suggested that increased intake of Se may reduce the risk of degenerative diseases including cancer; however, excessive intake can be toxic. Wheat is one of the major dietary sources of Se in humans, mainly in the form of L-selenomethionine (Se-met) but the impact of this source of Se on human health at the genome level was previously unexplored.

This PhD project aimed to (a) determine the safe dose-range and bio-efficacy of Se-met *in vitro*; (b) identify the optimal concentration of Se-met for reduction of genome damage *in vitro*; (c) investigate the optimal concentration of Se-met for improving resistance to gamma radiation or hydrogen peroxide induced genome damage *in vitro*; d) determine the bioavailability and bioefficacy of Se *in vivo*, in the form of either Se-met or wheat biofortified with Se; e) identify the nutrients and food groups that are correlated with Se intake/status and f) identify the nutrients, food groups and plasma mineral concentrations that are correlated to baseline lymphocyte DNA damage.

The *in vitro* study was performed on the peripheral blood lymphocytes isolated from six males and cultured with media supplemented with Se-met in a series of Se concentrations from 3 to 3850 µg Se/l while keeping the total methionine (i.e. Se-met + L-methionine) concentration constant. Baseline genome stability of lymphocytes and the extent of DNA damage induced by 1.5 Gy γ -ray or 7.5 μ M hydrogen peroxide (H_2O_2) were investigated using the Cytokinesis-block Micronucleus Cytome (CBMN-Cyt) assay and the alkaline Comet assay with and without glycosylase (Fpg or Endo III) treatment after 9 days of culture. Results showed that high Se concentrations (≥1880 µg Se/l) caused strong inhibition of cell division, extensive DNA damage and increased cell death indicating cytotoxicity and genotoxicity. Baseline frequency of nucleoplasmic bridges (NPBs) and nuclear buds (NBud) declined significantly as Se concentration increased from 3 μ g Se/l to 430 μ g Se/l (P trend = 0.03 and 0.008, respectively); however, a significant trend of increase in Comet DNA damage was also observed (P trend <0.05) in lymphocytes. Selenium concentration ($\leq 430 \ \mu g \ Se/l$) had no significant effect on baseline frequency of micronuclei (MN) or DNA oxidation and had no protective effect against γ -ray-induced or H₂O₂-induced genome damage in lymphocytes.

A randomised double-blind placebo-controlled intervention trial was conducted on healthy South Australian males (n = 62, age (mean \pm SD) 56 \pm 7.0 years) with Se

dosage increased every 8 weeks for a total duration of 24 weeks. This study compared the bioavailability, by using plasma Se concentration as the biomarker, and bioefficacy of Se, by using platelet glutathione peroxidase (GPx) activity and lymphocyte DNA damage as biomarkers, from wheat process-fortified with Se-met (PROFORT) and high-Se wheat biofortified with Se (BIOFORT) compared to non-fortified normal (CONTROL) wheat. It was found that increased Se intake from BIOFORT wheat increased plasma Se concentration effectively in a dose-response manner from a baseline of 122 µg/l up to 190 µg/l (P<0.001). Increased Se intake from PROFORT wheat also increased plasma Se with a plateau at 140 µg/l, being therefore less effective than BIOFORT wheat (P<0.001). There was no significant change in Se status in the CONTROL group. Improved plasma Se concentrations had no effect on platelet GPx activity or lymphocyte DNA damage in either of the intervention groups.

Results from the food frequency questionnaire (FFQ) survey (n = 173) and plasma Se concentration survey (n = 179) suggested that the study population screened for participation in the *in vivo* trial described above had a mean plasma Se concentration (\pm SD) of 102 (\pm 12) µg/l and a mean (\pm SD) estimated Se intake of 165 (\pm 68) µg/d. This is a higher estimated Se intake than found in previous Australian studies. The major dietary sources of Se were found to be bread/cereals, fish/seafood and meat. However, increased intake of nuts/seeds, which are rich in Se, may have undesirable effects on lymphocyte DNA oxidation in this Se-replete population.

In conclusion, the *in vitro* studies suggest that (1) Se-met at higher concentrations at greater or equal to 1880 μ g Se/l is cytotoxic; (2) Se-met may improve specific genome stability biomarkers such as nucleoplasmic bridge and nuclear bud at concentrations up to 430 μ g Se/l, but further studies are needed to verify this effect. The *in vivo* studies in older men showed that Se from BIOFORT wheat is more effective in raising plasma Se concentration than Se from wheat process-fortified by the addition of Se-met, when both wheat products were subjected to strong heat. However, the platelet GPx activity and lymphocyte DNA damage appeared not to be modified by improved Se status.

This work contains two publications:

1) "The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes as measured by the cytokinesis-block micronucleus cytome assay". *Mutagenesis* 2009 May;24(3):225-32. 2) "Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress or immune function in Australian males" *Environmental Molecular Mutagenesis*. 2009 July; 50 (6):489-501

The latter one was not able to be published in a journal of higher impact factor due to part of the data had been published elsewhere. Both articles are attached in Appendix.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Jing Wu and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

* List of publications:

"The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes as measured by the cytokinesis-block micronucleus cytome assay" *Mutagenesis* 2009 May; 24(3):225-32.

"Increased consumption of wheat biofortified with selenium does not modify biomarkers of cancer risk, oxidative stress or immune function in Australian males" Epub ahead of print in *Environmental Molecular Mutagenesis*. DOI: 10.1002/em

CSIRO Division of Food and Nutritional Sciences retains the copyright of the above publications.

Signature: Date	
-----------------	--

Jing Wu

Acknowledgements

Firstly, I would like to sincerely thank Dr. Michael Fenech, my principal supervisor, for giving me the opportunity to undertake this PhD study in his laboratory. Dr. Michael Fenech and my co-supervisors Dr. Graham Lyons and Professor Robin Graham are thanked for their inspirational guidance, support and patience throughout this study.

I am also grateful to all members and students of the Nutrigenomcs Laboratory, in particular Ms Carolyn Salisbury, Ms Julie Turner and Dr. Varinder Dhillon for sharing their expertise in cell culturing, CBMN Cytome assay and the Comet assay; Dr. Nathan O'Callaghan, Dr. Thomas Phil for their valuable time, comments and support during my writing of this thesis; the staff in CSIRO's Clinical Trial Unit for managing recruitment of volunteers and the trial, particularly Ms. Rosemary McArthur; Mr. Mark Mano for advice on protein quantification; Ms. Sue Rogers (IMVS) for the platelet washing buffer recipe; Ms. Kylie Lang (CCRE) and Anukriti (HarvestPlus) for their statistical advice on data analysis; all of the volunteers who participated in this study for their precious time and blood donation.

I would like to acknowledge that the *in vivo* study was funded by NCEFF (National Centre of Excellence of Functional Foods), SAGIT (South Australia Grains Industry Trust) HarvestPlus/The University of Adelaide and Laucke Flour. My scholarship during the candidature was funded partly by CSIRO, Division of Food and Nutritional Sciences and partly by the School of Agriculture, Food and Wine, Faculty of Science, the University of Adelaide.

Finally and importantly, thanks to my parents and my brother for their support and encouragement; my friends for their friendship, support and prayers during the course of my study.

List of abbreviations

ACCV	Anti-Cancer Council of Victoria
AIDS	Acquired immunodeficiency syndrome
ALS	Alkali labile site
ANOVA	Analysis of variance
ATM	Ataxia telangiectasia mutated gene
ATP	Adenosine tri-phosphate
ATR	Ataxia telangiectasia mutated and Rad3-related gene
AU	Arbitrary unit
BIOFORT	Wheat biofortified with selenium
BNed	Binucleated
BRCA	Breast cancer gene
Ca	Calcium
CBMN Cyt assay	Cytokenesis-block micronucleus cytome assay
СНК2	Background checkpoint kinase 2 gene
CSIRO	Commonwealth Scientific and Industrial Research Organisation
Cu	Copper
$CuSO_4$	Copper sulphate
CV	Coefficient of variation
Cyto-B	Cytochalasin B
DAN	Diaminonaphthalene
DI	Deiodinase
DMABP	3,2'-dimethyl-4-aminobiphenyl
DMSO	Dimethyl sulfoxide
DSB	Double strand break
EDTA	Ethylenediaminetetraacetic acid
Endo III	Endoneclease III
FBS	Foetal bovine serum
Fe	Iron
FFQ	Food frequency questionnaire
Fpg	Formanidopyrimidine-DNA glycosylase

Gadd45	Growth arrest and DNA damage gene
GPx	Glutathione peroxidase
GSH	Reducing glutathione
GSSG	Oxidized glutathione
H_2O_2	Hydrogen peroxide
HBSS	Hanks balanced salt solution
HClO ₄	Perchloric acid
HDL	High-density lipoprotein
HIV	Human immunodeficiency virus
HNO ₃	Nitric acid
hTERT	Human telomerase reverse transcriptase
ICP-MS	Inductive coupled plasma mass spectrometry
ICP-OES	Inductively coupled plasma optical emission spectrometry
IDI	Iodothyronine deiodinase
IFN-γ	Interferon gamma
IL-2	Interleukin-2
IMVS	Institute of Medical and Veterinary Science
Κ	Potassium
KCl	Potassium chloride
KH_2PO_4	Potassium dihydrogen phosphate
LDL	Low-density lipoprotein
Mg	Magnesium
MN	Micronuclei
MNed	Micronucleated
MT	Metallothionein
Mtase	Cytosine-5-methyltransferase
MTHFR	Methylenetetrahydrofolate reductase
MUFA	Monounsaturated fatty acid

Na	Sodium
NaCl	Sodium chloride
Na ₂ CO ₃	Sodium carbonate
Na ₂ HPO ₄	Sodium phosphate
NADPH	Reduced nicotinamide adenine dinucleotide phosphate
NaOH	Sodium hydroxide
NBud	Nuclear bud
NCEFF	National Centre of Excellence in Functional Foods
NDI	Nuclear division index
NHMRC	National Health and Medical Research Council
NOAEL	No observable adverse effect level
NPB	Nucleoplasmic bridge
8-OHdG	8-hydroxy-2-deoxyguanosine
Р	Phosphorus
PBS	Phosphate buffered saline
РНА	Phytohaemagglutinin
PHGPx	Phospholipid hydroperoxide glutathione peroxidase
PROFORT	Wheat process-fortified with selenomethionine
PUFA	Polyunsaturated fatty acid
p-XSC	1,4-phenylenebis(methylene)selenocyanate
RDA	Recommended daily allowance
RDI	Recommended daily intake
ROS	Reactive oxygen species
S	Sulphur
SAM	S-adenosylmethionine
SARDI	South Australia Research and Development Institute
SCGE	Single-cell gel electrophoresis
SDG	Selenodiglutathione
SE	Standard error
Se	Selenium
SeAM	Se-adenosylmethionine
SECIS	Selenocysteine insertion sequence

SE-EMP	Selenium exchangeable metabolic pool
Sel	Selenoprotein
Se-met	Selenomethionine
SD	Standard deviation
SNP	Single nucleotide polymorphism
SPS2	Selenophosphate synthetase-2
SSB	Single strand break
Top II	Topoisomerase II
TrxR	Thioredoxin reductase
UTR	Untranslated region
WAS	Waite Analytical Services
XPA	Xeroderma pigmentosum group A protein
Zn	Zinc