

Laboratory and Modelling Studies on the Effects of Injection Gas Composition on CO₂-Rich Flooding in Cooper Basin, South Australia

By

Johannes Bon

A thesis submitted for the degree of

Doctor of Philosophy in Petroleum Engineering

February, 2009

Australian School of Petroleum Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide, Australia For my wife Erika and our daughter Isabella

ABSTRACT

This Ph.D. research project targets Cooper Basin oil reservoirs of very low permeability (approximately 1mD) where injectivities required for water flooding are not achievable. However, the use of injection gases such as CO_2 would not have injectivity problems. CO_2 is abundant in the region and available for EOR use. CO_2 was compared to other CO_2 -rich injection gases with a hydrocarbon content including pentane plus components. While the effect of hydrocarbon components up to butane have been investigated in the past, the effect of n-pentane has on impure CO_2 gas streams has not.

One particular field of the Cooper Basin was investigated in detail (Field A). However, since similar reservoir and fluid characteristics of Field A are common to the region it is expected that the data measured and developed has applications to many other oil reservoirs of the region and similar reservoirs else where.

The aim of this Ph.D. project is to determine the applicability of CO_2 as an injection gas for Enhanced Oil Recovery (EOR) in the Cooper Basin oil reservoirs and to compare CO_2 with other possible CO_2 -rich injection gases.

The summarised goals of this research are to:

- Determine the compatibility of Field A reservoir fluid with CO₂ as an injection gas.
- Compare CO₂ to other injection gas options for Field A.
- Development of a correlation to predict the effect of nC₅ on MMP for a CO₂rich injection gas stream.

These goals were achieved through the following work:

- Extensive experimental studies of the reservoir properties and the effects of interaction between CO₂-rich injection gas streams and Field A reservoir fluid measuring properties related to:
 - > Miscibility of the injection gas with Field A reservoir fluid

- Solubility and swelling properties of the injection gas with Field A reservoir fluid
- Change in viscosity-pressure relationship of Field A reservoir fluid due to addition of injection gas
- A reservoir condition core flood experiment
- Compositional simulation of the reservoir condition core flood to compare expected recoveries from different injection gases
- Development of a set of Minimum Miscibility Pressure (MMP) measurements targeted at correlating the effect of nC₅ on CO₂ MMP.

The key findings of this research are as follows:

- Miscibility is achievable at practical pressures for Field A and similar reservoir fluids with pure CO₂ or CO₂-rich injection gases.
- For Field A reservoir fluid, viscosity of the remaining flashed liquid will increase at pressures below ~2500psi due to mixing the reservoir fluid with a CO₂-rich injection gas stream.
- Comparison of injection gases showed that methane rich gases are miscible with Field A so long as a significant quantity of C₃+ components is also present in the gas stream.
- There is a defined trend for effect of nC₅ on MMP of impure CO₂. This trend was correlated with an error of less than 4%.
- Even though oil composition is taken into account with the base gas MMP, it still affects the trend for effect of nC₅ on MMP of a CO₂-rich gas stream.
- An oil characterisation factor was developed to account for this effect, significantly improving the results, reducing the error of the correlation to only 1.6%.

The significance of these findings is as follows:

An injection pressure above ~3000psi should be targeted. At these
pressures miscibility is achieved and the viscosity of the reservoir fluidinjection gas mix is reduced.

- CO₂ should be compared to gases such as Tim Gas should after considering the cost of compression, pipeline costs and distance from source to destination will need to be considered.
- The addition of nC₅ will reduce the MMP and increase the recovery factor, however the cost of the nC₅ used would be more than the value of increased oil recovered.
- The developed correlation for the effect of nC₅ on impure CO₂ MMP can be used broadly within the limits of the correlation.
- Further research using more oils is necessary to validate the developed oil characterisation factor and if successful, using the same or similar method used to improve other correlations.

STATEMENT OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited at the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

> Johannes Bon February 2009

ACKNOWLEDGEMENTS

First, I am very grateful to my supervisor **Professor Hemanta Sarma** for his support and guidance throughout my time as his student and thereafter. I am also very grateful to my co-supervisor **Dr. Seung IhI Kam** and I also thank everybody at the Australian School of Petroleum for their help, in particular Mohammed Emera, Maureen Sutton, Prashant Jadhawar, Rahul Shrivastava and Ric Daniel.

Two companies gave strong support to the project without which nothing could have been done. I am very grateful to **Santos Limited** who not only provided me with the data and funding for this project but, when I needed samples organised all logistics around my sampling trips including flights, liaising with field engineers and well test companies. Many people within Santos Limited provided technical support; these include Lou Dello, Teof Rodrigues, Andrew Theophilos, Kylie Beatty, Jamie Burgess, Patrick McCarthy, Carl Greenstreet, Gary Reid, Ed Pugh, Gavin Munn and Nick Lemon.

I am also very grateful to **Petrolab Australia Pty. Ltd.** who provided me with the laboratory facilities for much of the analyses performed. While continuing as an actively running commercial PVT laboratory, Petrolab scheduled in my needs for cylinders, pumps, cells, ovens and gas chromatographs and opened up a comfortable area for me to do my lab work with minimal disturbances. A big thank you goes to my father **Jan G. Bon** for his technical and moral support.

I am greatly appreciative to several of my close friends and family who on several occasions spent large amounts of time discussing ideas and providing moral, technical and editorial support, these include Gavin Munn, Jerry Meyer, Paul Bon, Ramon Bon, Nubia Meyer and my parents Jan G. Bon and Nubia Bon.

And last but not least, to help get me over the line in the final stages, I thank my wife **Erika** and our baby daughter **Isabella**. They provided me with the last push of motivation that I needed to get me over the line.

۷

DISCLAIMER

This Ph.D. thesis reflects the opinions of the author and does not necessarily reflect the opinions of the Cooper Basin Joint Venture parties.

PUBLISHED PAPERS FROM THIS WORK

- Bon, J. and Sarma, H.K.: "Investigation of the Effect of Injection Gas Composition on CO₂-rich MMP and its Implications in Flooding in an Onshore Australia Oil Field", paper to be presented at the Canadian International Petroleum Conference 60th Annual Technical Meeting of the Petroleum Society, Calgary, Alberta, Canada, June 16-18 2009
- Bon, J., Sarma, H.K., Rodrigues, T. and Bon, J.G.: "Reservoir Fluid Sampling Revisited - A Practical Perspective", SPE Reservoir Evaluation & Engineering, Vol. 10, No. 6 (December 2007) 589-596
- Bon, J., Emera, M.K and Sarma, H.K.: "An Experimental Study and Genetic Algorithm (GA) Correlation to Explore the Effect of nC₅ on Impure CO₂ Minimum Miscibility Pressure (MMP)", paper SPE 101036 presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition (APOGCE), Adelaide, Australia, 11–13 September 2006
- Bon, J., Sarma, H.K., Rodrigues, T. and Bon, J.G.: "Reservoir Fluid Sampling Revisited - A Practical Perspective", paper SPE 101037 presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition (APOGCE), Adelaide, Australia, 11–13 September 2006
- Bon, J., Sarma, H.K. and Theophilos, A. M.: "An Investigation of Minimum Miscibility Pressure for CO₂-Rich Injection Gases with Pentanes-Plus Fraction", paper SPE 97536 presented at the International Improved Oil Recovery Conference (IIORC) in Asia Pacific, Kuala Lumpur, Malaysia, December 5-6 2005
- Bon, J. and Sarma, H.K.: "A Technical Evaluation of a CO₂ Flood for EOR Benefits in the Cooper Basin, South Australia", paper SPE 88451 presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition (APOGCE), Perth, Australia, October 18-20 2004

TABLE OF CONTENTS

Abst	;ti
State	ent of Originalityiv
Ackr	vledgementsv
Publ	ed papers from this workvii
Table	f Contentsviii
List	Figuresxi
List	Tablesxv
Nom	claturexvii
1 I	oduction1
1.1	Regional Geology3
1.2	Data6
1.3	Project Aim6
1.4	Motivation (A): Why should we investigate the potential for a CO_2 flood at
Fie	A or other fields in the Cooper Basin?7
1.5	Motivation (B): How does pure CO ₂ compare to other proposed injection
ga	
1.6	Motivation (C): The effect of C_5 + and nC_5 on CO_2 -Oil miscibility10
1.7	Summarised Conclusions from this Work11
2 I	erature Review13
2.1	Introduction13
2.2	Enhanced Oil Recovery13
2.3	Recovery Efficiency and the Factors that Affect It15
2.4	Carbon Dioxide Flooding17
2.5	CO ₂ -Oil Interaction23
2.6	Corrosive/Scaling Effects of CO ₂ 24
2.7	Minimum Miscibility Pressure24
2.8	Methods to Determine the MMP26
2.9	Correlations for Determining the MMP29
2.1	Asphaltenes – Their Role in CO ₂ Flooding41

3	Res	servoir Fluid Sampling	50
	3.1	Summary of Samples Taken for This Project	50
	3.2	Review of Literature on Sampling and Different Sampling Techniques	51
	3.3	Understanding our Reservoir Processes	54
	3.4	Well Conditioning	56
	3.5	Reservoir Fluid Sampling Methods	58
	3.6	Other Components of Interest	64
	3.7	Chapter Summary	67
4	Met	hodology and Procedures of Reservoir Fluid Analyses Performed	69
	4.1	Determination of Asphaltene Content	69
	4.2	Quality Checks and Compositional Analyses	71
	4.3	PVT Analysis	78
5	Dis	cussion and Results of Reservoir Fluid Studies	93
	5.1	Asphaltene Precipitation Analysis	93
	5.2	Reservoir Fluid Analyses	94
	5.3	Chapter Summary	.116
6	Tes	ts with Reservoir Cores	.117
	6.1	Porosity Measurement by Liquid Saturation	.118
	6.2	Permeability	.119
	6.3	Reservoir Condition Core Flood	.119
	6.4	Discussion of Results	.121
	6.5	Chapter Summary	.123
7	Sim	nulation Studies	.124
	7.1	Comparison of Injection Gases	.126
	7.2	Comparison of Base Case to Experimental Core Flood	.132
	7.3	Comparison of Different Injection Gases	.134
	7.4	Economic Benefit of Different Injection Gases	.138
	7.5	Chapter Summary	.140
8	Mis	cibility Studies	.141
	8.1	Slim Tube Method	.141
	8.2	Rising Bubble Apparatus	.145
	8.3	Comparison of Slim Tube and RBA	.147
	8.4	Results of MMP Measured by Slim Tube Tests	.148
	8.5	MMP Measured by Rising Bubble Apparatus	.162

8.6	Chapter Summary170
9 De	velopment of Correlation for the Effect of nC ₅ on Impure CO ₂ MMP 171
9.1	Genetic Algorithm171
9.2	Linear Regression Correlations177
9.3	Chapter Summary182
9.4	Recommendations for Use of Correlations186
10 Co	nclusions and Recommendations188
10.1	Recommendations for Use of Correlations to Predict nC_5 Effect on CO_{2^-}
rich N	190 MP
Referer	nces193

LIST OF FIGURES

Figure 1-1: Location of the Cooper Basin and overlying basins	.2
Figure 1-2: Map of Cooper Basin	.3
Figure 1-3: Location and structure of the southern Cooper Basin	.4
Figure 1-4: Lithology and age of Cooper Basin formations and surrounding basins	5
	.5
Figure 2-1: Suitability of CO ₂ processes1	17
Figure 2-2: Pseudo-ternary diagram for a hypothetical hydrocarbon system	
diagram showing ranges of miscibility with a solvent2	20
Figure 2-3: MMP as a function of reservoir temperature and mole weight of the	
C ₅ + component in the reservoir fluid.	30
Figure 2-4: Asphaltene precipitation and potential locations of clogging4	12
Figure 2-5: Example of effect of n-paraffin solvent carbon number on insolubles. 4	13
Figure 2-6: Illustrating asphaltene micelle agglomeration due to reduction in resin	I
concentration and asphaltene micelle suspended by resin molecules4	14
Figure 2-7: Asphaltene percent by volume in solution versus pressure4	15
Figure 2-8: de Boer plot for screening reservoirs with possible asphaltene	
precipitation problems	16
Figure 2-9: SARA stability screening4	17
Figure 2-10: Asphaltene depositional envelope (ADE), superimposed upon a	
reservoir fluid phase envelope4	18
Figure 3-1: Flow chart of sampling process based on fluid saturation	58
Figure 3-2: Surface sampling methods	59
Figure 4-1: Determination of bubble point pressure from pressure – volume	
relationship7	72
Figure 4-2: Typical TCD chromatogram of gas sample7	73
Figure 4-3: Typical FID chromatogram of gas sample7	73
Figure 4-4: Typical FID liquid chromatogram7	77
Figure 4-5: Schematic representation of the CMS experiment and relative volume	;
plot	30
Figure 4-6: Pressure – relative volume relationship from constant mass study8	31
Figure 4-7: The CVD experiment	34

Figure 4-8: Separator test schematic8	39
Figure 4-9: Viscosity of a crude oil at elevated pressures9	90
Figure 4-10: Schematic representation of the solubility-swelling test9) 1
Figure 5-1: Oil A relative volume plot (P-V Relationship)9	98
Figure 5-2: Oil A compressibility and thermal expansion9	98
Figure 5-3: Oil A formation volume factor and solution GOR after correction with	
separator test data10)1
Figure 5-4: Oil A data for produced gas streams during CVD test10)2
Figure 5-5: Oil A data for produced gas streams during CVD test10)2
Figure 5-6 Oil A - data for produced gas streams during CVD test10)3
Figure 5-7: Oil A separator test data10)7
Figure 5-8: Solubility-Swelling Test for Oil A with CO ₂ – Relative Volume increase	;
with increase in gas10)8
Figure 5-9: Solubility-Swelling Test for Oil A with SG#1 – Relative Volume	
increase with increase in gas10)9
Figure 5-10: Solubility-Swelling Test for Oil A with CO ₂ and SG#1 – Increase in	
Swelling Factor with respect to the increase in Saturation Pressure11	0
Figure 5-11: Solubility-Swelling Test for Oil A with CO_2 SG#1 – Change in	
saturation pressure with addition of injection gas11	0
Figure 5-12: Typical viscosity relationship of a reservoir fluid compared to that of a	а
reservoir fluid and injection gas mix11	3
Figure 5-13: High pressure viscosity of Oil A and effect of injection gas on oil	
viscosity11	5
Figure 5-14: High pressure viscosity of Oil A and effect of injection gas on single-	
phase oil viscosity11	5
Figure 6-1: Field A core plug samples11	7
Figure 6-2: Schematic of Slim Tube experimental set-up12	21
Figure 7-1: 3D diagram and cross section of core flood model	<u>2</u> 4
Figure 7-2: Comparison of simulated and measured formation volume factor and	
produced gas from CVD test13	30
Figure 7-3: Comparison of simulated and measured relative oil volume plot13	0
Figure 7-4: Comparison of simulated and measured Z-factor	31
Figure 7-5: Comparison of simulated to measured oil viscosity as a function of	
pressure13	31

Figure 7-6: Oil A phase diagram produced from fluid model with gas-liquid ratios curves.
Figure 7-7: Comparison of simulated and experimental core flood of Oil A with
Field A plugs using SG#1 as the injection gas at 3000psig and 279°F134
Figure 7-8: Cumulative oil recovery of Ray Gas, SG#1, CO ₂ and C ₁ 135
Figure 7-9: Cumulative oil recovery of Sam Gas, Bob Gas, Tim Gas and Ben Gas
Figure 7-10: Cumulative oil recovery of Sam Gas, Tim gas and SG#1 with injection after depletion to 2200 psia136
Figure 7-11: Cumulative oil recovery of Gas #1, Gas #2, Gas #3 and Gas #4137
Figure 7-12: Comparison of cumulative oil recovery of all injection gases injected
at 3000psia
Figure 7-13: Comparison of AUD produced minus injected for Sam Gas, Bob Gas,
Tim Gas, SG#1 and CO ₂ 139
Figure 7-14: Comparison of AUD produced minus injected for CO ₂ , Gas #1, Gas
#2, Gas #3 and Gas #4140
Figure 8-1: MMP determination from break-over point on recovery versus injection
pressure plot142
Figure 8-2: Slim tube experimental set-up144
Figure 8-3: Schematic of RBA experimental set-up146
Figure 8-4: Slim tube results – CO ₂ at 3000psig152
Figure 8-5: Slim tube results – CO ₂ at 2850psig153
Figure 8-6: Slim tube results – CO ₂ at 2700psig154
Figure 8-7: Slim tube results – CO ₂ at 2550psig155
Figure 8-8: MMP plot for CO ₂ 156
Figure 8-9: Slim tube results – SG#1 at 3200psig157
Figure 8-10: Slim tube results – SG#1 at 3000psig158
Figure 8-11: Slim tube results – SG#1 at 2700psig159
Figure 8-12: Slim tube results – SG#1 at 2500psig160
Figure 8-13: MMP plot for SG#1161
Figure 8-14: MMP – Temperature relation of laboratory measured MMP data164
Figure 8-15: MMP – Temperature relation of Oil A and CO ₂ 165
Figure 8-16: MMP – Temperature relation of Oil A and SG#1
Figure 8-17: MMP – Temperature relation of Oil A and SG#2

Figure 8-18: RBA generated data	170
Figure 9-1: Flow diagram for procedure used in developing GA based MMP	
correlation	176
Figure 9-2: Experimental data illustrating segregation in the data due to the oil	
composition	179
Figure 9-3: Comparison of developed correlations	182
Figure 9-4: Comparison of correlations from literature to developed correlations	
from this work	183

LIST OF TABLES

Table 2-1: Screening criteria for application of CO ₂ miscible flood	20
Table 2-2: Target characteristics for immiscible carbon dioxide flood	22
Table 2-3: Values for modification factor for component i (MF _i)	37
Table 3-1: Summary of samples taken for project	50
Table 5-1: Oil A - Compositional Analysis of Recombined Reservoir Fluid	95
Table 5-2: Results from Constant Mass Study on Oil A at 279°F	97
Table 5-3: Results from Constant Volume Depletion study on Oil A at 279°F	100
Table 5-4: Oil A depletion formation volume factor and solution gas-oil ratio	data
corrected with flash liberation data from separator test	100
Table 5-5: Oil A – data for produced gas streams during CVD test	101
Table 5-6: Oil A – Composition of produced gas phase during CVD	104
Table 5-7: Oil A – Composition of remaining liquid phase during CVD	105
Table 5-8: Results from Separator Tests on Oil A	106
Table 5-9: Solubility-Swelling Test Results for Oil A with CO ₂	108
Table 5-10: Solubility-Swelling Test Results for Oil A with SG#1	109
Table 5-11: Solubility-Swelling Test – Change in saturation pressure and sw	elling
factor with addition of injection gas	110
Table 5-12: Flash Calculation by EOS at 2500psia and 279°F:	112
Table 5-13: Viscosity Study of Oil A with added CO_2 and $SG#1$	114
Table 6-1: Summary of basic core data	121
Table 6-2: Core Flood results	123
Table 7-1: Simulation models to determine the effect of injection gas compo	sition
	127
Table 7-2: Gas compositions – CO ₂ , Ray Gas, SG#1 and SG#2	128
Table 7-3: Gas compositions – Gas#1 to Gas#4	128
Table 7-4: Gas compositions – Sam Gas, Bob Gas, Tim Gas and Ben Gas .	129
Table 7-5: Experimental Core Flood Data	132
Table 7-6: Simulated Flood Data	133
Table 8-1: Compositions of oils used in miscibility studies	150
Table 8-2: Gas compositions: CO ₂ , Field B gas, SG#1 and SG#2	151
Table 8-3: Gas compositions – Gas#1 to Gas#4	151

Table 8-4: Slim tube results – CO2 at 3000psig152
Table 8-5: Slim tube results – CO2 at 2850psig
Table 8-6: Slim tube results – CO2 at 2700psig154
Table 8-7: Slim tube results – CO2 at 2550psig
Table 8-8: Oil recovery at 1.2PV of CO ₂ injected at injection pressure of test156
Table 8-9: Slim tube results – SG#1 at 3200psig157
Table 8-10: Slim tube results – SG#1 at 3000psig158
Table 8-11: Slim tube results – SG#1 at 2700psig159
Table 8-12: Slim tube results – SG#1 at 2500psig160
Table 8-13: Oil recovery at 1.2PV of SG#1 injected at injection pressure of test 161
Table 8-14: Laboratory measured MMP (psia) data by Slim Tube (ST) and RBA for
CO ₂ , SG#1 and SG#2164
Table 8-15: Correlated and measured results for MMP (psia) of Oil A with CO ₂ . 165
Table 8-16: Correlated and measured results for MMP (psia) of Oil A with SG#1.
Table 8-17: Correlated and measured results for MMP (psia) of Oil A with SG#2.
Table 8-18: Measured RBA MMPs for Gas#1 – Gas#4. 169
Table 9-1: Testing of correlated data
Table 9-2: Measured and Correlated MMP values 185
Table 9-3: Comparison of developed correlations to correlations from literature 184

NOMENCLATURE

Nomenciature and	a units used throughout this thesis are as follows:	
ENGLISH		
<u>Symbol</u>	Description	<u>Unit</u>
A	Cross sectional area of core plug	cm ²
BHP	Bottom hole pressure	psi
B_g	Gas formation volume factor	rcf/scf
Bo	Oil formation volume factor	rb/stb
B _{od}	Depletion oil formation volume factor	rb/stb
B _{odb}	Depletion oil formation volume factor at bubble point pressure	rb/stb
B _{of}	Flash oil formation volume factor	rb/stb
B _{ofb}	Flash oil formation volume factor at bubble point pressure	rb/stb
B _{oi}	Initial oil formation volume factor	rb/stb
B_t	Total formation volume factor	rb/stb
B _{td}	Depletion total formation volume factor	rb/stb
C ₁	Constant for oil viscosity	
C ₂	Constant for oil viscosity	
C_g	Constant for GA fitness factor determination	
Co	Oil compressibility	psi⁻¹
D	Plug diameter	cm
E	Gas expansion factor	scf/rcf
E _A	Areal sweep efficiency	
E _D	Displacement efficiency	
E _M	Mobilization efficiency	
E_R	Overall recovery efficiency	
E_V	Vertical sweep efficiency	
F _R	Mole fraction of intermediates	
Fit(i)	Average fitness of chromosome i	
GHV	Gross heating value	BTU/ft ³
GHV _i	Gross heating value for component i	BTU/ft ³
Ι	Oil characterization index	
k	Permeability	mD
L	Core plug length	cm
Liq%	Liquid Percent	
т	Mass	
Μ	Mole fraction	mol%
M_i	Mole fraction of component i	mol%
M _{C1}	Mole fraction of methane and nitrogen in the reservoir fluid	mol%

d unite used throughout this thesis are as follows: Ν.

M _{nC5}	The mole fraction nC_5 in the injection gas stream	mol%
<i>M</i> _{C5+}	Mole fraction of C_5 + in the oil	mol%
MW	Molecular weight	g.mol
MWi	Molecular weight of component i	g.mol
MW _{inj}	Molecular weight of injection gas	g.mol
MW _{air}	Mole weight of air	g.mol
MW _{C5+}	Molecular weight of C_5 + of the reservoir fluid	g.mol
MW _{C7+}	Molecular weight of C ₇ + component in stock tank oil	g.mol
MF _i	Modification Factor of component i	
MMP	Minimum miscibility Pressure	psia
MMP _{base}	MMP for base injection gas (no nC_5), psia	psia
MMP _{cal}	Calculated MMP	psia
MMP _{exp}	Experimental MMP	psia
MMP _{GA-nC5.enriched}	GA-based MMP for nC_5 enriched gas, psia	psia
MMP _{LRM1-nC5} enriched	The MMP for the nC_5 enriched gas correlated with LRM1	psia
MMP _{LRM2-nC5} enriched	The MMP for the nC_5 enriched gas correlated with LRM1	psia
MMP _{impure(MPa)}	Impure CO ₂ MMP	MPa
MMP _{pure(MPa)}	Pure CO ₂ MMP	MPa
n	Number of moles	
NHV	Net heating value	BTU/ft ³
NHV _i	Net heating value of component i	BTU/ft ³
Ρ	Pressure	psia
P _c	Critical pressure	psia
P _{C,CO2}	Critical Pressure of CO ₂	psia
P _{C,inj}	Critical pressure of injection gas	psia
P _{cw}	Weight fraction based critical pressure	psia
P _{cw-base}	Weight averaged pseudo-critical pressure of the base gas (no nC_5)	psia
P _{cw-nC5}	Weight averaged pseudo-critical pressure of the injected nC ₅ enriched gas	psia
P _{pc}	psuedo-critical pressure	psia
P _{pr}	psuedo-reduced pressure	
P _R	Reservoir pressure	psi
P _{sat}	Saturation pressure	psia
	Fitness function of GA correlation for data number j of	
FFIL(I,J)	chromosome i	
pen	Penalty function, used for GA fitness factor determination	
<i>q</i>	flow rate	cc/sec
r	radius	ft, in
r _e	effective reservoir radius	ft

r _w	well bore radius	ft
R _s	Solution GOR	scf/stb
R _{sd}	Depletion solution GOR	scf/stb
R _{sdb}	Depletion solution GOR at bubble point	scf/stb
R _{sfb}	Flash solution GOR at bubble point	scf/stb
$\overline{S_o}$	Average oil saturation in swept zone	
S _{oi}	Initial oil saturation	
Sorp	Ultimate residual oil saturation	
Т	Temperature	
T _c	Critical temperature	
T _{c,inj}	Critical temperature of injection gas	K
T _{ci}	Critical temperature of the gas component i, °F.	°F
T _{Ci}	Critical temperature of component i	K
T _{CM}	Critical temperature of the mix	K
T _{cm}	Pseudo-critical temperature of the mixture	°F
T _{cw}	Weight fraction based critical temperature	°F
Ŧ	Weight averaged pseudo-critical temperature of the base gas	∘⊏
I cw-base	(no nC ₅)	Г
T _{cw-nC5}	weight average pseudo-critical of the injected $nC_{\rm 5}$ enriched gas	°F
T _{pc}	psuedo-critical temperature	
T _{pr}	psuedo-reduced temperature	
T _{res}	Reservoir temperature	°F
T _{RES}	Reservoir temperature	K
TE _o	Oil thermal expansion	°F ⁻¹
t _{roll}	Roll time	sec
V	Volume	CC
V _B	Bulk volume	CC
V _P	Pore volume	CC
V_g	Gas volume	cf
V _{g,res}	Gas volume at reservoir conditions	rcf
V _{g,surf}	Gas volume at surface conditions	scf
V _{g,cell}	Gas cell volume	CC
Vo	Oil volume	bbl
V _{o,res}	Oil volume at reservoir conditions	rbbl
V _{o,surf}	Oil volume at surface conditions	stb
V _{o,cell}	Oil cell volume	сс
V _{t,res}	Total volume at reservoir conditions	rbbl
V _{t,surf}	Total volume at surface conditions	stb
V _{pump}	Pump volume	сс
V _{pump,sat}	Pump volume at saturation pressure	CC

V _{rel}	Relative total volume, swollen volume or swelling factor	
V _{sat}	Volume at the saturation pressure	сс
V _{sat(new)}	New saturation volume	сс
V _{sat(orig.)}	Original saturation volume	сс
Vol/Int	The ratio of volatile components (methane and nitrogen) to	
	intermediate components (ethane to butane)	
W _{dry}	Dry weight of core plug	gm
Wi	Weight fraction of component i	wt%
W _{sat}	Saturated weight of core plug	gm
Y	The Y-function	
y ₂	Mole fraction of non-CO ₂ component in injection gas	
y _i	Mole fraction of component i	
Ζ	Compressibility factor (Z)	
Z _{sc}	Compressibility factor (Z) at standard conditions	

GREEK

<u>Symbol</u>	Description	<u>Unit</u>
α	Slope of the relationship between $MMP_{nC5enriched}$ / $MMP_{base}vs$	
	M _{C5+,oil} / MW _{C5+}	
$lpha_{inj}$	Johnson and Pollin (1981) Injection gas constant	psia/K
eta_{GA}	GA multiplication factor	
β	Intercept of the relationship between $\text{MMP}_{\text{nC5 enriched}}$ / MMP_{base} v	s
	M _{C5+,oil} / MW _{C5+}	
Δ	Difference	
ϕ_{e}	Effective porosity	
ŶG	Gas Gravity	
λ_{GA}	GA multiplication factor	
μ	Viscosity	cP
μ_{g}	Gas viscosity	cP
μ_{o}	Oil viscosity	cP
μ_{w}	Water viscosity	cP
$ ho_{oil}$	Oil density	gm/cc, lb/ft3
ρ _r	reduced density	
$ ho_{water}$	Density of water	gm/cc, lb/ft3
$ ho_{steel}$	Density of steel	gm/cc, lb/ft3
$ ho_{steel}$	Density of steel	gm/cc, lb/ft ³

ACRONYMS

<u>Acronym</u>	Description
CCE	Constant Composition Expansion
CGR	Condensate Gas Ration
CME	Constant Mass Expansion
CMS	Constant Mass Study
CVD	Constant Volume Depletion
EOR	Enhanced Oil Recovery
FID	Flame Ionisation Detector
FVF	Formation Volume Factor
GC	Gas Chromatograph
GOR	Gas Oil Ratio
MMP	Minimum Miscibility Pressure
PV	Pore Volume
PVT	Pressure, Volume, Temperature
RBA	Rising Bubble Apparatus
SARA	Saturates, Aromatics, Resins, Asphaltenes
TCD	Thermal Conductivity Detector
WFT	Wireline Formation Tester